
CoRE Working Group K. Hartke
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track Z. Shelby
Expires: September 16, 2011 Sensinode
 March 15, 2011

Observing Resources in CoAP
draft-ietf-core-observe-02

Abstract

 CoAP is a RESTful application protocol for constrained nodes and
 networks. The state of a resource on a CoAP server can change over
 time. This specification provides a simple extension for CoAP that
 gives clients the ability to observe such changes.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 16, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hartke & Shelby Expires September 16, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Observing Resources in CoAP March 2011

Table of Contents

1. Introduction . 3
2. Overview . 3
3. Observation Relationships 5
3.1. Establishment . 5
3.2. Maintenance . 6
3.3. Termination . 6

4. Notifications . 7
4.1. Strategies . 8
4.2. Retransmission . 8
4.3. Reordering . 9
4.4. Caching . 10

5. Observe Option . 10
6. Interactions with other CoAP features 11
6.1. Request Methods . 11
6.2. Block-wise Transfers 11
6.3. Resource Discovery . 12

7. Security Considerations 12
8. IANA Considerations . 13
9. Acknowledgements . 13
10. References . 13
10.1. Normative References 13
10.2. Informative References 14

Appendix A. Examples . 15
A.1. Proxying . 16

Appendix B. Changelog . 18
 Authors' Addresses . 19

Hartke & Shelby Expires September 16, 2011 [Page 2]

Internet-Draft Observing Resources in CoAP March 2011

1. Introduction

 CoAP [I-D.ietf-core-coap] is an Application Protocol for Constrained
 Nodes/Networks. It is intended to provide RESTful services [REST]
 not unlike HTTP [RFC2616], while reducing the complexity of
 implementation as well as the size of packets exchanged in order to
 make these services useful in a highly constrained network of
 themselves highly constrained nodes.

 The state of a resource on a CoAP server can change over time. We
 want to give CoAP clients the ability to observe this change.
 However, existing approaches from the HTTP world, such as repeated
 polling or long-polls, generate significant complexity and/or
 overhead and thus are less applicable in the constrained CoAP world.
 Instead, a much simpler mechanism is provided to solve the basic
 problem of resource observation. Note that there is no intention for
 this mechanism to solve the full set of problems that the existing
 HTTP solutions solve, or to replace publish/subscribe networks that
 solve a much more general problem [RFC5989].

 This specification describes an architecture and a protocol design
 that realizes the well-known subject/observer design pattern within
 the REST-based environment of CoAP.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Where arithmetic is explained, this document uses the notation
 familiar from the programming language C, except that the operator
 "^" stands for exponentiation.

2. Overview

 In the subject/observer design pattern, an object, called the
 subject, maintains a list of interested parties, called observers,
 and notifies them automatically when a predefined condition, event or
 state change occurs. The subject provides a way for observers to
 register themselves with the subject. This pattern supports a clean
 separation between components, such as data storage and user
 interface.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5989
https://datatracker.ietf.org/doc/html/rfc2119

Hartke & Shelby Expires September 16, 2011 [Page 3]

Internet-Draft Observing Resources in CoAP March 2011

 Observer Subject
 | |
 | Register |
 +----------------->|
 | |
 | Notification |
 |<-----------------+
 | |
 | Notification |
 |<-----------------+
 | |
 | Notification |
 |<-----------------+
 | |

 Figure 1: Subject/Observer Design Pattern

 The design pattern is realized in CoAP as follows:

 Subject: In the context of CoAP, the subject is a resource located
 at some CoAP server. The state of the resource may change over
 time, ranging from infrequent updates to continuous state
 transformations.

 Observer: The observer is a CoAP client that is interested in the
 current state of the resource at any given time.

 Observation Relationship: A client registers itself with a resource
 by sending a modified GET request to the server. The request
 causes the server to establish an observation relationship between
 the client and the resource. The response to the GET request
 supplies the client with a representation of the current resource
 state.

 Notification: Whenever the state of a resource changes, the server
 notifies each client that has an observation relationship to that
 resource. The notification is an additional response to the GET
 request; it supplies the client with a representation of the new
 resource state. The response echoes the token specified in the
 request, so the client can easily correlate notifications.

 Figure 2 shows an example of a CoAP client establishing an
 observation relationship to a resource on a CoAP server and being
 notified, once upon registration and then whenever the state of the
 resource changes. The request to establish an observation
 relationship and all notifications are identified by the new Observe
 Option defined in this document.

Hartke & Shelby Expires September 16, 2011 [Page 4]

Internet-Draft Observing Resources in CoAP March 2011

 Client Server
 | |
 | GET /temperature |
 | Observe: 0 | (establish observation relationship)
 | Token: 0x4a |
 +----------------->|
 | |
 | 2.05 Content |
 | Observe: 12 | (initial notification of current state)
 | Token: 0x4a |
 | Payload: 22.9 C |
 |<-----------------+
 | |
 | 2.05 Content |
 | Observe: 44 | (notification upon state change)
 | Token: 0x4a |
 | Payload: 22.8 C |
 |<-----------------+
 | |
 | 2.05 Content |
 | Observe: 60 | (notification upon state change)
 | Token: 0x4a |
 | Payload: 23.1 C |
 |<-----------------+
 | |

 Figure 2: Observing a Resource in CoAP

3. Observation Relationships

3.1. Establishment

 A client registers itself with a resource by performing a GET request
 that includes an Observe Option. (See Section 5 for the option
 definition.) When a server receives such a request, it services the
 request like a GET request without this option and, if the resulting
 response indicates success, establishes an observation relationship
 between the client and the target resource.

 The token specified by the client in the GET request will be echoed
 by the server in the initial response and in all notifications sent
 to the client as part of the observation relationship. The server
 will also include an Observe Option in each response/notification to
 indicate that the observation relationship was successfully
 established. (See Section 4 for the details of notifications.)

 A server that is unable or unwilling to establish an observation

Hartke & Shelby Expires September 16, 2011 [Page 5]

Internet-Draft Observing Resources in CoAP March 2011

 relationship between a client and a resource MUST silently ignore the
 Observe Option and process the GET request as usual. The resulting
 response will not include an Observe Option, implying that no
 observation relationship was established.

3.2. Maintenance

 A client MAY refresh an observation relationship at any time. (For
 example, when it didn't receive a notification for some time, it is
 not clear whether the resource never changed or the server rebooted
 and lost its state -- this is similar to the keep-alive problem of
 transport protocols, see e.g. the discussion in [RFC1122].) However,
 it is RECOMMENDED that the client does not refresh the relationship
 for the time specified in the Max-Age Option of the most recent
 notification received, including the initial response.

 A client refreshes an observation relationship simply by repeating
 the GET request with the Observe Option. When a server receives such
 a repeated request (i.e. a GET request from a client for which an
 observation relationship already exists), it MUST NOT establish a
 second relationship but replace or update the existing one. If a GET
 request does not include an Observe Option, the server MUST end any
 relationship that may exist between the client and the target
 resource.

 The exact rules for determining if two requests relate to the same
 observation relationship are as follows:

 o The request URI of the two requests MUST match.

 o The sources of the two requests MUST match. How this is
 determined depends on the security mode used (see Section 10 of
 [I-D.ietf-core-coap]): With NoSec, the IP address and port number
 of the request sources must match. With other security modes, in
 addition to the IP address and UDP port number matching, the
 requests must have the same security context.

 o The Message IDs and any Token Options in the two requests MUST NOT
 be taken into account.

3.3. Termination

 The observation relationship between a client and a resource ends
 when one of the following conditions occurs:

 o The server sends a notification response with an error response
 code (4.xx or 5.xx).

https://datatracker.ietf.org/doc/html/rfc1122

Hartke & Shelby Expires September 16, 2011 [Page 6]

Internet-Draft Observing Resources in CoAP March 2011

 o The client rejects a confirmable notification with a RST message.

 o The last attempt of transmitting a confirmable notification to the
 client times out. (In this case, the server MAY also end all
 other observation relationships that the client has.)

 A client MAY terminate an observation relationship by performing one
 of the following actions:

 o The client rejects a confirmable notification with a RST message.

 o The client performs a GET request on the resource without an
 Observe Option.

4. Notifications

 When an observation relationship is established between a client and
 a resource, the client is notified of resource state changes by
 additional responses sent in reply to the GET request to the client.
 Each such notification response MUST include an Observe Option and
 echo the token specified by the client in the request. The order in
 which observers are notified about a state change is not defined; the
 server is free to use any method to determine the order.

 A notification SHOULD have a 2.05 (Content) or 2.03 (Valid) response
 code. However, in the event that the state of a resource is changed
 in a way that would cause a basic GET request to return an error (for
 example, when the resource is deleted), the server SHOULD notify the
 client by sending a notification with an appropriate error code and
 MUST end the observation relationship.

 The representation format (i.e. the media type) used in any
 notification resulting from an observation relationship MUST be the
 same format used in the initial response to the GET request. If the
 server is unable to continue sending notifications in this format, it
 SHOULD send a 5.00 (Internal Server Error) notification response and
 MUST end the observation relationship.

 A notification can be sent confirmable or non-confirmable. A server
 can employ different strategies for notifying a client; see

Section 4.1 below. The objective is that the state observed by the
 client eventually becomes consistent with the actual state of the
 resource.

 If a client does not recognize the token in a confirmable
 notification, it MUST NOT acknowledge the message and SHOULD reject
 the message with a RST message (in which case the server MUST end the

Hartke & Shelby Expires September 16, 2011 [Page 7]

Internet-Draft Observing Resources in CoAP March 2011

 observation). Otherwise, the client MUST acknowledge the message
 with an ACK message as usual. See Section 4.2 for details on the
 retransmission of confirmable messages.

 Note that notifications may arrive in a different order than sent by
 the server due to network latency. If a notification arrives before
 the initial response to a request, the client can take the
 notification as initial response in place of the actual initial
 response. The client must be prepared to receive notifications after
 an error notification or after the client has requested the server to
 end the observation relationship. See Section 4.3 for further
 details on message reordering.

 Notifications MAY be cached by CoAP end-points under the same
 conditions as with all responses. This is detailed in Section 4.4.

4.1. Strategies

 The objective when notifying clients of state changes is that the
 state observed by the client eventually becomes consistent with the
 actual state of the resource. This allows the server some liberties
 in how it sends notifications, as long as it works towards this
 objective.

 A notification can be sent confirmable or non-confirmable. The
 message type used is typically application-dependent and MAY be
 determined by the server for each notification individually. For
 example, for resources that change in a somewhat predictable or
 regular fashion, notifications can be sent in non-confirmable
 messages. For resources that change infrequently, notifications can
 be sent in confirmable messages. The server can combine these two
 approaches depending on the frequency of state changes and the
 importance of individual notifications.

 A server MAY choose to omit notifying a client of a state change if
 it knows that it will send another notification soon (e.g., when the
 state is changing frequently or maybe even continuously). Similarly,
 it MAY choose to notify a client about the same state change more
 than once. For example, when state changes occur in bursts, the
 server can omit some notifications, send others in non-confirmable
 messages, and make sure that the client observes the latest state
 change by repeating the last notification in a confirmable message
 when the burst is over.

4.2. Retransmission

 According to the core CoAP protocol, confirmable messages are
 retransmitted in exponentially increasing intervals for a certain

Hartke & Shelby Expires September 16, 2011 [Page 8]

Internet-Draft Observing Resources in CoAP March 2011

 number of attempts until they are acknowledged by the client. In the
 context of observing a resource, it is undesirable to continue
 transmitting the representation of a resource state when the state
 changed in the meantime. There are many reasons why a client might
 not acknowledge a confirmable message, ranging from short
 interruptions in the network to a permanent failure of the client.

 When a server is retransmitting a confirmable message with a
 notification, is waiting for an acknowledgement, and wants to notify
 the client of a state change using a new confirmable message, it MUST
 stop retransmitting the old notification and MUST attempt to transmit
 the new notification with the number of attempts remaining from the
 old notification. When the last attempt to retransmit a confirmable
 message with a notification for a resource times out, the observation
 relationship is ended.

4.3. Reordering

 Messages with notifications can arrive in a different order than they
 were sent. Since the objective is eventual consistency, a client can
 safely discard a notification that arrives later than a newer
 notification.

 For this purpose, the server keeps a single 16-bit unsigned integer
 variable. The variable is incremented approximately every second,
 wrapping around every 2^16 seconds (roughly 18.2 hours). The server
 MUST include the current value of the variable as the value of the
 Observe Option each time it sends a notification. The server MUST
 NOT send two notifications with the same value of the variable that
 pertain to the same resource to the same client.

 A client MAY discard a notification as outdated (not fresh) under the
 following condition:

 (V1 - V2) % (2^16) < (2^15) and T2 < (T1 + (2^14))

 where T1 is a client-local timestamp of the latest valid notification
 received for this resource (in seconds), T2 a client-local timestamp
 of the current notification, V1 the value of the Observe Option of
 the latest valid notification received, and V2 the value of the
 Observe Option of the current notification. The first condition
 essentially verifies that V2 > V1 holds in 16-bit sequence number
 arithmetic [RFC1982]. The second condition checks that the time
 expired between the two incoming messages is not so large that the
 sequence number might have wrapped around and the first check is
 therefore invalid (but is not needed any more, because reordering is
 not expected to occur on the order of 2^14 seconds). Note that the
 constants of 2^14 and 2^15 are non-critical, as is the even speed of

https://datatracker.ietf.org/doc/html/rfc1982

Hartke & Shelby Expires September 16, 2011 [Page 9]

Internet-Draft Observing Resources in CoAP March 2011

 the clocks involved; e.g., the second check can be implemented by
 marking a response as fresh on reception and downgrading all
 responses periodically every, say, 2^13 seconds; once it has been
 downgraded twice, it no longer participates in freshness checks.

4.4. Caching

 As notifications are just additional responses to a GET request, the
 same rules on caching apply as to all responses: CoAP end-points MAY
 cache the responses and thereby reduce the response time and network
 bandwidth consumption. Both the freshness model and the validation
 model are supported.

 When a response is fresh in the cache, GET requests can be satisfied
 without contacting the origin server. This is particularly useful
 when the cache is located at an CoAP intermediary such as a proxy or
 reverse proxy. (Note that the freshness of the stored response is
 determined by its Max-Age Option, not the existence of an observation
 relationship. So a request can cause the end-point to refresh cache
 and observation relationship even while having an relationship.)

 When an end-point has one or more responses stored, it can use the
 ETag Option to give the origin server an opportunity to select a
 stored response to be used. The end-point SHOULD add an ETag Option
 specifying the entity-tag of each stored response that is applicable.
 It MUST keep those responses in the cache until it terminates the
 observation relationship or sends a GET request with a new set of
 entity-tags. When the observed resource changes its state and the
 origin server is about to send a 2.05 (Content) notification, then,
 whenever that notification has an entity-tag in the set of entity-
 tags specified by the client, it sends a 2.03 (Valid) response with
 an appropriate ETag Option instead. The server MUST NOT assume that
 the recipient has any response stored other than those identified by
 the entity-tags in the most recent request.

5. Observe Option

 +-----+----------+---------+--------+--------+---------+
 | No. | C/E | Name | Format | Length | Default |
 +-----+----------+---------+--------+--------+---------+
 | 10 | Elective | Observe | uint | 0-2 B | (none) |
 +-----+----------+---------+--------+--------+---------+

 Table 1: New Options

 The Observe Option, when present, modifies the GET method so it does
 not only retrieve a representation of the current state of the

Hartke & Shelby Expires September 16, 2011 [Page 10]

Internet-Draft Observing Resources in CoAP March 2011

 resource identified by the request URI once, but also lets the server
 notify the client of changes to the resource state.

 In a response, the Observe Option indicates that an observation
 relationship has been established. The option's value is a sequence
 number that can be used for reordering detection (see Section 4.3).
 The value is encoded as a variable-length unsigned integer (see

Appendix A of [I-D.ietf-core-coap]).

 Since the Observe Option is elective, a GET request that includes the
 Observe Option will automatically fall back to a basic GET request if
 the server does not support observations.

6. Interactions with other CoAP features

6.1. Request Methods

 If a client has an observation relationship with a resource and
 performs a POST, PUT or DELETE request on that resource, the request
 MUST NOT affect the observation relationship. However, since such a
 request can affect the observed resource, it can cause the server to
 send a notification with a resource state representation or end the
 observation relationship with an error notification (e.g., when a
 DELETE request is successful and an observed resource no longer
 exists).

 Note that a client cannot perform a GET request on a resource to
 retrieve a representation of the current resource state without
 affecting an existing observation relationship to that resource: the
 client is already notified by the server with a fresh representation
 whenever the state changes. If the client wants to make sure that is
 has a fresh representation and wants to continue being notified, it
 should refresh the observation relationship (see Section 3.2). If
 the client wants to make sure it has a fresh representation and does
 not want to continue being notified, it should perform a GET request
 without an Observe Option (see Section 3.3).

6.2. Block-wise Transfers

 Resources that are the subject of an observation relationship may be
 larger than can be comfortably processed or transferred in one CoAP
 message. CoAP provides a block-wise transfer mechanism to address
 this problem [I-D.ietf-core-block]. The following rules apply to the
 combination of block-wise transfers with notifications:

 o As with basic GET transfers, the client can indicate its desired
 block size in a Block option in the GET request. If the server

Hartke & Shelby Expires September 16, 2011 [Page 11]

Internet-Draft Observing Resources in CoAP March 2011

 supports block-wise transfers, it SHOULD take note of the block
 size not just for the initial response but also for further
 notifications in this observation relationship.

 o Notification responses can make use of the Block option. The
 client SHOULD use the Observe option value from the last block.
 All blocks in a notification response SHOULD also carry an ETag
 option to ensure they are reassembled correctly.

6.3. Resource Discovery

 Clients can discover resources that are interesting to observe using
 CoRE Resource Discovery [I-D.ietf-core-link-format]. Links with the
 "obs" attribute indicate resources that MUST support the mechanism in
 this document and are RECOMMENDED to change their state at least once
 in a while.

 The "obs" attribute is used as a flag, and thus it has no value
 component. The attribute MUST NOT appear more than once in a link.

7. Security Considerations

 The security considerations of the base protocol [I-D.ietf-core-coap]
 apply.

 Note that the considerations about amplification attacks are somewhat
 amplified in an observation relationship. In NoSec mode, a server
 MUST therefore strictly limit the number of messages generated from
 an observation relationship that it sends between receiving packets
 that confirm the actual interest of the recipient in the data; i.e.,
 any notifications sent in Non-Confirmable messages MUST be
 interspersed with Confirmable messages. (An Attacker may still spoof
 the acknowledgements if the Confirmable messages are sufficiently
 predictable.)

 As with any protocol that creates state, attackers may attempt to
 exhaust the resources that the server has available for maintaining
 observation relationships. Servers MAY want to access-control this
 creation of state. As degraded behavior, the server can always fall
 back to a basic GET request (without an Observe option) if it is
 unwilling or unable to establish the observation relationship,
 including if resources for state are exhausted or nearing exhaustion.

 Intermediaries MUST be careful to ensure that notifications cannot be
 employed to create a loop. A simple way to break any loops is to
 employ caches for forwarding notifications in intermediaries.

Hartke & Shelby Expires September 16, 2011 [Page 12]

Internet-Draft Observing Resources in CoAP March 2011

8. IANA Considerations

 The following entry is added to the CoAP Option Numbers registry:

 +--------+---------+-----------+
 | Number | Name | Reference |
 +--------+---------+-----------+
 | 10 | Observe | [RFCXXXX] |
 +--------+---------+-----------+

 Table 2: New CoAP Option Numbers

 The following entry is added to the CoRE Link Format Attribute
 registry:

 +------+-----------+
 | Name | Reference |
 +------+-----------+
 | obs | [RFCXXXX] |
 +------+-----------+

 Table 3: New CoRE Link Format Attributes

9. Acknowledgements

 Carsten Bormann was an original author of this draft and is
 acknowledged for significant contribution to this document.

 Thanks to Daniele Alessandrelli, Peter Bigot, Angelo Castellani,
 Gilbert Clark, Esko Dijk, Brian Frank and Salvatore Loreto for
 helpful comments and discussions that have shaped the document.

 Klaus Hartke was funded by the Klaus Tschira Foundation.

10. References

10.1. Normative References

 [I-D.ietf-core-block]
 Shelby, Z. and C. Bormann, "Blockwise transfers in CoAP",

draft-ietf-core-block-02 (work in progress), March 2011.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-05 (work in progress), March 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-core-block-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-05

Hartke & Shelby Expires September 16, 2011 [Page 13]

Internet-Draft Observing Resources in CoAP March 2011

 [I-D.ietf-core-link-format]
 Shelby, Z., "CoRE Link Format",

draft-ietf-core-link-format-03 (work in progress),
 March 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000, <http://

www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
 August 1996.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5989] Roach, A., "A SIP Event Package for Subscribing to Changes
 to an HTTP Resource", RFC 5989, October 2010.

https://datatracker.ietf.org/doc/html/draft-ietf-core-link-format-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1982
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5989

Hartke & Shelby Expires September 16, 2011 [Page 14]

Internet-Draft Observing Resources in CoAP March 2011

Appendix A. Examples

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=1, MID=0x1633)
 | GET | Token: 0x4a
 | | Uri: coap://sensor.example/temperature
 | | Observe: 0
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x1633)
 | 2.05 | Token: 0x4a
 | | Observe: 27
 | | Payload: "22.9 C"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=NON, Code=69, MID=0x7b50)
 | 2.05 | Token: 0x4a
 | | Observe: 28
 | | Payload: "22.8 C"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=NON, Code=69, MID=0x7b51)
 | 2.05 | Token: 0x4a
 | | Observe: 29
 | | Payload: "22.5 C"
 | |

 Figure 3: Simple observation with non-confirmable notifications

Hartke & Shelby Expires September 16, 2011 [Page 15]

Internet-Draft Observing Resources in CoAP March 2011

A.1. Proxying

Client Proxy Server
 | | |
 | | |
 | +----->| Header: GET (T=CON, Code=1, MID=0x5fb8)
 | | GET | Token: 0x1a
 | | | Uri: coap://sensor.example/status
 | | | Observe: 0
 | | |
 | | |
 | |<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0x5fb8)
 | | 2.05 | Token: 0x1a
 | | | Observe: 42
 | | | Max-Age: 120 sec
 | | | Payload: "ready"
 | | |
 | | |
 +----->| | Header: GET (T=CON, Code=1, MID=0x1633)
 | GET | | Token: 0x9a
 | | | Proxy-Uri: coap://sensor.example/status
 | | |
 | | |
 |<-----+ | Header: 2.05 Content (T=ACK, Code=69, MID=0x1633)
 | 2.05 | | Token: 0x9a
 | | | Max-Age: 113 sec
 | | | Payload: "ready"
 | | |
 | | |
 | |<-----+ Header: 2.05 Content (T=NON, Code=69, MID=0x5fc0)
 | | 2.05 | Token: 0x1a
 | | | Observe: 1780
 | | | Max-Age: 120 sec
 | | | Payload: "busy"
 | | |
 | | |
 +----->| | Header: GET (T=CON, Code=1, MID=0x1634)
 | GET | | Token: 0x9b
 | | | Proxy-Uri: coap://sensor.example/status
 | | |
 | | |
 |<-----+ | Header: 2.05 Content (T=ACK, Code=69, MID=0x1634)
 | 2.05 | | Token: 0x9b
 | | | Max-Age: 89 sec
 | | | Payload: "busy"
 | | |

 Figure 4: A proxy observes a resource to keep its cache up to date

Hartke & Shelby Expires September 16, 2011 [Page 16]

Internet-Draft Observing Resources in CoAP March 2011

Client Proxy Server
 | | |
 | | |
 +----->| | Header: GET (T=CON, Code=1, MID=0x1633)
 | GET | | Token: 0x6a
 | | | Proxy-Uri: coap://sensor.example/status
 | | | Observe: 0
 | | |
 | | |
 |<- - -+ | Header: (T=ACK, Code=0, MID=0x1633)
 | | |
 | | |
 | +----->| Header: GET (T=CON, Code=1, MID=0xaf90)
 | | GET | Token: 0xaa
 | | | Uri: coap://sensor.example/status
 | | | Observe: 0
 | | |
 | | |
 | |<-----+ Header: 2.05 Content (T=ACK, Code=69, MID=0xaf90)
 | | 2.05 | Token: 0xaa
 | | | Observe: 67
 | | | Payload: "ready"
 | | |
 | | |
 |<-----+ | Header: 2.05 Content (T=CON, Code=69, MID=0xaf94)
 | 2.05 | | Token: 0x6a
 | | | Observe: 346
 | | | Payload: "ready"
 | | |
 | | |
 +- - ->| | Header: (T=ACK, Code=0, MID=0xaf94)
 | | |
 | | |
 | |<-----+ Header: 2.05 Content (T=CON, Code=69, MID=0x5a20)
 | | 2.05 | Token: 0xaa
 | | | Observe: 1460
 | | | Payload: "busy"
 | | |
 | | |
 | +- - ->| Header: (T=ACK, Code=0, MID=0x5a20)
 | | |
 | | |
 |<-----+ | Header: 2.05 Content (T=CON, Code=69, MID=0xaf9b)
 | 2.05 | | Token: 0x6a
 | | | Observe: 2011
 | | | Payload: "busy"
 | | |
 | | |

Hartke & Shelby Expires September 16, 2011 [Page 17]

Internet-Draft Observing Resources in CoAP March 2011

 +- - ->| | Header: (T=ACK, Code=0, MID=0xaf9b)
 | | |

 Figure 5: A client observes a resource through a proxy

Appendix B. Changelog

 Changes from ietf-01 to ietf-02:

 o Removed the requirement of periodic refreshing (#126).

 o The new "Observe" Option replaces the "Lifetime" Option.

 o New mechanism to detect message reordering.

 o Changed 2.00 (OK) notifications to 2.05 (Content) notifications.

 Changes from ietf-00 to ietf-01:

 o Changed terminology from "subscriptions" to "observation
 relationships" (#33).

 o Changed the name of the option to "Lifetime".

 o Clarified establishment of observation relationships.

 o Clarified that an observation is only identified by the URI of the
 observed resource and the identity of the client (#66).

 o Clarified rules for establishing observation relationships (#68).

 o Clarified conditions under which an observation relationship is
 terminated.

 o Added explanation on how clients can terminate an observation
 relationship before the lifetime ends (#34).

 o Clarified that the overriding objective for notifications is
 eventual consistency of the actual and the observed state (#67).

 o Specified how a server needs to deal with clients not
 acknowledging confirmable messages carrying notifications (#69).

 o Added a mechanism to detect message reordering (#35).

 o Added an explanation of how notifications can be cached,
 supporting both the freshness and the validation model (#39, #64).

Hartke & Shelby Expires September 16, 2011 [Page 18]

Internet-Draft Observing Resources in CoAP March 2011

 o Clarified that non-GET requests do not affect observation
 relationships, and that GET requests without "Lifetime" Option
 affecting relationships is by design (#65).

 o Described interaction with block-wise transfers (#36).

 o Added Resource Discovery section (#99).

 o Added IANA Considerations.

 o Added Security Considerations (#40).

 o Added examples (#38).

Authors' Addresses

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Fax: +49-421-218-7000
 Email: hartke@tzi.org

 Zach Shelby
 Sensinode
 Kidekuja 2
 Vuokatti 88600
 Finland

 Phone: +358407796297
 Email: zach@sensinode.com

Hartke & Shelby Expires September 16, 2011 [Page 19]

