
CoRE Working Group K. Hartke
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track February 14, 2012
Expires: August 17, 2012

Observing Resources in CoAP
draft-ietf-core-observe-04

Abstract

 CoAP is a RESTful application protocol for constrained nodes and
 networks. The state of a resource on a CoAP server can change over
 time. This document specifies a simple protocol extension for CoAP
 that gives clients the ability to observe such changes.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 17, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hartke Expires August 17, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Observing Resources in CoAP February 2012

Table of Contents

1. Introduction . 3
1.1. Background . 3
1.2. Protocol Overview . 3
1.3. Design Philosophy . 5
1.4. Conformance Requirements 6

2. The Observe Option . 6
3. Client-side Requirements 7
3.1. Request . 7
3.2. Notifications . 7
3.3. Caching . 8
3.4. Reordering . 9
3.5. Cancellation . 9

4. Server-side Requirements 10
4.1. Request . 10
4.2. Notifications . 10
4.3. Caching . 11
4.4. Reordering . 12
4.5. Retransmission . 12

5. Intermediaries . 13
6. Block-wise Transfers . 14
7. Discovery . 14
8. Security Considerations 15
9. IANA Considerations . 15
10. Acknowledgements . 15
11. References . 16
11.1. Normative References 16
11.2. Informative References 16

Appendix A. Examples . 17
A.1. Proxying . 20
A.2. Block-wise Transfer 22

Appendix B. Modeling Resources to Tailor Notifications 22
Appendix C. Changelog . 23

 Author's Address . 25

Hartke Expires August 17, 2012 [Page 2]

Internet-Draft Observing Resources in CoAP February 2012

1. Introduction

1.1. Background

 CoAP [I-D.ietf-core-coap] is an Application Protocol for Constrained
 Nodes/Networks. It is intended to provide RESTful services [REST]
 not unlike HTTP [RFC2616] while reducing the complexity of
 implementation as well as the size of packets exchanged in order to
 make these services useful in a highly constrained network of
 themselves highly constrained nodes.

 The communication model of REST is that of a client exchanging
 resource representations with an origin server. The origin server is
 the definitive source for representations of the resources in its
 namespace. A client interested in a resource sends a request to the
 origin server that returns a response with a representation that is
 current at the time of the request.

 This model does not work well when a client is interested in having a
 current representation of a resource over a period of time. Existing
 approaches when using HTTP, such as repeated polling or long-polls
 [RFC6202], generate significant complexity and/or overhead and thus
 are less applicable in a constrained environment.

 The protocol specified in this document extends the CoAP core
 protocol with a mechanism to push resource representations from
 servers to interested clients, while still keeping the properties of
 REST.

 Note that there is no intention for this mechanism to solve the full
 set of problems that the existing HTTP solutions solve, or to replace
 publish/subscribe networks that solve a much more general problem
 [RFC5989].

1.2. Protocol Overview

 The protocol is based on the well-known observer design pattern
 [GOF].

 In this design pattern, components, called _observers_, register at a
 specific, known provider, called the _subject_, that they are
 interested in being notified whenever the subject undergoes a change
 in state. The subject is responsible for administering its list of
 registered observers. If multiple subjects are of interest, an
 observer must register separately for all of them. The pattern is
 typically used when a clean separation between related components is
 required, such as data storage and user interface.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc5989

Hartke Expires August 17, 2012 [Page 3]

Internet-Draft Observing Resources in CoAP February 2012

 Observer Subject
 | |
 | Register |
 +----------------->|
 | |
 | Notification |
 |<-----------------+
 | |
 | Notification |
 |<-----------------+
 | |
 | Notification |
 |<-----------------+
 | |

 Figure 1: Observer Design Pattern

 The observer design pattern is realized in CoAP as follows:

 Subject: In the context of CoAP, the subject is a resource in the
 namespace of a CoAP server. The state of the resource can change
 over time, ranging from infrequent updates to continuous state
 transformations.

 Observer: An observer is a CoAP client that is interested in the
 current state of the resource at any given time.

 Registration: A client registers its interest by sending an extended
 GET request to the server. In addition to returning a
 representation of the target resource, this request causes the
 server to add the client to the list of observers of the resource.

 Notification: Whenever the state of a resource changes, the server
 notifies each client registered as observer for the resource.
 Each notification is an additional CoAP response sent by the
 server in reply to the GET request and includes a complete
 representation of the new resource state.

 Figure 2 shows an example of a CoAP client registering and receiving
 three notifications: the first upon registration and then two when
 the state of the resource changes. Registration request and
 notifications are identified by the presence of the Observe Option
 defined in this document. Notifications also echo the token
 specified by the client in the request, so the client can easily
 correlate them to the request.

Hartke Expires August 17, 2012 [Page 4]

Internet-Draft Observing Resources in CoAP February 2012

 Client Server
 | |
 | GET /temperature |
 | Observe: 0 | (registration)
 | Token: 0x4a |
 +----------------->|
 | |
 | 2.05 Content |
 | Observe: 12 | (notification of the current state)
 | Token: 0x4a |
 | Payload: 22.9 C |
 |<-----------------+
 | |
 | 2.05 Content |
 | Observe: 44 | (notification upon a state change)
 | Token: 0x4a |
 | Payload: 22.8 C |
 |<-----------------+
 | |
 | 2.05 Content |
 | Observe: 60 | (notification upon a state change)
 | Token: 0x4a |
 | Payload: 23.1 C |
 |<-----------------+
 | |

 Figure 2: Observing a Resource in CoAP

 The client is removed from the list of observers when it is no longer
 interested in the observed resource. The server can determine the
 client's continued interest from the client's acknowledgement of
 confirmable notifications. If a client wants to receive
 notifications after it has been removed from the list of observers,
 it needs to register again. The client can determine that it's still
 on the list of observers from the fact that it receives
 notifications. The protocol includes clear rules for what to do when
 a client does not receive a notification for some time, or a server
 does not receive acknowledgements.

1.3. Design Philosophy

 The protocol builds on the architectural elements of REST, which
 include: a server that is responsible for the state and
 representation of the resources in its namespace, a client that is
 responsible for keeping the application state, and the stateless
 exchange of resource representations. (A server needs to keep track
 of the observers though, similar to how HTTP servers need to keep
 track of the TCP connections from their clients.) The protocol

Hartke Expires August 17, 2012 [Page 5]

Internet-Draft Observing Resources in CoAP February 2012

 enables high scalability and efficiency through the support of caches
 and intermediaries that multiplex the interest of multiple clients in
 the same resource into a single association.

 The server is the authority for determining under what conditions
 resources change their state and how often observers are notified.
 The protocol does not offer explicit means for setting up triggers,
 thresholds or other conditions; it is up to the server to expose
 observable resources that change their state in a way that is
 meaningful for the application. Resources can be parameterized to
 achieve similar effects though; see Appendix B for examples.

 Since bandwidth is in short supply in constrained environments,
 servers must adapt the rate of notifications to each client. This
 implies that a client cannot rely on observing every single state a
 resource goes through. Instead, the protocol is designed on the
 principle of _eventual consistency_: it guarantees that if the
 resource does not undergo a new change in state, eventually all
 observers will have a current representation of the last resource
 state.

1.4. Conformance Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. The Observe Option

 +-----+----------+---------+--------+--------+---------+
 | No. | C/E | Name | Format | Length | Default |
 +-----+----------+---------+--------+--------+---------+
 | 10 | Elective | Observe | uint | 0-2 B | (none) |
 +-----+----------+---------+--------+--------+---------+

 The Observe Option, when present, modifies the GET method so it does
 not only retrieve a representation of the current state of the
 resource identified by the request URI, but also requests the server
 to add the client to the list of observers of the resource. The
 exact semantics are defined in the sections below. The value of the
 option in a request MUST be zero on transmission and MUST be ignored
 on reception.

 In a response, the Observe Option identifies the message as a
 notification, which implies that the client has been added to the
 list of observers and that the server will notify the client of
 further changes to the resource state. The option's value is a

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Hartke Expires August 17, 2012 [Page 6]

Internet-Draft Observing Resources in CoAP February 2012

 sequence number that can be used for reordering detection (see
Section 3.4 and Section 4.4). The value is encoded as a variable-

 length unsigned integer as defined in Appendix A of RFC XXXX
 [I-D.ietf-core-coap].

 Since the Observe Option is elective, a GET request that includes the
 Observe Option will automatically fall back to a normal GET request
 if the server is unwilling or unable to add the client to the list of
 observers.

 The Observe Option MUST NOT occur more than once in a request or
 response.

3. Client-side Requirements

3.1. Request

 A client can register its interest in a resource by issuing a GET
 request that includes an empty Observe Option. If the server returns
 a 2.xx response that includes an Observe Option as well, the server
 has added the client successfully to the list of observers of the
 target resource and the client will be notified of changes to the
 resource state for as long as the server can assume the client's
 interest.

3.2. Notifications

 Notifications are additional responses sent by the server in reply to
 the GET request. Each notification includes an Observe Option with a
 sequence number (see Section 3.4), a Token Option that matches the
 token specified by the client in the GET request, and a payload of
 the same media type as the initial response.

 A notification can be confirmable or non-confirmable (i.e. sent in a
 confirmable or non-confirmable message). If a client does not
 recognize the token in a notification, it MUST NOT acknowledge the
 message and SHOULD reject it with a RST message. Otherwise, if the
 notification is confirmable, the client MUST acknowledge it with an
 ACK message as usual.

 An acknowledgement signals to the server that the client is alive and
 interested in receiving further notifications; if the server does not
 receive an acknowledgement in reply to a confirmable notification, it
 will assume that the client is no longer interested and will
 eventually remove it from the list of observers.

 Notifications will have a 2.05 (Content) response code in most cases.

Hartke Expires August 17, 2012 [Page 7]

Internet-Draft Observing Resources in CoAP February 2012

 They may also have a 2.03 (Valid) response code if the client
 includes an ETag Option in its request (see Section 3.3). In the
 event that the state of an observed resource is changed in a way that
 would cause a normal GET request to return an error (for example,
 when the resource is deleted), the server will send a notification
 with an error response code (4.xx/5.xx) and empty the list of
 observers of the resource.

3.3. Caching

 As notifications are just additional responses, notifications partake
 in caching as defined by Section 5.6 of RFC XXXX
 [I-D.ietf-core-coap]. Both the freshness model and the validation
 model are supported. The freshness model also serves as the model
 for the client to determine if it's still on the list of observers or
 if it needs to re-register its interest in the resource.

 A client MAY store a notification like a response in its cache and
 use a stored notification/response that is fresh without contacting
 the origin server. A notification/response is considered fresh while
 its age is not greater than its Max-Age and no newer notification has
 been received.

 The server will do its best to keep the client up to date with a
 fresh representation of the current resource state. It will send a
 notification whenever the resource changes, or at latest when the age
 of the last notification becomes greater than its Max-Age. (Note
 that the notification may not always arrive in time due to network
 latency.)

 The client MAY assume that it's on the list of observers while the
 age of the last notification is not greater than Max-Age. If the
 client does not receive a notification before the age becomes greater
 than Max-Age, it can assume that it has been removed from the list of
 observers (e.g., due to a loss of server state). In this case, it
 may need to re-register its interest.

 To make sure it has a fresh representation and/or to re-register its
 interest, a client MAY issue a new GET request with an Observe Option
 at any time. The GET request SHOULD specify a new token to avoid
 ambiguity. It is RECOMMENDED that the client does not issue the
 request while it still has a fresh notification.

 When a client has one or more notifications stored, it can use the
 ETag Option in the GET request to give the server an opportunity to
 select a stored response to be used. The client MAY include an ETag
 Option for each stored response that is applicable. It needs to keep
 those responses in the cache until it is no longer interested in

Hartke Expires August 17, 2012 [Page 8]

Internet-Draft Observing Resources in CoAP February 2012

 receiving notifications for the target resource or it issues a new
 GET request with a new set of entity-tags. Whenever the observed
 resource changes its state to a representation identified by one of
 the ETag Options, the server can select a stored response by sending
 a 2.03 (Valid) notification with an appropriate ETag Option instead
 of a 2.05 (Content) notification.

3.4. Reordering

 Messages that carry notifications can arrive in a different order
 than they were sent. Since the goal is eventual consistency (see

Section 1.3), a client can safely skip a notification that arrives
 later than a newer notification. For this purpose, the server sets
 the value of the Observe Option in each notification to a sequence
 number.

 A client MAY treat a notification as outdated (not fresh) under the
 following condition:

 (V1 - V2) % (2**16) < (2**15) and T2 < (T1 + (2**14))

 where V1 is the value of the Observe Option of the latest valid
 notification received, V2 the value of the Observe Option of the
 present notification, T1 a client-local timestamp of the latest valid
 notification received (in seconds), and T2 a client-local timestamp
 of the present notification.

 Design Note: The first condition essentially verifies that V2 > V1
 holds in 16-bit sequence number arithmetic [RFC1982]. The second
 condition checks that the time expired between the two incoming
 messages is not so large that the sequence number might have
 wrapped around and the first check is therefore invalid. (In
 other words, after about 2**14 seconds elapse without any
 notification, the client does not need to check the sequence
 numbers in order to assume an incoming notification is new.) The
 constants of 2**14 and 2**15 are non-critical, as is the even
 speed or precision of the clock involved.

3.5. Cancellation

 When a client rejects a notification (confirmable or non-confirmable)
 with a RST message or when it performs a GET request without an
 Observe Option for a currently observed resource, the server will
 remove the client from the list of observers for this resource. The
 client MAY use either method at any time to indicate that it is no
 longer interested in receiving notifications about a resource.

https://datatracker.ietf.org/doc/html/rfc1982

Hartke Expires August 17, 2012 [Page 9]

Internet-Draft Observing Resources in CoAP February 2012

4. Server-side Requirements

4.1. Request

 A GET request that includes an Observe Option requests the server not
 only to return a representation of the resource identified by the
 request URI, but also to add the client to the list of observers of
 the target resource. If no error occurs, the server MUST return a
 response with the representation of the current resource state and
 MUST notify the client of subsequent changes to the state as long as
 the client is on the list of observers.

 A server that is unable or unwilling to add the client to the list of
 observers of the target resource MAY silently ignore the Observe
 Option and process the GET request as usual. The resulting response
 MUST NOT include an Observe Option, the absence of which signals to
 the client that it will not be notified of changes to the resource
 state and, e.g., needs to poll the resource instead.

 If the client is already on the list of observers, the server MUST
 NOT add it a second time but MUST replace or update the existing
 entry. If the server receives a GET request that does not include an
 Observe Option, it MUST remove the client from the list of observers.

 Two requests relate to the same list entry if both the request URI
 and the source of the requests match. The source of a request is
 determined by the security mode used (see Section 10 of RFC XXXX
 [I-D.ietf-core-coap]): With NoSec, it is determined by the source IP
 address and UDP port number. With other security modes, the source
 is also determined by the security context. Note that Message IDs
 and Token Options MUST NOT be taken into account.

 Any request with a method other than GET MUST NOT have a direct
 effect on a list of observers of a resource. However, such a request
 can have the indirect consequence of causing the server to send an
 error notification which does affect the list of observers (e.g.,
 when a DELETE request is successful and an observed resource no
 longer exists).

4.2. Notifications

 A client is notified of a resource state change by an additional
 response sent by the server in reply to the GET request. Each such
 notification response MUST include an Observe Option and MUST echo
 the token specified by the client in the GET request. If there are
 multiple clients on the list of observers, the order in which they
 are notified is not defined; the server is free to use any method to
 determine the order.

Hartke Expires August 17, 2012 [Page 10]

Internet-Draft Observing Resources in CoAP February 2012

 A notification SHOULD have a 2.05 (Content) or 2.03 (Valid) response
 code. However, in the event that the state of a resource changes in
 a way that would cause a normal GET request to return an error (for
 example, if the resource is deleted), the server SHOULD notify the
 client by sending a notification with an appropriate error response
 code (4.xx/5.xx) and MUST empty the list of observers of the
 resource.

 The media type used in a notification MUST be the same as the one
 used in the initial response to the GET request. If the server is
 unable to continue sending notifications using this media type, it
 SHOULD send a 5.00 (Internal Server Error) notification and MUST
 empty the list of observers of the resource.

 A notification can be sent as a confirmable or a non-confirmable
 message. The message type used is typically application-dependent
 and MAY be determined by the server for each notification
 individually. For example, for resources that change in a somewhat
 predictable or regular fashion, notifications can be sent in non-
 confirmable messages; for resources that change infrequently,
 notifications can be sent in confirmable messages. The server can
 combine these two approaches depending on the frequency of state
 changes and the importance of individual notifications.

 The acknowledgement of a confirmable notification implies the
 client's continued interest in being notified. If the client rejects
 a confirmable or non-confirmable notification with a RST message, the
 server MUST remove the client from the list of observers.

4.3. Caching

 The Max-Age Option of a notification SHOULD be set to a value that
 indicates when the server will send the next notification. For
 example, if the server sends a notification every 30 seconds, a Max-
 Age Option with value 30 should be included. The server MAY send a
 new notification before Max-Age ends and MUST send a new notification
 at latest when Max-Age ends. If the client does not receive a new
 notification before Max-Age ends, it will assume that it was removed
 from the list of observers (e.g., due to a loss of server state) and
 may issue a new GET request to re-register its interest.

 It may not always be possible to predict when the server will send
 the next notification, for example, when a resource does not change
 its state in regular intervals. In this case, the server SHOULD set
 Max-Age to a good approximation. The value is a trade-off between
 increased usage of bandwidth and the risk of stale information.
 Smaller values lead to more notifications and more GET requests,
 while greater values result in network or device failures being

Hartke Expires August 17, 2012 [Page 11]

Internet-Draft Observing Resources in CoAP February 2012

 detected later and data becoming stale.

 The client can include a set of entity-tags in its request using the
 ETag Option. When the observed resource changes its state and the
 origin server is about to send a 2.05 (Content) notification, then,
 whenever that notification has an entity-tag in the set of entity-
 tags specified by the client, the server MAY send a 2.03 (Valid)
 response with an appropriate ETag Option instead. The server MUST
 NOT assume that the recipient has any response stored other than
 those identified by the entity-tags in the most recent GET request
 for the resource.

4.4. Reordering

 Because messages can get reordered, the client needs a way to
 determine if a notification arrived later than a newer notification.
 For this purpose, the server MUST set the value of the Observe Option
 in each notification to the 16 least-significant bits of a strictly
 increasing sequence number. The sequence number MAY start at any
 value. The server MUST NOT reuse the same option value with the same
 client, token and resource within approximately 2**16 seconds
 (roughly 18.2 hours).

 Implementation Note: A simple implementation that satisfies the
 requirements is to use a timestamp (in seconds) provided by the
 device's clock, or a 16-bit unsigned integer variable that is
 incremented every second and wraps around every 2**16 seconds. It
 is not necessary that the clock reflects the correct local time or
 that it ticks exactly every second. Note that, on average, a
 server cannot send more than one notification per second per
 client, token and resource.

4.5. Retransmission

 In CoAP, confirmable messages are retransmitted in exponentially
 increasing intervals for a certain number of attempts until they are
 acknowledged by the client. In the context of observing a resource,
 it is undesirable to continue transmitting the representation of a
 resource state when the state has changed in the meantime.

 When a server is in the process of delivering a confirmable
 notification and is waiting for an acknowledgement, and it wants to
 notify the client of a state change using a new confirmable message,
 it MUST stop retransmitting the old notification and SHOULD attempt
 to deliver the new notification with the number of attempts remaining
 from the old notification. When the last attempt to retransmit a
 confirmable message with a notification for a resource times out, the
 server SHOULD remove the client from the list of observers and MAY

Hartke Expires August 17, 2012 [Page 12]

Internet-Draft Observing Resources in CoAP February 2012

 additionally remove the client from the lists of observers of all
 resources in its namespace.

 The server SHOULD use a number of retransmit attempts
 (MAX_RETRANSMIT) such that removing a client from the list of
 observers before Max-Age ends is avoided.

 A server MAY choose to skip a notification if it knows that it will
 send another notification soon (e.g., when the state is changing
 frequently). Similarly, it MAY choose to send a notification more
 than once. For example, when state changes occur in bursts, the
 server can skip some notifications, send the notifications in non-
 confirmable messages, and make sure that the client observes the
 latest state change after the burst by repeating the last
 notification in a confirmable message.

5. Intermediaries

 A client may be interested in a resource in the namespace of an
 origin server that is reached through one or more CoAP-to-CoAP
 intermediaries. In this case, the client registers its interest with
 the first intermediary towards the origin server, acting as if it was
 communicating with the origin server itself as specified in

Section 3. It is the task of this intermediary to provide the client
 with a current representation of the target resource and send
 notifications upon changes to the target resource state, much like an
 origin server as specified in Section 4.

 To perform this task, the intermediary SHOULD make use of the
 protocol specified in this document, taking the role of the client
 and registering its own interest in the target resource with the next
 hop. If the next hop does not return a response with an Observe
 Option, the intermediary MAY resort to polling the next hop, or MAY
 itself return a response without an Observe Option. Note that the
 communication between each pair of hops is independent, i.e. each hop
 in the server role MUST determine individually how many notifications
 to send, of which type, and so on. Each hop MUST generate its own
 values for the Observe Option, and MUST set the value of the Max-Age
 Option according to the age of the local current representation.

 Because a client (or an intermediary in the client role) can only be
 once in the list of observers of a resource at a server (or an
 intermediary in the server role) -- it is useless to observe the same
 resource multiple times -- an intermediary MUST observe a resource
 only once, even if there are multiple clients for which it observes
 the resource.

Hartke Expires August 17, 2012 [Page 13]

Internet-Draft Observing Resources in CoAP February 2012

 Note that an intermediary is not required to have a client to observe
 a resource; an intermediary MAY observe a resource, for instance,
 just to keep its own cache up to date.

 See Appendix A.1 for examples.

6. Block-wise Transfers

 Resources observed by clients may be larger than can be comfortably
 processed or transferred in one CoAP message. CoAP provides a block-
 wise transfer mechanism to address this problem
 [I-D.ietf-core-block]. The following rules apply to the combination
 of block-wise transfers with notifications.

 As with basic GET transfers, the client can indicate its desired
 block size in a Block2 Option in the GET request. If the server
 supports block-wise transfers, it SHOULD take note of the block size
 for all notifications/responses resulting from the GET request (until
 the client is removed from the list of observers or the server
 receives a new GET request from the client).

 When sending a 2.05 (Content) notification, the server always sends
 all blocks of the representation, suitably sequenced by its
 congestion control mechanism, even if only some of the blocks have
 changed with respect to a previous value. The server performs the
 block-wise transfer by making use of the Block2 Option in each block.
 When reassembling representations that are transmitted in multiple
 blocks, the client MUST NOT combine blocks carrying different Observe
 Option values, or blocks that have been received more than
 approximately 2**14 seconds apart.

 See Appendix A.2 for an example.

7. Discovery

 A web link [RFC5988] to a resource accessible by the CoAP protocol
 MAY indicate that the server encourages the observation of this
 resource by including the target attribute "obs". This is
 particularly useful in link-format documents
 [I-D.ietf-core-link-format].

 This target attribute is used as a flag, and thus it has no value
 component -- a value given for the attribute MUST NOT be given for
 this version of the specification and MUST be ignored if present.
 The target attribute "obs" MUST NOT be given more than once for this
 version of the specification.

https://datatracker.ietf.org/doc/html/rfc5988

Hartke Expires August 17, 2012 [Page 14]

Internet-Draft Observing Resources in CoAP February 2012

8. Security Considerations

 The security considerations of RFC XXXX [I-D.ietf-core-coap] apply.

 Note that the considerations about amplification attacks are somewhat
 amplified when observing resources. In NoSec mode, a server MUST
 therefore strictly limit the number of notifications that it sends
 between receiving acknowledgements that confirm the actual interest
 of the client in the data; i.e., any notifications sent in non-
 confirmable messages MUST be interspersed with confirmable messages.
 (An attacker may still spoof the acknowledgements if the confirmable
 messages are sufficiently predictable.)

 As with any protocol that creates state, attackers may attempt to
 exhaust the resources that the server has available for maintaining
 the list of observers for each resource. Servers MAY want to access-
 control this creation of state. As degraded behavior, the server can
 always fall back to processing the request as a normal GET request
 (without an Observe Option) if it is unwilling or unable to add a
 client to the list of observers of a resource, including if system
 resources are exhausted or nearing exhaustion.

 Intermediaries MUST be careful to ensure that notifications cannot be
 employed to create a loop. A simple way to break any loops is to
 employ caches for forwarding notifications in intermediaries.

9. IANA Considerations

 The following entries are added to the CoAP Option Numbers registry:

 +--------+---------+-----------+
 | Number | Name | Reference |
 +--------+---------+-----------+
 | 10 | Observe | [RFCXXXX] |
 +--------+---------+-----------+

10. Acknowledgements

 Carsten Bormann was an original author of this draft and is
 acknowledged for significant contribution to this document.

 Thanks to Daniele Alessandrelli, Jari Arkko, Peter Bigot, Angelo
 Castellani, Gilbert Clark, Esko Dijk, Thomas Fossati, Brian Frank,
 Cullen Jennings, Salvatore Loreto, Charles Palmer and Zach Shelby for
 helpful comments and discussions that have shaped the document.

Hartke Expires August 17, 2012 [Page 15]

Internet-Draft Observing Resources in CoAP February 2012

 Klaus Hartke was funded by the Klaus Tschira Foundation.

11. References

11.1. Normative References

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",

draft-ietf-core-block-07 (work in progress), January 2012.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-08 (work in progress), October 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

11.2. Informative References

 [GOF] Gamma, E., Helm, R., Johnson, R., and J. Vlissides,
 "Design Patterns: Elements of Reusable Object-Oriented
 Software", Addison-Wesley, Reading, MA, USA,
 November 1994.

 [I-D.ietf-core-link-format]
 Shelby, Z., "CoRE Link Format",

draft-ietf-core-link-format-11 (work in progress),
 January 2012.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000, <http://

www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>.

 [RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
 August 1996.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5989] Roach, A., "A SIP Event Package for Subscribing to Changes
 to an HTTP Resource", RFC 5989, October 2010.

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,

https://datatracker.ietf.org/doc/html/draft-ietf-core-block-07
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/draft-ietf-core-link-format-11
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://datatracker.ietf.org/doc/html/rfc1982
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5989

Hartke Expires August 17, 2012 [Page 16]

Internet-Draft Observing Resources in CoAP February 2012

 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 April 2011.

Appendix A. Examples

 Observed CLIENT SERVER Actual
 t State | | State
 ____________ | | ____________
 1 | |
 2 unknown | | 18.5 C
 3 +----->| Header: GET 0x43011633
 4 | GET | Token: 0x4a
 5 | | Uri-Path: temperature
 6 | | Observe: 0
 7 | |
 8 | |
 9 ____________ |<-----+ Header: 2.05 0x64451633
 10 | 2.05 | Token: 0x4a
 11 18.5 C | | Observe: 9
 12 | | Max-Age: 15
 13 | | Payload: "18.5 C"
 14 | |
 15 | | ____________
 16 ____________ |<-----+ Header: 2.05 0x54457b50
 17 | 2.05 | 19.2 C Token: 0x4a
 18 19.2 C | | Observe: 16
 29 | | Max-Age: 15
 20 | | Payload: "19.2 C"
 21 | |

 Figure 3: A client registers and receives a notification of the
 current state and upon a state change

https://datatracker.ietf.org/doc/html/rfc6202

Hartke Expires August 17, 2012 [Page 17]

Internet-Draft Observing Resources in CoAP February 2012

 Observed CLIENT SERVER Actual
 t State | | State
 ____________ | | ____________
 22 | |
 23 19.2 C | | 19.2 C
 24 | | ____________
 25 | X----+ Header: 2.05 0x54457b51
 26 | 2.05 | 19.7 C Token: 0x4a
 27 | | Observe: 25
 28 | | Max-Age: 15
 29 | | Payload: "19.7 C"
 30 | |
 31 ____________ | |
 32 +----->| Header: GET 0x43011633
 33 19.2 C | GET | Token: 0xb2
 34 (stale) | | Uri-Path: temperature
 35 | | Observe: 0
 36 | |
 37 | |
 38 ____________ |<-----+ Header: 2.05 0x55457b52
 39 | 2.05 | Token: 0xb2
 40 19.7 C | | Observe: 38
 41 | | Max-Age: 15
 42 | | ETag: 0x78797a7a79
 43 | | Payload: "19.7 C"
 44 | |

 Figure 4: The client re-registers after Max-Age ends

Hartke Expires August 17, 2012 [Page 18]

Internet-Draft Observing Resources in CoAP February 2012

 Observed CLIENT SERVER Actual
 t State | | State
 ____________ | | ____________
 45 | |
 46 19.7 C | | 19.7 C
 47 | |
 48 | | ____________
 49 | CRASH
 50 |
 51 |
 52 | |
 53 ____________ | | ____________
 54 +----->| Header: GET 0x44011634
 55 19.7 C | GET | 20.0 C Token: 0xf9
 56 (stale) | | Uri-Path: temperature
 57 | | Observe: 0
 58 | | ETag: 0x78797a7a79
 59 | |
 60 | |
 61 ____________ |<-----+ Header: 2.05 0x64451634
 62 | 2.05 | Token: 0xf9
 63 20.0 C | | Observe: 61
 64 | | Max-Age: 15
 65 | | Payload: "20.0 C"
 66 | |
 67 | | ____________
 68 ____________ |<-----+ Header: 2.03 0x5543aa0c
 69 | 2.03 | 19.7 C Token: 0xf9
 70 19.7 C | | Observe: 68
 71 | | ETag: 0x78797a7a79
 72 | | Max-Age: 15
 73 | |

 Figure 5: The client re-registers and gives the server the
 opportunity to select a stored response

Hartke Expires August 17, 2012 [Page 19]

Internet-Draft Observing Resources in CoAP February 2012

A.1. Proxying

 CLIENT PROXY SERVER
 | | |
 | +----->| Header: GET 0x44015fb8
 | | GET | Token: 0x1a
 | | | Uri-Host: sensor.example
 | | | Uri-Path: status
 | | | Observe: 0
 | | |
 | |<-----+ Header: 2.05 0x64455fb8
 | | 2.05 | Token: 0x1a
 | | | Observe: 42
 | | | Max-Age: 60
 | | | Payload: "ready"
 | | |
 +----->| | Header: GET 0x42011633
 | GET | | Token: 0x9a
 | | | Proxy-Uri: coap://sensor.example/status
 | | |
 |<-----+ | Header: 2.05 0x62451633
 | 2.05 | | Token: 0x9a
 | | | Max-Age: 53
 | | | Payload: "ready"
 | | |
 | |<-----+ Header: 2.05 0x544505fc0
 | | 2.05 | Token: 0x1a
 | | | Observe: 135
 | | | Max-Age: 60
 | | | Payload: "busy"
 | | |
 +----->| | Header: GET 0x42011634
 | GET | | Token: 0x9b
 | | | Proxy-Uri: coap://sensor.example/status
 | | |
 |<-----+ | Header: 2.05 0x62451634
 | 2.05 | | Token: 0x9b
 | | | Max-Age: 49
 | | | Payload: "busy"
 | | |

 Figure 6: A proxy observes a resource to keep its cache up to date

Hartke Expires August 17, 2012 [Page 20]

Internet-Draft Observing Resources in CoAP February 2012

 CLIENT PROXY SERVER
 | | |
 +----->| | Header: GET 0x43011635
 | GET | | Token: 0x6a
 | | | Proxy-Uri: coap://sensor.example/status
 | | | Observe: 0
 | | |
 |<- - -+ | Header: 0x60001635
 | | |
 | +----->| Header: GET 0x4401af90
 | | GET | Token: 0xaa
 | | | Uri-Host: sensor.example
 | | | Uri-Path: status
 | | | Observe: 0
 | | |
 | |<-----+ Header: 2.05 0x6445af90
 | | 2.05 | Token: 0xaa
 | | | Observe: 67
 | | | Max-Age: 60
 | | | Payload: "ready"
 | | |
 |<-----+ | Header: 2.05 0x4445af94
 | 2.05 | | Token: 0x6a
 | | | Observe: 17346
 | | | Max-Age: 60
 | | | Payload: "ready"
 | | |
 +- - ->| | Header: 0x6000af94
 | | |
 | |<-----+ Header: 2.05 0x54455a20
 | | 2.05 | Token: 0xaa
 | | | Observe: 157
 | | | Max-Age: 60
 | | | Payload: "busy"
 | | |
 |<-----+ | Header: 2.05 0x5445af9b
 | 2.05 | | Token: 0x6a
 | | | Observe: 17436
 | | | Max-Age: 60
 | | | Payload: "busy"
 | | |

 Figure 7: A client observes a resource through a proxy

Hartke Expires August 17, 2012 [Page 21]

Internet-Draft Observing Resources in CoAP February 2012

A.2. Block-wise Transfer

 CLIENT SERVER
 | |
 +----->| Header: GET 0x43011636
 | GET | Token: 0xfb
 | | Uri-Path: status-icon
 | | Observe: 0
 | |
 |<-----+ Header: 2.05 0x65451636
 | 2.05 | Token: 0xfb
 | | Block2: 0/1/128
 | | Observe: 62354
 | | Max-Age: 60
 | | Payload: [128 bytes]
 | |
 |<-----+ Header: 2.05 0x5545af9c
 | 2.05 | Token: 0xfb
 | | Block2: 1/0/128
 | | Observe: 62354
 | | Max-Age: 60
 | | Payload: [27 bytes]
 | |
 |<-----+ Header: 2.05 0x5545af9d
 | 2.05 | Token: 0xfb
 | | Block2: 0/1/128
 | | Observe: 62444
 | | Max-Age: 60
 | | Payload: [128 bytes]
 | |
 |<-----+ Header: 2.05 0x5545af9e
 | 2.05 | Token: 0xfb
 | | Block2: 1/0/128
 | | Observe: 62444
 | | Max-Age: 60
 | | Payload: [27 bytes]
 | |

 Figure 8: A server sends two notifications of two blocks each

Appendix B. Modeling Resources to Tailor Notifications

 A server may want to provide notifications that respond to very
 specific conditions on some state. This is best done by modeling the
 resources that the server exposes according to these needs.

 For example, for a CoAP server with an attached temperature sensor,

Hartke Expires August 17, 2012 [Page 22]

Internet-Draft Observing Resources in CoAP February 2012

 o the server could, in the simplest form, expose a resource
 <coap://server/temperature> that changes its state every second to
 the current temperature measured by the sensor;

 o the server could, however, also expose a resource
 <coap://server/temperature/felt> that changes its state to "cold"
 when the temperature drops below a preconfigured threshold, and to
 "warm" when the temperature exceeds a second, higher threshold;

 o the server could expose a parameterized resource
 <coap://server/temperature/critical?above=45> that changes its
 state to the current temperature if the temperature exceeds the
 specified value, and changes its state to "OK" when the
 temperature drops below; or

 o the server could expose a parameterized resource <coap://server/
 temperature?query=select+avg(temperature)+from+
 Sensor.window:time(30sec)> that accepts expressions of arbitrary
 complexity and changes its state accordingly.

 In any case, the client is notified about the current state of the
 resource whenever the state of the appropriately modeled resource
 changes. By designing resources that change their state on certain
 conditions, it is possible to notify the client only when these
 conditions occur instead of continuously supplying it with
 information it doesn't need. With parametrized resources, this is
 not limited to conditions defined by the server, but can be extended
 to arbitrarily complex conditions defined by the client. Thus, the
 server designer can choose exactly the right level of complexity for
 the application envisioned and devices used, and is not constrained
 to a "one size fits all" mechanism built into the protocol.

Appendix C. Changelog

 Changes from ietf-03 to ietf-04:

 o Removed the "Max-OFE" Option.

 o Allowed RST in reply to non-confirmable notifications.

 o Added a section on cancellation.

 o Updated examples.

 Changes from ietf-02 to ietf-03:

Hartke Expires August 17, 2012 [Page 23]

Internet-Draft Observing Resources in CoAP February 2012

 o Separated client-side and server-side requirements.

 o Fixed uncertainty if client is still on the list of observers by
 introducing a liveliness model based on Max-Age and a new option
 called "Max-OFE" (#174).

 o Simplified the text on message reordering (#129).

 o Clarified requirements for intermediaries.

 o Clarified the combination of block-wise transfers with
 notifications (#172).

 o Updated examples to show how the state observed by the client
 becomes eventually consistent with the actual state on the server.

 o Added examples for parameterization of observable resource.

 Changes from ietf-01 to ietf-02:

 o Removed the requirement of periodic refreshing (#126).

 o The new "Observe" Option replaces the "Lifetime" Option.

 o Introduced a new mechanism to detect message reordering.

 o Changed 2.00 (OK) notifications to 2.05 (Content) notifications.

 Changes from ietf-00 to ietf-01:

 o Changed terminology from "subscriptions" to "observation
 relationships" (#33).

 o Changed the name of the option to "Lifetime".

 o Clarified establishment of observation relationships.

 o Clarified that an observation is only identified by the URI of the
 observed resource and the identity of the client (#66).

 o Clarified rules for establishing observation relationships (#68).

 o Clarified conditions under which an observation relationship is
 terminated.

 o Added explanation on how clients can terminate an observation
 relationship before the lifetime ends (#34).

Hartke Expires August 17, 2012 [Page 24]

Internet-Draft Observing Resources in CoAP February 2012

 o Clarified that the overriding objective for notifications is
 eventual consistency of the actual and the observed state (#67).

 o Specified how a server needs to deal with clients not
 acknowledging confirmable messages carrying notifications (#69).

 o Added a mechanism to detect message reordering (#35).

 o Added an explanation of how notifications can be cached,
 supporting both the freshness and the validation model (#39, #64).

 o Clarified that non-GET requests do not affect observation
 relationships, and that GET requests without "Lifetime" Option
 affecting relationships is by design (#65).

 o Described interaction with block-wise transfers (#36).

 o Added Resource Discovery section (#99).

 o Added IANA Considerations.

 o Added Security Considerations (#40).

 o Added examples (#38).

Author's Address

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Fax: +49-421-218-7000
 Email: hartke@tzi.org

Hartke Expires August 17, 2012 [Page 25]

