
CoRE Working Group K. Hartke
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track September 24, 2013
Expires: March 28, 2014

Observing Resources in CoAP
draft-ietf-core-observe-10

Abstract

 CoAP is a RESTful application protocol for constrained nodes and
 networks. The state of a resource on a CoAP server can change over
 time. This document specifies a simple protocol extension for CoAP
 that enables CoAP clients to "observe" resources, i.e., to retrieve
 a representation of a resource and keep this representation updated
 by the server over a period of time. The protocol follows a best-
 effort approach for sending new representations to clients and
 provides eventual consistency between the state observed by each
 client and the actual resource state at the server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 28, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Hartke Expires March 28, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Observing Resources in CoAP September 2013

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Background . 3
1.2. Protocol Overview . 3
1.3. Observable Resources 5
1.4. Consistency . 6
1.5. Requirements Notation 7

2. The Observe Option . 7
3. Client-side Requirements 8
3.1. Request . 8
3.2. Notifications . 8
3.3. Caching . 9
3.4. Reordering . 10
3.5. Transmission . 11
3.6. Cancellation . 11

4. Server-side Requirements 11
4.1. Request . 11
4.2. Notifications . 12
4.3. Caching . 12
4.4. Reordering . 13
4.5. Transmission . 14

5. Intermediaries . 16
6. Web Linking . 16
7. Security Considerations 17
8. IANA Considerations . 17
9. Acknowledgements . 18
10. References . 18
10.1. Normative References 18
10.2. Informative References 18

Appendix A. Examples . 19
A.1. Client/Server Examples 20
A.2. Proxy Examples . 24

Appendix B. Changelog . 26

Hartke Expires March 28, 2014 [Page 2]

Internet-Draft Observing Resources in CoAP September 2013

1. Introduction

1.1. Background

 CoAP [I-D.ietf-core-coap] is an application protocol for constrained
 nodes and networks. It is intended to provide RESTful services
 [REST] not unlike HTTP [RFC2616] while reducing the complexity of
 implementation as well as the size of packets exchanged in order to
 make these services useful in a highly constrained network of
 themselves highly constrained nodes.

 The model of REST is that of a client exchanging representations of
 resources with a server, where a representation captures the current
 or intended state of a resource and the server is the definitive
 source for representations of the resources in its namespace. A
 client interested in the state of a resource initiates a request to
 the server; the server then returns a response with a representation
 of the resource that is current at the time of the request.

 This model does not work well when a client is interested in having a
 current representation of a resource over a period of time. Existing
 approaches from HTTP, such as repeated polling or HTTP long polling
 [RFC6202], generate significant complexity and/or overhead and thus
 are less applicable in a constrained environment.

 The protocol specified in this document extends the CoAP core
 protocol with a mechanism for a CoAP client to "observe" a resource
 on a CoAP server: the client can retrieve a representation of the
 resource and request this representation be updated by the server
 over a period of time.

 The protocol keeps the architectural properties of REST. It enables
 high scalability and efficiency through the support of caches and
 proxies. There is no intention for it, though, to solve the full set
 of problems that the existing HTTP solutions solve, or to replace
 publish/subscribe networks that solve a much more general problem
 [RFC5989].

1.2. Protocol Overview

 The protocol is based on the well-known observer design pattern
 [GOF]. In this design pattern, components called "observers"
 register at a specific, known provider called the "subject" that they
 are interested in being notified whenever the subject undergoes a
 change in state. The subject is responsible for administering its
 list of registered observers. If multiple subjects are of interest
 to an observer, the observer must register separately for all of
 them.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc5989

Hartke Expires March 28, 2014 [Page 3]

Internet-Draft Observing Resources in CoAP September 2013

 Observer Subject
 | |
 | Registration |
 +------------------->|
 | |
 | Notification |
 |<-------------------+
 | |
 | Notification |
 |<-------------------+
 | |
 | Notification |
 |<-------------------+
 | |

 Figure 1: The Observer Design Pattern

 The observer design pattern is realized in CoAP as follows:

 Subject: In the context of CoAP, the subject is a resource in the
 namespace of a CoAP server. The state of the resource can change
 over time, ranging from infrequent updates to continuous state
 transformations.

 Observer: An observer is a CoAP client that is interested in having
 a current representation of the resource at any given time.

 Registration: A client registers its interest in a resource by
 initiating an extended GET request to the server. In addition to
 returning a representation of the target resource, this request
 causes the server to add the client to the list of observers of
 the resource.

 Notification: Whenever the state of a resource changes, the server
 notifies each client in the list of observers of the resource.
 Each notification is an additional CoAP response sent by the
 server in reply to the GET request and includes a complete,
 updated representation of the new resource state.

 Figure 2 below shows an example of a CoAP client registering its
 interest in a resource and receiving three notifications: the first
 upon registration with the current state, and then two upon changes
 to the resource state. Both the registration request and the
 notifications are identified as such by the presence of the Observe
 Option defined in this document. In notifications, the Observe
 Option additionally provides a sequence number for reordering
 detection. All notifications carry the token specified by the
 client, so the client can easily correlate them to the request.

Hartke Expires March 28, 2014 [Page 4]

Internet-Draft Observing Resources in CoAP September 2013

 Client Server
 | |
 | GET /temperature |
 | Token: 0x4a | Registration
 | Observe: (empty) |
 +------------------->|
 | |
 | 2.05 Content |
 | Token: 0x4a | Notification of
 | Observe: 12 | the current state
 | Payload: 22.9 Cel |
 |<-------------------+
 | |
 | 2.05 Content |
 | Token: 0x4a | Notification upon
 | Observe: 44 | a state change
 | Payload: 22.8 Cel |
 |<-------------------+
 | |
 | 2.05 Content |
 | Token: 0x4a | Notification upon
 | Observe: 60 | a state change
 | Payload: 23.1 Cel |
 |<-------------------+
 | |

 Figure 2: Observing a Resource in CoAP

 A client remains on the list of observers as long as the server can
 determine the client's continued interest in the resource. The
 interest is determined from the client's acknowledgement of
 notifications sent in confirmable CoAP messages by the server: If the
 client actively rejects a notification or if the transmission of a
 notification times out after several transmission attempts, then the
 client is assumed to be no longer interested and it is removed from
 the list of observers.

1.3. Observable Resources

 A CoAP server is the authority for determining under what conditions
 resources change their state and thus when observers are notified of
 new resource states. The protocol does not offer explicit means for
 setting up triggers or thresholds; it is up to the server to expose
 observable resources that change their state in a way that is useful
 in the application context.

 For example, a CoAP server with an attached temperature sensor could
 expose one or more of the following resources:

Hartke Expires March 28, 2014 [Page 5]

Internet-Draft Observing Resources in CoAP September 2013

 o <coap://server/temperature>, which changes its state every second
 to the current reading of the temperature sensor;

 o <coap://server/temperature/felt>, which changes its state to
 "cold" when the temperature reading drops below a certain pre-
 configured threshold, and to "warm" when the reading exceeds a
 second, slightly higher threshold;

 o <coap://server/temperature/critical?above=45>, which changes its
 state based on the client-specified parameter value: every second
 to the current temperature reading if the temperature exceeds the
 threshold, or to "OK" when the reading drops below; and/or

 o <coap://server/?query=select+avg(temperature)+from+Sensor.window:
 time(30sec)>, which accepts expressions of arbitrary complexity
 and changes its state accordingly.

 So, by designing CoAP resources that change their state on certain
 conditions, it is possible to update the client only when these
 conditions occur instead of continuously supplying it with raw sensor
 readings. By parameterizing resources, this is not limited to
 conditions defined by the server, but can be extended to arbitrarily
 complex queries specified by the client. Thus, the application
 designer can choose exactly the right level of complexity for the
 application envisioned and devices used, and is not constrained to a
 "one size fits all" mechanism built into the protocol.

1.4. Consistency

 While a client is in the list of observers of a resource, the goal of
 the protocol is to keep the resource state observed by the client as
 closely in sync with the actual state at the server as possible.

 It cannot be avoided that the client and the server become
 inconsistent at times: First, there is always some latency between
 the change of the resource state and the receipt of the notification.
 Second, messages with notifications can get lost, which will cause
 the client to assume an old state until it receives a new
 notification. And third, the server may erroneously come to the
 conclusion that the client is no longer interested in the resource,
 which will cause the server to stop sending notifications and the
 client to assume an old state until it registers its interest
 eventually again.

 The protocol addresses this as follows:

 o It follows a best-effort approach for sending the current
 representation to the client after a state change: Clients should

Hartke Expires March 28, 2014 [Page 6]

Internet-Draft Observing Resources in CoAP September 2013

 see the new state after a state change as soon as possible, and
 they should see as many states as possible. However, a client
 cannot rely on observing every single state that a resource might
 go through.

 o It labels notifications with a maximum duration up to which it is
 acceptable for the observed state and the actual state to be out
 of sync. When the age of the notification received reaches this
 limit, the client cannot use the enclosed representation until it
 receives a new notification.

 o It is designed on the principle of eventual consistency: The
 protocol guarantees that, if the resource does not undergo a new
 change in state, eventually all registered observers will have a
 current representation of the latest resource state.

1.5. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. The Observe Option

 +-----+---+---+---+---+---------+------------+-----------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+---+---+---+---+---------+------------+-----------+---------+
 | 6 | | x | - | | Observe | empty/uint | 0 B/0-3 B | (none) |
 +-----+---+---+---+---+---------+------------+-----------+---------+

 C=Critical, U=Unsafe, N=No-Cache-Key, R=Repeatable

 Table 1: The Observe Option

 The Observe Option, when present in a request, extends the GET method
 so it does not only retrieve a current representation of the target
 resource, but also requests the server to add a new entry to the list
 of observers of the resource. The list entry consists of the client
 endpoint and the token specified by the client in the request.

 The value of the Observe Option in a request MUST be empty on
 transmission and MUST be ignored on reception.

 The Observe Option is not critical for processing the request. If
 the server is unwilling or unable to add the client to the list of
 observers of the target resource, then the request falls back to a
 normal GET request.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Hartke Expires March 28, 2014 [Page 7]

Internet-Draft Observing Resources in CoAP September 2013

 In a response, the Observe Option identifies the message as a
 notification. This implies that the server has added the client to
 the list of observers and that it will notify the client of changes
 to the resource state.

 The value of the Observe Option in a response is a 24-bit sequence
 number for reordering detection (see Section 3.4 and Section 4.4).
 The sequence number is encoded in network byte order using a variable
 number of bytes ('uint' format; see Section 3.2 of RFC XXXX
 [I-D.ietf-core-coap]).

 The Observe Option is not part of the cache-key: a cacheable response
 obtained with an Observe Option in the request can be used to satisfy
 a request without an Observe Option, and vice versa. When a stored
 response that includes an Observe Option is used to satisfy a normal
 GET request, the option MUST be removed before the response is
 returned to the client.

3. Client-side Requirements

3.1. Request

 A client can register its interest in a resource by issuing a GET
 request that includes an empty Observe Option. If the server returns
 a 2.xx response that includes an Observe Option as well, the server
 has added the client successfully to the list of observers of the
 target resource and the client will be notified of changes to the
 resource state.

 Like a fresh response can be used to satisfy a request without
 contacting the server, the updates resulting from one request can be
 used to satisfy another request if the target resource is the same.
 A client therefore MUST aggregate requests where possible, and MUST
 NOT register more than once for the same target resource. The target
 resource SHALL be identified for this purpose by all options in the
 request that are part of the cache-key, such as the full request URI
 and the Accept Option.

3.2. Notifications

 Notifications are additional responses sent by the server in reply to
 the GET request. Each notification includes the token specified by
 the client in the GET request, an Observe Option with a sequence
 number for reordering detection (see Section 3.4), and a payload in
 the same Content-Format as the initial response.

 Notifications have a 2.05 (Content) response code, or potentially a
 2.03 (Valid) response code if the client included one or more ETag

Hartke Expires March 28, 2014 [Page 8]

Internet-Draft Observing Resources in CoAP September 2013

 Options in the request (see Section 3.3). In the event that the
 resource changes in a way that would cause a normal GET request at
 that time to return a non-2.xx response (for example, when the
 resource is deleted), the server sends a notification with an
 appropriate response code (such as 4.04 Not Found) and removes all
 clients from the list of observers of the resource.

3.3. Caching

 As notifications are just additional responses to a GET request,
 notifications partake in caching as defined in Section 5.6 of RFC
 XXXX [I-D.ietf-core-coap]. Both the freshness model and the
 validation model are supported.

3.3.1. Freshness

 A client MAY store a notification like a response in its cache and
 use a stored notification that is fresh without contacting the
 server. Like a response, a notification is considered fresh while
 its age is not greater than the value indicated by the Max-Age Option
 and no newer notification/response has been received.

 The server will do its best to keep the resource state observed by
 the client as closely in sync with the actual state as possible.
 However, a client cannot rely on observing every single state that a
 resource might go through. For example, if the network is congested
 or the state changes more frequently than the network can handle, the
 server can skip notifications for any number of intermediate states.

 The server uses the Max-Age Option to indicate an age up to which it
 is acceptable that the observed state and the actual state are
 inconsistent. If the age of the latest notification becomes greater
 than its indicated Max-Age, then the client MUST NOT assume that the
 enclosed representation reflects the actual resource state.

 To make sure it has a current representation and/or to re-register
 its interest in a resource, a client MAY issue a new GET request with
 an Observe Option and the same token at any time. It is RECOMMENDED
 that the client does not issue the request while it still has a fresh
 notification/response for the resource in its cache. Additionally,
 the client SHOULD wait for a random amount of time between 5 and 15
 seconds to avoid synchronicity with other clients.

3.3.2. Validation

 When a client has one or more notifications stored in its cache for a
 resource, it can use the ETag Option in the GET request to give the
 server an opportunity to select a stored notification to be used.

Hartke Expires March 28, 2014 [Page 9]

Internet-Draft Observing Resources in CoAP September 2013

 The client MAY include an ETag Option for each stored response that
 is applicable in the GET request. Whenever the observed resource
 changes to a representation identified by one of the ETag Options,
 the server can select a stored response by sending a 2.03 (Valid)
 notification with an appropriate ETag Option instead of a 2.05
 (Content) notification.

 A client implementation needs to keep all candidate responses in its
 cache until it is no longer interested in the target resource or it
 issues a GET request with a new set of entity-tags.

3.4. Reordering

 Messages with notifications can arrive in a different order than they
 were sent. Since the goal is to keep the observed state as closely
 in sync with the actual state as possible, a client MUST NOT update
 the observed state with a notification that arrives later than a
 newer notification.

 For reordering detection, the server sets the value of the Observe
 Option in each notification to the 24 least-significant bits of a
 strictly increasing sequence number. An incoming notification is
 newer than the newest notification received so far when one of the
 following conditions is met:

 (V1 < V2 and V2 - V1 < 2^23) or
 (V1 > V2 and V1 - V2 > 2^23) or
 (T2 > T1 + 128 seconds)

 where V1 is the value of the Observe Option of the newest
 notification received so far, V2 the value of the Observe Option of
 the incoming notification, T1 a client-local timestamp of the newest
 notification received so far, and T2 a client-local timestamp of the
 incoming notification.

 Design Note: The first two conditions verify that V1 is less than V2
 in 24-bit serial number arithmetic [RFC1982]. The third condition
 ensures that the time elapsed between the two incoming messages is
 not so large that the difference between V1 and V2 has become
 larger than the largest integer that it is meaningful to add to a
 24-bit serial number; in other words, after 128 seconds have
 elapsed without any notification, a client does not need to check
 the sequence numbers to assume an incoming notification is new.

 The duration of 128 seconds was chosen as a nice round number
 greater than MAX_LATENCY (see Section 4.8.2 of RFC XXXX
 [I-D.ietf-core-coap]).

https://datatracker.ietf.org/doc/html/rfc1982

Hartke Expires March 28, 2014 [Page 10]

Internet-Draft Observing Resources in CoAP September 2013

3.5. Transmission

 A notification can be confirmable or non-confirmable, i.e., be sent
 in a confirmable or a non-confirmable message. The message type used
 for a notification is independent from the type used for the request
 or for any previous notification.

 If a client does not recognize the token in a confirmable
 notification, it MUST NOT acknowledge the message and SHOULD reject
 it with a Reset message; otherwise, the client MUST acknowledge the
 message as usual. In the case of a non-confirmable notification,
 rejecting the message with a Reset message is OPTIONAL.

 An acknowledgement message signals to the server that the client is
 alive and interested in receiving further notifications; if the
 server does not receive an acknowledgement in reply to a confirmable
 notification, it will assume that the client is no longer interested
 and will eventually remove the associated entry from the list of
 observers.

3.6. Cancellation

 A client that is no longer interested in receiving further
 notifications for a resource can simply "forget" the pending request.
 When the server then sends a notification, the client will not
 recognize the token in the message. If the notification was
 confirmable, this will cause the client to return a Reset message and
 thus the server to remove the associated entry from the list of
 observers. Entries in lists of observers are effectively "garbage
 collected" by the server.

 When a client rejects a non-confirmable notification, the server may
 also (but is not required to) remove the associated entry from the
 list of observers. So, if the servers seems to ignore the Reset
 messages that the client sends to reject non-confirmable
 notifications, the client may have to wait for a confirmable
 notification until the list entry is removed.

4. Server-side Requirements

4.1. Request

 A GET request with an Observe Option requests the server not only to
 return a current representation of the target resource, but also to
 add the client to the list of observers of that resource. Upon
 success, the server MUST return a current representation of the
 resource and MUST notify the client of subsequent changes to the
 state as long as the client is on the list of observers.

Hartke Expires March 28, 2014 [Page 11]

Internet-Draft Observing Resources in CoAP September 2013

 The entry in the list of observers is keyed by the client endpoint
 and the token specified by the client in the request. If an entry
 with a matching endpoint/token pair is already present in the list
 (which, for example, happens when the client wishes to reinforce its
 interest in a resource), the server MUST NOT add a new entry but MUST
 replace or update the existing one.

 A server that is unable or unwilling to add a new entry to the list
 of observers of a resource MAY silently ignore the Observe Option and
 process the GET request as usual. The resulting response MUST NOT
 include an Observe Option, the absence of which signals to the client
 that it will not be notified of changes to the resource and, e.g.,
 needs to poll the resource for its state instead.

4.2. Notifications

 A client is notified of changes to the resource state by additional
 responses sent by the server in reply to the GET request. Each such
 notification response (including the initial response) MUST include
 an Observe Option and MUST echo the token specified by the client in
 the GET request. If there are multiple entries in the list of
 observers, the order in which the clients are notified is not
 defined; the server is free to use any method to determine the order.

 A notification SHOULD have a 2.05 (Content) or 2.03 (Valid) response
 code. However, in the event that the state of a resource changes in
 a way that would cause a normal GET request at that time to return a
 non-2.xx response (for example, when the resource is deleted), the
 server SHOULD notify the client by sending a notification with an
 appropriate response code (such as 4.04 Not Found) and MUST remove
 the client from the list of observers of the resource.

 The Content-Format used in a notification MUST be the same as the one
 used in the initial response to the GET request. If the server is
 unable to continue sending notifications in this Content-Format, it
 SHOULD send a notification with a 4.06 (Not Acceptable) response code
 and MUST remove the client from the list of observers of the
 resource.

 A non-2.xx notification MUST NOT include an Observe Option.

4.3. Caching

 As notifications are just additional responses sent by the server,
 they are subject to caching as defined in Section 5.6 of RFC XXXX
 [I-D.ietf-core-coap].

Hartke Expires March 28, 2014 [Page 12]

Internet-Draft Observing Resources in CoAP September 2013

4.3.1. Freshness

 After returning the initial response, the server MUST try to keep the
 returned representation current, i.e., keep the resource state
 observed by the client as closely in sync with the actual resource
 state as possible.

 Since becoming out of sync at times cannot be avoided, the server
 MUST indicate for each representation an age up to which it is
 acceptable that the observed state and the actual state are
 inconsistent. This age is application-dependent and MUST be
 specified in notifications using the Max-Age Option.

 When the resource does not change and the client has a current
 representation, the server does not need to send a notification.
 However, if the client does not receive a notification, the client
 cannot tell if the observed state and the actual state are still in
 sync. Thus, when the the age of the latest notification becomes
 greater than its indicated Max-Age, the client no longer has a usable
 representation of the resource state. The server MAY wish to prevent
 that by sending a notification with the unchanged representation and
 a new Max-Age just before the old Max-Age expires.

4.3.2. Validation

 A client can include a set of entity-tags in its request using the
 ETag Option. When a observed resource changes its state and the
 origin server is about to send a 2.05 (Content) notification, then,
 whenever that notification has an entity-tag in the set of entity-
 tags specified by the client, the server MAY send a 2.03 (Valid)
 response with an appropriate ETag Option instead.

4.4. Reordering

 Because messages can get reordered, the client needs a way to
 determine if a notification arrived later than a newer notification.
 For this purpose, the server MUST set the value of the Observe Option
 of each notification it sends to the 24 least-significant bits of a
 strictly increasing sequence number. The sequence number MAY start
 at any value and MUST NOT increase so fast that it increases by more
 than 2^24 within less than 256 seconds.

 The sequence number selected for a notification MUST be greater than
 that of any preceding notification sent to the same client with the
 same token for the same resource. The value of the Observe Option
 MUST be current at the time of transmission; if a notification is
 retransmitted, the server MUST update the value of the option to the
 sequence number that is current at that time before sending the

Hartke Expires March 28, 2014 [Page 13]

Internet-Draft Observing Resources in CoAP September 2013

 message.

 The sequence numbers generated for a resource MUST provide an order
 among all notifications resulting from all requests from the same
 client endpoint.

 Implementation Note: A simple implementation that satisfies the
 requirements is to obtain a timestamp from a local clock. The
 sequence number then is the timestamp in ticks, where 1 tick =
 (256 seconds)/(2^24) = 15.26 microseconds. It is not necessary
 that the clock reflects the current time/date or that it ticks in
 a precisely periodical way.

 Another valid implementation is to store a 24-bit unsigned integer
 variable per resource and increment this variable each time the
 resource undergoes a change of state (provided that the resource
 changes its state less than 2^24 times in the next 256 seconds
 after every state change). This removes the need to update the
 value of the Observe Option on retransmission when the resource
 state did not change.

 Design Note: The choice of a 24-bit option value and a time span of
 256 seconds allows for a notification rate of up to 65536
 notifications per second. 64K ought to be enough for anybody.

4.5. Transmission

 A notification can be sent in a confirmable or a non-confirmable
 message. The message type used is typically application-dependent
 and MAY be determined by the server for each notification
 individually. For example, for resources that change in a somewhat
 predictable or regular fashion, notifications can be sent in non-
 confirmable messages; for resources that change infrequently,
 notifications can be sent in confirmable messages. The server can
 combine these two approaches depending on the frequency of state
 changes and the importance of individual notifications.

 A server MAY choose to skip sending a notification if it knows that
 it will send another notification soon, for example, when the state
 is changing frequently. Similarly, it MAY choose to send a
 notification more than once. However, above all, the server MUST
 ensure that a client in the list of observers of a resource
 eventually observes the latest state if the resource does not undergo
 a new change in state. For example, when state changes occur in
 bursts, the server can skip some notifications, send the
 notifications in non-confirmable messages, and make sure that the
 client observes the latest state change by repeating the last
 notification in a confirmable message when the burst is over.

Hartke Expires March 28, 2014 [Page 14]

Internet-Draft Observing Resources in CoAP September 2013

 The client's acknowledgement of a confirmable notification signals to
 the server that the client is interested in receiving further
 notifications. If a client rejects a confirmable notification with a
 Reset message, the client is no longer interested and the server MUST
 remove the associated entry from the list of observers. If the
 client rejects a non-confirmable notification, the server MAY remove
 the entry from the list of observers as well. (It is expected that
 the server does remove the entry if it has the information available
 that is needed to match the Reset message to the non-confirmable
 notification, but the server is not required to keep this
 information.)

 At a minimum, the server MUST send a notification in a confirmable
 message instead of a non-confirmable message at least every 24 hours,
 so a client that went away or is no longer interested does not remain
 forever in the list of observers.

 The server MUST limit the number of confirmable notifications for
 which an acknowledgement has not been received yet to NSTART (1 by
 default; see Section 4.7 of RFC XXXX [I-D.ietf-core-coap]).

 The server SHOULD NOT send more than one non-confirmable notification
 per round-trip time (RTT) to a destination on average. If the server
 cannot maintain an RTT estimate for a destination, it SHOULD NOT send
 more than one non-confirmable notification every 3 seconds, and
 SHOULD use an even less aggressive rate when possible (see also

Section 3.1.2 of RFC 5405 [RFC5405]).

 When the state of an observed resource changes while the number of
 outstanding acknowledgements is greater than or equal to NSTART, or
 while the interval for a non-confirmable notification has not elapsed
 yet, the server MUST proceed as follows:

 1. Wait for the current transmission attempt to complete.

 2. If the result is a Reset message or the transmission was the last
 attempt to deliver a notification, remove the associated entry
 from the list of observers of the observed resource.

 3. If the entry is still in the list of observers, start to transmit
 a new notification with a representation of the current resource
 state. Should the resource have changed its state more than once
 in the meantime, the notifications for the intermediate states
 are silently skipped.

 4. If the completed transmission attempt timed out, increment the
 retransmission counter and double the timeout for the new
 transmission; otherwise, reinitialize both the retransmission

https://datatracker.ietf.org/doc/html/rfc5405#section-3.1.2
https://datatracker.ietf.org/doc/html/rfc5405

Hartke Expires March 28, 2014 [Page 15]

Internet-Draft Observing Resources in CoAP September 2013

 counter and timeout as described in Section 4.2 of RFC XXXX
 [I-D.ietf-core-coap].

5. Intermediaries

 A client may be interested in a resource in the namespace of an
 origin server that is reached through a chain of one or more CoAP
 intermediaries. In this case, the client registers its interest with
 the first intermediary towards the origin server, acting as if it was
 communicating with the origin server itself as specified in

Section 3. It is the task of this intermediary to provide the client
 with a current representation of the target resource and send
 notifications upon changes to the target resource state, much like an
 origin server as specified in Section 4.

 To perform this task, the intermediary SHOULD make use of the
 protocol specified in this document, taking the role of the client
 and registering its own interest in the target resource with the next
 hop towards the origin server. If the next hop does not return a
 response with an Observe Option, the intermediary MAY resort to
 polling the next hop or MAY itself return a response without an
 Observe Option.

 The communication between each pair of hops is independent; each hop
 in the server role MUST determine individually how many notifications
 to send, of which message type, and so on. Each hop MUST generate
 its own values for the Observe Option, and MUST set the value of the
 Max-Age Option according to the age of the local current
 representation.

 If two or more clients have registered their interest in a resource
 with an intermediary, the intermediary MUST register itself only once
 with the next hop and fan out the notifications it receives to all
 registered clients. This relieves the next hop from sending the same
 notifications multiple times and thus enables scalability.

 An intermediary is not required to act on behalf of a client to
 observe a resource; an intermediary MAY observe a resource, for
 example, just to keep its own cache up to date.

 See Appendix A.2 for examples.

6. Web Linking

 A web link [RFC5988] to a resource accessible over CoAP (for example,
 in a link-format document [RFC6690]) MAY include the target attribute
 "obs".

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6690

Hartke Expires March 28, 2014 [Page 16]

Internet-Draft Observing Resources in CoAP September 2013

 The "obs" attribute, when present, is a hint indicating that the
 destination of a link is useful for observation and thus, for
 example, should have a suitable graphical representation in a user
 interface. Note that this is only a hint; it is not a promise that
 the Observe Option can actually be used to perform the observation.
 A client may need to resort to polling the resource if the Observe
 Option is not returned in the response to the GET request.

 A value MUST NOT be given for the "obs" attribute; any present value
 MUST be ignored by parsers. The "obs" attribute MUST NOT appear more
 than once in a given link-value; occurrences after the first MUST be
 ignored by parsers.

7. Security Considerations

 The security considerations of RFC XXXX [I-D.ietf-core-coap] apply.

 The considerations about amplification attacks are somewhat amplified
 when observing resources. Without client authentication, a server
 MUST therefore strictly limit the number of notifications that it
 sends between receiving acknowledgements that confirm the actual
 interest of the client in the data; i.e., any notifications sent in
 non-confirmable messages MUST be interspersed with confirmable
 messages. (An attacker may still spoof the acknowledgements if the
 confirmable messages are sufficiently predictable.)

 As with any protocol that creates state, attackers may attempt to
 exhaust the resources that the server has available for maintaining
 the list of observers for each resource. Servers may want to access-
 control this creation of state. As degraded behavior, the server can
 always fall back to processing the request as a normal GET request
 (without an Observe Option) if it is unwilling or unable to add a
 client to the list of observers of a resource, including if system
 resources are exhausted or nearing exhaustion.

 Intermediaries must be careful to ensure that notifications cannot be
 employed to create a loop. A simple way to break any loops is to
 employ caches for forwarding notifications in intermediaries.

8. IANA Considerations

 The following entry is added to the CoAP Option Numbers registry:

 +--------+---------+-----------+
 | Number | Name | Reference |
 +--------+---------+-----------+
 | 6 | Observe | [RFCXXXX] |
 +--------+---------+-----------+

Hartke Expires March 28, 2014 [Page 17]

Internet-Draft Observing Resources in CoAP September 2013

 [Note to RFC Editor: Please replace XXXX with the RFC number of this
 specification.]

9. Acknowledgements

 Carsten Bormann was an original author of this draft and is
 acknowledged for significant contribution to this document.

 Thanks to Daniele Alessandrelli, Jari Arkko, Peter Bigot, Angelo P.
 Castellani, Gilbert Clark, Esko Dijk, Thomas Fossati, Brian Frank,
 Bert Greevenbosch, Jeroen Hoebeke, Cullen Jennings, Matthias
 Kovatsch, Salvatore Loreto, Charles Palmer, Zach Shelby, and Floris
 Van den Abeele for helpful comments and discussions that have shaped
 the document.

 This work was supported in part by Klaus Tschira Foundation, Intel,
 Cisco, and Nokia.

10. References

10.1. Normative References

 [I-D.ietf-core-coap] Shelby, Z., Hartke, K., and C. Bormann,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-18 (work in progress),
 June 2013.

 [RFC1982] Elz, R. and R. Bush, "Serial Number
 Arithmetic", RFC 1982, August 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage
 Guidelines for Application Designers", BCP 145,

RFC 5405, November 2008.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 October 2010.

10.2. Informative References

 [GOF] Gamma, E., Helm, R., Johnson, R., and J.
 Vlissides, "Design Patterns: Elements of
 Reusable Object-Oriented Software", Addison-
 Wesley, Reading, MA, USA, November 1994.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-18
https://datatracker.ietf.org/doc/html/rfc1982
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5988

Hartke Expires March 28, 2014 [Page 18]

Internet-Draft Observing Resources in CoAP September 2013

 [REST] Fielding, R., "Architectural Styles and the
 Design of Network-based Software
 Architectures", Ph.D. Dissertation, University
 of California, Irvine, 2000, <http://

www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk,
 H., Masinter, L., Leach, P., and T. Berners-
 Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2616, June 1999.

 [RFC5989] Roach, A., "A SIP Event Package for Subscribing
 to Changes to an HTTP Resource", RFC 5989,
 October 2010.

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and
 G. Wilkins, "Known Issues and Best Practices
 for the Use of Long Polling and Streaming in
 Bidirectional HTTP", RFC 6202, April 2011.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments
 (CoRE) Link Format", RFC 6690, August 2012.

Appendix A. Examples

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5989
https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc6690

Hartke Expires March 28, 2014 [Page 19]

Internet-Draft Observing Resources in CoAP September 2013

A.1. Client/Server Examples

 Observed CLIENT SERVER Actual
 t State | | State
 ____________ | | ____________
 1 | |
 2 unknown | | 18.5 Cel
 3 +----->| Header: GET 0x41011633
 4 | GET | Token: 0x4a
 5 | | Uri-Path: temperature
 6 | | Observe: (empty)
 7 | |
 8 | |
 9 ____________ |<-----+ Header: 2.05 0x61451633
 10 | 2.05 | Token: 0x4a
 11 18.5 Cel | | Observe: 9
 12 | | Max-Age: 15
 13 | | Payload: "18.5 Cel"
 14 | |
 15 | | ____________
 16 ____________ |<-----+ Header: 2.05 0x51457b50
 17 | 2.05 | 19.2 Cel Token: 0x4a
 18 19.2 Cel | | Observe: 16
 29 | | Max-Age: 15
 20 | | Payload: "19.2 Cel"
 21 | |

 Figure 3: A client registers and receives one notification of the
 current state and one of a new state upon a state change

Hartke Expires March 28, 2014 [Page 20]

Internet-Draft Observing Resources in CoAP September 2013

 Observed CLIENT SERVER Actual
 t State | | State
 ____________ | | ____________
 22 | |
 23 19.2 Cel | | 19.2 Cel
 24 | | ____________
 25 | X----+ Header: 2.05 0x51457b51
 26 | 2.05 | 19.7 Cel Token: 0x4a
 27 | | Observe: 25
 28 | | Max-Age: 15
 29 | | Payload: "19.7 Cel"
 30 | |
 31 ____________ | |
 32 | |
 33 19.2 Cel | |
 34 (stale) | |
 35 | |
 36 | |
 37 | |
 38 +----->| Header: GET 0x41011634
 39 | GET | Token: 0xb2
 40 | | Uri-Path: temperature
 41 | | Observe: (empty)
 42 | |
 43 | |
 44 ____________ |<-----+ Header: 2.05 0x61451634
 45 | 2.05 | Token: 0xb2
 46 19.7 Cel | | Observe: 44
 47 | | Max-Age: 15
 48 | | ETag: 0x78797a7a79
 49 | | Payload: "19.7 Cel"
 50 | |

 Figure 4: The client re-registers after Max-Age ends

Hartke Expires March 28, 2014 [Page 21]

Internet-Draft Observing Resources in CoAP September 2013

 Observed CLIENT SERVER Actual
 t State | | State
 ____________ | | ____________
 51 | |
 52 19.7 Cel | | 19.7 Cel
 53 | |
 54 | | ____________
 55 | crash
 56 |
 57 |
 58 |
 59 ____________ |
 60 |
 61 19.7 Cel |
 62 (stale) |
 63 | reboot____________
 64 | |
 65 | | 20.0 Cel
 66 | |
 67 +----->| Header: GET 0x41011635
 68 | GET | Token: 0xf9
 69 | | Uri-Path: temperature
 70 | | Observe: (empty)
 71 | | ETag: 0x78797a7a79
 72 | |
 73 | |
 74 ____________ |<-----+ Header: 2.05 0x61451635
 75 | 2.05 | Token: 0xf9
 76 20.0 Cel | | Observe: 74
 77 | | Max-Age: 15
 78 | | Payload: "20.0 Cel"
 79 | |
 80 | | ____________
 81 ____________ |<-----+ Header: 2.03 0x5143aa0c
 82 | 2.03 | 19.7 Cel Token: 0xf9
 83 19.7 Cel | | Observe: 81
 84 | | ETag: 0x78797a7a79
 85 | | Max-Age: 15
 86 | |

 Figure 5: The client re-registers and gives the server the
 opportunity to select a stored response

Hartke Expires March 28, 2014 [Page 22]

Internet-Draft Observing Resources in CoAP September 2013

 Observed CLIENT SERVER Actual
 t State | | State
 ____________ | | ____________
 87 | |
 88 19.7 Cel | | 19.7 Cel
 89 | |
 90 | | ____________
 91 ____________ |<-----+ Header: 2.05 0x4145aa0f
 92 | 2.05 | 19.3 Cel Token: 0xf9
 93 19.3 Cel | | Observe: 91
 94 | | Max-Age: 15
 95 | | Payload: "19.3 Cel"
 96 | |
 97 | |
 98 +- - ->| Header: 0x7000aa0f
 99 | |
 100 | |
 101 | |
 102 | | ____________
 103 | |
 104 | | 19.0 Cel
 105 | |
 106 ____________ | |
 107 | |
 108 19.3 Cel | |
 109 (stale) | |
 110 | |

 Figure 6: The client rejects a notification and thereby cancels the
 observation

Hartke Expires March 28, 2014 [Page 23]

Internet-Draft Observing Resources in CoAP September 2013

A.2. Proxy Examples

 CLIENT PROXY SERVER
 | | |
 | +----->| Header: GET 0x41015fb8
 | | GET | Token: 0x1a
 | | | Uri-Host: sensor.example
 | | | Uri-Path: status
 | | | Observe: (empty)
 | | |
 | |<-----+ Header: 2.05 0x61455fb8
 | | 2.05 | Token: 0x1a
 | | | Observe: 42
 | | | Max-Age: 60
 | | | Payload: "ready"
 | | |
 +----->| | Header: GET 0x41011633
 | GET | | Token: 0x9a
 | | | Proxy-Uri: coap://sensor.example/status
 | | |
 |<-----+ | Header: 2.05 0x61451633
 | 2.05 | | Token: 0x9a
 | | | Max-Age: 53
 | | | Payload: "ready"
 | | |
 | |<-----+ Header: 2.05 0x514505fc0
 | | 2.05 | Token: 0x1a
 | | | Observe: 135
 | | | Max-Age: 60
 | | | Payload: "busy"
 | | |
 +----->| | Header: GET 0x41011634
 | GET | | Token: 0x9b
 | | | Proxy-Uri: coap://sensor.example/status
 | | |
 |<-----+ | Header: 2.05 0x61451634
 | 2.05 | | Token: 0x9b
 | | | Max-Age: 49
 | | | Payload: "busy"
 | | |

 Figure 7: A proxy observes a resource to keep its cache up to date

Hartke Expires March 28, 2014 [Page 24]

Internet-Draft Observing Resources in CoAP September 2013

 CLIENT PROXY SERVER
 | | |
 +----->| | Header: GET 0x41011635
 | GET | | Token: 0x6a
 | | | Proxy-Uri: coap://sensor.example/status
 | | | Observe: (empty)
 | | |
 |<- - -+ | Header: 0x60001635
 | | |
 | +----->| Header: GET 0x4101af90
 | | GET | Token: 0xaa
 | | | Uri-Host: sensor.example
 | | | Uri-Path: status
 | | | Observe: (empty)
 | | |
 | |<-----+ Header: 2.05 0x6145af90
 | | 2.05 | Token: 0xaa
 | | | Observe: 67
 | | | Max-Age: 60
 | | | Payload: "ready"
 | | |
 |<-----+ | Header: 2.05 0x4145af94
 | 2.05 | | Token: 0x6a
 | | | Observe: 17346
 | | | Max-Age: 60
 | | | Payload: "ready"
 | | |
 +- - ->| | Header: 0x6000af94
 | | |
 | |<-----+ Header: 2.05 0x51455a20
 | | 2.05 | Token: 0xaa
 | | | Observe: 157
 | | | Max-Age: 60
 | | | Payload: "busy"
 | | |
 |<-----+ | Header: 2.05 0x5145af9b
 | 2.05 | | Token: 0x6a
 | | | Observe: 17436
 | | | Max-Age: 60
 | | | Payload: "busy"
 | | |

 Figure 8: A client observes a resource through a proxy

Hartke Expires March 28, 2014 [Page 25]

Internet-Draft Observing Resources in CoAP September 2013

Appendix B. Changelog

 [Note to RFC Editor: Please remove this section before publication.]

 Changes from ietf-09 to ietf-10:

 o Required consistent sequence numbers across requests (#333).

 o Clarified that a server needs to update the entry in the list of
 observers instead of adding a new entry if the endpoint/token pair
 is already present.

 o Allowed that a client uses a token that is currently in use to
 ensure that it's still in the list of observers. This is possible
 because sequence numbers are now consistent across requests and
 servers won't add a new entry for the same token.

 o Improved text on the transmission of non-confirmable notifications
 to match Section 3.1.2 of RFC 5405 more closely.

 o Updated examples to use UCUM units.

 o Moved Appendix B into the introduction.

 Changes from ietf-08 to ietf-09:

 o Removed the side effects of requests on existing observations.
 This includes removing that

 * the client can use a GET request to cancel an observation;

 * the server updates the entry in the list of observers instead
 of adding a new entry if the client is already present (#258,
 #281).

 o Clarified that a resource (and hence an observation relationship)
 is identified by the request options that are part of the Cache-
 Key (#258).

 o Clarified that a non-2.xx notification MUST NOT include an Observe
 Option.

 o Moved block-wise transfer of notifications to [I-D.ietf-core-
 block].

 Changes from ietf-07 to ietf-08:

https://datatracker.ietf.org/doc/html/rfc5405#section-3.1.2

Hartke Expires March 28, 2014 [Page 26]

Internet-Draft Observing Resources in CoAP September 2013

 o Expanded text on transmitting a notification while a previous
 transmission is pending (#242).

 o Changed reordering detection to use a fixed time span of 128
 seconds instead of EXCHANGE_LIFETIME (#276).

 o Removed the use of the freshness model to determine if the client
 is still on the list of observers. This includes removing that

 * the client assumes that it has been removed from the list of
 observers when Max-Age ends;

 * the server sets the Max-Age Option of a notification to a value
 that indicates when the server will send the next notification;

 * the server uses a number of retransmit attempts such that
 removing a client from the list of observers before Max-Age
 ends is avoided (#235);

 * the server may remove the client from all lists of observers
 when the transmission of a confirmable notification ultimately
 times out.

 o Changed that an unrecognized critical option in a request must
 actually have no effect on the state of any observation
 relationship to any resource, as the option could lead to a
 different target resource.

 o Clarified that client implementations must be prepared to receive
 each notification equally as a confirmable or a non-confirmable
 message, regardless of the message type of the request and of any
 previous notification.

 o Added a requirement for sending a confirmable notification at
 least every 24 hours before continuing with non-confirmable
 notifications (#221).

 o Added congestion control considerations from [I-D.bormann-core-
 congestion-control-02].

 o Recommended that the client waits for a randomized time after the
 freshness of the latest notification expired before re-
 registering. This prevents that multiple clients observing a
 resource perform a GET request at the same time when the need to
 re-register arises.

 o Changed reordering detection from 'MAY' to 'SHOULD', as the goal
 of the protocol (to keep the observed state as closely in sync

Hartke Expires March 28, 2014 [Page 27]

Internet-Draft Observing Resources in CoAP September 2013

 with the actual state as possible) is not optional.

 o Fixed the length of the Observe Option (3 bytes) in the table in
Section 2.

 o Replaced the 'x' in the No-Cache-Key column in the table in
Section 2 with a '-', as the Observe Option doesn't have the No-

 Cache-Key flag set, even though it is not part of the cache key.

 o Updated examples.

 Changes from ietf-06 to ietf-07:

 o Moved to 24-bit sequence numbers to allow for up to 15000
 notifications per second per client and resource (#217).

 o Re-numbered option number to use Unsafe/Safe and Cache-Key
 compliant numbers (#241).

 o Clarified how to react to a Reset message that is sent in reply to
 a non-confirmable notification (#225).

 o Clarified the semantics of the "obs" link target attribute (#236).

 Changes from ietf-05 to ietf-06:

 o Improved abstract and introduction to say that the protocol is
 about best effort and eventual consistency (#219).

 o Clarified that the value of the Observe Option in a request must
 have zero length.

 o Added requirement that the sequence number must be updated each
 time a server retransmits a notification.

 o Clarified that a server must remove a client from the list of
 observers when it receives a GET request with an unrecognized
 critical option.

 o Updated the text to use the endpoint concept from
 [I-D.ietf-core-coap] (#224).

 o Improved the reordering text (#223).

 Changes from ietf-04 to ietf-05:

 o Recommended that a client does not re-register while a new
 notification from the server is still likely to arrive. This is

Hartke Expires March 28, 2014 [Page 28]

Internet-Draft Observing Resources in CoAP September 2013

 to avoid that the request of the client and the last notification
 after max-age cross over each other (#174).

 o Relaxed requirements when sending a Reset message in reply to non-
 confirmable notifications.

 o Added an implementation note about careless GET requests (#184).

 o Updated examples.

 Changes from ietf-03 to ietf-04:

 o Removed the "Max-OFE" Option.

 o Allowed a Reset message in reply to non-confirmable notifications.

 o Added a section on cancellation.

 o Updated examples.

 Changes from ietf-02 to ietf-03:

 o Separated client-side and server-side requirements.

 o Fixed uncertainty if client is still on the list of observers by
 introducing a liveliness model based on Max-Age and a new option
 called "Max-OFE" (#174).

 o Simplified the text on message reordering (#129).

 o Clarified requirements for intermediaries.

 o Clarified the combination of blockwise transfers with
 notifications (#172).

 o Updated examples to show how the state observed by the client
 becomes eventually consistent with the actual state on the server.

 o Added examples for parameterization of observable resource.

 Changes from ietf-01 to ietf-02:

 o Removed the requirement of periodic refreshing (#126).

 o The new "Observe" Option replaces the "Lifetime" Option.

 o Introduced a new mechanism to detect message reordering.

Hartke Expires March 28, 2014 [Page 29]

Internet-Draft Observing Resources in CoAP September 2013

 o Changed 2.00 (OK) notifications to 2.05 (Content) notifications.

 Changes from ietf-00 to ietf-01:

 o Changed terminology from "subscriptions" to "observation
 relationships" (#33).

 o Changed the name of the option to "Lifetime".

 o Clarified establishment of observation relationships.

 o Clarified that an observation is only identified by the URI of the
 observed resource and the identity of the client (#66).

 o Clarified rules for establishing observation relationships (#68).

 o Clarified conditions under which an observation relationship is
 terminated.

 o Added explanation on how clients can terminate an observation
 relationship before the lifetime ends (#34).

 o Clarified that the overriding objective for notifications is
 eventual consistency of the actual and the observed state (#67).

 o Specified how a server needs to deal with clients not
 acknowledging confirmable messages carrying notifications (#69).

 o Added a mechanism to detect message reordering (#35).

 o Added an explanation of how notifications can be cached,
 supporting both the freshness and the validation model (#39, #64).

 o Clarified that non-GET requests do not affect observation
 relationships, and that GET requests without "Lifetime" Option
 affecting relationships is by design (#65).

 o Described interaction with blockwise transfers (#36).

 o Added Resource Discovery section (#99).

 o Added IANA Considerations.

 o Added Security Considerations (#40).

 o Added examples (#38).

Hartke Expires March 28, 2014 [Page 30]

Internet-Draft Observing Resources in CoAP September 2013

Author's Address

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 EMail: hartke@tzi.org

Hartke Expires March 28, 2014 [Page 31]

