
CoRE Working Group M. Tiloca
Internet-Draft RISE AB
Intended status: Standards Track G. Selander
Expires: May 6, 2021 F. Palombini
 Ericsson AB
 J. Park
 Universitaet Duisburg-Essen
 November 02, 2020

Group OSCORE - Secure Group Communication for CoAP
draft-ietf-core-oscore-groupcomm-10

Abstract

 This document defines Group Object Security for Constrained RESTful
 Environments (Group OSCORE), providing end-to-end security of CoAP
 messages exchanged between members of a group, e.g. sent over IP
 multicast. In particular, the described approach defines how OSCORE
 is used in a group communication setting to provide source
 authentication for CoAP group requests, sent by a client to multiple
 servers, and for protection of the corresponding CoAP responses.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Tiloca, et al. Expires May 6, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Group OSCORE November 2020

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Terminology . 6

2. Security Context . 7
2.1. Common Context . 9
2.1.1. ID Context . 9
2.1.2. Counter Signature Algorithm 9
2.1.3. Counter Signature Parameters 9
2.1.4. Secret Derivation Algorithm 10
2.1.5. Secret Derivation Parameters 10

2.2. Sender Context and Recipient Context 11
2.3. Pairwise Keys . 12
2.3.1. Derivation of Pairwise Keys 12
2.3.2. Usage of Sequence Numbers 13
2.3.3. Security Context for Pairwise Mode 13

2.4. Update of Security Context 14
2.4.1. Loss of Mutable Security Context 14
2.4.2. Exhaustion of Sender Sequence Number 15
2.4.3. Retrieving New Security Context Parameters 16

3. The Group Manager . 18
3.1. Management of Group Keying Material 19
3.2. Responsibilities of the Group Manager 20

4. The COSE Object . 21
4.1. Counter Signature . 21
4.2. The 'kid' and 'kid context' parameters 21
4.3. external_aad . 22
4.3.1. external_aad for Encryption 22
4.3.2. external_aad for Signing 23

5. OSCORE Header Compression 24
5.1. Examples of Compressed COSE Objects 25
5.1.1. Examples in Group Mode 25
5.1.2. Examples in Pairwise Mode 26

 6. Message Binding, Sequence Numbers, Freshness and Replay
 Protection . 27

6.1. Update of Replay Window 27
7. Message Reception . 28
8. Message Processing in Group Mode 29
8.1. Protecting the Request 29
8.1.1. Supporting Observe 30

8.2. Verifying the Request 31

Tiloca, et al. Expires May 6, 2021 [Page 2]

Internet-Draft Group OSCORE November 2020

8.2.1. Supporting Observe 32
8.3. Protecting the Response 32
8.3.1. Supporting Observe 33

8.4. Verifying the Response 34
8.4.1. Supporting Observe 34

9. Message Processing in Pairwise Mode 35
9.1. Pre-Conditions . 36
9.2. Protecting the Request 36
9.3. Verifying the Request 37
9.4. Protecting the Response 37
9.5. Verifying the Response 38

10. Security Considerations 38
10.1. Group-level Security 39
10.2. Uniqueness of (key, nonce) 40
10.3. Management of Group Keying Material 40
10.4. Update of Security Context and Key Rotation 41
10.4.1. Late Update on the Sender 41
10.4.2. Late Update on the Recipient 42

10.5. Collision of Group Identifiers 42
10.6. Cross-group Message Injection 43
10.6.1. Attack Description 43
10.6.2. Attack Prevention in Group Mode 44

10.7. Group OSCORE for Unicast Requests 45
10.8. End-to-end Protection 46
10.9. Master Secret . 46
10.10. Replay Protection 47
10.11. Client Aliveness . 48
10.12. Cryptographic Considerations 48
10.13. Message Segmentation 49
10.14. Privacy Considerations 49

11. IANA Considerations . 50
11.1. OSCORE Flag Bits Registry 50

12. References . 50
12.1. Normative References 50
12.2. Informative References 52

Appendix A. Assumptions and Security Objectives 54
A.1. Assumptions . 55
A.2. Security Objectives 56

Appendix B. List of Use Cases 57
Appendix C. Example of Group Identifier Format 60
Appendix D. Set-up of New Endpoints 60
Appendix E. Examples of Synchronization Approaches 61
E.1. Best-Effort Synchronization 61
E.2. Baseline Synchronization 62
E.3. Challenge-Response Synchronization 62

Appendix F. No Verification of Signatures in Group Mode 65
Appendix G. Example Values with COSE Capabilities 66
Appendix H. Document Updates 67

Tiloca, et al. Expires May 6, 2021 [Page 3]

Internet-Draft Group OSCORE November 2020

H.1. Version -09 to -10 67
H.2. Version -08 to -09 68
H.3. Version -07 to -08 69
H.4. Version -06 to -07 70
H.5. Version -05 to -06 71
H.6. Version -04 to -05 72
H.7. Version -03 to -04 72
H.8. Version -02 to -03 73
H.9. Version -01 to -02 74
H.10. Version -00 to -01 74

 Acknowledgments . 75
 Authors' Addresses . 75

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a web
 transfer protocol specifically designed for constrained devices and
 networks [RFC7228]. Group communication for CoAP
 [I-D.ietf-core-groupcomm-bis] addresses use cases where deployed
 devices benefit from a group communication model, for example to
 reduce latencies, improve performance and reduce bandwidth
 utilization. Use cases include lighting control, integrated building
 control, software and firmware updates, parameter and configuration
 updates, commissioning of constrained networks, and emergency
 multicast (see Appendix B). This specification defines the security
 protocol for Group communication for CoAP
 [I-D.ietf-core-groupcomm-bis].

 Object Security for Constrained RESTful Environments (OSCORE)
 [RFC8613] describes a security protocol based on the exchange of
 protected CoAP messages. OSCORE builds on CBOR Object Signing and
 Encryption (COSE)
 [I-D.ietf-cose-rfc8152bis-struct][I-D.ietf-cose-rfc8152bis-algs] and
 provides end-to-end encryption, integrity, replay protection and
 binding of response to request between a sender and a recipient,
 independent of transport also in the presence of intermediaries. To
 this end, a CoAP message is protected by including its payload (if
 any), certain options, and header fields in a COSE object, which
 replaces the authenticated and encrypted fields in the protected
 message.

 This document defines Group OSCORE, providing the same end-to-end
 security properties as OSCORE in the case where CoAP requests have
 multiple recipients. In particular, the described approach defines
 how OSCORE is used in a group communication setting to provide source
 authentication for CoAP group requests, sent by a client to multiple
 servers, and for protection of the corresponding CoAP responses.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca, et al. Expires May 6, 2021 [Page 4]

Internet-Draft Group OSCORE November 2020

 Just like OSCORE, Group OSCORE is independent of transport layer and
 works wherever CoAP does. Group communication for CoAP
 [I-D.ietf-core-groupcomm-bis] uses UDP/IP multicast as the underlying
 data transport.

 As with OSCORE, it is possible to combine Group OSCORE with
 communication security on other layers. One example is the use of
 transport layer security, such as DTLS
 [RFC6347][I-D.ietf-tls-dtls13], between one client and one proxy (and
 vice versa), or between one proxy and one server (and vice versa), in
 order to protect the routing information of packets from observers.
 Note that DTLS does not define how to secure messages sent over IP
 multicast.

 Group OSCORE defines two modes of operation:

 o In the group mode, Group OSCORE requests and responses are
 digitally signed with the private key of the sender and the
 signature is embedded in the protected CoAP message. The group
 mode supports all COSE algorithms as well as signature
 verification by intermediaries. This mode is defined in Section 8
 and MUST be supported.

 o In the pairwise mode, two group members exchange Group OSCORE
 requests and responses over unicast, and the messages are
 protected with symmetric keys. These symmetric keys are derived
 from Diffie-Hellman shared secrets, calculated with the asymmetric
 keys of the sender and recipient, allowing for shorter integrity
 tags and therefore lower message overhead. This mode is defined
 in Section 9 and is OPTIONAL to support.

 Both modes provide source authentication of CoAP messages. The
 application decides what mode to use, potentially on a per-message
 basis. Such decisions can be based, for instance, on pre-configured
 policies or dynamic assessing of the target recipient and/or
 resource, among other things. One important case is when requests
 are protected with the group mode, and responses with the pairwise
 mode. Since such responses convey shorter integrity tags instead of
 bigger, full-fledged signatures, this significantly reduces the
 message overhead in case of many responses to one request.

 A special deployment of Group OSCORE is to use pairwise mode only.
 For example, consider the case of a constrained-node network
 [RFC7228] with a large number of CoAP endpoints and the objective to
 establish secure communication between any pair of endpoints with a
 small provisioning effort and message overhead. Since the total
 number of security associations that needs to be established grows
 with the square of the number of nodes, it is desirable to restrict

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7228

Tiloca, et al. Expires May 6, 2021 [Page 5]

Internet-Draft Group OSCORE November 2020

 the provisioned keying material. Moreover, a key establishment
 protocol would need to be executed for each security association.
 One solution to this is to deploy Group OSCORE, with the endpoints
 being part of a group, and use the pairwise mode. This solution
 assumes a trusted third party called Group Manager (see Section 3),
 but has the benefit of restricting the symmetric keying material
 while distributing only the public key of each group member. After
 that, a CoAP endpoint can locally derive the OSCORE Security Context
 for the other endpoint in the group, and protect CoAP communications
 with very low overhead [I-D.ietf-lwig-security-protocol-comparison].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 described in CoAP [RFC7252] including "endpoint", "client", "server",
 "sender" and "recipient"; group communication for CoAP
 [I-D.ietf-core-groupcomm-bis]; CBOR [I-D.ietf-cbor-7049bis]; COSE
 [I-D.ietf-cose-rfc8152bis-struct][I-D.ietf-cose-rfc8152bis-algs] and
 related counter signatures [I-D.ietf-cose-countersign].

 Readers are also expected to be familiar with the terms and concepts
 for protection and processing of CoAP messages through OSCORE, such
 as "Security Context" and "Master Secret", defined in [RFC8613].

 Terminology for constrained environments, such as "constrained
 device" and "constrained-node network", is defined in [RFC7228].

 This document refers also to the following terminology.

 o Keying material: data that is necessary to establish and maintain
 secure communication among endpoints. This includes, for
 instance, keys and IVs [RFC4949].

 o Group: a set of endpoints that share group keying material and
 security parameters (Common Context, see Section 2). Unless
 specified otherwise, the term group used in this specification
 refers thus to a "security group" (see Section 2.1 of
 [I-D.ietf-core-groupcomm-bis]), not to be confused with "CoAP
 group" or "application group".

 o Group Manager: entity responsible for a group. Each endpoint in a
 group communicates securely with the respective Group Manager,

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc4949

Tiloca, et al. Expires May 6, 2021 [Page 6]

Internet-Draft Group OSCORE November 2020

 which is neither required to be an actual group member nor to take
 part in the group communication. The full list of
 responsibilities of the Group Manager is provided in Section 3.2.

 o Silent server: member of a group that never sends protected
 responses in reply to requests. For CoAP group communications,
 requests are normally sent without necessarily expecting a
 response. A silent server may send unprotected responses, as
 error responses reporting an OSCORE error. Note that an endpoint
 can implement both a silent server and a client, i.e. the two
 roles are independent. An endpoint acting only as a silent server
 performs only Group OSCORE processing on incoming requests.
 Silent servers maintain less keying material and in particular do
 not have a Sender Context for the group. Since silent servers do
 not have a Sender ID, they cannot support the pairwise mode.

 o Group Identifier (Gid): identifier assigned to the group, unique
 within the set of groups of a given Group Manager.

 o Group request: CoAP request message sent by a client in the group
 to all servers in that group.

 o Source authentication: evidence that a received message in the
 group originated from a specific identified group member. This
 also provides assurance that the message was not tampered with by
 anyone, be it a different legitimate group member or an endpoint
 which is not a group member.

2. Security Context

 This specification refers to a group as a set of endpoints sharing
 keying material and security parameters for executing the Group
 OSCORE protocol (see Section 1.1). Each endpoint which is member of
 a group maintains a Security Context as defined in Section 3 of
 [RFC8613], extended as follows (see Figure 1):

 o One Common Context, shared by all the endpoints in the group. Two
 new parameters are included in the Common Context, namely Counter
 Signature Algorithm and Counter Signature Parameters. These
 relate to the computation of counter signatures, when messages are
 protected using the group mode (see Section 8).

 If the pairwise mode is supported, the Common Context is further
 extended with two new parameters, namely Secret Derivation
 Algorithm and Secret Derivation Parameters. These relate to the
 derivation of a static-static Diffie-Hellman shared secret, from
 which pairwise keys are derived (see Section 2.3.1) to protect
 messages with the pairwise mode (see Section 9).

https://datatracker.ietf.org/doc/html/rfc8613#section-3
https://datatracker.ietf.org/doc/html/rfc8613#section-3

Tiloca, et al. Expires May 6, 2021 [Page 7]

Internet-Draft Group OSCORE November 2020

 o One Sender Context, extended with the endpoint's private key. The
 private key is used to sign the message in group mode, and for
 deriving the pairwise keys in pairwise mode (see Section 2.3). If
 the pairwise mode is supported, the Sender Context is also
 extended with the Pairwise Sender Keys associated to the other
 endpoints (see Section 2.3). The Sender Context is omitted if the
 endpoint is configured exclusively as silent server.

 o One Recipient Context for each endpoint from which messages are
 received. It is not necessary to maintain Recipient Contexts
 associated to endpoints from which messages are not (expected to
 be) received. The Recipient Context is extended with the public
 key of the associated endpoint, used to verify the signature in
 group mode and for deriving the pairwise keys in pairwise mode
 (see Section 2.3). If the pairwise mode is supported, then the
 Recipient Context is also extended with the Pairwise Recipient Key
 associated to the other endpoint (see Section 2.3).

 +-------------------+---+
 | Context Component | New Information Elements |
 +-------------------+---+
Common Context	Counter Signature Algorithm
	Counter Signature Parameters
	*Secret Derivation Algorithm
	*Secret Derivation Parameters
+-------------------+---+	
Sender Context	Endpoint's own private key
	*Pairwise Sender Keys for the other endpoints
+-------------------+---+	
Each	Public key of the other endpoint
Recipient Context	*Pairwise Recipient Key of the other endpoint
 +-------------------+---+

 Figure 1: Additions to the OSCORE Security Context. Optional
 additions are labeled with an asterisk.

 Further details about the Security Context of Group OSCORE are
 provided in the remainder of this section. How the Security Context
 is established by the group members is out of scope for this
 specification, but if there is more than one Security Context
 applicable to a message, then the endpoints MUST be able to tell
 which Security Context was latest established.

 The default setting for how to manage information about the group is
 described in terms of a Group Manager (see Section 3).

Tiloca, et al. Expires May 6, 2021 [Page 8]

Internet-Draft Group OSCORE November 2020

2.1. Common Context

 The Common Context may be acquired from the Group Manager (see
Section 3). The following sections define how the Common Context is

 extended, compared to [RFC8613].

2.1.1. ID Context

 The ID Context parameter (see Sections 3.3 and 5.1 of [RFC8613]) in
 the Common Context SHALL contain the Group Identifier (Gid) of the
 group. The choice of the Gid format is application specific. An
 example of specific formatting of the Gid is given in Appendix C.
 The application needs to specify how to handle potential collisions
 between Gids (see Section 10.5).

2.1.2. Counter Signature Algorithm

 Counter Signature Algorithm identifies the digital signature
 algorithm used to compute a counter signature on the COSE object (see
 Sections 3.2 and 3.3 of [I-D.ietf-cose-countersign]), when messages
 are protected using the group mode (see Section 8).

 This parameter is immutable once the Common Context is established.
 Counter Signature Algorithm MUST take value from the "Value" column
 of the "COSE Algorithms" Registry [COSE.Algorithms]. The value is
 associated to a COSE key type, as specified in the "Capabilities"
 column of the "COSE Algorithms" Registry [COSE.Algorithms]. COSE
 capabilities for algorithms are defined in Section 8 of
 [I-D.ietf-cose-rfc8152bis-algs].

 The EdDSA signature algorithm and the elliptic curve Ed25519
 [RFC8032] are mandatory to implement. If elliptic curve signatures
 are used, it is RECOMMENDED to implement deterministic signatures
 with additional randomness as specified in
 [I-D.mattsson-cfrg-det-sigs-with-noise].

2.1.3. Counter Signature Parameters

 Counter Signature Parameters identifies the parameters associated to
 the digital signature algorithm specified in Counter Signature
 Algorithm. This parameter is immutable once the Common Context is
 established.

 This parameter is a CBOR array including the following two elements,
 whose exact structure and value depend on the value of Counter
 Signature Algorithm:

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8032

Tiloca, et al. Expires May 6, 2021 [Page 9]

Internet-Draft Group OSCORE November 2020

 o The first element is the array of COSE capabilities for Counter
 Signature Algorithm, as specified for that algorithm in the
 "Capabilities" column of the "COSE Algorithms" Registry
 [COSE.Algorithms] (see Section 8.1 of
 [I-D.ietf-cose-rfc8152bis-algs]).

 o The second element is the array of COSE capabilities for the COSE
 key type associated to Counter Signature Algorithm, as specified
 for that key type in the "Capabilities" column of the "COSE Key
 Types" Registry [COSE.Key.Types] (see Section 8.2 of
 [I-D.ietf-cose-rfc8152bis-algs]).

 Examples of Counter Signature Parameters are in Appendix G.

2.1.4. Secret Derivation Algorithm

 Secret Derivation Algorithm identifies the elliptic curve Diffie-
 Hellman algorithm used to derive a static-static Diffie-Hellman
 shared secret, from which pairwise keys are derived (see

Section 2.3.1) to protect messages with the pairwise mode (see
Section 9).

 This parameter is immutable once the Common Context is established.
 Secret Derivation Algorithm MUST take value from the "Value" column
 of the "COSE Algorithms" Registry [COSE.Algorithms]. The value is
 associated to a COSE key type, as specified in the "Capabilities"
 column of the "COSE Algorithms" Registry [COSE.Algorithms]. COSE
 capabilities for algorithms are defined in Section 8 of
 [I-D.ietf-cose-rfc8152bis-algs].

 For endpoints that support the pairwise mode, the ECDH-SS + HKDF-256
 algorithm specified in Section 6.3.1 of
 [I-D.ietf-cose-rfc8152bis-algs] and the X25519 curve [RFC7748] are
 mandatory to implement.

2.1.5. Secret Derivation Parameters

 Secret Derivation Parameters identifies the parameters associated to
 the elliptic curve Diffie-Hellman algorithm specified in Secret
 Derivation Algorithm. This parameter is immutable once the Common
 Context is established.

 This parameter is a CBOR array including the following two elements,
 whose exact structure and value depend on the value of Secret
 Derivation Algorithm:

 o The first element is the array of COSE capabilities for Secret
 Derivation Algorithm, as specified for that algorithm in the

https://datatracker.ietf.org/doc/html/rfc7748

Tiloca, et al. Expires May 6, 2021 [Page 10]

Internet-Draft Group OSCORE November 2020

 "Capabilities" column of the "COSE Algorithms" Registry
 [COSE.Algorithms] (see Section 8.1 of
 [I-D.ietf-cose-rfc8152bis-algs]).

 o The second element is the array of COSE capabilities for the COSE
 key type associated to Secret Derivation Algorithm, as specified
 for that key type in the "Capabilities" column of the "COSE Key
 Types" Registry [COSE.Key.Types] (see Section 8.2 of
 [I-D.ietf-cose-rfc8152bis-algs]).

 Examples of Secret Derivation Parameters are in Appendix G.

2.2. Sender Context and Recipient Context

 OSCORE specifies the derivation of Sender Context and Recipient
 Context, specifically of Sender/Recipient Keys and Common IV, from a
 set of input parameters (see Section 3.2 of [RFC8613]). This
 derivation applies also to Group OSCORE, and the mandatory-to-
 implement HKDF and AEAD algorithms are the same as in [RFC8613]. The
 Sender ID SHALL be unique for each endpoint in a group with a fixed
 Master Secret, Master Salt and Group Identifier (see Section 3.3 of
 [RFC8613]).

 For Group OSCORE, the Sender Context and Recipient Context
 additionally contain asymmetric keys, as described previously in

Section 2. The private/public key pair of the sender can, for
 example, be generated by the endpoint or provisioned during
 manufacturing.

 With the exception of the public key of the sender endpoint, a
 receiver endpoint can derive a complete Security Context from a
 received Group OSCORE message and the Common Context. The public
 keys in the Recipient Contexts can be retrieved from the Group
 Manager (see Section 3) upon joining the group. A public key can
 alternatively be acquired from the Group Manager at a later time, for
 example the first time a message is received from a particular
 endpoint in the group (see Section 8.2 and Section 8.4).

 For severely constrained devices, it may be not feasible to
 simultaneously handle the ongoing processing of a recently received
 message in parallel with the retrieval of the sender endpoint's
 public key. Such devices can be configured to drop a received
 message for which there is no (complete) Recipient Context, and
 retrieve the sender endpoint's public key in order to have it
 available to verify subsequent messages from that endpoint.

 Furthermore, sufficiently large replay windows should be considered,
 to handle Partial IV values moving forward fast. This can happen

https://datatracker.ietf.org/doc/html/rfc8613#section-3.2
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613#section-3.3
https://datatracker.ietf.org/doc/html/rfc8613#section-3.3

Tiloca, et al. Expires May 6, 2021 [Page 11]

Internet-Draft Group OSCORE November 2020

 when a client engages in frequent or long sequences of one-to-one
 exchanges with servers in the group, such as a large number of block-
 wise transfers to a single server. When receiving following group
 requests from that client, other servers in the group may believe to
 have lost synchronization with the client's Sender Sequence Number.
 If these servers use an Echo exchange to re-gain synchronization (see

Appendix E.3), this in itself may consume a considerable amount of
 client's Sender Sequence Numbers, hence later resulting in the
 servers possibly performing a new Echo exchange.

2.3. Pairwise Keys

 Certain signature schemes, such as EdDSA and ECDSA, support a secure
 combined signature and encryption scheme. This section specifies the
 derivation of "pairwise keys", for use in the pairwise mode of Group
 OSCORE defined in Section 9.

2.3.1. Derivation of Pairwise Keys

 Using the Group OSCORE Security Context (see Section 2), a group
 member can derive AEAD keys to protect point-to-point communication
 between itself and any other endpoint in the group. The same AEAD
 algorithm as in the group mode is used. The key derivation of these
 so-called pairwise keys follows the same construction as in

Section 3.2.1 of [RFC8613]:

 Pairwise Recipient Key = HKDF(Recipient Key, Shared Secret, info, L)
 Pairwise Sender Key = HKDF(Sender Key, Shared Secret, info, L)

 where:

 o The Pairwise Recipient Key is the AEAD key for processing incoming
 messages from endpoint X.

 o The Pairwise Sender Key is the AEAD key for processing outgoing
 messages addressed to endpoint X.

 o HKDF is the HKDF algorithm specified by Secret Derivation
 Algorithm from the Common Context (see Section 2.1.4).

 o The Shared Secret is computed as a static-static Diffie-Hellman
 shared secret [NIST-800-56A], where the endpoint uses its private
 key and the public key of the other endpoint X.

 o The Recipient Key and the public key are from the Recipient
 Context associated to endpoint X.

 o The Sender Key and private key are from the Sender Context.

https://datatracker.ietf.org/doc/html/rfc8613#section-3.2.1

Tiloca, et al. Expires May 6, 2021 [Page 12]

Internet-Draft Group OSCORE November 2020

 o info and L are defined as in Section 3.2.1 of [RFC8613].

 If EdDSA asymmetric keys are used, the Edward coordinates are mapped
 to Montgomery coordinates using the maps defined in Sections 4.1 and
 4.2 of [RFC7748], before using the X25519 and X448 functions defined
 in Section 5 of [RFC7748].

 After establishing a partially or completely new Security Context
 (see Section 3.1 and Section 2.4), the old pairwise keys MUST be
 deleted. Since new Sender/Recipient Keys are derived from the new
 group keying material (see Section 2.2), every group member MUST use
 the new Sender/Recipient Keys when deriving new pairwise keys.

 As long as any two group members preserve the same asymmetric keys,
 their Diffie-Hellman shared secret does not change across updates of
 the group keying material.

2.3.2. Usage of Sequence Numbers

 When using any of its Pairwise Sender Keys, a sender endpoint
 including the 'Partial IV' parameter in the protected message MUST
 use the current fresh value of the Sender Sequence Number from its
 Sender Context (see Section 2.2). That is, the same Sender Sequence
 Number space is used for all outgoing messages protected with Group
 OSCORE, thus limiting both storage and complexity.

 On the other hand, when combining group and pairwise communication
 modes, this may result in the Partial IV values moving forward more
 often. This can happen when a client engages in frequent or long
 sequences of one-to-one exchanges with servers in the group, by
 sending requests over unicast.

2.3.3. Security Context for Pairwise Mode

 If the pairwise mode is supported, the Security Context additionally
 includes Secret Derivation Algorithm, Secret Derivation Parameters
 and the pairwise keys, as described at the beginning of Section 2.

 The pairwise keys as well as the shared secrets used in their
 derivation (see Section 2.3.1) may be stored in memory or recomputed
 every time they are needed. The shared secret changes only when a
 public/private key pair used for its derivation changes, which
 results in the pairwise keys also changing. Additionally, the
 pairwise keys change if the Sender ID changes or if a new Security
 Context is established for the group (see Section 2.4.3). In order
 to optimize protocol performance, an endpoint may store the derived
 pairwise keys for easy retrieval.

https://datatracker.ietf.org/doc/html/rfc8613#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748#section-5

Tiloca, et al. Expires May 6, 2021 [Page 13]

Internet-Draft Group OSCORE November 2020

 In the pairwise mode, the Sender Context includes the Pairwise Sender
 Keys to use with the other endpoints (see Figure 1). In order to
 identify the right key to use, the Pairwise Sender Key for endpoint X
 may be associated to the Recipient ID of endpoint X, as defined in
 the Recipient Context (i.e. the Sender ID from the point of view of
 endpoint X). In this way, the Recipient ID can be used to lookup for
 the right Pairwise Sender Key. This association may be implemented in
 different ways, e.g. by storing the pair (Recipient ID, Pairwise
 Sender Key) or linking a Pairwise Sender Key to a Recipient Context.

2.4. Update of Security Context

 It is RECOMMENDED that the immutable part of the Security Context is
 stored in non-volatile memory, or that it can otherwise be reliably
 accessed throughout the operation of the group, e.g. after a device
 reboots. However, also immutable parts of the Security Context may
 need to be updated, for example due to scheduled key renewal, new or
 re-joining members in the group, or the fact that the endpoint
 changes Sender ID (see Section 2.4.3).

 On the other hand, the mutable parts of the Security Context are
 updated by the endpoint when executing the security protocol, but may
 nevertheless become outdated, e.g. due to loss of the mutable
 Security Context (see Section 2.4.1) or exhaustion of Sender Sequence
 Numbers (see Section 2.4.2).

 If it is not feasible or practically possible to store and maintain
 up-to-date the mutable part in non-volatile memory (e.g., due to
 limited number of write operations), the endpoint MUST be able to
 detect a loss of the mutable Security Context.

 When a loss of mutable Security Context is detected (e.g., following
 a reboot), the endpoint MUST NOT protect further messages using this
 Security Context to avoid reusing a nonce with the same AEAD key, and
 SHOULD instead retrieve new security parameters from the Group
 Manager (see Section 2.4.1).

2.4.1. Loss of Mutable Security Context

 An endpoint that has lost its mutable Security Context, e.g. due to a
 reboot, needs to prevent the re-use of a nonce with the same AEAD
 key, and to handle incoming replayed messages.

 To this end, after a loss of mutable Security Context, the endpoint
 SHOULD inform the Group Manager, retrieve new Security Context
 parameters from the Group Manager (see Section 2.4.3), and use them
 to derive a new Sender Context (see Section 2.2). In particular,
 regardless the exact actions taken by the Group Manager, the endpoint

Tiloca, et al. Expires May 6, 2021 [Page 14]

Internet-Draft Group OSCORE November 2020

 resets its Sender Sequence Number to 0, and derives a new Sender Key.
 This is in turn used to possibly derive new Pairwise Sender Keys.

 From then on, the endpoint MUST use its latest installed Sender
 Context to protect outgoing messages.

 If an endpoint is not able to establish an updated Sender Context,
 e.g. because of lack of connectivity with the Group Manager, the
 endpoint MUST NOT protect further messages using the current Security
 Context.

 In order to handle the update of Replay Window in Recipient Contexts,
 three approaches are discussed in Appendix E. In particular, the
 approach specified in Appendix E.3 and based on the Echo Option
 [I-D.ietf-core-echo-request-tag] is a variant of the approach defined
 in Appendix B.1.2 of [RFC8613] as applicable to Group OSCORE.

2.4.2. Exhaustion of Sender Sequence Number

 An endpoint can eventually exhaust the Sender Sequence Number, which
 is incremented for each new outgoing message including a Partial IV.
 This is the case for group requests, Observe notifications [RFC7641]
 and, optionally, any other response.

 Implementations MUST be able to detect an exhaustion of Sender
 Sequence Number, after the endpoint has consumed the largest usable
 value. If an implementation's integers support wrapping addition,
 the implementation MUST treat Sender Sequence Number as exhausted
 when a wrap-around is detected.

 Upon exhausting the Sender Sequence Numbers, the endpoint MUST NOT
 use this Security Context to protect further messages including a
 Partial IV.

 The endpoint SHOULD inform the Group Manager, retrieve new Security
 Context parameters from the Group Manager (see Section 2.4.3), and
 use them to derive a new Sender Context (see Section 2.2). In
 particular, regardless the exact actions taken by the Group Manager,
 the endpoint resets its Sender Sequence Number to 0, and derives a
 new Sender Key. This is in turn used to possibly derive new Pairwise
 Sender Keys.

 From then on, the endpoint MUST use its latest installed Sender
 Context to protect outgoing messages.

https://datatracker.ietf.org/doc/html/rfc8613#appendix-B.1.2
https://datatracker.ietf.org/doc/html/rfc7641

Tiloca, et al. Expires May 6, 2021 [Page 15]

Internet-Draft Group OSCORE November 2020

2.4.3. Retrieving New Security Context Parameters

 The Group Manager can assist an endpoint with an incomplete Sender
 Context to retrieve missing data of the Security Context and thereby
 become fully operational in the group again. The two main options
 for the Group Manager are described in this section: i) assignment of
 a new Sender ID to the endpoint (see Section 2.4.3.1); and ii)
 establishment of a new Security Context for the group (see

Section 2.4.3.2). Update of Replay Window in Recipient Contexts is
 discussed in Section 6.1.

 As group membership changes, or as group members get new Sender IDs
 (see Section 2.4.3.1) so do the relevant Recipient IDs that the other
 endpoints need to keep track of. As a consequence, group members may
 end up retaining stale Recipient Contexts, that are no longer useful
 to verify incoming secure messages.

 The Recipient ID ('kid') SHOULD NOT be considered as a persistent and
 reliable indicator of a group member. Such an indication can be
 achieved only by using that member's public key, when verifying
 countersignatures of received messages (in group mode), or when
 verifying messages integrity-protected with pairwise keying material
 derived from asymmetric keys (in pairwise mode).

 Furthermore, applications MAY define policies to: i) delete
 (long-)unused Recipient Contexts and reduce the impact on storage
 space; as well as ii) check with the Group Manager that a public key
 is currently the one associated to a 'kid' value, after a number of
 consecutive failed verifications.

2.4.3.1. New Sender ID for the Endpoint

 The Group Manager may assign a new Sender ID to an endpoint, while
 leaving the Gid, Master Secret and Master Salt unchanged in the
 group. In this case, the Group Manager MUST assign a Sender ID that
 has never been assigned before in the group.

 Having retrieved the new Sender ID, and potentially other missing
 data of the immutable Security Context, the endpoint can derive a new
 Sender Context (see Section 2.2). When doing so, the endpoint re-
 initilizes the Sender Sequence Number in its Sender Context to 0.

 From then on, the endpoint MUST use its latest installed Sender
 Context to protect outgoing messages.

 The assignment of a new Sender ID may be the result of different
 processes. The endpoint may request a new Sender ID, e.g. because of
 exhaustion of Sender Sequence Numbers (see Section 2.4.2). An

Tiloca, et al. Expires May 6, 2021 [Page 16]

Internet-Draft Group OSCORE November 2020

 endpoint may request to re-join the group, e.g. because of losing its
 mutable Security Context (see Section 2.4.1), and receive as response
 a new Sender ID together with the latest immutable Security Context.

 For the other group members, the Recipient Context corresponding to
 the old Sender ID becomes stale (see Section 3.1).

2.4.3.2. New Security Context for the Group

 The Group Manager may establish a new Security Context for the group
 (see Section 3.1). The Group Manager does not necessarily establish
 a new Security Context for the group if one member has an outdated
 Security Context (see Section 2.4.3.1), unless that was already
 planned or required for other reasons.

 All the group members need to acquire new Security Context parameters
 from the Group Manager. Once having acquired new Security Context
 parameters, each group member performs the following actions.

 o From then on, it MUST NOT use the current Security Context to
 start processing new messages for the considered group.

 o It completes any ongoing message processing for the considered
 group.

 o It derives and install a new Security Context. In particular:

 * It re-derives the keying material stored in its Sender Context
 and Recipient Contexts (see Section 2.2). The Master Salt used
 for the re-derivations is the updated Master Salt parameter if
 provided by the Group Manager, or the empty byte string
 otherwise.

 * It resets to 0 its Sender Sequence Number in its Sender
 Context.

 * It re-initializes the Replay Window of each Recipient Context.

 * It resets to 0 the sequence number of each ongoing observation
 where it is an observer client and that it wants to keep
 active.

 From then on, it can resume processing new messages for the
 considered group. In particular:

 o It MUST use its latest installed Sender Context to protect
 outgoing messages.

Tiloca, et al. Expires May 6, 2021 [Page 17]

Internet-Draft Group OSCORE November 2020

 o It SHOULD use its latest installed Recipient Contexts to process
 incoming messages, unless application policies admit to
 temporarily retain and use the old, recent, Security Context (see

Section 10.4.1).

 The distribution of a new Gid and Master Secret may result in
 temporarily misaligned Security Contexts among group members. In
 particular, this may result in a group member not being able to
 process messages received right after a new Gid and Master Secret
 have been distributed. A discussion on practical consequences and
 possible ways to address them, as well as on how to handle the old
 Security Context, is provided in Section 10.4.

3. The Group Manager

 As with OSCORE, endpoints communicating with Group OSCORE need to
 establish the relevant Security Context. Group OSCORE endpoints need
 to acquire OSCORE input parameters, information about the group(s)
 and about other endpoints in the group(s). This specification is
 based on the existence of an entity called Group Manager which is
 responsible for the group, but does not mandate how the Group Manager
 interacts with the group members. The responsibilities of the Group
 Manager are compiled in Section 3.2.

 It is RECOMMENDED to use a Group Manager as described in
 [I-D.ietf-ace-key-groupcomm-oscore], where the join process is based
 on the ACE framework for authentication and authorization in
 constrained environments [I-D.ietf-ace-oauth-authz].

 The Group Manager assigns unique Group Identifiers (Gids) to
 different groups under its control, as well as unique Sender IDs (and
 thereby Recipient IDs) to the members of those groups. The Group
 Manager MUST NOT reassign a Sender ID within the same group, and MUST
 NOT reassign a Gid value to the same group. According to a
 hierarchical approach, the Gid value assigned to a group is
 associated to a dedicated space for the values of Sender ID and
 Recipient ID of the members of that group.

 In addition, the Group Manager maintains records of the public keys
 of endpoints in a group, and provides information about the group and
 its members to other members and selected roles. Upon nodes'
 joining, the Group Manager collects such public keys and MUST verify
 proof-of-possession of the respective private key.

 An endpoint acquires group data such as the Gid and OSCORE input
 parameters including its own Sender ID from the Group Manager, and
 provides information about its public key to the Group Manager, for
 example upon joining the group.

Tiloca, et al. Expires May 6, 2021 [Page 18]

Internet-Draft Group OSCORE November 2020

 A group member can retrieve from the Group Manager the public key and
 other information associated to another group member, with which it
 can generate the corresponding Recipient Context. An application can
 configure a group member to asynchronously retrieve information about
 Recipient Contexts, e.g. by Observing [RFC7641] a resource at the
 Group Manager to get updates on the group membership.

 The Group Manager MAY serve additional entities acting as signature
 checkers, e.g. intermediary gateways. These entities do not join a
 group as members, but can retrieve public keys of group members from
 the Group Manager, in order to verify counter signatures of group
 messages. A signature checker MUST be authorized for retrieving
 public keys of members in a specific group from the Group Manager.
 To this end, the same method mentioned above based on the ACE
 framework [I-D.ietf-ace-oauth-authz] can be used.

3.1. Management of Group Keying Material

 In order to establish a new Security Context for a group, a new Group
 Identifier (Gid) for that group and a new value for the Master Secret
 parameter MUST be generated. When distributing the new Gid and
 Master Secret, the Group Manager MAY distribute also a new value for
 the Master Salt parameter, and SHOULD preserve the current value of
 the Sender ID of each group member.

 The Group Manager MUST NOT reassign a Gid value to the same group.
 That is, each group can have a given Gid at most once during its
 lifetime. An example of Gid format supporting this operation is
 provided in Appendix C.

 The Group Manager MUST NOT reassign a previously used Sender ID
 ('kid') with the same Gid, Master Secret and Master Salt. Even if
 Gid and Master Secret are renewed as described in this section, the
 Group Manager MUST NOT reassign an endpoint's Sender ID ('kid')
 within a same group (see Section 2.4.3.1).

 If required by the application (see Appendix A.1), it is RECOMMENDED
 to adopt a group key management scheme, and securely distribute a new
 value for the Gid and for the Master Secret parameter of the group's
 Security Context, before a new joining endpoint is added to the group
 or after a currently present endpoint leaves the group. This is
 necessary to preserve backward security and forward security in the
 group, if the application requires it.

 The specific approach used to distribute new group data is out of the
 scope of this document. However, it is RECOMMENDED that the Group
 Manager supports the distribution of the new Gid and Master Secret

https://datatracker.ietf.org/doc/html/rfc7641

Tiloca, et al. Expires May 6, 2021 [Page 19]

Internet-Draft Group OSCORE November 2020

 parameter to the group according to the Group Rekeying Process
 described in [I-D.ietf-ace-key-groupcomm-oscore].

3.2. Responsibilities of the Group Manager

 The Group Manager is responsible for performing the following tasks:

 1. Creating and managing OSCORE groups. This includes the
 assignment of a Gid to every newly created group, as well as
 ensuring uniqueness of Gids within the set of its OSCORE groups.

 2. Defining policies for authorizing the joining of its OSCORE
 groups.

 3. Handling the join process to add new endpoints as group members.

 4. Establishing the Common Context part of the Security Context,
 and providing it to authorized group members during the join
 process, together with the corresponding Sender Context.

 5. Generating and managing Sender IDs within its OSCORE groups, as
 well as assigning and providing them to new endpoints during the
 join process, or to current group members upon request of
 renewal. This includes ensuring that each Sender ID is unique
 within each of the OSCORE groups, and that it is not reassigned
 within the same group.

 6. Defining communication policies for each of its OSCORE groups,
 and signalling them to new endpoints during the join process.

 7. Renewing the Security Context of an OSCORE group upon membership
 change, by revoking and renewing common security parameters and
 keying material (rekeying).

 8. Providing the management keying material that a new endpoint
 requires to participate in the rekeying process, consistently
 with the key management scheme used in the group joined by the
 new endpoint.

 9. Updating the Gid of its OSCORE groups, upon renewing the
 respective Security Context. This includes ensuring that the
 same Gid value is not reassigned to the same group.

 10. Acting as key repository, in order to handle the public keys of
 the members of its OSCORE groups, and providing such public keys
 to other members of the same group upon request. The actual
 storage of public keys may be entrusted to a separate secure
 storage device or service.

Tiloca, et al. Expires May 6, 2021 [Page 20]

Internet-Draft Group OSCORE November 2020

 11. Validating that the format and parameters of public keys of
 group members are consistent with the countersignature algorithm
 and related parameters used in the respective OSCORE group.

 The Group Manager described in [I-D.ietf-ace-key-groupcomm-oscore]
 provides these functionalities.

4. The COSE Object

 Building on Section 5 of [RFC8613], this section defines how to use
 COSE [I-D.ietf-cose-rfc8152bis-struct] to wrap and protect data in
 the original message. OSCORE uses the untagged COSE_Encrypt0
 structure with an Authenticated Encryption with Associated Data
 (AEAD) algorithm. Unless otherwise specified, the following
 modifications apply for both the group mode and the pairwise mode of
 Group OSCORE.

4.1. Counter Signature

 For the group mode only, the 'unprotected' field MUST additionally
 include the following parameter:

 o COSE_CounterSignature0: its value is set to the counter signature
 of the COSE object, computed by the sender as described in
 Sections 3.2 and 3.3 of [I-D.ietf-cose-countersign], by using its
 private key and according to the Counter Signature Algorithm and
 Counter Signature Parameters in the Security Context.

 In particular, the Countersign_structure contains the context text
 string "CounterSignature0", the external_aad as defined in

Section 4.3.2 of this specification, and the ciphertext of the
 COSE object as payload.

4.2. The 'kid' and 'kid context' parameters

 The value of the 'kid' parameter in the 'unprotected' field of
 response messages MUST be set to the Sender ID of the endpoint
 transmitting the message. That is, unlike in [RFC8613], the 'kid'
 parameter is always present in all messages, both requests and
 responses.

 The value of the 'kid context' parameter in the 'unprotected' field
 of requests messages MUST be set to the ID Context, i.e. the Group
 Identifier value (Gid) of the group. That is, unlike in [RFC8613],
 the 'kid context' parameter is always present in requests.

https://datatracker.ietf.org/doc/html/rfc8613#section-5
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca, et al. Expires May 6, 2021 [Page 21]

Internet-Draft Group OSCORE November 2020

4.3. external_aad

 The external_aad of the Additional Authenticated Data (AAD) is
 different compared to OSCORE. In particular, there is one
 external_aad used for encryption (both in group mode and pairwise
 mode), and another external_aad used for signing (only in group
 mode).

4.3.1. external_aad for Encryption

 The external_aad for encryption (see Section 4.3 of
 [I-D.ietf-cose-rfc8152bis-struct]), used both in group mode and
 pairwise mode, includes also the counter signature algorithm and
 related signature parameters, as well as the value of the 'kid
 context' in the COSE object of the request (see Figure 2).

 external_aad = bstr .cbor aad_array

 aad_array = [
 oscore_version : uint,
 algorithms : [alg_aead : int / tstr,
 alg_countersign : int / tstr,
 par_countersign : [countersign_alg_capab,
 countersign_key_type_capab],
 par_countersign_key : countersign_key_type_capab],
 request_kid : bstr,
 request_piv : bstr,
 options : bstr,
 request_kid_context : bstr
]

 Figure 2: external_aad for Encryption

 Compared with Section 5.4 of [RFC8613], the aad_array has the
 following differences.

 o The 'algorithms' array in the aad_array additionally includes:

 * 'alg_countersign', which specifies Counter Signature Algorithm
 from the Common Context (see Section 2.1.2). This parameter
 MUST encode the value of Counter Signature Algorithm as a CBOR
 integer or text string, consistently with the "Value" field in
 the "COSE Algorithms" Registry for this counter signature
 algorithm.

 * 'par_countersign', which specifies the CBOR array Counter
 Signature Parameters from the Common Context (see

Section 2.1.3). In particular:

https://datatracker.ietf.org/doc/html/rfc8613#section-5.4

Tiloca, et al. Expires May 6, 2021 [Page 22]

Internet-Draft Group OSCORE November 2020

 + 'countersign_alg_capab' is the array of COSE capabilities
 for the countersignature algorithm indicated in
 'alg_countersign'. This is the first element of the CBOR
 array Counter Signature Parameters from the Common Context.

 + 'countersign_key_type_capab' is the array of COSE
 capabilities for the COSE key type used by the
 countersignature algorithm indicated in 'alg_countersign'.
 This is the second element of the CBOR array Counter
 Signature Parameters from the Common Context.

 * 'par_countersign_key', which specifies the parameters
 associated to the keys used with the countersignature algorithm
 indicated in 'alg_countersign'. These parameters are encoded
 as a CBOR array 'countersign_key_type_capab', whose exact
 structure and value depend on the value of 'alg_countersign'.

 In particular, 'countersign_key_type_capab' is the array of
 COSE capabilities for the COSE key type of the keys used with
 the countersignature algorithm. This is the second element of
 the CBOR array Counter Signature Parameters from the Common
 Context.

 Examples of 'par_countersign_key' are in Appendix G.

 o The new element 'request_kid_context' contains the value of the
 'kid context' in the COSE object of the request (see Section 4.2).

4.3.2. external_aad for Signing

 The external_aad for signing (see Section 4.3 of
 [I-D.ietf-cose-rfc8152bis-struct]) used in group mode is identical to
 the external_aad for encryption (see Section 4.3.1) with the addition
 of the OSCORE option (see Figure 3).

Tiloca, et al. Expires May 6, 2021 [Page 23]

Internet-Draft Group OSCORE November 2020

 external_aad = bstr .cbor aad_array

 aad_array = [
 oscore_version : uint,
 algorithms : [alg_aead : int / tstr,
 alg_countersign : int / tstr,
 par_countersign : [countersign_alg_capab,
 countersign_key_type_capab],
 par_countersign_key : countersign_key_type_capab],
 request_kid : bstr,
 request_piv : bstr,
 options : bstr,
 request_kid_context : bstr,
 OSCORE_option: bstr
]

 Figure 3: external_aad for Signing

 Compared with Section 5.4 of [RFC8613] the aad_array additionally
 includes:

 o the 'algorithms' array, as defined in the external_aad for
 encryption (see Section 4.3.1);

 o the 'request_kid_context' element, as defined in the external_aad
 for encryption (see Section 4.3.1);

 o the value of the OSCORE Option present in the protected message,
 encoded as a binary string.

 Note for implementation: this construction requires the OSCORE option
 of the message to be generated before calculating the signature.
 Also, the aad_array needs to be large enough to contain the largest
 possible OSCORE option.

5. OSCORE Header Compression

 The OSCORE header compression defined in Section 6 of [RFC8613] is
 used, with the following differences.

 o The payload of the OSCORE message SHALL encode the ciphertext of
 the COSE_Encrypt0 object. In the group mode, the ciphertext above
 is concatenated with the value of the COSE_CounterSignature0 of
 the COSE object, computed as described in Section 4.1.

 o This specification defines the usage of the sixth least
 significant bit, called the "Group Flag", in the first byte of the

https://datatracker.ietf.org/doc/html/rfc8613#section-5.4
https://datatracker.ietf.org/doc/html/rfc8613#section-6

Tiloca, et al. Expires May 6, 2021 [Page 24]

Internet-Draft Group OSCORE November 2020

 OSCORE option containing the OSCORE flag bits. This flag bit is
 specified in Section 11.1.

 o The Group Flag MUST be set to 1 if the OSCORE message is protected
 using the group mode (see Section 8).

 o The Group Flag MUST be set to 0 if the OSCORE message is protected
 using the pairwise mode (see Section 9). The Group Flag MUST also
 be set to 0 for ordinary OSCORE messages processed according to
 [RFC8613].

5.1. Examples of Compressed COSE Objects

 This section covers a list of OSCORE Header Compression examples of
 Group OSCORE used in group mode (see Section 5.1.1) or in pairwise
 mode (see Section 5.1.2).

 The examples assume that the COSE_Encrypt0 object is set (which means
 the CoAP message and cryptographic material is known). Note that the
 examples do not include the full CoAP unprotected message or the full
 Security Context, but only the input necessary to the compression
 mechanism, i.e. the COSE_Encrypt0 object. The output is the
 compressed COSE object as defined in Section 5 and divided into two
 parts, since the object is transported in two CoAP fields: OSCORE
 option and payload.

 The examples assume that the plaintext (see Section 5.3 of [RFC8613])
 is 6 bytes long, and that the AEAD tag is 8 bytes long, hence
 resulting in a ciphertext which is 14 bytes long. When using the
 group mode, COUNTERSIGN denotes the COSE_CounterSignature0 byte
 string as described in Section 4, and is 64 bytes long.

5.1.1. Examples in Group Mode

 o Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
 0x25, Partial IV = 5 and kid context = 0x44616c

 Before compression (96 bytes):

 [
 h'',
 { 4:h'25', 6:h'05', 10:h'44616c', 11:COUNTERSIGN },
 h'aea0155667924dff8a24e4cb35b9'
]

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613#section-5.3

Tiloca, et al. Expires May 6, 2021 [Page 25]

Internet-Draft Group OSCORE November 2020

 After compression (85 bytes):

 Flag byte: 0b00111001 = 0x39

 Option Value: 39 05 03 44 61 6c 25 (7 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 COUNTERSIGN
 (14 bytes + size of COUNTERSIGN)

 o Response with ciphertext = 0x60b035059d9ef5667c5a0710823b, kid =
 0x52 and no Partial IV.

 Before compression (88 bytes):

 [
 h'',
 { 4:h'52', 11:COUNTERSIGN },
 h'60b035059d9ef5667c5a0710823b'
]

 After compression (80 bytes):

 Flag byte: 0b00101000 = 0x28

 Option Value: 28 52 (2 bytes)

 Payload: 60 b0 35 05 9d 9e f5 66 7c 5a 07 10 82 3b COUNTERSIGN
 (14 bytes + size of COUNTERSIGN)

5.1.2. Examples in Pairwise Mode

 o Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
 0x25, Partial IV = 5 and kid context = 0x44616c

 Before compression (32 bytes):

 [
 h'',
 { 4:h'25', 6:h'05', 10:h'44616c' },
 h'aea0155667924dff8a24e4cb35b9'
]

Tiloca, et al. Expires May 6, 2021 [Page 26]

Internet-Draft Group OSCORE November 2020

 After compression (21 bytes):

 Flag byte: 0b00011001 = 0x19

 Option Value: 19 05 03 44 61 6c 25 (7 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

 o Response with ciphertext = 0x60b035059d9ef5667c5a0710823b, kid =
 0x52 and no Partial IV.

 Before compression (24 bytes):

 [
 h'',
 { 4:h'52'},
 h'60b035059d9ef5667c5a0710823b'
]

 After compression (16 bytes):

 Flag byte: 0b00001000 = 0x08

 Option Value: 08 52 (2 bytes)

 Payload: 60 b0 35 05 9d 9e f5 66 7c 5a 07 10 82 3b (14 bytes)

6. Message Binding, Sequence Numbers, Freshness and Replay Protection

 The requirements and properties described in Section 7 of [RFC8613]
 also apply to OSCORE used in group communication. In particular,
 Group OSCORE provides message binding of responses to requests, which
 enables absolute freshness of responses that are not notifications,
 relative freshness of requests and notification responses, and replay
 protection of requests.

6.1. Update of Replay Window

 A new server joining a group may not be aware of the current Partial
 IVs (Sender Sequence Numbers of the clients). Hence, when receiving
 a request from a particular client for the first time, the new server
 is not able to verify if that request is a replay. The same holds
 when a server loses its mutable Security Context (see Section 2.4.1),
 for instance after a device reboot.

 The exact way to address this issue is application specific, and
 depends on the particular use case and its replay requirements. The

https://datatracker.ietf.org/doc/html/rfc8613#section-7

Tiloca, et al. Expires May 6, 2021 [Page 27]

Internet-Draft Group OSCORE November 2020

 list of methods to handle the update of a Replay Window is part of
 the group communication policy, and different servers can use
 different methods. Appendix E describes three possible approaches
 that can be considered to address the issue discussed above.

 Furthermore, when the Group Manager establishes a new Security
 Context for the group (see Section 2.4.3.2), every server re-
 initializes the Replay Window in each of its Recipient Contexts.

7. Message Reception

 Upon receiving a protected message, a recipient endpoint retrieves a
 Security Context as in [RFC8613]. An endpoint MUST be able to
 distinguish between a Security Context to process OSCORE messages as
 in [RFC8613] and a Security Context to process Group OSCORE messages
 as defined in this specification.

 To this end, an endpoint can take into account the different
 structure of the Security Context defined in Section 2, for example
 based on the presence of Counter Signature Algorithm in the Common
 Context. Alternatively implementations can use an additional
 parameter in the Security Context, to explicitly signal that it is
 intended for processing Group OSCORE messages.

 If either of the following two conditions holds, a recipient endpoint
 MUST discard the incoming protected message:

 o The Group Flag is set to 1, and the recipient endpoint can not
 retrieve a Security Context which is both valid to process the
 message and also associated to an OSCORE group.

 o The Group Flag is set to 0, and the recipient endpoint retrieves a
 Security Context which is both valid to process the message and
 also associated to an OSCORE group, but the endpoint does not
 support the pairwise mode.

 Otherwise, if a Security Context associated to an OSCORE group and
 valid to process the message is retrieved, the recipient endpoint
 processes the message with Group OSCORE, using the group mode (see

Section 8) if the Group Flag is set to 1, or the pairwise mode (see
Section 9) if the Group Flag is set to 0.

 Note that, if the Group Flag is set to 0, and the recipient endpoint
 retrieves a Security Context which is valid to process the message
 but is not associated to an OSCORE group, then the message is
 processed according to [RFC8613].

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca, et al. Expires May 6, 2021 [Page 28]

Internet-Draft Group OSCORE November 2020

8. Message Processing in Group Mode

 When using the group mode, messages are protected and processed as
 specified in [RFC8613], with the modifications described in this
 section. The security objectives of the group mode are discussed in

Appendix A.2. The group mode MUST be supported.

 During all the steps of the message processing, an endpoint MUST use
 the same Security Context for the considered group. That is, an
 endpoint MUST NOT install a new Security Context for that group (see

Section 2.4.3.2) until the message processing is completed.

 The group mode MUST be used to protect group requests intended for
 multiple recipients or for the whole group. This includes both
 requests directly addressed to multiple recipients, e.g. sent by the
 client over multicast, as well as requests sent by the client over
 unicast to a proxy, that forwards them to the intended recipients
 over multicast [I-D.ietf-core-groupcomm-bis].

 As per [RFC7252][I-D.ietf-core-groupcomm-bis], group requests sent
 over multicast MUST be Non-Confirmable, and thus are not
 retransmitted by the CoAP messaging layer. Instead, applications
 should store such outgoing messages for a pre-defined, sufficient
 amount of time, in order to correctly perform possible
 retransmissions at the application layer. According to Section 5.2.3
 of [RFC7252], responses to Non-Confirmable group requests SHOULD also
 be Non-Confirmable, but endpoints MUST be prepared to receive
 Confirmable responses in reply to a Non-Confirmable group request.
 Confirmable group requests are acknowledged in non-multicast
 environments, as specified in [RFC7252].

 Furthermore, endpoints in the group locally perform error handling
 and processing of invalid messages according to the same principles
 adopted in [RFC8613]. However, a recipient MUST stop processing and
 silently reject any message which is malformed and does not follow
 the format specified in Section 4, or which is not cryptographically
 validated in a successful way. In either case, it is RECOMMENDED
 that the recipient does not send back any error message. This
 prevents servers from replying with multiple error messages to a
 client sending a group request, so avoiding the risk of flooding and
 possibly congesting the network.

8.1. Protecting the Request

 A client transmits a secure group request as described in Section 8.1
 of [RFC8613], with the following modifications.

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.2.3
https://datatracker.ietf.org/doc/html/rfc7252#section-5.2.3
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613#section-8.1
https://datatracker.ietf.org/doc/html/rfc8613#section-8.1

Tiloca, et al. Expires May 6, 2021 [Page 29]

Internet-Draft Group OSCORE November 2020

 o In step 2, the Additional Authenticated Data is modified as
 described in Section 4 of this document.

 o In step 4, the encryption of the COSE object is modified as
 described in Section 4 of this document. The encoding of the
 compressed COSE object is modified as described in Section 5 of
 this document. In particular, the Group Flag MUST be set to 1.

 o In step 5, the counter signature is computed and the format of the
 OSCORE message is modified as described in Section 4 and Section 5
 of this document. In particular, the payload of the OSCORE
 message includes also the counter signature.

8.1.1. Supporting Observe

 If Observe [RFC7641] is supported, the following holds for each newly
 started observation.

 o If the client intends to keep the observation active beyond a
 possible change of Sender ID, the client MUST store the value of
 the 'kid' parameter from the original Observe request, and retain
 it for the whole duration of the observation. Even in case the
 client is individually rekeyed and receives a new Sender ID from
 the Group Manager (see Section 2.4.3.1), the client MUST NOT
 update the stored value associated to a particular Observe
 request.

 o If the client intends to keep the observation active beyond a
 possible change of ID Context following a group rekeying (see

Section 3.1), then the following applies.

 * The client MUST store the value of the 'kid context' parameter
 from the original Observe request, and retain it for the whole
 duration of the observation. Upon establishing a new Security
 Context with a new ID Context as Gid (see Section 2.4.3.2), the
 client MUST NOT update the stored value associated to a
 particular Observe request.

 * The client MUST store an invariant identifier of the group,
 which is immutable even in case the Security Context of the
 group is re-established. For example, this invariant
 identifier can be the "group name" in
 [I-D.ietf-ace-key-groupcomm-oscore], where it is used for
 joining the group and retrieving the current group keying
 material from the Group Manager.

 After a group rekeying, such an invariant information makes it
 simpler for the observer client to retrieve the current group

https://datatracker.ietf.org/doc/html/rfc7641

Tiloca, et al. Expires May 6, 2021 [Page 30]

Internet-Draft Group OSCORE November 2020

 keying material from the Group Manager, in case the client has
 missed both the rekeying messages and the first observe
 notification protected with the new Security Context (see

Section 8.3.1).

8.2. Verifying the Request

 Upon receiving a secure group request with the Group Flag set to 1,
 following the procedure in Section 7, a server proceeds as described
 in Section 8.2 of [RFC8613], with the following modifications.

 o In step 2, the decoding of the compressed COSE object follows
Section 5 of this document. In particular:

 * If the server discards the request due to not retrieving a
 Security Context associated to the OSCORE group, the server MAY
 respond with a 4.02 (Bad Option) error. When doing so, the
 server MAY set an Outer Max-Age option with value zero, and MAY
 include a descriptive string as diagnostic payload.

 * If the received 'kid context' matches an existing ID Context
 (Gid) but the received 'kid' does not match any Recipient ID in
 this Security Context, then the server MAY create a new
 Recipient Context for this Recipient ID and initialize it
 according to Section 3 of [RFC8613], and also retrieve the
 associated public key. Such a configuration is application
 specific. If the application does not specify dynamic
 derivation of new Recipient Contexts, then the server SHALL
 stop processing the request.

 o In step 4, the Additional Authenticated Data is modified as
 described in Section 4 of this document.

 o In step 6, the server also verifies the counter signature using
 the public key of the client from the associated Recipient
 Context. In particular:

 * If the server does not have the public key of the client yet,
 the server MUST stop processing the request and MAY respond
 with a 5.03 (Service Unavailable) response. The response MAY
 include a Max-Age Option, indicating to the client the number
 of seconds after which to retry. If the Max-Age Option is not
 present, a retry time of 60 seconds will be assumed by the
 client, as default value defined in Section 5.10.5 of
 [RFC7252].

 * If the signature verification fails, the server SHALL stop
 processing the request and MAY respond with a 4.00 (Bad

https://datatracker.ietf.org/doc/html/rfc8613#section-8.2
https://datatracker.ietf.org/doc/html/rfc8613#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.5
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.5

Tiloca, et al. Expires May 6, 2021 [Page 31]

Internet-Draft Group OSCORE November 2020

 Request) response. If the verification fails, the same steps
 are taken as if the decryption had failed. In particular, the
 Replay Window is only updated if both the signature
 verification and the decryption succeed.

 o Additionally, if the used Recipient Context was created upon
 receiving this group request and the message is not verified
 successfully, the server MAY delete that Recipient Context. Such
 a configuration, which is specified by the application, mitigates
 attacks that aim at overloading the server's storage.

 A server SHOULD NOT process a request if the received Recipient ID
 ('kid') is equal to its own Sender ID in its own Sender Context. For
 an example where this is not fulfilled, see Section 6.2.1 in
 [I-D.tiloca-core-observe-multicast-notifications].

8.2.1. Supporting Observe

 If Observe [RFC7641] is supported, the following holds for each newly
 started observation.

 o The server MUST store the value of the 'kid' parameter from the
 original Observe request, and retain it for the whole duration of
 the observation. The server MUST NOT update the stored value of a
 'kid' parameter associated to a particular Observe request, even
 in case the observer client is individually rekeyed and starts
 using a new Sender ID received from the Group Manager (see

Section 2.4.3.1).

 o The server MUST store the value of the 'kid context' parameter
 from the original Observe request, and retain it for the whole
 duration of the observation, beyond a possible change of ID
 Context following a group rekeying (see Section 3.1). That is,
 upon establishing a new Security Context with a new ID Context as
 Gid (see Section 2.4.3.2), the server MUST NOT update the stored
 value associated to the ongoing observation.

8.3. Protecting the Response

 If a server generates a CoAP message in response to a Group OSCORE
 request, then the server SHALL follow the description in Section 8.3
 of [RFC8613], with the modifications described in this section.

 Note that the server always protects a response with the Sender
 Context from its latest Security Context, and that establishing a new
 Security Context resets the Sender Sequence Number to 0 (see

Section 3.1).

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc8613#section-8.3
https://datatracker.ietf.org/doc/html/rfc8613#section-8.3

Tiloca, et al. Expires May 6, 2021 [Page 32]

Internet-Draft Group OSCORE November 2020

 o In step 2, the Additional Authenticated Data is modified as
 described in Section 4 of this document.

 o In step 3, if the server is using a different Security Context for
 the response compared to what was used to verify the request (see

Section 3.1), then the server MUST include its Sender Sequence
 Number as Partial IV in the response and use it to build the AEAD
 nonce to protect the response. This prevents the AEAD nonce from
 the request from being reused.

 o In step 4, the encryption of the COSE object is modified as
 described in Section 4 of this document. The encoding of the
 compressed COSE object is modified as described in Section 5 of
 this document. In particular, the Group Flag MUST be set to 1.
 If the server is using a different ID Context (Gid) for the
 response compared to what was used to verify the request (see

Section 3.1), then the new ID Context MUST be included in the 'kid
 context' parameter of the response.

 o In step 5, the counter signature is computed and the format of the
 OSCORE message is modified as described in Section 5 of this
 document. In particular, the payload of the OSCORE message
 includes also the counter signature.

8.3.1. Supporting Observe

 If Observe [RFC7641] is supported, the following holds when
 protecting notifications for an ongoing observation.

 o The server MUST use the stored value of the 'kid' parameter from
 the original Observe request (see Section 8.2.1), as value for the
 'request_kid' parameter in the two external_aad structures (see

Section 4.3.1 and Section 4.3.2).

 o The server MUST use the stored value of the 'kid context'
 parameter from the original Observe request (see Section 8.2.1),
 as value for the 'request_kid_context' parameter in the two
 external_aad structures (see Section 4.3.1 and Section 4.3.2).

 Furthermore, the server may have ongoing observations started by
 Observe requests protected with an old Security Context. After
 completing the establishment of a new Security Context, the server
 MUST protect the following notifications with the Sender Context of
 the new Security Context.

 For each ongoing observation, the server MUST include in the first
 notification protected with the new Security Context also the 'kid
 context' parameter, which is set to the ID Context (Gid) of the new

https://datatracker.ietf.org/doc/html/rfc7641

Tiloca, et al. Expires May 6, 2021 [Page 33]

Internet-Draft Group OSCORE November 2020

 Security Context. It is OPTIONAL for the server to include the ID
 Context (Gid) in the 'kid context' parameter also in further
 following notifications for those observations.

8.4. Verifying the Response

 Upon receiving a secure response message with the Group Flag set to
 1, following the procedure in Section 7, the client proceeds as
 described in Section 8.4 of [RFC8613], with the following
 modifications.

 Note that a client may receive a response protected with a Security
 Context different from the one used to protect the corresponding
 group request, and that, upon the establishment of a new Security
 Context, the client re-initializes its replay windows in its
 Recipient Contexts (see Section 3.1).

 o In step 2, the decoding of the compressed COSE object is modified
 as described in Section 5 of this document. If the received 'kid
 context' matches an existing ID Context (Gid) but the received
 'kid' does not match any Recipient ID in this Security Context,
 then the client MAY create a new Recipient Context for this
 Recipient ID and initialize it according to Section 3 of
 [RFC8613], and also retrieve the associated public key. If the
 application does not specify dynamic derivation of new Recipient
 Contexts, then the client SHALL stop processing the response.

 o In step 3, the Additional Authenticated Data is modified as
 described in Section 4 of this document.

 o In step 5, the client also verifies the counter signature using
 the public key of the server from the associated Recipient
 Context. If the verification fails, the same steps are taken as
 if the decryption had failed.

 o Additionally, if the used Recipient Context was created upon
 receiving this response and the message is not verified
 successfully, the client MAY delete that Recipient Context. Such
 a configuration, which is specified by the application, mitigates
 attacks that aim at overloading the client's storage.

8.4.1. Supporting Observe

 If Observe [RFC7641] is supported, the following holds when verifying
 notifications for an ongoing observation.

 o The client MUST use the stored value of the 'kid' parameter from
 the original Observe request (see Section 8.1.1), as value for the

https://datatracker.ietf.org/doc/html/rfc8613#section-8.4
https://datatracker.ietf.org/doc/html/rfc8613#section-3
https://datatracker.ietf.org/doc/html/rfc8613#section-3
https://datatracker.ietf.org/doc/html/rfc7641

Tiloca, et al. Expires May 6, 2021 [Page 34]

Internet-Draft Group OSCORE November 2020

 'request_kid' parameter in the two external_aad structures (see
Section 4.3.1 and Section 4.3.2).

 o The client MUST use the stored value of the 'kid context'
 parameter from the original Observe request (see Section 8.1.1),
 as value for the 'request_kid_context' parameter in the two
 external_aad structures (see Section 4.3.1 and Section 4.3.2).

 This ensures that the client can correctly verify notifications, even
 in case it is individually rekeyed and starts using a new Sender ID
 received from the Group Manager (see Section 2.4.3.1), as well as
 when it establishes a new Security Context with a new ID Context
 (Gid) following a group rekeying (see Section 3.1).

9. Message Processing in Pairwise Mode

 When using the pairwise mode of Group OSCORE, messages are protected
 and processed as in Section 8, with the modifications described in
 this section. The security objectives of the pairwise mode are
 discussed in Appendix A.2.

 The pairwise mode takes advantage of an existing Security Context for
 the group mode to establish a Security Context shared exclusively
 with any other member. In order to use the pairwise mode, the
 signature scheme of the group mode MUST support a combined signature
 and encryption scheme. This can be, for example, signature using
 ECDSA, and encryption using AES-CCM with a key derived with ECDH.

 The pairwise mode does not support the use of additional entities
 acting as verifiers of source authentication and integrity of group
 messages, such as intermediary gateways (see Section 3).

 The pairwise mode MAY be supported. An endpoint implementing only a
 silent server does not support the pairwise mode.

 If the signature algorithm used in the group supports ECDH (e.g.,
 ECDSA, EdDSA), the pairwise mode MUST be supported by endpoints that
 use the CoAP Echo Option [I-D.ietf-core-echo-request-tag] and/or
 block-wise transfers [RFC7959], for instance for responses after the
 first block-wise request, which possibly targets all servers in the
 group and includes the CoAP Block2 option (see Section 2.3.6 of
 [I-D.ietf-core-groupcomm-bis]). This prevents the attack described
 in Section 10.7, which leverages requests sent over unicast to a
 single group member and protected with the group mode.

 The pairwise mode protects messages between two members of a group,
 essentially following [RFC8613], but with the following notable
 differences:

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca, et al. Expires May 6, 2021 [Page 35]

Internet-Draft Group OSCORE November 2020

 o The 'kid' and 'kid context' parameters of the COSE object are used
 as defined in Section 4.2 of this document.

 o The external_aad defined in Section 4.3.1 of this document is used
 for the encryption process.

 o The Pairwise Sender/Recipient Keys used as Sender/Recipient keys
 are derived as defined in Section 2.3 of this document.

 Senders MUST NOT use the pairwise mode to protect a message intended
 for multiple recipients. The pairwise mode is defined only between
 two endpoints and the keying material is thus only available to one
 recipient.

 The Group Manager MAY indicate that the group uses also the pairwise
 mode, as part of the group data provided to candidate group members
 when joining the group.

9.1. Pre-Conditions

 In order to protect an outgoing message in pairwise mode, the sender
 needs to know the public key and the Recipient ID for the recipient
 endpoint, as stored in the Recipient Context associated to that
 endpoint (see Pairwise Sender Context of Section 2.3.3).

 Furthermore, the sender needs to know the individual address of the
 recipient endpoint. This information may not be known at any given
 point in time. For instance, right after having joined the group, a
 client may know the public key and Recipient ID for a given server,
 but not the addressing information required to reach it with an
 individual, one-to-one request.

 To make addressing information of individual endpoints available,
 servers in the group MAY expose a resource to which a client can send
 a group request targeting a server or a set of servers, identified by
 their 'kid' value(s). The specified set may be empty, hence
 identifying all the servers in the group. Further details of such an
 interface are out of scope for this document.

9.2. Protecting the Request

 When using the pairwise mode, the request is protected as defined in
Section 8.1, with the following differences.

 o The Group Flag MUST be set to 0.

 o The used Sender Key is the Pairwise Sender Key (see Section 2.3).

Tiloca, et al. Expires May 6, 2021 [Page 36]

Internet-Draft Group OSCORE November 2020

 o The counter signature is not computed and therefore not included
 in the message. The payload of the protected request thus
 terminates with the encoded ciphertext of the COSE object, just
 like in [RFC8613].

 Note that, like in the group mode, the external_aad for encryption is
 generated as in Section 4.3.1, and the Partial IV is the current
 fresh value of the client's Sender Sequence Number (see

Section 2.3.2).

9.3. Verifying the Request

 Upon receiving a request with the Group Flag set to 0, following the
 procedure in Section 7, the server MUST process it as defined in

Section 8.2, with the following differences.

 o If the server discards the request due to not retrieving a
 Security Context associated to the OSCORE group or to not
 supporting the pairwise mode, the server MAY respond with a 4.02
 (Bad Option) error. When doing so, the server MAY set an Outer
 Max-Age option with value zero, and MAY include a descriptive
 string as diagnostic payload.

 o If a new Recipient Context is created for this Recipient ID, new
 Pairwise Sender/Recipient Keys are also derived (see

Section 2.3.1). The new Pairwise Sender/Recipient Keys are
 deleted if the Recipient Context is deleted as a result of the
 message not being successfully verified.

 o The used Recipient Key is the Pairwise Recipient Key (see
Section 2.3).

 o No verification of counter signature occurs, as there is none
 included in the message.

9.4. Protecting the Response

 When using the pairwise mode, a response is protected as defined in
Section 8.3, with the following differences.

 o The Group Flag MUST be set to 0.

 o The used Sender Key is the Pairwise Sender Key (see Section 2.3).

 o The counter signature is not computed and therefore not included
 in the message. The payload of the protected response thus
 terminates with the encoded ciphertext of the COSE object, just
 like in [RFC8613].

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca, et al. Expires May 6, 2021 [Page 37]

Internet-Draft Group OSCORE November 2020

9.5. Verifying the Response

 Upon receiving a response with the Group Flag set to 0, following the
 procedure in Section 7, the client MUST process it as defined in

Section 8.4, with the following differences.

 o If a new Recipient Context is created for this Recipient ID, new
 Pairwise Sender/Recipient Keys are also derived (see

Section 2.3.1). The new Pairwise Sender/Recipient Keys are
 deleted if the Recipient Context is deleted as a result of the
 message not being successfully verified.

 o The used Recipient Key is the Pairwise Recipient Key (see
Section 2.3).

 o No verification of counter signature occurs, as there is none
 included in the message.

10. Security Considerations

 The same threat model discussed for OSCORE in Appendix D.1 of
 [RFC8613] holds for Group OSCORE. In addition, when using the group
 mode, source authentication of messages is explicitly ensured by
 means of counter signatures, as discussed in Section 10.1.

 The same considerations on supporting Proxy operations discussed for
 OSCORE in Appendix D.2 of [RFC8613] hold for Group OSCORE.

 The same considerations on protected message fields for OSCORE
 discussed in Appendix D.3 of [RFC8613] hold for Group OSCORE.

 The same considerations on uniqueness of (key, nonce) pairs for
 OSCORE discussed in Appendix D.4 of [RFC8613] hold for Group OSCORE.
 This is further discussed in Section 10.2 of this document.

 The same considerations on unprotected message fields for OSCORE
 discussed in Appendix D.5 of [RFC8613] hold for Group OSCORE, with
 the following difference. The counter signature included in a Group
 OSCORE message protected in group mode is computed also over the
 value of the OSCORE option, which is part of the Additional
 Authenticated Data used in the signing process. This is further
 discussed in Section 10.6 of this document.

 As discussed in Section 6.2.3 of [I-D.ietf-core-groupcomm-bis], Group
 OSCORE addresses security attacks against CoAP listed in Sections
 11.2-11.6 of [RFC7252], especially when run over IP multicast.

https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.1
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.1
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.2
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.3
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.4
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.5
https://datatracker.ietf.org/doc/html/rfc7252

Tiloca, et al. Expires May 6, 2021 [Page 38]

Internet-Draft Group OSCORE November 2020

 The rest of this section first discusses security aspects to be taken
 into account when using Group OSCORE. Then it goes through aspects
 covered in the security considerations of OSCORE (see Section 12 of
 [RFC8613]), and discusses how they hold when Group OSCORE is used.

10.1. Group-level Security

 The group mode described in Section 8 relies on commonly shared group
 keying material to protect communication within a group. This has
 the following implications.

 o Messages are encrypted at a group level (group-level data
 confidentiality), i.e. they can be decrypted by any member of the
 group, but not by an external adversary or other external
 entities.

 o The AEAD algorithm provides only group authentication, i.e. it
 ensures that a message sent to a group has been sent by a member
 of that group, but not necessarily by the alleged sender. This is
 why source authentication of messages sent to a group is ensured
 through a counter signature, which is computed by the sender using
 its own private key and then appended to the message payload.

 Instead, the pairwise mode described in Section 9 protects messages
 by using pairwise symmetric keys, derived from the static-static
 Diffie-Hellman shared secret computed from the asymmetric keys of the
 sender and recipient endpoint (see Section 2.3). Therefore, in the
 parwise mode, the AEAD algorithm provides both pairwise data-
 confidentiality and source authentication of messages, without using
 counter signatures.

 The long-term storing of the Diffie-Hellman shared secret is a
 potential security issue. In fact, if the shared secret of two group
 members is leaked, a third group member can exploit it to impersonate
 any of those two group members, by deriving and using their pairwise
 key. The possibility of such leakage should be contemplated, as more
 likely to happen than the leakage of a private key, which could be
 rather protected at a significantly higher level than generic memory,
 e.g. by using a Trusted Platform Module. Therefore, there is a
 trade-off between the maximum amount of time a same shared secret is
 stored and the frequency of its re-computing.

 Note that, even if an endpoint is authorized to be a group member and
 to take part in group communications, there is a risk that it behaves
 inappropriately. For instance, it can forward the content of
 messages in the group to unauthorized entities. However, in many use
 cases, the devices in the group belong to a common authority and are
 configured by a commissioner (see Appendix B), which results in a

https://datatracker.ietf.org/doc/html/rfc8613#section-12
https://datatracker.ietf.org/doc/html/rfc8613#section-12

Tiloca, et al. Expires May 6, 2021 [Page 39]

Internet-Draft Group OSCORE November 2020

 practically limited risk and enables a prompt detection/reaction in
 case of misbehaving.

10.2. Uniqueness of (key, nonce)

 The proof for uniqueness of (key, nonce) pairs in Appendix D.4 of
 [RFC8613] is also valid in group communication scenarios. That is,
 given an OSCORE group:

 o Uniqueness of Sender IDs within the group is enforced by the Group
 Manager, which never reassigns the same Sender ID within the same
 group.

 o The case A in Appendix D.4 of [RFC8613] concerns all group
 requests and responses including a Partial IV (e.g. Observe
 notifications). In this case, same considerations from [RFC8613]
 apply here as well.

 o The case B in Appendix D.4 of [RFC8613] concerns responses not
 including a Partial IV (e.g. single response to a group request).
 In this case, same considerations from [RFC8613] apply here as
 well.

 As a consequence, each message encrypted/decrypted with the same
 Sender Key is processed by using a different (ID_PIV, PIV) pair.
 This means that nonces used by any fixed encrypting endpoint are
 unique. Thus, each message is processed with a different (key,
 nonce) pair.

10.3. Management of Group Keying Material

 The approach described in this specification should take into account
 the risk of compromise of group members. In particular, this
 document specifies that a key management scheme for secure revocation
 and renewal of Security Contexts and group keying material should be
 adopted.

 [I-D.ietf-ace-key-groupcomm-oscore] provides a simple rekeying scheme
 for renewing the Security Context in a group.

 Alternative rekeying schemes which are more scalable with the group
 size may be needed in dynamic, large-scale groups where endpoints can
 join and leave at any time, in order to limit the impact on
 performance due to the Security Context and keying material update.

https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.4
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.4
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.4
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613#appendix-D.4
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca, et al. Expires May 6, 2021 [Page 40]

Internet-Draft Group OSCORE November 2020

10.4. Update of Security Context and Key Rotation

 A group member can receive a message shortly after the group has been
 rekeyed, and new security parameters and keying material have been
 distributed by the Group Manager.

 This may result in a client using an old Security Context to protect
 a group request, and a server using a different new Security Context
 to protect a corresponding response. As a consequence, clients may
 receive a response protected with a Security Context different from
 the one used to protect the corresponding group request.

 In particular, a server may first get a group request protected with
 the old Security Context, then install the new Security Context, and
 only after that produce a response to send back to the client. In
 such a case, as specified in Section 8.3, the server MUST protect the
 potential response using the new Security Context. Specifically, the
 server MUST include its Sender Sequence Number as Partial IV in the
 response and use it to build the AEAD nonce to protect the response.
 This prevents the AEAD nonce from the request from being reused with
 the new Security Context.

 The client will process that response using the new Security Context,
 provided that it has installed the new security parameters and keying
 material before the message processing.

 In case block-wise transfer [RFC7959] is used, the same
 considerations from Section 7.2 of [I-D.ietf-ace-key-groupcomm] hold.

 Furthermore, as described below, a group rekeying may temporarily
 result in misaligned Security Contexts between the sender and
 recipient of a same message.

10.4.1. Late Update on the Sender

 In this case, the sender protects a message using the old Security
 Context, i.e. before having installed the new Security Context.
 However, the recipient receives the message after having installed
 the new Security Context, and is thus unable to correctly process it.

 A possible way to ameliorate this issue is to preserve the old,
 recent, Security Context for a maximum amount of time defined by the
 application. By doing so, the recipient can still try to process the
 received message using the old retained Security Context as second
 attempt. This makes particular sense when the recipient is a client,
 that would hence be able to process incoming responses protected with
 the old, recent, Security Context used to protect the associated
 group request. Instead, a recipient server would better and more

https://datatracker.ietf.org/doc/html/rfc7959

Tiloca, et al. Expires May 6, 2021 [Page 41]

Internet-Draft Group OSCORE November 2020

 simply discard an incoming group request which is not successfully
 processed with the new Security Context.

 This tolerance preserves the processing of secure messages throughout
 a long-lasting key rotation, as group rekeying processes may likely
 take a long time to complete, especially in large scale groups. On
 the other hand, a former (compromised) group member can abusively
 take advantage of this, and send messages protected with the old
 retained Security Context. Therefore, a conservative application
 policy should not admit the retention of old Security Contexts.

10.4.2. Late Update on the Recipient

 In this case, the sender protects a message using the new Security
 Context, but the recipient receives that message before having
 installed the new Security Context. Therefore, the recipient would
 not be able to correctly process the message and hence discards it.

 If the recipient installs the new Security Context shortly after that
 and the sender endpoint retransmits the message, the former will
 still be able to receive and correctly process the message.

 In any case, the recipient should actively ask the Group Manager for
 an updated Security Context according to an application-defined
 policy, for instance after a given number of unsuccessfully decrypted
 incoming messages.

10.5. Collision of Group Identifiers

 In case endpoints are deployed in multiple groups managed by
 different non-synchronized Group Managers, it is possible for Group
 Identifiers of different groups to coincide.

 This does not impair the security of the AEAD algorithm. In fact, as
 long as the Master Secret is different for different groups and this
 condition holds over time, AEAD keys are different among different
 groups.

 The entity assigning an IP multicast address may help limiting the
 chances to experience such collisions of Group Identifiers. In
 particular, it may allow the Group Managers of groups using the same
 IP multicast address to share their respective list of assigned Group
 Identifiers currently in use.

Tiloca, et al. Expires May 6, 2021 [Page 42]

Internet-Draft Group OSCORE November 2020

10.6. Cross-group Message Injection

 A same endpoint is allowed to and would likely use the same public/
 private key pair in multiple OSCORE groups, possibly administered by
 different Group Managers.

 When a sender endpoint sends a message protected in pairwise mode to
 a recipient endpoint in an OSCORE group, a malicious group member may
 attempt to inject the message to a different OSCORE group also
 including the same endpoints (see Section 10.6.1).

 This practically relies on altering the content of the OSCORE option,
 and having the same MAC in the ciphertext still correctly validating,
 which has a success probability depending on the size of the MAC.

 As discussed in Section 10.6.2, the attack is practically infeasible
 if the message is protected in group mode, since the counter
 signature is bound also to the OSCORE option, through the Additional
 Authenticated Data used in the signing process (see Section 4.3.2).

10.6.1. Attack Description

 Let us consider:

 o Two OSCORE groups G1 and G2, with ID Context (Group ID) Gid1 and
 Gid2, respectively. Both G1 and G2 use the AEAD cipher AES-CCM-
 16-64-128, i.e. the MAC of the ciphertext is 8 bytes in size.

 o A sender endpoint X which is member of both G1 and G2, and uses
 the same public/private key pair in both groups. The endpoint X
 has Sender ID Sid1 in G1 and Sender ID Sid2 in G2. The pairs
 (Sid1, Gid1) and (Sid2, Gid2) identify the same public key of X in
 G1 and G2, respectively.

 o A recipient endpoint Y which is member of both G1 and G2, and uses
 the same public/private key pair in both groups. The endpoint Y
 has Sender ID Sid3 in G1 and Sender ID Sid4 in G2. The pairs
 (Sid3, Gid1) and (Sid4, Gid2) identify the same public key of Y in
 G1 and G2, respectively.

 o A malicious endpoint Z is also member of both G1 and G2. Hence, Z
 is able to derive the symmetric keys associated to X in G1 and G2.

 When X sends a message M1 addressed to Y in G1 and protected in
 pairwise mode, Z can intercept M1, and forge a valid message M2 to be
 injected in G2, making it appear as still sent by X to Y and valid to
 be accepted.

Tiloca, et al. Expires May 6, 2021 [Page 43]

Internet-Draft Group OSCORE November 2020

 More in detail, Z intercepts and stops message M1, and forges a
 message M2 by changing the value of the OSCORE option from M1 as
 follows: the 'kid context' is changed from G1 to G2; and the 'kid' is
 changed from Sid1 to Sid2. Then, Z injects message M2 as addressed
 to Y in G2.

 Upon receiving M2, there is a probability equal to 2^-64 that Y
 successfully verifies the same unchanged MAC by using Sid2 as
 'request_kid' and using the Pairwise Recipient Key associated to X in
 G2.

 Note that Z does not know the pairwise keys of X and Y, since it does
 not know and is not able to compute their shared Diffie-Hellman
 secret. Therefore, Z is not able to check offline if a performed
 forgery is actually valid, before sending the forged message to G2.

10.6.2. Attack Prevention in Group Mode

 When a Group OSCORE message is protected with the group mode, the
 counter signature is computed also over the value of the OSCORE
 option, which is part of the Additional Authenticated Data used in
 the signing process (see Section 4.3.2).

 That is, the countersignature is computed also over: the ID Context
 (Group ID) and the Partial IV, which are always present in group
 requests; as well as the Sender ID of the message originator, which
 is always present in all group requests and responses.

 Since the signing process takes as input also the ciphertext of the
 COSE_Encrypt0 object, the countersignature is bound not only to the
 intended OSCORE group, hence to the triplet (Master Secret, Master
 Salt, ID Context), but also to a specific Sender ID in that group and
 to its specific symmetric key used for AEAD encryption, hence to the
 quartet (Master Secret, Master Salt, ID Context, Sender ID).

 This makes it practically infeasible to perform the attack described
 in Section 10.6.1, since it would require the adversary to
 additionally forge a valid countersignature that replaces the
 original one in the forged message M2.

 If the countersignature did not cover the OSCORE option, the attack
 would be possible also in group mode, since the same unchanged
 countersignature from messsage M1 would be also valid in message M2.
 Also, the following attack simplifications would hold, since Z is
 able to derive the Sender/Recipient Keys of X and Y in G1 and G2.

 o If M2 is used as a request, Z can check offline if a performed
 forgery is actually valid before sending the forged message to G2.

Tiloca, et al. Expires May 6, 2021 [Page 44]

Internet-Draft Group OSCORE November 2020

 That is, this attack would have a complexity of 2^64 offline
 calculations.

 o If M2 is used as a response, Z can also change the response
 Partial IV, until the same unchanged MAC is successfully verified
 by using Sid2 as 'request_kid' and the symmetric key associated to
 X in G2. Since the Partial IV is 5 bytes in size, this requires
 2^40 operations to test all the Partial IVs, which can be done in
 real-time. Also, the probability that a single given message M1
 can be used to forge a response M2 for a given request would be
 equal to 2^-24, since there are more MAC values (8 bytes in size)
 than Partial IV values (5 bytes in size).

 Note that, by changing the Partial IV as discussed above, any
 member of G1 would also be able to forge a valid signed response
 message M2 to be injected in G1.

10.7. Group OSCORE for Unicast Requests

 If a request is intended to be sent over unicast as addressed to a
 single group member, it is NOT RECOMMENDED for the client to protect
 the request by using the group mode as defined in Section 8.1.

 This does not include the case where the client sends a request over
 unicast to a proxy, to be forwarded to multiple intended recipients
 over multicast [I-D.ietf-core-groupcomm-bis]. In this case, the
 client MUST protect the request with the group mode, even though it
 is sent to the proxy over unicast (see Section 8).

 If the client uses the group mode with its own Sender Key to protect
 a unicast request to a group member, an on-path adversary can, right
 then or later on, redirect that request to one/many different group
 member(s) over unicast, or to the whole OSCORE group over multicast.
 By doing so, the adversary can induce the target group member(s) to
 perform actions intended for one group member only. Note that the
 adversary can be external, i.e. (s)he does not need to also be a
 member of the OSCORE group.

 This is due to the fact that the client is not able to indicate the
 single intended recipient in a way which is secure and possible to
 process for Group OSCORE on the server side. In particular, Group
 OSCORE does not protect network addressing information such as the IP
 address of the intended recipient server. It follows that the
 server(s) receiving the redirected request cannot assert whether that
 was the original intention of the client, and would thus simply
 assume so.

Tiloca, et al. Expires May 6, 2021 [Page 45]

Internet-Draft Group OSCORE November 2020

 The impact of such an attack depends especially on the REST method of
 the request, i.e. the Inner CoAP Code of the OSCORE request message.
 In particular, safe methods such as GET and FETCH would trigger
 (several) unintended responses from the targeted server(s), while not
 resulting in destructive behavior. On the other hand, non safe
 methods such as PUT, POST and PATCH/iPATCH would result in the target
 server(s) taking active actions on their resources and possible
 cyber-physical environment, with the risk of destructive consequences
 and possible implications for safety.

 A client can instead use the pairwise mode as defined in Section 9.2,
 in order to protect a request sent to a single group member by using
 pairwise keying material (see Section 2.3). This prevents the attack
 discussed above by construction, as only the intended server is able
 to derive the pairwise keying material used by the client to protect
 the request. A client supporting the pairwise mode SHOULD use it to
 protect requests sent to a single group member over unicast, instead
 of using the group mode. For an example where this is not fulfilled,
 see Section 6.2.1 in
 [I-D.tiloca-core-observe-multicast-notifications].

 With particular reference to block-wise transfers [RFC7959],
 Section 2.3.6 of [I-D.ietf-core-groupcomm-bis] points out that, while
 an initial request including the CoAP Block2 option can be sent over
 multicast, any other request in a transfer has to occur over unicast,
 individually addressing the servers in the group.

 Additional considerations are discussed in Appendix E.3, with respect
 to requests including a CoAP Echo Option
 [I-D.ietf-core-echo-request-tag] that has to be sent over unicast, as
 a challenge-response method for servers to achieve synchronization of
 clients' Sender Sequence Number.

10.8. End-to-end Protection

 The same considerations from Section 12.1 of [RFC8613] hold for Group
 OSCORE.

 Additionally, (D)TLS and Group OSCORE can be combined for protecting
 message exchanges occurring over unicast. However, it is not
 possible to combine (D)TLS and Group OSCORE for protecting message
 exchanges where messages are (also) sent over multicast.

10.9. Master Secret

 Group OSCORE derives the Security Context using the same construction
 as OSCORE, and by using the Group Identifier of a group as the
 related ID Context. Hence, the same required properties of the

https://datatracker.ietf.org/doc/html/rfc7959#section-2.3.6
https://datatracker.ietf.org/doc/html/rfc7959#section-2.3.6
https://datatracker.ietf.org/doc/html/rfc8613#section-12.1

Tiloca, et al. Expires May 6, 2021 [Page 46]

Internet-Draft Group OSCORE November 2020

 Security Context parameters discussed in Section 3.3 of [RFC8613]
 hold for this document.

 With particular reference to the OSCORE Master Secret, it has to be
 kept secret among the members of the respective OSCORE group and the
 Group Manager responsible for that group. Also, the Master Secret
 must have a good amount of randomness, and the Group Manager can
 generate it offline using a good random number generator. This
 includes the case where the Group Manager rekeys the group by
 generating and distributing a new Master Secret. Randomness
 requirements for security are described in [RFC4086].

10.10. Replay Protection

 As in OSCORE, also Group OSCORE relies on sender sequence numbers
 included in the COSE message field 'Partial IV' and used to build
 AEAD nonces.

 Note that the Partial IV of an endpoint does not necessarily grow
 monotonically. For instance, upon exhaustion of the endpoint Sender
 Sequence Number, the Partial IV also gets exhausted. As discussed in

Section 2.4.3, this results either in the endpoint being individually
 rekeyed and getting a new Sender ID, or in the establishment of a new
 Security Context in the group. Therefore, uniqueness of (key, nonce)
 pairs (see Section 10.2) is preserved also when a new Security
 Context is established.

 As discussed in Section 6.1, an endpoint that has just joined a group
 is exposed to replay attack, as it is not aware of the Sender
 Sequence Numbers currently used by other group members. Appendix E
 describes how endpoints can synchronize with others' Sender Sequence
 Number.

 Unless exchanges in a group rely only on unicast messages, Group
 OSCORE cannot be used with reliable transport. Thus, unless only
 unicast messages are sent in the group, it cannot be defined that
 only messages with sequence numbers that are equal to the previous
 sequence number + 1 are accepted.

 The processing of response messages described in Section 2.3.1 of
 [I-D.ietf-core-groupcomm-bis] also ensures that a client accepts a
 single valid response to a given request from each replying server,
 unless CoAP observation is used.

https://datatracker.ietf.org/doc/html/rfc8613#section-3.3
https://datatracker.ietf.org/doc/html/rfc4086

Tiloca, et al. Expires May 6, 2021 [Page 47]

Internet-Draft Group OSCORE November 2020

10.11. Client Aliveness

 As discussed in Section 12.5 of [RFC8613], a server may use the CoAP
 Echo Option [I-D.ietf-core-echo-request-tag] to verify the aliveness
 of the client that originated a received request. This would also
 allow the server to (re-)synchronize with the client's Sender
 Sequence Number, as well as to ensure that the request is fresh and
 has not been replayed or (purposely) delayed, if it is the first one
 received from that client after having joined the group or rebooted
 (see Appendix E.3).

10.12. Cryptographic Considerations

 The same considerations from Section 12.6 of [RFC8613] about the
 maximum Sender Sequence Number hold for Group OSCORE.

 As discussed in Section 2.4.2, an endpoint that experiences an
 exhaustion of its own Sender Sequence Numbers MUST NOT protect
 further messages including a Partial IV, until it has derived a new
 Sender Context. This prevents the endpoint to reuse the same AEAD
 nonces with the same Sender Key.

 In order to renew its own Sender Context, the endpoint SHOULD inform
 the Group Manager, which can either renew the whole Security Context
 by means of group rekeying, or provide only that endpoint with a new
 Sender ID value. In either case, the endpoint derives a new Sender
 Context, and in particular a new Sender Key.

 Additionally, the same considerations from Section 12.6 of [RFC8613]
 hold for Group OSCORE, about building the AEAD nonce and the secrecy
 of the Security Context parameters.

 The EdDSA signature algorithm and the elliptic curve Ed25519
 [RFC8032] are mandatory to implement. For endpoints that support the
 pairwise mode, the ECDH-SS + HKDF-256 algorithm specified in
 Section 6.3.1 of [I-D.ietf-cose-rfc8152bis-algs] and the X25519 curve
 [RFC7748] are also mandatory to implement.

 Constrained IoT devices may alternatively represent Montgomery curves
 and (twisted) Edwards curves [RFC7748] in the short-Weierstrass form
 Wei25519, with which the algorithms ECDSA25519 and ECDH25519 can be
 used for signature operations and Diffie-Hellman secret calculation,
 respectively [I-D.ietf-lwig-curve-representations].

 For many constrained IoT devices, it is problematic to support more
 than one signature algorithm or multiple whole cipher suites. As a
 consequence, some deployments using, for instance, ECDSA with NIST

https://datatracker.ietf.org/doc/html/rfc8613#section-12.5
https://datatracker.ietf.org/doc/html/rfc8613#section-12.6
https://datatracker.ietf.org/doc/html/rfc8613#section-12.6
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748

Tiloca, et al. Expires May 6, 2021 [Page 48]

Internet-Draft Group OSCORE November 2020

 P-256 may not support the mandatory signature algorithm but that
 should not be an issue for local deployments.

 The derivation of pairwise keys defined in Section 2.3.1 is
 compatible with ECDSA and EdDSA asymmetric keys, but is not
 compatible with RSA asymmetric keys. The security of using the same
 key pair for Diffie-Hellman and for signing is demonstrated in
 [Degabriele].

10.13. Message Segmentation

 The same considerations from Section 12.7 of [RFC8613] hold for Group
 OSCORE.

10.14. Privacy Considerations

 Group OSCORE ensures end-to-end integrity protection and encryption
 of the message payload and all options that are not used for proxy
 operations. In particular, options are processed according to the
 same class U/I/E that they have for OSCORE. Therefore, the same
 privacy considerations from Section 12.8 of [RFC8613] hold for Group
 OSCORE.

 Furthermore, the following privacy considerations hold, about the
 OSCORE option that may reveal information on the communicating
 endpoints.

 o The 'kid' parameter, which is intended to help a recipient
 endpoint to find the right Recipient Context, may reveal
 information about the Sender Endpoint. Since both requests and
 responses always include the 'kid' parameter, this may reveal
 information about both a client sending a group request and all
 the possibly replying servers sending their own individual
 response.

 o The 'kid context' parameter, which is intended to help a recipient
 endpoint to find the right Security Context, reveals information
 about the sender endpoint. In particular, it reveals that the
 sender endpoint is a member of a particular OSCORE group, whose
 current Group ID is indicated in the 'kid context' parameter.

 When receiving a group request, each of the recipient endpoints can
 reply with a response that includes its Sender ID as 'kid' parameter.
 All these responses will be matchable with the request through the
 Token. Thus, even if these responses do not include a 'kid context'
 parameter, it becomes possible to understand that the responder
 endpoints are in the same group of the requester endpoint.

https://datatracker.ietf.org/doc/html/rfc8613#section-12.7
https://datatracker.ietf.org/doc/html/rfc8613#section-12.8

Tiloca, et al. Expires May 6, 2021 [Page 49]

Internet-Draft Group OSCORE November 2020

 Furthermore, using the mechanisms described in Appendix E.3 to
 achieve sequence number synchronization with a client may reveal when
 a server device goes through a reboot. This can be mitigated by the
 server device storing the precise state of the replay window of each
 known client on a clean shutdown.

 Finally, the mechanism described in Section 10.5 to prevent
 collisions of Group Identifiers from different Group Managers may
 reveal information about events in the respective OSCORE groups. In
 particular, a Group Identifier changes when the corresponding group
 is rekeyed. Thus, Group Managers might use the shared list of Group
 Identifiers to infer the rate and patterns of group membership
 changes triggering a group rekeying, e.g. due to newly joined members
 or evicted (compromised) members. In order to alleviate this privacy
 concern, it should be hidden from the Group Managers which exact
 Group Manager has currently assigned which Group Identifiers in its
 OSCORE groups.

11. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[This
 Document]" with the RFC number of this specification and delete this
 paragraph.

 This document has the following actions for IANA.

11.1. OSCORE Flag Bits Registry

 IANA is asked to add the following value entry to the "OSCORE Flag
 Bits" subregistry defined in Section 13.7 of [RFC8613] as part of the
 "CoRE Parameters" registry.

 +--------------+------------+----------------------------+-----------+
 | Bit Position | Name | Description | Reference |
 +--------------+------------+----------------------------+-----------+
2	Group Flag	Set to 1 if the message is	[This
		protected with the group	Document]
		mode of Group OSCORE	
 +--------------+------------+----------------------------+-----------+

12. References

12.1. Normative References

 [COSE.Algorithms]
 IANA, "COSE Algorithms",
 <https://www.iana.org/assignments/cose/

cose.xhtml#algorithms>.

https://datatracker.ietf.org/doc/html/rfc8613#section-13.7
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

Tiloca, et al. Expires May 6, 2021 [Page 50]

Internet-Draft Group OSCORE November 2020

 [COSE.Key.Types]
 IANA, "COSE Key Types",
 <https://www.iana.org/assignments/cose/cose.xhtml#key-

type>.

 [I-D.ietf-cbor-7049bis]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", draft-ietf-cbor-7049bis-16 (work
 in progress), September 2020.

 [I-D.ietf-core-groupcomm-bis]
 Dijk, E., Wang, C., and M. Tiloca, "Group Communication
 for the Constrained Application Protocol (CoAP)", draft-

ietf-core-groupcomm-bis-02 (work in progress), November
 2020.

 [I-D.ietf-cose-countersign]
 Schaad, J. and R. Housley, "CBOR Object Signing and
 Encryption (COSE): Countersignatures", draft-ietf-cose-

countersign-01 (work in progress), October 2020.

 [I-D.ietf-cose-rfc8152bis-algs]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Initial Algorithms", draft-ietf-cose-rfc8152bis-algs-12
 (work in progress), September 2020.

 [I-D.ietf-cose-rfc8152bis-struct]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", draft-ietf-cose-rfc8152bis-

struct-14 (work in progress), September 2020.

 [NIST-800-56A]
 Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
 Davis, "Recommendation for Pair-Wise Key-Establishment
 Schemes Using Discrete Logarithm Cryptography - NIST
 Special Publication 800-56A, Revision 3", April 2018,
 <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-56Ar3.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

https://www.iana.org/assignments/cose/cose.xhtml#key-type
https://www.iana.org/assignments/cose/cose.xhtml#key-type
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-7049bis-16
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-02
https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign-01
https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign-01
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-algs-12
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-struct-14
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-struct-14
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086

Tiloca, et al. Expires May 6, 2021 [Page 51]

Internet-Draft Group OSCORE November 2020

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

12.2. Informative References

 [Degabriele]
 Degabriele, J., Lehmann, A., Paterson, K., Smart, N., and
 M. Strefler, "On the Joint Security of Encryption and
 Signature in EMV", December 2011,
 <https://eprint.iacr.org/2011/615>.

 [I-D.ietf-ace-key-groupcomm]
 Palombini, F. and M. Tiloca, "Key Provisioning for Group
 Communication using ACE", draft-ietf-ace-key-groupcomm-10
 (work in progress), November 2020.

 [I-D.ietf-ace-key-groupcomm-oscore]
 Tiloca, M., Park, J., and F. Palombini, "Key Management
 for OSCORE Groups in ACE", draft-ietf-ace-key-groupcomm-

oscore-09 (work in progress), November 2020.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-35
 (work in progress), June 2020.

https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8613
https://www.rfc-editor.org/info/rfc8613
https://eprint.iacr.org/2011/615
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-10
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-09
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-09
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-35

Tiloca, et al. Expires May 6, 2021 [Page 52]

Internet-Draft Group OSCORE November 2020

 [I-D.ietf-core-echo-request-tag]
 Amsuess, C., Mattsson, J., and G. Selander, "CoAP: Echo,
 Request-Tag, and Token Processing", draft-ietf-core-echo-

request-tag-10 (work in progress), July 2020.

 [I-D.ietf-lwig-curve-representations]
 Struik, R., "Alternative Elliptic Curve Representations",

draft-ietf-lwig-curve-representations-12 (work in
 progress), August 2020.

 [I-D.ietf-lwig-security-protocol-comparison]
 Mattsson, J., Palombini, F., and M. Vucinic, "Comparison
 of CoAP Security Protocols", draft-ietf-lwig-security-

protocol-comparison-04 (work in progress), March 2020.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-38 (work in progress), May
 2020.

 [I-D.mattsson-cfrg-det-sigs-with-noise]
 Mattsson, J., Thormarker, E., and S. Ruohomaa,
 "Deterministic ECDSA and EdDSA Signatures with Additional
 Randomness", draft-mattsson-cfrg-det-sigs-with-noise-02
 (work in progress), March 2020.

 [I-D.somaraju-ace-multicast]
 Somaraju, A., Kumar, S., Tschofenig, H., and W. Werner,
 "Security for Low-Latency Group Communication", draft-

somaraju-ace-multicast-02 (work in progress), October
 2016.

 [I-D.tiloca-core-observe-multicast-notifications]
 Tiloca, M., Hoeglund, R., Amsuess, C., and F. Palombini,
 "Observe Notifications as CoAP Multicast Responses",

draft-tiloca-core-observe-multicast-notifications-04 (work
 in progress), November 2020.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-10
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-10
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-12
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-security-protocol-comparison-04
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-security-protocol-comparison-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-38
https://datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-02
https://datatracker.ietf.org/doc/html/draft-somaraju-ace-multicast-02
https://datatracker.ietf.org/doc/html/draft-somaraju-ace-multicast-02
https://datatracker.ietf.org/doc/html/draft-tiloca-core-observe-multicast-notifications-04
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949

Tiloca, et al. Expires May 6, 2021 [Page 53]

Internet-Draft Group OSCORE November 2020

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/info/rfc6282>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

Appendix A. Assumptions and Security Objectives

 This section presents a set of assumptions and security objectives
 for the approach described in this document. The rest of this
 section refers to three types of groups:

 o Application group, i.e. a set of CoAP endpoints that share a
 common pool of resources.

 o Security group, as defined in Section 1.1 of this specification.
 There can be a one-to-one or a one-to-many relation between
 security groups and application groups, and vice versa.

 o CoAP group, as defined in [I-D.ietf-core-groupcomm-bis] i.e. a set
 of CoAP endpoints, where each endpoint is configured to receive
 CoAP multicast requests that are sent to the group's associated IP
 multicast address and UDP port. An endpoint may be a member of
 multiple CoAP groups. There can be a one-to-one or a one-to-many
 relation between application groups and CoAP groups. Note that a
 device sending a CoAP request to a CoAP group is not necessarily
 itself a member of that group: it is a member only if it also has
 a CoAP server endpoint listening to requests for this CoAP group,
 sent to the associated IP multicast address and port. In order to
 provide secure group communication, all members of a CoAP group as

https://datatracker.ietf.org/doc/html/rfc6282
https://www.rfc-editor.org/info/rfc6282
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959

Tiloca, et al. Expires May 6, 2021 [Page 54]

Internet-Draft Group OSCORE November 2020

 well as all further endpoints configured only as clients sending
 CoAP (multicast) requests to the CoAP group have to be member of a
 security group. There can be a one-to-one or a one-to-many
 relation between security groups and CoAP groups, and vice versa.

A.1. Assumptions

 The following assumptions are assumed to be already addressed and are
 out of the scope of this document.

 o Multicast communication topology: this document considers both
 1-to-N (one sender and multiple recipients) and M-to-N (multiple
 senders and multiple recipients) communication topologies. The
 1-to-N communication topology is the simplest group communication
 scenario that would serve the needs of a typical Low-power and
 Lossy Network (LLN). Examples of use cases that benefit from
 secure group communication are provided in Appendix B.

 In a 1-to-N communication model, only a single client transmits
 data to the CoAP group, in the form of request messages; in an
 M-to-N communication model (where M and N do not necessarily have
 the same value), M clients transmit data to the CoAP group.
 According to [I-D.ietf-core-groupcomm-bis], any possible proxy
 entity is supposed to know about the clients and to not perform
 aggregation of response messages from multiple servers. Also,
 every client expects and is able to handle multiple response
 messages associated to a same request sent to the CoAP group.

 o Group size: security solutions for group communication should be
 able to adequately support different and possibly large security
 groups. The group size is the current number of members in a
 security group. In the use cases mentioned in this document, the
 number of clients (normally the controlling devices) is expected
 to be much smaller than the number of servers (i.e. the controlled
 devices). A security solution for group communication that
 supports 1 to 50 clients would be able to properly cover the group
 sizes required for most use cases that are relevant for this
 document. The maximum group size is expected to be in the range
 of 2 to 100 devices. Security groups larger than that should be
 divided into smaller independent groups.

 o Communication with the Group Manager: an endpoint must use a
 secure dedicated channel when communicating with the Group
 Manager, also when not registered as a member of the security
 group.

 o Provisioning and management of Security Contexts: a Security
 Context must be established among the members of the security

Tiloca, et al. Expires May 6, 2021 [Page 55]

Internet-Draft Group OSCORE November 2020

 group. A secure mechanism must be used to generate, revoke and
 (re-)distribute keying material, communication policies and
 security parameters in the security group. The actual
 provisioning and management of the Security Context is out of the
 scope of this document.

 o Multicast data security ciphersuite: all members of a security
 group must agree on a ciphersuite to provide authenticity,
 integrity and confidentiality of messages in the group. The
 ciphersuite is specified as part of the Security Context.

 o Backward security: a new device joining the security group should
 not have access to any old Security Contexts used before its
 joining. This ensures that a new member of the security group is
 not able to decrypt confidential data sent before it has joined
 the security group. The adopted key management scheme should
 ensure that the Security Context is updated to ensure backward
 confidentiality. The actual mechanism to update the Security
 Context and renew the group keying material in the security group
 upon a new member's joining has to be defined as part of the group
 key management scheme.

 o Forward security: entities that leave the security group should
 not have access to any future Security Contexts or message
 exchanged within the security group after their leaving. This
 ensures that a former member of the security group is not able to
 decrypt confidential data sent within the security group anymore.
 Also, it ensures that a former member is not able to send
 protected messages to the security group anymore. The actual
 mechanism to update the Security Context and renew the group
 keying material in the security group upon a member's leaving has
 to be defined as part of the group key management scheme.

A.2. Security Objectives

 The approach described in this document aims at fulfilling the
 following security objectives:

 o Data replay protection: group request messages or response
 messages replayed within the security group must be detected.

 o Data confidentiality: messages sent within the security group
 shall be encrypted.

 o Group-level data confidentiality: the group mode provides group-
 level data confidentiality since messages are encrypted at a group
 level, i.e. in such a way that they can be decrypted by any member

Tiloca, et al. Expires May 6, 2021 [Page 56]

Internet-Draft Group OSCORE November 2020

 of the security group, but not by an external adversary or other
 external entities.

 o Pairwise data confidentiality: the pairwise mode especially
 provides pairwise data confidentiality, since messages are
 encrypted using pairwise keying material shared between any two
 group members, hence they can be decrypted only by the intended
 single recipient.

 o Source message authentication: messages sent within the security
 group shall be authenticated. That is, it is essential to ensure
 that a message is originated by a member of the security group in
 the first place, and in particular by a specific, identifiable
 member of the security group.

 o Message integrity: messages sent within the security group shall
 be integrity protected. That is, it is essential to ensure that a
 message has not been tampered with, either by a group member, or
 by an external adversary or other external entities which are not
 members of the security group.

 o Message ordering: it must be possible to determine the ordering of
 messages coming from a single sender. In accordance with OSCORE
 [RFC8613], this results in providing absolute freshness of
 responses that are not notifications, as well as relative
 freshness of group requests and notification responses. It is not
 required to determine ordering of messages from different senders.

Appendix B. List of Use Cases

 Group Communication for CoAP [I-D.ietf-core-groupcomm-bis] provides
 the necessary background for multicast-based CoAP communication, with
 particular reference to low-power and lossy networks (LLNs) and
 resource constrained environments. The interested reader is
 encouraged to first read [I-D.ietf-core-groupcomm-bis] to understand
 the non-security related details. This section discusses a number of
 use cases that benefit from secure group communication, and refers to
 the three types of groups from Appendix A. Specific security
 requirements for these use cases are discussed in Appendix A.

 o Lighting control: consider a building equipped with IP-connected
 lighting devices, switches, and border routers. The lighting
 devices acting as servers are organized into application groups
 and CoAP groups, according to their physical location in the
 building. For instance, lighting devices in a room or corridor
 can be configured as members of a single application group and
 corresponding CoAP group. Those ligthing devices together with
 the switches acting as clients in the same room or corridor can be

https://datatracker.ietf.org/doc/html/rfc8613

Tiloca, et al. Expires May 6, 2021 [Page 57]

Internet-Draft Group OSCORE November 2020

 configured as members of the corresponding security group.
 Switches are then used to control the lighting devices by sending
 on/off/dimming commands to all lighting devices in the CoAP group,
 while border routers connected to an IP network backbone (which is
 also multicast-enabled) can be used to interconnect routers in the
 building. Consequently, this would also enable logical groups to
 be formed even if devices with a role in the lighting application
 may be physically in different subnets (e.g. on wired and wireless
 networks). Connectivity between lighting devices may be realized,
 for instance, by means of IPv6 and (border) routers supporting
 6LoWPAN [RFC4944][RFC6282]. Group communication enables
 synchronous operation of a set of connected lights, ensuring that
 the light preset (e.g. dimming level or color) of a large set of
 luminaires are changed at the same perceived time. This is
 especially useful for providing a visual synchronicity of light
 effects to the user. As a practical guideline, events within a
 200 ms interval are perceived as simultaneous by humans, which is
 necessary to ensure in many setups. Devices may reply back to the
 switches that issue on/off/dimming commands, in order to report
 about the execution of the requested operation (e.g. OK, failure,
 error) and their current operational status. In a typical
 lighting control scenario, a single switch is the only entity
 responsible for sending commands to a set of lighting devices. In
 more advanced lighting control use cases, a M-to-N communication
 topology would be required, for instance in case multiple sensors
 (presence or day-light) are responsible to trigger events to a set
 of lighting devices. Especially in professional lighting
 scenarios, the roles of client and server are configured by the
 lighting commissioner, and devices strictly follow those roles.

 o Integrated building control: enabling Building Automation and
 Control Systems (BACSs) to control multiple heating, ventilation
 and air-conditioning units to pre-defined presets. Controlled
 units can be organized into application groups and CoAP groups in
 order to reflect their physical position in the building, e.g.
 devices in the same room can be configured as members of a single
 application group and corresponding CoAP group. As a practical
 guideline, events within intervals of seconds are typically
 acceptable. Controlled units are expected to possibly reply back
 to the BACS issuing control commands, in order to report about the
 execution of the requested operation (e.g. OK, failure, error)
 and their current operational status.

 o Software and firmware updates: software and firmware updates often
 comprise quite a large amount of data. This can overload a Low-
 power and Lossy Network (LLN) that is otherwise typically used to
 deal with only small amounts of data, on an infrequent base.
 Rather than sending software and firmware updates as unicast

https://datatracker.ietf.org/doc/html/rfc4944

Tiloca, et al. Expires May 6, 2021 [Page 58]

Internet-Draft Group OSCORE November 2020

 messages to each individual device, multicasting such updated data
 to a larger set of devices at once displays a number of benefits.
 For instance, it can significantly reduce the network load and
 decrease the overall time latency for propagating this data to all
 devices. Even if the complete whole update process itself is
 secured, securing the individual messages is important, in case
 updates consist of relatively large amounts of data. In fact,
 checking individual received data piecemeal for tampering avoids
 that devices store large amounts of partially corrupted data and
 that they detect tampering hereof only after all data has been
 received. Devices receiving software and firmware updates are
 expected to possibly reply back, in order to provide a feedback
 about the execution of the update operation (e.g. OK, failure,
 error) and their current operational status.

 o Parameter and configuration update: by means of multicast
 communication, it is possible to update the settings of a set of
 similar devices, both simultaneously and efficiently. Possible
 parameters are related, for instance, to network load management
 or network access controls. Devices receiving parameter and
 configuration updates are expected to possibly reply back, to
 provide a feedback about the execution of the update operation
 (e.g. OK, failure, error) and their current operational status.

 o Commissioning of Low-power and Lossy Network (LLN) systems: a
 commissioning device is responsible for querying all devices in
 the local network or a selected subset of them, in order to
 discover their presence, and be aware of their capabilities,
 default configuration, and operating conditions. Queried devices
 displaying similarities in their capabilities and features, or
 sharing a common physical location can be configured as members of
 a single application group and corresponding CoAP group. Queried
 devices are expected to reply back to the commissioning device, in
 order to notify their presence, and provide the requested
 information and their current operational status.

 o Emergency multicast: a particular emergency related information
 (e.g. natural disaster) is generated and multicast by an emergency
 notifier, and relayed to multiple devices. The latter may reply
 back to the emergency notifier, in order to provide their feedback
 and local information related to the ongoing emergency. This kind
 of setups should additionally rely on a fault tolerance multicast
 algorithm, such as Multicast Protocol for Low-Power and Lossy
 Networks (MPL).

Tiloca, et al. Expires May 6, 2021 [Page 59]

Internet-Draft Group OSCORE November 2020

Appendix C. Example of Group Identifier Format

 This section provides an example of how the Group Identifier (Gid)
 can be specifically formatted. That is, the Gid can be composed of
 two parts, namely a Group Prefix and a Group Epoch.

 For each group, the Group Prefix is constant over time and is
 uniquely defined in the set of all the groups associated to the same
 Group Manager. The choice of the Group Prefix for a given group's
 Security Context is application specific. The size of the Group
 Prefix directly impact on the maximum number of distinct groups under
 the same Group Manager.

 The Group Epoch is set to 0 upon the group's initialization, and is
 incremented by 1 each time new keying material, together with a new
 Gid, is distributed to the group in order to establish a new Security
 Context (see Section 3.1).

 As an example, a 3-byte Gid can be composed of: i) a 1-byte Group
 Prefix '0xb1' interpreted as a raw byte string; and ii) a 2-byte
 Group Epoch interpreted as an unsigned integer ranging from 0 to
 65535. Then, after having established the Common Context 61532 times
 in the group, its Gid will assume value '0xb1f05c'.

 Using an immutable Group Prefix for a group assumes that enough time
 elapses before all possible Group Epoch values are used, since the
 Group Manager does not reassign the same Gid to the same group.
 Thus, the expected highest rate for addition/removal of group members
 and consequent group rekeying should be taken into account for a
 proper dimensioning of the Group Epoch size.

 As discussed in Section 10.5, if endpoints are deployed in multiple
 groups managed by different non-synchronized Group Managers, it is
 possible that Group Identifiers of different groups coincide at some
 point in time. In this case, a recipient has to handle coinciding
 Group Identifiers, and has to try using different Security Contexts
 to process an incoming message, until the right one is found and the
 message is correctly verified. Therefore, it is favourable that
 Group Identifiers from different Group Managers have a size that
 result in a small probability of collision. How small this
 probability should be is up to system designers.

Appendix D. Set-up of New Endpoints

 An endpoint joins a group by explicitly interacting with the
 responsible Group Manager. When becoming members of a group,
 endpoints are not required to know how many and what endpoints are in
 the same group.

Tiloca, et al. Expires May 6, 2021 [Page 60]

Internet-Draft Group OSCORE November 2020

 Communications between a joining endpoint and the Group Manager rely
 on the CoAP protocol and must be secured. Specific details on how to
 secure communications between joining endpoints and a Group Manager
 are out of the scope of this document.

 The Group Manager must verify that the joining endpoint is authorized
 to join the group. To this end, the Group Manager can directly
 authorize the joining endpoint, or expect it to provide authorization
 evidence previously obtained from a trusted entity. Further details
 about the authorization of joining endpoints are out of scope.

 In case of successful authorization check, the Group Manager
 generates a Sender ID assigned to the joining endpoint, before
 proceeding with the rest of the join process. That is, the Group
 Manager provides the joining endpoint with the keying material and
 parameters to initialize the Security Context (see Section 2). The
 actual provisioning of keying material and parameters to the joining
 endpoint is out of the scope of this document.

 It is RECOMMENDED that the join process adopts the approach described
 in [I-D.ietf-ace-key-groupcomm-oscore] and based on the ACE framework
 for Authentication and Authorization in constrained environments
 [I-D.ietf-ace-oauth-authz].

Appendix E. Examples of Synchronization Approaches

 This section describes three possible approaches that can be
 considered by server endpoints to synchronize with Sender Sequence
 Numbers of client endpoints sending group requests.

 The Group Manager MAY indicate which of such approaches are used in
 the group, as part of the group communication policies signalled to
 candidate group members upon their group joining.

 If a server has recently lost the mutable Security Context, e.g. due
 to a reboot, the server has also to establish an updated Security
 Context before resuming to send protected messages to the group (see

Section 2.4.1). Since this results in deriving a new Sender Key for
 its Sender Context, the server does not reuse the same pair (key,
 nonce), even when using the Partial IV of (old re-injected) requests
 to build the AEAD nonce for protecting the corresponding responses.

E.1. Best-Effort Synchronization

 Upon receiving a group request from a client, a server does not take
 any action to synchronize with the Sender Sequence Number of that
 client. This provides no assurance at all as to message freshness,
 which can be acceptable in non-critical use cases.

Tiloca, et al. Expires May 6, 2021 [Page 61]

Internet-Draft Group OSCORE November 2020

 With the notable exception of Observe notifications and responses
 following a group rekeying, it is optional for the server to use its
 Sender Sequence Number as Partial IV when protecting a response.
 Instead, for efficiency reasons, the server may rather use the
 request's Partial IV when protecting a response to that request.

E.2. Baseline Synchronization

 Upon receiving a group request from a given client for the first
 time, a server initializes the last-seen Sender Sequence Number
 associated to that client in its corresponding Recipient Context.
 The server may also drop the group request without delivering it to
 the application. This method provides a reference point to identify
 if future group requests from the same client are fresher than the
 last one received.

 A replay time interval exists, between when a possibly replayed or
 delayed message is originally transmitted by a given client and the
 first authentic fresh message from that same client is received.
 This can be acceptable for use cases where servers admit such a
 trade-off between performance and assurance of message freshness.

 With the notable exception of Observe notifications and responses
 following a group rekeying, it is optional for the server to use its
 Sender Sequence Number as Partial IV when protecting a response.
 Instead, for efficiency reasons, the server may rather use the
 request's Partial IV when protecting a response to that request.

E.3. Challenge-Response Synchronization

 A server performs a challenge-response exchange with a client, by
 using the Echo Option for CoAP described in Section 2 of
 [I-D.ietf-core-echo-request-tag] and according to Appendix B.1.2 of
 [RFC8613].

 That is, upon receiving a group request from a particular client for
 the first time, the server processes the message as described in this
 specification, but, even if valid, does not deliver it to the
 application. Instead, the server replies to the client with an
 OSCORE protected 4.01 (Unauthorized) response message, including only
 the Echo Option and no diagnostic payload. The server MUST NOT set
 the Echo Option to a value which is both predictable and reusable.
 Since this response is protected with the Security Context used in
 the group, the client will consider the response valid upon
 successfully decrypting and verifying it.

 The server stores the Echo Option value included therein, together
 with the pair (gid,kid), where 'gid' is the Group Identifier of the

https://datatracker.ietf.org/doc/html/rfc8613#appendix-B.1.2
https://datatracker.ietf.org/doc/html/rfc8613#appendix-B.1.2

Tiloca, et al. Expires May 6, 2021 [Page 62]

Internet-Draft Group OSCORE November 2020

 OSCORE group and 'kid' is the Sender ID of the client in the group,
 as specified in the 'kid context' and 'kid' fields of the OSCORE
 Option of the group request, respectively. After a group rekeying
 has been completed and a new Security Context has been established in
 the group, which results also in a new Group Identifier (see

Section 3.1), the server MUST delete all the stored Echo values
 associated to members of that group.

 Upon receiving a 4.01 (Unauthorized) response that includes an Echo
 Option and originates from a verified group member, a client sends a
 request as a unicast message addressed to the same server, echoing
 the Echo Option value. The client MUST NOT send the request
 including the Echo Option over multicast.

 In particular, the client does not necessarily resend the same group
 request, but can instead send a more recent one, if the application
 permits it. This makes it possible for the client to not retain
 previously sent group requests for full retransmission, unless the
 application explicitly requires otherwise. In either case, the
 client uses a fresh Sender Sequence Number value from its own Sender
 Context. If the client stores group requests for possible
 retransmission with the Echo Option, it should not store a given
 request for longer than a pre-configured time interval. Note that
 the unicast request echoing the Echo Option is correctly treated and
 processed as a message, since the 'kid context' field including the
 Group Identifier of the OSCORE group is still present in the OSCORE
 Option as part of the COSE object (see Section 4).

 Upon receiving the unicast request including the Echo Option, the
 server performs the following verifications.

 o If the server does not store an Echo Option value for the pair
 (gid,kid), it considers: i) the time t1 when it has established
 the Security Context used to protect the received request; and ii)
 the time t2 when the request has been received. Since a valid
 request cannot be older than the Security Context used to protect
 it, the server verifies that (t2 - t1) is less than the largest
 amount of time acceptable to consider the request fresh.

 o If the server stores an Echo Option value for the pair (gid,kid)
 associated to that same client in the same group, the server
 verifies that the option value equals that same stored value
 previously sent to that client.

 If the verifications above fail, the server MUST NOT process the
 request further and MAY send a 4.01 (Unauthorized) response including
 an Echo Option.

Tiloca, et al. Expires May 6, 2021 [Page 63]

Internet-Draft Group OSCORE November 2020

 In case of positive verification, the request is further processed
 and verified. Finally, the server updates the Recipient Context
 associated to that client, by setting the Replay Window according to
 the Sender Sequence Number from the unicast request conveying the
 Echo Option. The server either delivers the request to the
 application if it is an actual retransmission of the original one, or
 discards it otherwise. Mechanisms to signal whether the resent
 request is a full retransmission of the original one are out of the
 scope of this specification.

 A server should not deliver group requests from a given client to the
 application until one valid request from that same client has been
 verified as fresh, as conveying an echoed Echo Option
 [I-D.ietf-core-echo-request-tag]. Also, a server may perform the
 challenge-response described above at any time, if synchronization
 with Sender Sequence Numbers of clients is (believed to be) lost, for
 instance after a device reboot. A client has to be always ready to
 perform the challenge-response based on the Echo Option in case a
 server starts it.

 It is the role of the server application to define under what
 circumstances Sender Sequence Numbers lose synchronization. This can
 include experiencing a "large enough" gap D = (SN2 - SN1), between
 the Sender Sequence Number SN1 of the latest accepted group request
 from a client and the Sender Sequence Number SN2 of a group request
 just received from that client. However, a client may send several
 unicast requests to different group members as protected with the
 pairwise mode (see Section 9.2), which may result in the server
 experiencing the gap D in a relatively short time. This would induce
 the server to perform more challenge-response exchanges than actually
 needed.

 To ameliorate this, the server may rather rely on a trade-off between
 the Sender Sequence Number gap D and a time gap T = (t2 - t1), where
 t1 is the time when the latest group request from a client was
 accepted and t2 is the time when the latest group request from that
 client has been received, respectively. Then, the server can start a
 challenge-response when experiencing a time gap T larger than a
 given, pre-configured threshold. Also, the server can start a
 challenge-response when experiencing a Sender Sequence Number gap D
 greater than a different threshold, computed as a monotonically
 increasing function of the currently experienced time gap T.

 The challenge-response approach described in this appendix provides
 an assurance of absolute message freshness. However, it can result
 in an impact on performance which is undesirable or unbearable,
 especially in large groups where many endpoints at the same time
 might join as new members or lose synchronization.

Tiloca, et al. Expires May 6, 2021 [Page 64]

Internet-Draft Group OSCORE November 2020

 Note that endpoints configured as silent servers are not able to
 perform the challenge-response described above, as they do not store
 a Sender Context to secure the 4.01 (Unauthorized) response to the
 client. Therefore, silent servers should adopt alternative
 approaches to achieve and maintain synchronization with sender
 sequence numbers of clients.

 Since requests including the Echo Option are sent over unicast, a
 server can be a victim of the attack discussed in Section 10.7, when
 such requests are protected with the group mode of Group OSCORE, as
 described in Section 8.1.

 Instead, protecting requests with the Echo Option by using the
 pairwise mode of Group OSCORE as described in Section 9.2 prevents
 the attack in Section 10.7. In fact, only the exact server involved
 in the Echo exchange is able to derive the correct pairwise key used
 by the client to protect the request including the Echo Option.

 In either case, an internal on-path adversary would not be able to
 mix up the Echo Option value of two different unicast requests, sent
 by a same client to any two different servers in the group. In fact,
 if the group mode was used, this would require the adversary to forge
 the client's counter signature in both such requests. As a
 consequence, each of the two servers remains able to selectively
 accept a request with the Echo Option only if it is waiting for that
 exact integrity-protected Echo Option value, and is thus the intended
 recipient.

Appendix F. No Verification of Signatures in Group Mode

 There are some application scenarios using group communication that
 have particularly strict requirements. One example of this is the
 requirement of low message latency in non-emergency lighting
 applications [I-D.somaraju-ace-multicast]. For those applications
 which have tight performance constraints and relaxed security
 requirements, it can be inconvenient for some endpoints to verify
 digital signatures in order to assert source authenticity of received
 messages protected with the group mode. In other cases, the
 signature verification can be deferred or only checked for specific
 actions. For instance, a command to turn a bulb on where the bulb is
 already on does not need the signature to be checked. In such
 situations, the counter signature needs to be included anyway as part
 of a message protected with the group mode, so that an endpoint that
 needs to validate the signature for any reason has the ability to do
 so.

 In this specification, it is NOT RECOMMENDED that endpoints do not
 verify the counter signature of received messages protected with the

Tiloca, et al. Expires May 6, 2021 [Page 65]

Internet-Draft Group OSCORE November 2020

 group mode. However, it is recognized that there may be situations
 where it is not always required. The consequence of not doing the
 signature validation in messages protected with the group mode is
 that security in the group is based only on the group-authenticity of
 the shared keying material used for encryption. That is, endpoints
 in the group would have evidence that the received message has been
 originated by a group member, although not specifically identifiable
 in a secure way. This can violate a number of security requirements,
 as the compromise of any element in the group means that the attacker
 has the ability to control the entire group. Even worse, the group
 may not be limited in scope, and hence the same keying material might
 be used not only for light bulbs but for locks as well. Therefore,
 extreme care must be taken in situations where the security
 requirements are relaxed, so that deployment of the system will
 always be done safely.

Appendix G. Example Values with COSE Capabilities

 The table below provides examples of values for Counter Signature
 Parameters in the Common Context (see Section 2.1.3), for different
 values of Counter Signature Algorithm.

 +-------------------+---+
 | Counter Signature | Example Values for Counter |
 | Algorithm | Signature Parameters |
 +-------------------+---+
 | (-8) // EdDSA | [1], [1, 6] // 1: OKP ; 1: OKP, 6: Ed25519 |
 | (-8) // EdDSA | [1], [1, 6] // 1: OKP ; 1: OKP, 7: Ed448 |
 | (-7) // ES256 | [2], [2, 1] // 2: EC2 ; 2: EC2, 1: P-256 |
 | (-35) // ES384 | [2], [2, 2] // 2: EC2 ; 2: EC2, 2: P-384 |
 | (-36) // ES512 | [2], [2, 3] // 2: EC2 ; 2: EC2, 3: P-512 |
 | (-37) // PS256 | [], [3] // empty ; 3: RSA |
 | (-38) // PS384 | [], [3] // empty ; 3: RSA |
 | (-39) // PS512 | [], [3] // empty ; 3: RSA |
 +-------------------+---+

 Figure 4: Examples of Counter Signature Parameters

 The table below provides examples of values for Secret Derivation
 Parameters in the Common Context (see Section 2.1.5), for different
 values of Secret Derivation Algorithm.

Tiloca, et al. Expires May 6, 2021 [Page 66]

Internet-Draft Group OSCORE November 2020

 +-----------------------+--+
 | Secret Derivation | Example Values for Secret |
 | Algorithm | Derivation Parameters |
 +-----------------------+--+
(-27) // ECDH-SS	[1], [1, 6] // 1: OKP ; 1: OKP, 4: X25519
// + HKDF-256	
(-27) // ECDH-SS	[1], [1, 6] // 1: OKP ; 1: OKP, 5: X448
// + HKDF-256	
(-27) // ECDH-SS	[2], [2, 1] // 2: EC2 ; 2: EC2, 1: P-256
// + HKDF-256	
(-27) // ECDH-SS	[2], [2, 2] // 2: EC2 ; 2: EC2, 2: P-384
// + HKDF-256	
(-27) // ECDH-SS	[2], [2, 3] // 2: EC2 ; 2: EC2, 3: P-512
// + HKDF-256	
 +-----------------------+--+

 Figure 5: Examples of Secret Derivation Parameters

 The table below provides examples of values for the
 'par_countersign_key' element of the 'algorithms' array used in the
 two external_aad structures (see Section 4.3.1 and Section 4.3.2),
 for different values of Counter Signature Algorithm.

 +-------------------+---------------------------------+
 | Counter Signature | Example Values for |
 | Algorithm | 'par_countersign_key' |
 +-------------------+---------------------------------+
 | (-8) // EdDSA | [1, 6] // 1: OKP , 6: Ed25519 |
 | (-8) // EdDSA | [1, 6] // 1: OKP , 7: Ed448 |
 | (-7) // ES256 | [2, 1] // 2: EC2 , 1: P-256 |
 | (-35) // ES384 | [2, 2] // 2: EC2 , 2: P-384 |
 | (-36) // ES512 | [2, 3] // 2: EC2 , 3: P-512 |
 | (-37) // PS256 | [3] // 3: RSA |
 | (-38) // PS384 | [3] // 3: RSA |
 | (-39) // PS512 | [3] // 3: RSA |
 +-------------------+---------------------------------+

 Figure 6: Examples of 'par_countersign_key'

Appendix H. Document Updates

 RFC EDITOR: PLEASE REMOVE THIS SECTION.

H.1. Version -09 to -10

 o Removed 'Counter Signature Key Parameters' from the Common
 Context.

Tiloca, et al. Expires May 6, 2021 [Page 67]

Internet-Draft Group OSCORE November 2020

 o New parameters in the Common Context covering the DH secret
 derivation.

 o New counter signature header parameter from draft-ietf-cose-
countersign.

 o Stronger policies non non-recycling of Sender IDs and Gid.

 o The Sender Sequence Number is reset when establishing a new
 Security Context.

 o Added 'request_kid_context' in the aad_array.

 o The server can respond with 5.03 if the client's public key is not
 available.

 o The observer client stores an invariant identifier of the group.

 o Relaxed storing of original 'kid' for observer clients.

 o Both client and server store the 'kid_context' of the original
 observation request.

 o The server uses a fresh PIV if protecting the response with a
 Security Context different from the one used to protect the
 request.

 o Clarifications on MTI algorithms and curves.

 o Removed optimized requests.

 o Overall clarifications and editorial revision.

H.2. Version -08 to -09

 o Pairwise keys are discarded after group rekeying.

 o Signature mode renamed to group mode.

 o The parameters for countersignatures use the updated COSE
 registries. Newly defined IANA registries have been removed.

 o Pairwise Flag bit renamed as Group Flag bit, set to 1 in group
 mode and set to 0 in pairwise mode.

 o Dedicated section on updating the Security Context.

https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign
https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign

Tiloca, et al. Expires May 6, 2021 [Page 68]

Internet-Draft Group OSCORE November 2020

 o By default, sender sequence numbers and replay windows are not
 reset upon group rekeying.

 o An endpoint implementing only a silent server does not support the
 pairwise mode.

 o Separate section on general message reception.

 o Pairwise mode moved to the document body.

 o Considerations on using the pairwise mode in non-multicast
 settings.

 o Optimized requests are moved as an appendix.

 o Normative support for the signature and pairwise mode.

 o Revised methods for synchronization with clients' sender sequence
 number.

 o Appendix with example values of parameters for countersignatures.

 o Clarifications and editorial improvements.

H.3. Version -07 to -08

 o Clarified relation between pairwise mode and group communication
 (Section 1).

 o Improved definition of "silent server" (Section 1.1).

 o Clarified when a Recipient Context is needed (Section 2).

 o Signature checkers as entities supported by the Group Manager
 (Section 2.3).

 o Clarified that the Group Manager is under exclusive control of Gid
 and Sender ID values in a group, with Sender ID values under each
 Gid value (Section 2.3).

 o Mitigation policies in case of recycled 'kid' values
 (Section 2.4).

 o More generic exhaustion (not necessarily wrap-around) of sender
 sequence numbers (Sections 2.5 and 10.11).

 o Pairwise key considerations, as to group rekeying and Sender
 Sequence Numbers (Section 3).

Tiloca, et al. Expires May 6, 2021 [Page 69]

Internet-Draft Group OSCORE November 2020

 o Added reference to static-static Diffie-Hellman shared secret
 (Section 3).

 o Note for implementation about the external_aad for signing
 (Sectino 4.3.2).

 o Retransmission by the application for group requests over
 multicast as Non-Confirmable (Section 7).

 o A server MUST use its own Partial IV in a response, if protecting
 it with a different context than the one used for the request
 (Section 7.3).

 o Security considerations: encryption of pairwise mode as
 alternative to group-level security (Section 10.1).

 o Security considerations: added approach to reduce the chance of
 global collisions of Gid values from different Group Managers
 (Section 10.5).

 o Security considerations: added implications for block-wise
 transfers when using the signature mode for requests over unicast
 (Section 10.7).

 o Security considerations: (multiple) supported signature algorithms
 (Section 10.13).

 o Security considerations: added privacy considerations on the
 approach for reducing global collisions of Gid values
 (Section 10.15).

 o Updates to the methods for synchronizing with clients' sequence
 number (Appendix E).

 o Simplified text on discovery services supporting the pairwise mode
 (Appendix G.1).

 o Editorial improvements.

H.4. Version -06 to -07

 o Updated abstract and introduction.

 o Clarifications of what pertains a group rekeying.

 o Derivation of pairwise keying material.

Tiloca, et al. Expires May 6, 2021 [Page 70]

Internet-Draft Group OSCORE November 2020

 o Content re-organization for COSE Object and OSCORE header
 compression.

 o Defined the Pairwise Flag bit for the OSCORE option.

 o Supporting CoAP Observe for group requests and responses.

 o Considerations on message protection across switching to new
 keying material.

 o New optimized mode based on pairwise keying material.

 o More considerations on replay protection and Security Contexts
 upon key renewal.

 o Security considerations on Group OSCORE for unicast requests, also
 as affecting the usage of the Echo option.

 o Clarification on different types of groups considered
 (application/security/CoAP).

 o New pairwise mode, using pairwise keying material for both
 requests and responses.

H.5. Version -05 to -06

 o Group IDs mandated to be unique under the same Group Manager.

 o Clarifications on parameter update upon group rekeying.

 o Updated external_aad structures.

 o Dynamic derivation of Recipient Contexts made optional and
 application specific.

 o Optional 4.00 response for failed signature verification on the
 server.

 o Removed client handling of duplicated responses to multicast
 requests.

 o Additional considerations on public key retrieval and group
 rekeying.

 o Added Group Manager responsibility on validating public keys.

 o Updates IANA registries.

Tiloca, et al. Expires May 6, 2021 [Page 71]

Internet-Draft Group OSCORE November 2020

 o Reference to RFC 8613.

 o Editorial improvements.

H.6. Version -04 to -05

 o Added references to draft-dijk-core-groupcomm-bis.

 o New parameter Counter Signature Key Parameters (Section 2).

 o Clarification about Recipient Contexts (Section 2).

 o Two different external_aad for encrypting and signing
 (Section 3.1).

 o Updated response verification to handle Observe notifications
 (Section 6.4).

 o Extended Security Considerations (Section 8).

 o New "Counter Signature Key Parameters" IANA Registry
 (Section 9.2).

H.7. Version -03 to -04

 o Added the new "Counter Signature Parameters" in the Common Context
 (see Section 2).

 o Added recommendation on using "deterministic ECDSA" if ECDSA is
 used as counter signature algorithm (see Section 2).

 o Clarified possible asynchronous retrieval of keying material from
 the Group Manager, in order to process incoming messages (see

Section 2).

 o Structured Section 3 into subsections.

 o Added the new 'par_countersign' to the aad_array of the
 external_aad (see Section 3.1).

 o Clarified non reliability of 'kid' as identity indicator for a
 group member (see Section 2.1).

 o Described possible provisioning of new Sender ID in case of
 Partial IV wrap-around (see Section 2.2).

 o The former signature bit in the Flag Byte of the OSCORE option
 value is reverted to reserved (see Section 4.1).

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/draft-dijk-core-groupcomm-bis

Tiloca, et al. Expires May 6, 2021 [Page 72]

Internet-Draft Group OSCORE November 2020

 o Updated examples of compressed COSE object, now with the sixth
 less significant bit in the Flag Byte of the OSCORE option value
 set to 0 (see Section 4.3).

 o Relaxed statements on sending error messages (see Section 6).

 o Added explicit step on computing the counter signature for
 outgoing messages (see Setions 6.1 and 6.3).

 o Handling of just created Recipient Contexts in case of
 unsuccessful message verification (see Sections 6.2 and 6.4).

 o Handling of replied/repeated responses on the client (see
Section 6.4).

 o New IANA Registry "Counter Signature Parameters" (see
Section 9.1).

H.8. Version -02 to -03

 o Revised structure and phrasing for improved readability and better
 alignment with draft-ietf-core-object-security.

 o Added discussion on wrap-Around of Partial IVs (see Section 2.2).

 o Separate sections for the COSE Object (Section 3) and the OSCORE
 Header Compression (Section 4).

 o The countersignature is now appended to the encrypted payload of
 the OSCORE message, rather than included in the OSCORE Option (see

Section 4).

 o Extended scope of Section 5, now titled " Message Binding,
 Sequence Numbers, Freshness and Replay Protection".

 o Clarifications about Non-Confirmable messages in Section 5.1
 "Synchronization of Sender Sequence Numbers".

 o Clarifications about error handling in Section 6 "Message
 Processing".

 o Compacted list of responsibilities of the Group Manager in
Section 7.

 o Revised and extended security considerations in Section 8.

 o Added IANA considerations for the OSCORE Flag Bits Registry in
Section 9.

https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security

Tiloca, et al. Expires May 6, 2021 [Page 73]

Internet-Draft Group OSCORE November 2020

 o Revised Appendix D, now giving a short high-level description of a
 new endpoint set-up.

H.9. Version -01 to -02

 o Terminology has been made more aligned with RFC7252 and draft-
ietf-core-object-security: i) "client" and "server" replace the

 old "multicaster" and "listener", respectively; ii) "silent
 server" replaces the old "pure listener".

 o Section 2 has been updated to have the Group Identifier stored in
 the 'ID Context' parameter defined in draft-ietf-core-object-

security.

 o Section 3 has been updated with the new format of the Additional
 Authenticated Data.

 o Major rewriting of Section 4 to better highlight the differences
 with the message processing in draft-ietf-core-object-security.

 o Added Sections 7.2 and 7.3 discussing security considerations
 about uniqueness of (key, nonce) and collision of group
 identifiers, respectively.

 o Minor updates to Appendix A.1 about assumptions on multicast
 communication topology and group size.

 o Updated Appendix C on format of group identifiers, with practical
 implications of possible collisions of group identifiers.

 o Updated Appendix D.2, adding a pointer to draft-palombini-ace-key-
groupcomm about retrieval of nodes' public keys through the Group

 Manager.

 o Minor updates to Appendix E.3 about Challenge-Response
 synchronization of sequence numbers based on the Echo option from

draft-ietf-core-echo-request-tag.

H.10. Version -00 to -01

 o Section 1.1 has been updated with the definition of group as
 "security group".

 o Section 2 has been updated with:

 * Clarifications on etablishment/derivation of Security Contexts.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security
https://datatracker.ietf.org/doc/html/draft-palombini-ace-key-groupcomm
https://datatracker.ietf.org/doc/html/draft-palombini-ace-key-groupcomm
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag

Tiloca, et al. Expires May 6, 2021 [Page 74]

Internet-Draft Group OSCORE November 2020

 * A table summarizing the the additional context elements
 compared to OSCORE.

 o Section 3 has been updated with:

 * Examples of request and response messages.

 * Use of CounterSignature0 rather than CounterSignature.

 * Additional Authenticated Data including also the signature
 algorithm, while not including the Group Identifier any longer.

 o Added Section 6, listing the responsibilities of the Group
 Manager.

 o Added Appendix A (former section), including assumptions and
 security objectives.

 o Appendix B has been updated with more details on the use cases.

 o Added Appendix C, providing an example of Group Identifier format.

 o Appendix D has been updated to be aligned with draft-palombini-
ace-key-groupcomm.

Acknowledgments

 The authors sincerely thank Christian Amsuess, Stefan Beck, Rolf
 Blom, Carsten Bormann, Esko Dijk, Klaus Hartke, Rikard Hoeglund,
 Richard Kelsey, John Mattsson, Dave Robin, Jim Schaad, Ludwig Seitz,
 Peter van der Stok and Erik Thormarker for their feedback and
 comments.

 The work on this document has been partly supported by VINNOVA and
 the Celtic-Next project CRITISEC; the H2020 project SIFIS-Home (Grant
 agreement 952652); the SSF project SEC4Factory under the grant
 RIT17-0032; and the EIT-Digital High Impact Initiative ACTIVE.

Authors' Addresses

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 Kista SE-16440 Stockholm
 Sweden

 Email: marco.tiloca@ri.se

https://datatracker.ietf.org/doc/html/draft-palombini-ace-key-groupcomm
https://datatracker.ietf.org/doc/html/draft-palombini-ace-key-groupcomm

Tiloca, et al. Expires May 6, 2021 [Page 75]

Internet-Draft Group OSCORE November 2020

 Goeran Selander
 Ericsson AB
 Torshamnsgatan 23
 Kista SE-16440 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

 Francesca Palombini
 Ericsson AB
 Torshamnsgatan 23
 Kista SE-16440 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

 Jiye Park
 Universitaet Duisburg-Essen
 Schuetzenbahn 70
 Essen 45127
 Germany

 Email: ji-ye.park@uni-due.de

Tiloca, et al. Expires May 6, 2021 [Page 76]

