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Abstract

This document defines Group Object Security for Constrained RESTful

Environments (Group OSCORE), providing end-to-end security of CoAP

messages exchanged between members of a group, e.g., sent over IP

multicast. In particular, the described approach defines how OSCORE

is used in a group communication setting to provide source

authentication for CoAP group requests, sent by a client to multiple

servers, and for protection of the corresponding CoAP responses.

Group OSCORE also defines a pairwise mode where each member of the

group can efficiently derive a symmetric pairwise key with any other

member of the group for pairwise OSCORE communication.
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1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] is a web

transfer protocol specifically designed for constrained devices and

networks [RFC7228]. Group communication for CoAP 

[I-D.ietf-core-groupcomm-bis] addresses use cases where deployed

devices benefit from a group communication model, for example to

reduce latencies, improve performance, and reduce bandwidth

utilization. Use cases include lighting control, integrated building

control, software and firmware updates, parameter and configuration

updates, commissioning of constrained networks, and emergency

multicast (see Appendix B). Group communication for CoAP 

[I-D.ietf-core-groupcomm-bis] mainly uses UDP/IP multicast as the

underlying data transport.¶



Object Security for Constrained RESTful Environments (OSCORE) 

[RFC8613] describes a security protocol based on the exchange of

protected CoAP messages. OSCORE builds on CBOR Object Signing and

Encryption (COSE) [RFC9052][RFC9053] and provides end-to-end

encryption, integrity, replay protection and binding of response to

request between a sender and a recipient, independent of the

transport layer also in the presence of intermediaries. To this end,

a CoAP message is protected by including its payload (if any),

certain options, and header fields in a COSE object, which replaces

the authenticated and encrypted fields in the protected message.

This document defines Group OSCORE, a security protocol for Group

communication for CoAP [I-D.ietf-core-groupcomm-bis], providing the

same end-to-end security properties as OSCORE in the case where CoAP

requests have multiple recipients. In particular, the described

approach defines how OSCORE is used in a group communication setting

to provide source authentication for CoAP group requests, sent by a

client to multiple servers, and for protection of the corresponding

CoAP responses. Group OSCORE also defines a pairwise mode where each

member of the group can efficiently derive a symmetric pairwise key

with any other member of the group for pairwise OSCORE

communication. Just like OSCORE, Group OSCORE is independent of the

transport layer and works wherever CoAP does.

As with OSCORE, it is possible to combine Group OSCORE with

communication security on other layers. One example is the use of

transport layer security, such as DTLS [RFC9147], between one client

and one proxy (and vice versa), or between one proxy and one server

(and vice versa). This prevents observers from accessing addressing

information conveyed in CoAP options that would not be protected by

Group OSCORE, but would be protected by DTLS. These options include

Uri-Host, Uri-Port and Proxy-Uri. Note that DTLS does not define how

to secure messages sent over IP multicast.

Group OSCORE defines two modes of operation, that can be used

independently or together:

In the group mode, Group OSCORE requests and responses are

digitally signed with the private key of the sender and the

signature is embedded in the protected CoAP message. The group

mode supports all COSE signature algorithms as well as signature

verification by intermediaries. This mode is defined in 

Section 8.

In the pairwise mode, two group members exchange OSCORE requests

and responses (typically) over unicast, and the messages are

protected with symmetric keys. These symmetric keys are derived

from Diffie-Hellman shared secrets, calculated with the

asymmetric keys of the sender and recipient, allowing for shorter
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integrity tags and therefore lower message overhead. This mode is

defined in Section 9.

Both modes provide source authentication of CoAP messages. The

application decides what mode to use, potentially on a per-message

basis. Such decisions can be based, for instance, on pre-configured

policies or dynamic assessing of the target recipient and/or

resource, among other things. One important case is when requests

are protected with the group mode, and responses with the pairwise

mode. Since such responses convey shorter integrity tags instead of

bigger, full-fledged signatures, this significantly reduces the

message overhead in case of many responses to one request.

A special deployment of Group OSCORE is to use pairwise mode only.

For example, consider the case of a constrained-node network 

[RFC7228] with a large number of CoAP endpoints and the objective to

establish secure communication between any pair of endpoints with a

small provisioning effort and message overhead. Since the total

number of security associations that needs to be established grows

with the square of the number of endpoints, it is desirable to

restrict the amount of secret keying material provided to each

endpoint. Moreover, a key establishment protocol would need to be

executed for each security association. One solution to this is to

deploy Group OSCORE, with the endpoints being part of a group, and

use the pairwise mode. This solution assumes a trusted third party

called Group Manager (see Section 3). However, it has the benefit of

providing a single shared secret, while distributing only the public

keys of group members or a subset of those. After that, a CoAP

endpoint can locally derive the OSCORE Security Context for the

other endpoint in the group, and protect CoAP communications with

very low overhead [I-D.ietf-lwig-security-protocol-comparison].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

described in CoAP [RFC7252] including "endpoint", "client",

"server", "sender" and "recipient"; group communication for CoAP 

[I-D.ietf-core-groupcomm-bis]; Observe [RFC7641]; CBOR [RFC8949];

COSE [RFC9052][RFC9053] and related countersignatures [RFC9338].

Readers are also expected to be familiar with the terms and concepts

for protection and processing of CoAP messages through OSCORE, such

as "Security Context" and "Master Secret", defined in [RFC8613].
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Terminology for constrained environments, such as "constrained

device" and "constrained-node network", is defined in [RFC7228].

This document refers also to the following terminology.

Keying material: data that is necessary to establish and maintain

secure communication among endpoints. This includes, for

instance, keys and IVs [RFC4949].

Authentication credential: set of information associated with an

entity, including that entity's public key and parameters

associated with the public key. Examples of authentication

credentials are CBOR Web Tokens (CWTs) and CWT Claims Sets (CCSs)

[RFC8392], X.509 certificates [RFC7925] and C509 certificates 

[I-D.ietf-cose-cbor-encoded-cert]. Further details about

authentication credentials are provided in Section 2.3.

Group: a set of endpoints that share group keying material and

security parameters (Common Context, see Section 2). That is,

unless otherwise specified, the term group used in this document

refers to a "security group" (see Section 2.1 of

[I-D.ietf-core-groupcomm-bis]), not to be confused with "CoAP

group" or "application group".

Group Manager: entity responsible for a group. Each endpoint in a

group communicates securely with the respective Group Manager,

which is neither required to be an actual group member nor to

take part in the group communication. The full list of

responsibilities of the Group Manager is provided in Section 3.3.

Silent server: member of a group that never sends protected

responses in reply to requests. For CoAP group communications,

requests are normally sent without necessarily expecting a

response. A silent server may send unprotected responses, as

error responses reporting an OSCORE error. Note that an endpoint

can implement both a silent server and a client, i.e., the two

roles are independent. An endpoint acting only as a silent server

performs only Group OSCORE processing on incoming requests.

Silent servers maintain less keying material and in particular do

not have a Sender Context for the group. Since silent servers do

not have a Sender ID, they cannot support the pairwise mode.

Group Identifier (Gid): identifier assigned to the group, unique

within the set of groups of a given Group Manager.

Birth Gid: with respect to a group member, the Gid obtained by

that group member upon (re-)joining the group.

Group request: CoAP request message sent by a client in the group

to all servers in that group.
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Key Generation Number: an integer value identifying the current

version of the keying material used in a group.

Source authentication: evidence that a received message in the

group originated from a specific identified group member. This

also provides assurance that the message was not tampered with by

anyone, be it a different legitimate group member or an endpoint

which is not a group member.

Non-Notification Group Exchange: the exchange of messages between

a client and the servers in the group, as pertaining to a group

request from the client and the corresponding responses from the

servers that are not Observe notifications [RFC7641]. This is

irrespective of the group request being an Observe request or

not.

The client terminates a Non-Notification Group Exchange when

freeing up the CoAP Token value used for the group request, for

which no further responses will be accepted afterwards.

2. Security Context

As per the terminology in Section 1.1, this document refers to a

group as a set of endpoints sharing keying material and security

parameters for executing the Group OSCORE protocol. Each endpoint of

a group is aware of whether the group uses the group mode, or the

pairwise mode, or both. Then, an endpoint can use any mode it

supports if also used in the group.

All members of a group maintain a Security Context as defined in 

Section 3 of [RFC8613] and extended as defined in this section. How

the Security Context is established by the group members is out of

scope for this document, but if there is more than one Security

Context applicable to a message, then the endpoints MUST be able to

tell which Security Context was latest established.

The default setting for how to manage information about the group,

including the Security Context, is described in terms of a Group

Manager (see Section 3). In particular, the Group Manager indicates

whether the group uses the group mode, the pairwise mode, or both of

them, as part of the group data provided to candidate group members

when joining the group.

The remainder of this section provides further details about the

Security Context of Group OSCORE. In particular, each endpoint which

is member of a group maintains a Security Context as defined in 

Section 3 of [RFC8613], extended as follows (see Figure 1).

One Common Context, shared by all the endpoints in the group.

Several new parameters are included in the Common Context.
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If a Group Manager is used for maintaining the group, the Common

Context is extended with the authentication credential of the

Group Manager, including the Group Manager's public key. When

processing messages, the authentication credential of the Group

Manager is included in the external additional authenticated data

(see Section 4.3).

If the group uses the group mode, the Common context is extended

with the following new parameters.

Signature Encryption Algorithm and Signature Algorithm. These

relate to the encryption/decryption operations and to the

computation/verification of countersignatures, respectively,

when a message is protected with the group mode (see 

Section 8).

Group Encryption Key, used to perform encryption/decryption of

countersignatures, when a message is protected with the group

mode (see Section 8).

If the group uses the pairwise mode, the Common Context is

extended with a Pairwise Key Agreement Algorithm used for

agreement on a static-static Diffie-Hellman shared secret, from

which pairwise keys are derived (see Section 2.4.1) to protect

messages with the pairwise mode (see Section 9).

One Sender Context, extended with the endpoint's private key and

authentication credential including the endpoint's public key.

The private key is used to sign messages protected with the group

mode, or for deriving pairwise keys in pairwise mode (see 

Section 2.4). The authentication credential is used for deriving

pairwise keys in pairwise mode, and is included in the external

additional authenticated data when processing outgoing messages

(see Section 9).

If the endpoint supports the pairwise mode, the Sender Context is

also extended with the Pairwise Sender Keys associated with the

other endpoints (see Section 2.4).

The Sender Context is omitted if the endpoint is configured

exclusively as silent server.

One Recipient Context for each other endpoint from which messages

are received. It is not necessary to maintain Recipient Contexts

associated with endpoints from which messages are not (expected

to be) received. The Recipient Context is extended with the

authentication credential of the other endpoint, including that

endpoint's public key.
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The public key is used to verify the signature of messages

protected with the group mode from the other endpoint and for

deriving the pairwise keys in pairwise mode (see Section 2.4).

The authentication credential is used for deriving pairwise keys

in pairwise mode, and is included in the external additional

authenticated data when processing incoming messages from the

other endpoint (see Section 9).

If the endpoint supports the pairwise mode, then the Recipient

Context is also extended with the Pairwise Recipient Key

associated with the other endpoint (see Section 2.4).

Figure 1: Additions to the OSCORE Security Context. The optional

elements labeled with * (with ^) are present only if the group uses the

group mode (the pairwise mode).

2.1. Common Context

The Common Context may be acquired from the Group Manager (see 

Section 3). The following sections define how the Common Context is

extended, compared to [RFC8613].

2.1.1. AEAD Algorithm

AEAD Algorithm identifies the COSE AEAD algorithm to use for

encryption, when messages are protected using the pairwise mode (see

Section 9). This algorithm MUST provide integrity protection. This

parameter is immutable once the Common Context is established, and

it is not relevant if the group uses only the group mode.

¶

¶

+-------------------+-------------------------------------------------+

| Context Component | New Information Elements                        |

+-------------------+-------------------------------------------------+

| Common Context    |   Group Manager Authentication Credential       |

|                   | * Signature Encryption Algorithm                |

|                   | * Signature Algorithm                           |

|                   | * Group Encryption Key                          |

|                   | ^ Pairwise Key Agreement Algorithm              |

+-------------------+-------------------------------------------------+

| Sender Context    |   Endpoint's own private key                    |

|                   |   Endpoint's own authentication credential      |

|                   | ^ Pairwise Sender Keys for the other endpoints  |

+-------------------+-------------------------------------------------+

| Each              |   Other endpoint's authentication credential    |

| Recipient Context | ^ Pairwise Recipient Key for the other endpoint |

+-------------------+-------------------------------------------------+

¶

¶



2.1.2. ID Context

The ID Context parameter (see Sections 3.1 and 3.3 of [RFC8613]) in

the Common Context SHALL contain the Group Identifier (Gid) of the

group. The choice of the Gid format is application specific. An

example of specific formatting of the Gid is given in Appendix C.

The application needs to specify how to handle potential collisions

between Gids (see Section 13.6).

2.1.3. Group Manager Authentication Credential

Group Manager Authentication Credential specifies the authentication

credential of the Group Manager, including the Group Manager's

public key. This is included in the external additional

authenticated data when processing messages (see Section 4.3).

Each group member MUST obtain the authentication credential of the

Group Manager with a valid proof-of-possession of the corresponding

private key, for instance from the Group Manager itself when joining

the group. Further details on the provisioning of the Group

Manager's authentication credential to the group members are out of

the scope of this document.

2.1.4. Signature Encryption Algorithm

Signature Encryption Algorithm identifies the algorithm to use for

encryption, when messages are protected using the group mode (see 

Section 8). This algorithm MAY provide integrity protection. This

parameter is immutable once the Common Context is established.

This algorithm is not used to encrypt the countersignature in

messages protected using the group mode, for which the method

defined in Section 4.1 is used.

2.1.5. Signature Algorithm

Signature Algorithm identifies the digital signature algorithm used

to compute a countersignature on the COSE object (see Sections 3.2

and 3.3 of [RFC9338]), when messages are protected using the group

mode (see Section 8). This parameter is immutable once the Common

Context is established.

2.1.6. Group Encryption Key

Group Encryption Key specifies the encryption key for deriving a

keystream to encrypt/decrypt a countersignature, when a message is

protected with the group mode (see Section 8).
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The Group Encryption Key is derived as defined for Sender/Recipient

Keys in Section 3.2.1 of [RFC8613], with the following differences.

The 'id' element of the 'info' array is the empty byte string.

The 'alg_aead' element of the 'info' array takes the value of

Signature Encryption Algorithm from the Common Context (see 

Section 2.1.5).

The 'type' element of the 'info' array is "Group Encryption Key".

The label is an ASCII string and does not include a trailing NUL

byte.

L and the 'L' element of the 'info' array are the size of the key

for the Signature Encryption Algorithm from the Common Context

(see Section 2.1.5), in bytes.

2.1.7. Pairwise Key Agreement Algorithm

Pairwise Key Agreement Algorithm identifies the elliptic curve

Diffie-Hellman algorithm used to derive a static-static Diffie-

Hellman shared secret, from which pairwise keys are derived (see 

Section 2.4.1) to protect messages with the pairwise mode (see 

Section 9). This parameter is immutable once the Common Context is

established.

2.2. Sender Context and Recipient Context

OSCORE specifies the derivation of Sender Context and Recipient

Context, specifically of Sender/Recipient Keys and Common IV, from a

set of input parameters (see Section 3.2 of [RFC8613]).

The derivation of Sender/Recipient Keys and Common IV defined in

OSCORE applies also to Group OSCORE, with the following extensions

compared to Section 3.2.1 of [RFC8613].

If the group uses (also) the group mode, the 'alg_aead' element

of the 'info' array takes the value of Signature Encryption

Algorithm from the Common Context (see Section 2.1.5).

If the group uses only the pairwise mode, the 'alg_aead' element

of the 'info' array takes the value of AEAD Algorithm from the

Common Context (see Section 2.1.1).

The Sender ID SHALL be unique for each endpoint in a group with a

certain tuple (Master Secret, Master Salt, Group Identifier), see 

Section 3.3 of [RFC8613].

For Group OSCORE, the Sender Context and Recipient Context

additionally contain asymmetric keys, as described previously in 
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Section 2. The private key of the sender and the authentication

credential including the corresponding public key can, for example,

be generated by the endpoint or provisioned during manufacturing.

With the exception of the authentication credential of the sender

endpoint and the possibly associated pairwise keys, a receiver

endpoint can derive a complete Security Context from a received

Group OSCORE message and the Common Context. The authentication

credentials in the Recipient Contexts can be retrieved from the

Group Manager (see Section 3) upon joining the group. An

authentication credential can alternatively be acquired from the

Group Manager at a later time, for example the first time a message

is received from a particular endpoint in the group (see Section 8.2

and Section 8.4).

For severely constrained devices, it may be not feasible to

simultaneously handle the ongoing processing of a recently received

message in parallel with the retrieval of the sender endpoint's

authentication credential. Such devices can be configured to drop a

received message for which there is no (complete) Recipient Context,

and retrieve the sender endpoint's authentication credential in

order to have it available to verify subsequent messages from that

endpoint.

An endpoint admits a maximum amount of Recipient Contexts for a same

Security Context, e.g., due to memory limitations. After reaching

that limit, the creation of a new Recipient Context results in an

overflow. When this happens, the endpoint has to delete a current

Recipient Context to install the new one. It is up to the

application to define policies for selecting the current Recipient

Context to delete. If the new Recipient Context has been installed

after the endpoint has experienced the overflow above, then the

Recipient Context is initialized with an invalid Replay Window, and

accordingly requires the endpoint to take appropriate actions (see 

Section 2.5.1.2).

2.3. Authentication Credentials

In a group, the following MUST hold for the authentication

credential of each endpoint as well as for the authentication

credential of the Group Manager.

All authentication credentials MUST be encoded according to the

same format used in the group. The used format MUST provide the

public key as well as the comprehensive set of information

related to the public key algorithm, including, e.g., the used

elliptic curve (when applicable).
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All authentication credentials and the public key specified

therein MUST be for the public key algorithm used in the group

and aligned with the possible associated parameters used in the

group, e.g., the used elliptic curve (when applicable).

If the group uses (also) the group mode, the public key algorithm

is the Signature Algorithm used in the group. If the group uses

only the pairwise mode, the public key algorithm is the Pairwise

Key Agreement Algorithm used in the group.

If the authentication credentials are X.509 certificates 

[RFC7925] or C509 certificates [I-D.ietf-cose-cbor-encoded-cert],

the public key algorithm is fully described by the "algorithm"

field of the "SubjectPublicKeyInfo" structure, and by the

"subjectPublicKeyAlgorithm" element, respectively.

If authentication credentials are CBOR Web Tokens (CWTs) or CWT

Claims Sets (CCSs) [RFC8392], the public key algorithm is fully

described by a COSE key type and its "kty" and "crv" parameters.

Authentication credentials are used to derive pairwise keys (see 

Section 2.4.1) and are included in the external additional

authenticated data when processing messages (see Section 4.3). In

both these cases, an endpoint in a group MUST treat authentication

credentials as opaque data, i.e., by considering the same binary

representation made available to other endpoints in the group,

possibly through a designated trusted source (e.g., the Group

Manager).

For example, an X.509 certificate is provided as its direct binary

serialization. If C509 certificates or CWTs are used as

authentication credentials, each is provided as the binary

serialization of a (possibly tagged) CBOR array. If CCSs are used as

authentication credentials, each is provided as the binary

serialization of a CBOR map.

If authentication credentials are CWTs, then the untagged CWT

associated with an entity is stored in the Security Context and used

as authentication credential for that entity.

If authentication credentials are X.509 / C509 certificates or CWTs

and the authentication credential associated with an entity is

provided within a chain or a bag, then only the end-entity

certificate or end-entity untagged CWT is stored in the Security

Context and used as authentication credential for that entity.

Storing whole authentication credentials rather than only a subset

of those may result in a non-negligible storage overhead. On the

other hand, it also ensures that authentication credentials are

correctly used in a simple, flexible and non-error-prone way, also
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taking into account future credential formats as entirely new or

extending existing ones. In particular, it is ensured that:

When used to derive pairwise keys and when included in the

external additional authenticated data, authentication

credentials can also specify possible metadata and parameters

related to the included public key. Besides the public key

algorithm, these comprise other relevant pieces of information

such as key usage, expiration time, issuer and subject.

All endpoints using another endpoint's authentication credential

use exactly the same binary serialization, as obtained and

distributed by the credential provider (e.g., the Group Manager)

and as originally crafted by the credential issuer. In turn, this

does not require to define and maintain canonical subsets of

authentication credentials and their corresponding encoding, and

spares endpoints from error-prone re-encoding operations.

Depending on the particular deployment and the intended group size,

limiting the storage overhead of endpoints in a group can be an

incentive for system/network administrators to prefer using a

compact format of authentication credentials in the first place.

2.4. Pairwise Keys

Certain signature schemes, such as EdDSA and ECDSA, support a secure

combined signature and encryption scheme. This section specifies the

derivation of "pairwise keys", for use in the pairwise mode defined

in Section 9.

Group OSCORE keys used for both signature and encryption MUST be

used only for purposes related to Group OSCORE. These include the

processing of messages with Group OSCORE, as well as performing

proof-of-possession of private keys, e.g., upon joining a group

through the Group Manager (see Section 3).

2.4.1. Derivation of Pairwise Keys

Using the Group OSCORE Security Context (see Section 2), a group

member can derive AEAD keys, to protect point-to-point communication

between itself and any other endpoint X in the group by means of the

AEAD Algorithm from the Common Context (see Section 2.1.1). The key

derivation of these so-called pairwise keys follows the same

construction as in Section 3.2.1 of [RFC8613]:
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where:

The Pairwise Sender Key is the AEAD key for processing outgoing

messages addressed to endpoint X.

The Pairwise Recipient Key is the AEAD key for processing

incoming messages from endpoint X.

HKDF is the OSCORE HKDF algorithm [RFC8613] from the Common

Context.

The Sender Key from the Sender Context is used as salt in the

HKDF, when deriving the Pairwise Sender Key.

The Recipient Key from the Recipient Context associated with

endpoint X is used as salt in the HKDF, when deriving the

Pairwise Recipient Key.

Sender Auth Cred is the endpoint's own authentication credential

from the Sender Context.

Recipient Auth Cred is the endpoint X's authentication credential

from the Recipient Context associated with the endpoint X.

The Shared Secret is computed as a cofactor Diffie-Hellman shared

secret, see Section 5.7.1.2 of [NIST-800-56A], using the Pairwise

Key Agreement Algorithm. The endpoint uses its private key from

the Sender Context and the other endpoint's public key included

in Recipient Auth Cred. Note the requirement of validation of

public keys in Section 13.15. For X25519 and X448, the procedure

is described in Section 5 of [RFC7748] using public keys mapped

to Montgomery coordinates, see Section 2.4.2.

IKM-Sender is the Input Keying Material (IKM) used in the HKDF

for the derivation of the Pairwise Sender Key. IKM-Sender is the

byte string concatenation of Sender Auth Cred, Recipient Auth

Cred and the Shared Secret. The authentication credentials Sender

Auth Cred and Recipient Auth Cred are binary encoded as defined

in Section 2.3.

IKM-Recipient is the Input Keying Material (IKM) used in the HKDF

for the derivation of the Pairwise Recipient Key. IKM-Recipient

Pairwise Sender Key    = HKDF(Sender Key, IKM-Sender, info, L)

Pairwise Recipient Key = HKDF(Recipient Key, IKM-Recipient, info, L)

with

IKM-Sender    = Sender Auth Cred | Recipient Auth Cred | Shared Secret

IKM-Recipient = Recipient Auth Cred | Sender Auth Cred | Shared Secret
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is the byte string concatenation of Recipient Auth Cred, Sender

Auth Cred and the Shared Secret. The authentication credentials

Recipient Auth Cred and Sender Auth Cred are binary encoded as

defined in Section 2.3.

info and L are as defined in Section 3.2.1 of [RFC8613]. That is:

The 'alg_aead' element of the 'info' array takes the value of

AEAD Algorithm from the Common Context (see Section 2.1.1).

L and the 'L' element of the 'info' array are the size of the

key for the AEAD Algorithm from the Common Context (see 

Section 2.1.1), in bytes.

If EdDSA asymmetric keys are used, the Edward coordinates are mapped

to Montgomery coordinates using the maps defined in Sections 4.1 and 

4.2 of [RFC7748], before using the X25519 and X448 functions defined

in Section 5 of [RFC7748]. For further details, see Section 2.4.2.

ECC asymmetric keys in Montgomery or Weirstrass form are used

directly in the key agreement algorithm without coordinate mapping.

After establishing a partially or completely new Security Context

(see Section 2.5 and Section 3.2), the old pairwise keys MUST be

deleted. Since new Sender/Recipient Keys are derived from the new

group keying material (see Section 2.2), every group member MUST use

the new Sender/Recipient Keys when deriving new pairwise keys.

As long as any two group members preserve the same asymmetric keys,

their Diffie-Hellman shared secret does not change across updates of

the group keying material.

2.4.2. ECDH with Montgomery Coordinates

2.4.2.1. Curve25519

The y-coordinate of the other endpoint's Ed25519 public key is

decoded as specified in Section 5.1.3 of [RFC8032]. The Curve25519

u-coordinate is recovered as u = (1 + y) / (1 - y) (mod p) following

the map in Section 4.1 of [RFC7748]. Note that the mapping is not

defined for y = 1, and that y = -1 maps to u = 0 which corresponds

to the neutral group element and thus will result in a degenerate

shared secret. Therefore implementations MUST abort if the y-

coordinate of the other endpoint's Ed25519 public key is 1 or -1

(mod p).

The private signing key byte strings (= the lower 32 bytes used for

generating the public key, see step 1 of Section 5.1.5 of [RFC8032])

are decoded the same way for signing in Ed25519 and scalar

multiplication in X25519. Hence, to compute the shared secret the

endpoint applies the X25519 function to the Ed25519 private signing
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key byte string and the encoded u-coordinate byte string as

specified in Section 5 of [RFC7748].

2.4.2.2. Curve448

The y-coordinate of the other endpoint's Ed448 public key is decoded

as specified in Section 5.2.3. of [RFC8032]. The Curve448 u-

coordinate is recovered as u = y^2 * (d * y^2 - 1) / (y^2 - 1) (mod

p) following the map from "edwards448" in Section 4.2 of [RFC7748],

and also using the relation x^2 = (y^2 - 1)/(d * y^2 - 1) from the

curve equation. Note that the mapping is not defined for y = 1 or

-1. Therefore implementations MUST abort if the y-coordinate of the

peer endpoint's Ed448 public key is 1 or -1 (mod p).

The private signing key byte strings (= the lower 57 bytes used for

generating the public key, see step 1 of Section 5.2.5 of [RFC8032])

are decoded the same way for signing in Ed448 and scalar

multiplication in X448. Hence, to compute the shared secret the

endpoint applies the X448 function to the Ed448 private signing key

byte string and the encoded u-coordinate byte string as specified in

Section 5 of [RFC7748].

2.4.3. Usage of Sequence Numbers

When using any of its Pairwise Sender Keys, a sender endpoint

including the 'Partial IV' parameter in the protected message MUST

use the current fresh value of the Sender Sequence Number from its

Sender Context (see Section 2.2). That is, the same Sender Sequence

Number space is used for all outgoing messages protected with Group

OSCORE, thus limiting both storage and complexity.

On the other hand, when combining group and pairwise communication

modes, this may result in the Partial IV values moving forward more

often. This can happen when a client engages in frequent or long

sequences of one-to-one exchanges with servers in the group, by

sending requests over unicast. In turn, this contributes to a sooner

exhaustion of the Sender Sequence Number space of the client, which

would then require to take actions for deriving a new Sender Context

before resuming communications in the group (see Section 2.5.2).

2.4.4. Security Context for Pairwise Mode

If the pairwise mode is supported, the Security Context additionally

includes Pairwise Key Agreement Algorithm and the pairwise keys, as

described at the beginning of Section 2.

The pairwise keys as well as the shared secrets used in their

derivation (see Section 2.4.1) may be stored in memory or recomputed

every time they are needed. The shared secret changes only when a

public/private key pair used for its derivation changes, which

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7748#section-5
https://rfc-editor.org/rfc/rfc8032#section-5.2.3.
https://rfc-editor.org/rfc/rfc7748#section-4.2
https://rfc-editor.org/rfc/rfc8032#section-5.2.5
https://rfc-editor.org/rfc/rfc7748#section-5


results in the pairwise keys also changing. Additionally, the

pairwise keys change if the Sender ID changes or if a new Security

Context is established for the group (see Section 2.5.3). In order

to optimize protocol performance, an endpoint may store the derived

pairwise keys for easy retrieval.

In the pairwise mode, the Sender Context includes the Pairwise

Sender Keys to use with the other endpoints (see Figure 1). In order

to identify the right key to use, the Pairwise Sender Key for

endpoint X may be associated with the Recipient ID of endpoint X, as

defined in the Recipient Context (i.e., the Sender ID from the point

of view of endpoint X). In this way, the Recipient ID can be used to

lookup for the right Pairwise Sender Key. This association may be

implemented in different ways, e.g., by storing the pair (Recipient

ID, Pairwise Sender Key) or linking a Pairwise Sender Key to a

Recipient Context.

2.5. Update of Security Context

It is RECOMMENDED that the immutable part of the Security Context is

stored in non-volatile memory, or that it can otherwise be reliably

accessed throughout the operation of the group, e.g., after a device

reboots. However, also immutable parts of the Security Context may

need to be updated, for example due to scheduled key renewal, new or

re-joining members in the group, or the fact that the endpoint

changes Sender ID (see Section 2.5.3).

On the other hand, the mutable parts of the Security Context are

updated by the endpoint when executing the security protocol, but

may nevertheless become outdated, e.g., due to loss of the mutable

Security Context (see Section 2.5.1) or exhaustion of Sender

Sequence Numbers (see Section 2.5.2).

If it is not feasible or practically possible to store and maintain

up-to-date the mutable part in non-volatile memory (e.g., due to

limited number of write operations), the endpoint MUST be able to

detect a loss of the mutable Security Context and MUST accordingly

take the actions defined in Section 2.5.1.

2.5.1. Loss of Mutable Security Context

An endpoint may lose its mutable Security Context, e.g., due to a

reboot (see Section 2.5.1.1) or to an overflow of Recipient Contexts

(see Section 2.5.1.2).

In such a case, the endpoint needs to prevent the re-use of a nonce

with the same AEAD key, and to handle incoming replayed messages.
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2.5.1.1. Reboot and Total Loss

In case a loss of the Sender Context and/or of the Recipient

Contexts is detected (e.g., following a reboot), the endpoint MUST

NOT protect further messages using this Security Context to avoid

reusing an AEAD nonce with the same AEAD key.

In particular, before resuming its operations in the group, the

endpoint MUST retrieve new Security Context parameters from the

Group Manager (see Section 2.5.3) and use them to derive a new

Sender Context (see Section 2.2). Since this includes a newly

derived Sender Key, a server will not reuse the same pair (key,

nonce), even when using the Partial IV of (old re-injected) requests

to build the AEAD nonce for protecting the corresponding responses.

From then on, the endpoint MUST use the latest installed Sender

Context to protect outgoing messages. Also, newly created Recipient

Contexts will have a Replay Window which is initialized as valid.

If not able to establish an updated Sender Context, e.g., because of

lack of connectivity with the Group Manager, the endpoint MUST NOT

protect further messages using the current Security Context and MUST

NOT accept incoming messages from other group members, as currently

unable to detect possible replays.

An adversary may leverage the above to perform a Denial of Service

attack and prevent some group members from communicating altogether.

That is, the adversary can first block the communication path

between the Group Manager and some individual group members. This

can be achieved, for instance, by injecting fake responses to DNS

queries for the Group Manager hostname, or by removing a network

link used for routing traffic towards the Group Manager. Then, the

adversary can induce a reboot for some endpoints in the group, e.g.,

by triggering a short power outage. After that, such endpoints that

have lost their Sender Context and/or Recipient Contexts following

the reboot would not be able to obtain new Security Context

parameters from the Group Manager, as specified above. Thus, they

would not be able to further communicate in the group until

connectivity with the Group Manager is restored.

2.5.1.2. Overflow of Recipient Contexts

After reaching the maximum amount of Recipient Contexts, an endpoint

will experience an overflow when installing a new Recipient Context,

as it requires to first delete an existing one (see Section 2.2).

Every time this happens, the Replay Window of the new Recipient

Context is initialized as not valid. Therefore, the endpoint MUST

take the following actions, before accepting request messages from

the client associated with the new Recipient Context.
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If it is not configured as silent server, the endpoint MUST either:

Retrieve new Security Context parameters from the Group Manager

and derive a new Sender Context, as defined in Section 2.5.1.1;

or

When receiving a first request to process with the new Recipient

Context, use the approach specified in Section 10 and based on

the Echo Option for CoAP [RFC9175], if supported. In particular,

the endpoint MUST use its Partial IV when generating the AEAD

nonce and MUST include the Partial IV in the response message

conveying the Echo Option. If the endpoint supports the CoAP Echo

Option, it is RECOMMENDED to take this approach.

If it is configured exclusively as silent server, the endpoint MUST

wait for the next group rekeying to occur, in order to derive a new

Security Context and re-initialize the Replay Window of each

Recipient Contexts as valid.

2.5.2. Exhaustion of Sender Sequence Number

An endpoint can eventually exhaust the Sender Sequence Number, which

is incremented for each new outgoing message including a Partial IV.

This is the case for requests, Observe notifications [RFC7641] and,

potentially, other responses.

Implementations MUST be able to detect an exhaustion of Sender

Sequence Number, after the endpoint has consumed the largest usable

value. If an implementation's integers support wrapping addition,

the implementation MUST treat Sender Sequence Number as exhausted

when a wrap-around is detected.

Upon exhausting the Sender Sequence Numbers, the endpoint MUST NOT

use this Security Context to protect further messages including a

Partial IV.

The endpoint SHOULD inform the Group Manager, retrieve new Security

Context parameters from the Group Manager (see Section 2.5.3), and

use them to derive a new Sender Context (see Section 2.2).

From then on, the endpoint MUST use its latest installed Sender

Context to protect outgoing messages.

2.5.3. Retrieving New Security Context Parameters

The Group Manager can assist an endpoint with an incomplete Sender

Context to retrieve missing data of the Security Context and thereby

become fully operational in the group again. The two main options

for the Group Manager are described in this section: i) assignment

of a new Sender ID to the endpoint (see Section 2.5.3.1); and ii)
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establishment of a new Security Context for the group (see 

Section 2.5.3.2). The update of the Replay Window in each of the

Recipient Contexts is discussed in Section 6.2.

As group membership changes, or as group members get new Sender IDs

(see Section 2.5.3.1) so do the relevant Recipient IDs that the

other endpoints need to keep track of. As a consequence, group

members may end up retaining stale Recipient Contexts, that are no

longer useful to verify incoming secure messages.

The Recipient ID ('kid') SHOULD NOT be considered as a persistent

and reliable identifier of a group member. Such an indication can be

achieved only by using that member's public key, when verifying

countersignatures of received messages (in group mode), or when

verifying messages integrity-protected with pairwise keying material

derived from authentication credentials and associated asymmetric

keys (in pairwise mode).

Furthermore, applications MAY define policies to: i) delete

(long-)unused Recipient Contexts and reduce the impact on storage

space; as well as ii) check with the Group Manager that an

authentication credential with the public key included therein is

currently the one associated with a 'kid' value, after a number of

consecutive failed verifications.

2.5.3.1. New Sender ID for the Endpoint

The Group Manager may assign a new Sender ID to an endpoint, while

leaving the Gid, Master Secret and Master Salt unchanged in the

group. In this case, the Group Manager MUST assign a Sender ID that

has not been used in the group since the latest time when the

current Gid value was assigned to the group (see Section 3.2).

Having retrieved the new Sender ID, and potentially other missing

data of the immutable Security Context, the endpoint can derive a

new Sender Context (see Section 2.2). When doing so, the endpoint

resets the Sender Sequence Number in its Sender Context to 0, and

derives a new Sender Key. This is in turn used to possibly derive

new Pairwise Sender Keys.

From then on, the endpoint MUST use its latest installed Sender

Context to protect outgoing messages.

The assignment of a new Sender ID may be the result of different

processes. The endpoint may request a new Sender ID, e.g., because

of exhaustion of Sender Sequence Numbers (see Section 2.5.2). An

endpoint may request to re-join the group, e.g., because of losing

its mutable Security Context (see Section 2.5.1), and is provided

with a new Sender ID together with the latest immutable Security

Context.
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For the other group members, the Recipient Context corresponding to

the old Sender ID becomes stale (see Section 3.2).

2.5.3.2. New Security Context for the Group

The Group Manager may establish a new Security Context for the group

(see Section 3.2). The Group Manager does not necessarily establish

a new Security Context for the group if one member has an outdated

Security Context (see Section 2.5.3.1), unless that was already

planned or required for other reasons.

All the group members need to acquire new Security Context

parameters from the Group Manager. Once having acquired new Security

Context parameters, each group member performs the following

actions.

From then on, it MUST NOT use the current Security Context to

start processing new messages for the considered group.

It completes any ongoing message processing for the considered

group.

It derives and install a new Security Context. In particular:

It re-derives the keying material stored in its Sender Context

and Recipient Contexts (see Section 2.2). The Master Salt used

for the re-derivations is the updated Master Salt parameter if

provided by the Group Manager, or the empty byte string

otherwise.

It resets its Sender Sequence Number in its Sender Context to

0.

It re-initializes the Replay Window of each Recipient Context.

For each ongoing Non-Notification Group Exchange where it is a

client and that it wants to keep active, it resets to 0 the

Response Number of each associated server (see Section 6.1).

For each ongoing observation where it is an observer client

and that it wants to keep active, it resets to 0 the

Notification Number of each associated server (see 

Section 6.1).

From then on, it can resume processing new messages for the

considered group. In particular:

It MUST use its latest installed Sender Context to protect

outgoing messages.
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It SHOULD use its latest installed Recipient Contexts to process

incoming messages, unless application policies admit to

temporarily retain and use the old, recent, Security Context (see

Section 13.5.1).

The distribution of a new Gid and Master Secret may result in

temporarily misaligned Security Contexts among group members. In

particular, this may result in a group member not being able to

process messages received right after a new Gid and Master Secret

have been distributed. A discussion on practical consequences and

possible ways to address them, as well as on how to handle the old

Security Context, is provided in Section 13.5.

3. The Group Manager

As with OSCORE, endpoints communicating with Group OSCORE need to

establish the relevant Security Context. Group OSCORE endpoints need

to acquire OSCORE input parameters, information about the group(s)

and about other endpoints in the group(s). This document is based on

the existence of an entity called Group Manager and responsible for

the group, but it does not mandate how the Group Manager interacts

with the group members. The list of responsibilities of the Group

Manager is compiled in Section 3.3.

A possible Group Manager to use is specified in 

[I-D.ietf-ace-key-groupcomm-oscore], where the join process is based

on the ACE framework for authentication and authorization in

constrained environments [RFC9200].

The Group Manager assigns an integer Key Generation Number to each

of its groups, identifying the current version of the keying

material used in that group. The first Key Generation Number

assigned to every group MUST be 0. Separately for each group, the

value of the Key Generation Number increases strictly monotonically,

each time the Group Manager distributes new keying material to that

group (see Section 3.2). That is, if the current Key Generation

Number for a group is X, then X+1 will denote the keying material

distributed and used in that group immediately after the current

one.

The Group Manager assigns unique Group Identifiers (Gids) to the

groups under its control. Also, for each group, the Group Manager

assigns unique Sender IDs (and thus Recipient IDs) to the respective

group members. According to a hierarchical approach, the Gid value

assigned to a group is associated with a dedicated space for the

values of Sender ID and Recipient ID of the members of that group.

When an endpoint (re-)joins a group, it is provided also with the

current Gid to use in the group.
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The Group Manager maintains records of the authentication

credentials of endpoints in a group, and provides information about

the group and its members to other group members and to external

entities with selected roles (see Section 3.1). Upon endpoints'

joining, the Group Manager collects such authentication credentials

and MUST verify proof-of-possession of the respective private key.

An endpoint acquires group data such as the Gid and OSCORE input

parameters including its own Sender ID from the Group Manager, and

provides information about its authentication credential to the

Group Manager, for example upon joining the group.

Furthermore, when joining the group or later on as a group member,

an endpoint can retrieve from the Group Manager the authentication

credential of the Group Manager as well as the authentication

credential and other information associated with other members of

the group, with which it can derive the corresponding Recipient

Context. Together with the requested authentication credentials, the

Group Manager MUST provide the Sender ID of the associated group

members and the current Key Generation Number in the group. An

application can configure a group member to asynchronously retrieve

information about Recipient Contexts, e.g., by Observing [RFC7641] a

resource at the Group Manager to get updates on the group

membership.

3.1. Support for Additional Entities

The Group Manager MAY serve additional entities acting as signature

checkers, e.g., intermediary gateways. These entities do not join a

group as members, but can retrieve authentication credentials of

group members and other selected group data from the Group Manager,

in order to solely verify countersignatures of messages protected in

group mode (see Section 8.5).

In order to verify countersignatures of messages in a group, a

signature checker needs to retrieve the following information about

that group from the Group Manager.

The current ID Context (Gid) used in the group.

The authentication credentials of the group members and the

authentication credential of the Group Manager.

If the signature checker is provided with a CWT for a given

entity, then the authentication credential associated with that

entity that the signature checker stores and uses is the untagged

CWT.

If the signature checker is provided with a chain or a bag of X.

509 / C509 certificates or of CWTs for a given entity, then the
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authentication credential associated with that entity that the

signature checker stores and uses is just the end-entity

certificate or end-entity untagged CWT.

The current Group Encryption Key (see Section 2.1.6).

The identifiers of the algorithms used in the group (see 

Section 2), i.e.: i) Signature Encryption Algorithm and Signature

Algorithm; and ii) AEAD Algorithm and Pairwise Key Agreement

Algorithm, if the group uses also the pairwise mode.

A signature checker MUST be authorized before it can retrieve such

information. To this end, the same method mentioned above based on

the ACE framework [RFC9200] can be used.

3.2. Management of Group Keying Material

In order to establish a new Security Context for a group, the Group

Manager MUST generate and assign to the group a new Group Identifier

(Gid) and a new value for the Master Secret parameter. When doing

so, a new value for the Master Salt parameter MAY also be generated

and assigned to the group. When establishing the new Security

Context, the Group Manager should preserve the current value of the

Sender ID of each group member.

The specific group key management scheme used to distribute new

keying material is out of the scope of this document. A simple group

key management scheme is defined in 

[I-D.ietf-ace-key-groupcomm-oscore]. When possible, the delivery of

rekeying messages should use a reliable transport, in order to

reduce chances of group members missing a rekeying instance.

The set of group members should not be assumed as fixed, i.e., the

group membership is subject to changes, possibly on a frequent

basis.

The Group Manager MUST rekey the group when one or more endpoints

leave the group. An endpoint may leave the group at own initiative,

or may be evicted from the group by the Group Manager, e.g., in case

an endpoint is compromised, or is suspected to be compromised. In

either case, rekeying the group excludes such endpoints from future

communications in the group, and thus preserves forward security. If

a network node is compromised or suspected to be compromised, the

Group Manager MUST evict from the group all the endpoints hosted by

that node that are member of the group and rekey the group

accordingly.

If required by the application, the Group Manager MUST rekey the

group also before one or more new joining endpoints are added to the

group, thus preserving backward security.
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The establishment of the new Security Context for the group takes

the following steps.

The Group Manager MUST increment the Key Generation Number for

the group by 1.

The Group Manager MUST build a set of stale Sender IDs

including:

The Sender IDs that, during the current Gid, were both

assigned to an endpoint and subsequently relinquished (see 

Section 2.5.3.1).

The current Sender IDs of the group members that the

upcoming group rekeying aims to exclude from future group

communications, if any.

The Group Manager rekeys the group, by distributing:

The new keying material, i.e., the new Master Secret, the

new Gid and (optionally) the new Master Salt.

The new Key Generation Number from step 1.

The set of stale Sender IDs from step 2.

Further information may be distributed, depending on the

specific group key management scheme used in the group.

When receiving the new group keying materal, a group member

considers the received stale Sender IDs and performs the following

actions.

The group member MUST remove every authentication credential

associated with a stale Sender ID from its list of group members'

authentication credentials used in the group.

The group member MUST delete each of its Recipient Contexts used

in the group whose corresponding Recipient ID is a stale Sender

ID.

After that, the group member installs the new keying material and

derives the corresponding new Security Context.

A group member might miss one group rekeying or more consecutive

instances. As a result, the group member will retain old group

keying material with Key Generation Number GEN_OLD. Eventually, the

group member can notice the discrepancy, e.g., by repeatedly failing

to verify incoming messages, or by explicitly querying the Group

Manager for the current Key Generation Number. Once the group member

¶

1. 

¶

2. 

¶

*

¶

*

¶

3. ¶

*

¶

* ¶

* ¶

¶

¶

*

¶

*

¶

¶



gains knowledge of having missed a group rekeying, it MUST delete

the old keying material it stores.

Then, the group member proceeds according to the following steps.

The group member retrieves from the Group Manager the current

group keying material, together with the current Key Generation

Number GEN_NEW. The group member MUST NOT install the obtained

group keying material yet.

The group member asks the Group Manager for the set of stale

Sender IDs.

If no exact indication can be obtained from the Group Manager,

the group member MUST remove all the authentication credentials

from its list of group members' authentication credentials used

in the group and MUST delete all its Recipient Contexts used in

the group.

Otherwise, the group member MUST remove every authentication

credential associated with a stale Sender ID from its list of

group members' authentication credentials used in the group,

and MUST delete each of its Recipient Contexts used in the

group whose corresponding Recipient ID is a stale Sender ID.

The group member installs the current group keying material,

and derives the corresponding new Security Context.

Alternatively, the group member can re-join the group. In such a

case, the group member MUST take one of the following two actions.

The group member performs steps 2 and 3 above. Then, the group

member re-joins the group.

The group member re-joins the group with the same roles it

currently has in the group, and, during the re-joining process,

it asks the Group Manager for the authentication credentials of

all the current group members.

Then, given Z the set of authentication credentials received from

the Group Manager, the group member removes every authentication

credential which is not in Z from its list of group members'

authentication credentials used in the group, and deletes each of

its Recipient Contexts used in the group that does not include

any of the authentication credentials in Z.

By removing authentication credentials and deleting Recipient

Contexts associated with stale Sender IDs, it is ensured that a

recipient endpoint storing the latest group keying material does not

store the authentication credentials of sender endpoints that are
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not current group members. This in turn allows group members to rely

on stored authentication credentials to confidently assert the group

membership of sender endpoints, when receiving incoming messages

protected in group mode (see Section 8).

3.2.1. Recycling of Identifiers

This section specifies how the Group Manager handles and possibly

reassigns Gid values and Sender ID values in a group.

3.2.1.1. Recycling of Group Identifiers

Since the Gid value changes every time a group is rekeyed, it can

happen that, after several rekeying instances, the whole space of

Gid values has been used for the group in question. When this

happens, the Group Manager has no available Gid values to use that

have never been assigned to the group during the group's lifetime.

The occurrence of such an event and how long it would take to occur

depend on the format and encoding of Gid values used in the group

(see, e.g., Appendix C), as well as on the frequency of rekeying

instances yielding a change of Gid value. Independently for each

group under its control, the Group Manager can take one of the two

following approaches.

The Group Manager does not reassign Gid values. That is, once the

whole space of Gid values has been used for a group, the Group

Manager terminates the group and may re-establish a new group.

While the Gid value changes every time a group is rekeyed, the

Group Manager can reassign Gid values previously used during a

group's lifetime. By doing so, the group can continue to exist

even once the whole space of Gid values has been used.

The Group Manager MAY support and use this approach. In such a

case, the Group Manager MUST take additional actions when

handling Gid values and rekeying the group, as specified below.

When a node (re-)joins the group and it is provided with the

current Gid to use in the group, the Group Manager considers such

a Gid as the Birth Gid of that endpoint for that group. For each

group member, the Group Manager MUST store the latest

corresponding Birth Gid until that member leaves the group. In

case the endpoint has in fact re-joined the group, the newly

determined Birth Gid overwrites the one currently stored.

When establishing a new Security Context for the group, the Group

Manager takes the additional following step between steps 1 and 2

of Section 3.2.
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A. The Group Manager MUST check if the new Gid to be distributed

is equal to the Birth Gid of any of the current group members. If

any of such "elder members" is found in the group, then:

The Group Manager MUST evict the elder members from the group.

That is, the Group Manager MUST terminate their membership and

MUST rekey the group in such a way that the new keying

material is not provided to those evicted elder members.

This ensures that: i) an Observe notification [RFC7641] can

never successfully match against the Observe requests of two

different observations; and ii) a non-notification response

can never successfully match against the group requests of two

different Non-Notification Group Exchanges. In fact, the

excluded elder members would eventually re-join the group,

thus terminating any of their ongoing (long-lasting)

observations (see Section 6.1) and Non-Notification Group

Exchanges (see Section 6.4.1).

Therefore, it is ensured by construction that no client can

have with the same server two ongoing observations, or two

ongoing Non-Notification Group Exchanges, or one ongoing

observation and one ongoing Non-Notification Group Exchange,

such that the two respective requests were protected using the

same Partial IV, Gid and Sender ID.

Until a further following group rekeying, the Group Manager

MUST store the list of those latest-evicted elder members. If

any of those endpoints re-joins the group before a further

following group rekeying occurs, the Group Manager MUST NOT

rekey the group upon their re-joining. When one of those

endpoints re-joins the group, the Group Manager can rely,

e.g., on the ongoing secure communication association to

recognize the endpoint as included in the stored list.

3.2.1.2. Recycling of Sender IDs

From the moment when a Gid is assigned to a group until the moment a

new Gid is assigned to that same group, the Group Manager MUST NOT

reassign a Sender ID within the group. This prevents to reuse a

Sender ID ('kid') with the same Gid, Master Secret and Master Salt.

Within this restriction, the Group Manager can assign a Sender ID

used under an old Gid value (including under a same, recycled Gid

value), thus avoiding Sender ID values to irrecoverably grow in

size.

Even when an endpoint joining a group is recognized as a current

member of that group, e.g., through the ongoing secure communication

association, the Group Manager MUST assign a new Sender ID different
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than the one currently used by the endpoint in the group, unless the

group is rekeyed first and a new Gid value is established.

3.2.1.3. Relation between Identifiers and Keying Material

Figure 2 overviews the different identifiers and keying material

components, considering their relation and possible reuse across

group rekeying.

Figure 2: Relations among keying material components.

3.3. Responsibilities of the Group Manager

The Group Manager is responsible for performing the following tasks:

Creating and managing OSCORE groups. This includes the

assignment of a Gid to every newly created group, ensuring

uniqueness of Gids within the set of its OSCORE groups and,

optionally, the secure recycling of Gids.

Defining policies for authorizing the joining of its OSCORE

groups.

Handling the join process to add new endpoints as group

members.

Establishing the Common Context part of the Security Context,

and providing it to authorized group members during the join

process, together with the corresponding Sender Context.

¶

¶

Components changed in lockstep

    upon a group rekeying

+----------------------------+            * Changing a kid does not

|                            |              need changing the Group ID

| Master               Group |<--> kid1

| Secret <---> o <--->  ID   |            * A kid is not reassigned

|              ^             |<--> kid2     under the ongoing usage of

|              |             |              the current Group ID

|              |             |<--> kid3

|              v             |            * Upon changing the Group ID,

|         Master Salt        | ... ...      every current kid should

|         (optional)         |              be preserved for efficient

|                            |              key rollover

| The Key Generation Number  |

| is incremented by 1        |            * After changing Group ID, an

|                            |              unused kid can be assigned,

+----------------------------+              even if it was used before

                                            the Group ID change
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Updating the Key Generation Number and the Gid of its OSCORE

groups, upon renewing the respective Security Context.

Generating and managing Sender IDs within its OSCORE groups, as

well as assigning and providing them to new endpoints during

the join process, or to current group members upon request of

renewal or re-joining. This includes ensuring that:

Each Sender ID is unique within each of the OSCORE groups;

Each Sender ID is not reassigned within the same group since

the latest time when the current Gid value was assigned to

the group. That is, the Sender ID is not reassigned even to

a current group member re-joining the same group, without a

rekeying happening first.

Defining communication policies for each of its OSCORE groups,

and signaling them to new endpoints during the join process.

Renewing the Security Context of an OSCORE group upon

membership change, by revoking and renewing common security

parameters and keying material (rekeying).

Providing the management keying material that a new endpoint

requires to participate in the rekeying process, consistently

with the key management scheme used in the group joined by the

new endpoint.

Assisting a group member that has missed a group rekeying

instance to understand which authentication credentials and

Recipient Contexts to delete, as associated with former group

members.

Acting as key repository, in order to handle the authentication

credentials of the members of its OSCORE groups, and providing

such authentication credentials to other members of the same

group upon request. The actual storage of authentication

credentials may be entrusted to a separate secure storage

device or service.

Validating that the format and parameters of authentication

credentials of group members are consistent with the public key

algorithm and related parameters used in the respective OSCORE

group.

The Group Manager specified in [I-D.ietf-ace-key-groupcomm-oscore]

provides these functionalities.
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4. The COSE Object

Building on Section 5 of [RFC8613], this section defines how to use

COSE [RFC9052] to wrap and protect data in the original message.

OSCORE uses the untagged COSE_Encrypt0 structure with an

Authenticated Encryption with Associated Data (AEAD) algorithm.

Unless otherwise specified, the following modifications apply for

both the group mode and the pairwise mode of Group OSCORE.

4.1. Countersignature

When protecting a message in group mode, the 'unprotected' field

MUST additionally include the following parameter:

COSE_Countersignature0: its value is set to the encrypted

countersignature of the COSE object, namely ENC_SIGNATURE. That

is:

The countersignature of the COSE object, namely SIGNATURE, is

computed by the sender as described in Sections 3.2 and 3.3 of 

[RFC9338], by using its private key and according to the

Signature Algorithm in the Security Context.

In particular, the Countersign_structure contains the context

text string "CounterSignature0", the external_aad as defined

in Section 4.3 of this document, and the ciphertext of the

COSE object as payload.

The encrypted countersignature, namely ENC_SIGNATURE, is

computed as

ENC_SIGNATURE = SIGNATURE XOR KEYSTREAM

where KEYSTREAM is derived as per Section 4.1.1.

4.1.1. Keystream Derivation

The following defines how an endpoint derives the keystream

KEYSTREAM, used to encrypt/decrypt the countersignature of an

outgoing/incoming message M protected in group mode.

The keystream SHALL be derived as follows, by using the HKDF

Algorithm from the Common Context (see Section 3.2 of [RFC8613]),

which consists of composing the HKDF-Extract and HKDF-Expand steps 

[RFC5869].

KEYSTREAM = HKDF(salt, IKM, info, L)
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The input parameters of HKDF are as follows.

salt takes as value the Partial IV (PIV) used to protect M. Note

that, if M is a response, salt takes as value either: i) the

fresh Partial IV generated by the server and included in the

response; or ii) the same Partial IV of the request generated by

the client and not included in the response.

IKM is the Group Encryption Key from the Common Context (see 

Section 2.1.6).

info is the serialization of a CBOR array consisting of (the

notation follows [RFC8610]):

where:

id is the Sender ID of the endpoint that generated PIV.

id_context is the ID Context (Gid) used when protecting M.

Note that, in case of group rekeying, a server might use a

different Gid when protecting a response, compared to the Gid

that it used to verify (that the client used to protect) the

request, see Section 8.3.

type is the CBOR simple value "true" (0xf5) if M is a request, or

the CBOR simple value "false" (0xf4) otherwise.

L is the size of the countersignature, as per Signature Algorithm

from the Common Context (see Section 2.1.5), in bytes.

4.1.2. Clarifications on Using a Countersignature

Note that the literature commonly refers to a countersignature as a

signature computed by an entity A over a document already protected

by a different entity B.

However, the COSE_Countersignature0 structure belongs to the set of

abbreviated countersignatures defined in Sections 3.2 and 3.3 of 

[RFC9338], which were designed primarily to deal with the problem of

encrypted group messaging, but where it is required to know who

originated the message.

¶

*

¶

*

¶

*

¶

info = [

  id : bstr,

  id_context : bstr,

  type : bool,

  L: uint

]
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Since the parameters for computing or verifying the abbreviated

countersignature generated by A are provided by the same context

used to describe the security processing performed by B and to be

countersigned, these structures are applicable also when the two

entities A and B are actually the same one, like the sender of a

Group OSCORE message protected in group mode.

4.2. The 'kid' and 'kid context' parameters

The value of the 'kid' parameter in the 'unprotected' field of

response messages MUST be set to the Sender ID of the endpoint

transmitting the message, if the request was protected in group

mode. That is, unlike in [RFC8613], the 'kid' parameter is always

present in responses to a request that was protected in group mode.

The value of the 'kid context' parameter in the 'unprotected' field

of requests messages MUST be set to the ID Context, i.e., the Group

Identifier value (Gid) of the group. That is, unlike in [RFC8613],

the 'kid context' parameter is always present in requests.

4.3. external_aad

The external_aad of the Additional Authenticated Data (AAD) is

different compared to OSCORE [RFC8613], and is defined in this

section.

The same external_aad structure is used in group mode and pairwise

mode for authenticated encryption/decryption (see Section 5.3 of

[RFC9052]), as well as in group mode for computing and verifying the

countersignature (see Sections 3.2 and 3.3 of [RFC9338]).

In particular, the external_aad includes also the Signature

Algorithm, the Signature Encryption Algorithm, the Pairwise Key

Agreement Algorithm, the value of the 'kid context' in the COSE

object of the request, the OSCORE option of the protected message,

the sender's authentication credential, and the Group Manager's

authentication credential.

The external_aad SHALL be a CBOR array wrapped in a bstr object as

defined below, following the notation of [RFC8610]:
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Figure 3: external_aad

Compared with Section 5.4 of [RFC8613], the aad_array has the

following differences.

The 'algorithms' array is extended as follows.

The parameter 'alg_aead' MUST be set to the CBOR simple value

"null" (0xf6) if the group does not use the pairwise mode,

regardless whether the endpoint supports the pairwise mode or

not. Otherwise, this parameter MUST encode the value of AEAD

Algorithm from the Common Context (see Section 2.1.1), as per 

Section 5.4 of [RFC8613].

Furthermore, the 'algorithms' array additionally includes:

'alg_signature_enc', which specifies Signature Encryption

Algorithm from the Common Context (see Section 2.1.5). This

parameter MUST be set to the CBOR simple value "null" (0xf6)

if the group does not use the group mode, regardless whether

the endpoint supports the group mode or not. Otherwise, this

parameter MUST encode the value of Signature Encryption

Algorithm as a CBOR integer or text string, consistently with

the "Value" field in the "COSE Algorithms" Registry for this

AEAD algorithm.

'alg_signature', which specifies Signature Algorithm from the

Common Context (see Section 2.1.5). This parameter MUST be set

to the CBOR simple value "null" (0xf6) if the group does not

use the group mode, regardless whether the endpoint supports

the group mode or not. Otherwise, this parameter MUST encode

the value of Signature Algorithm as a CBOR integer or text

external_aad = bstr .cbor aad_array

aad_array = [

   oscore_version : uint,

   algorithms : [alg_aead : int / tstr / null,

                 alg_signature_enc : int / tstr / null,

                 alg_signature : int / tstr / null,

                 alg_pairwise_key_agreement : int / tstr / null],

   request_kid : bstr,

   request_piv : bstr,

   options : bstr,

   request_kid_context : bstr,

   OSCORE_option: bstr,

   sender_cred: bstr,

   gm_cred: bstr / null

]
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string, consistently with the "Value" field in the "COSE

Algorithms" Registry for this signature algorithm.

'alg_pairwise_key_agreement', which specifies Pairwise Key

Agreement Algorithm from the Common Context (see 

Section 2.1.5). This parameter MUST be set to the CBOR simple

value "null" (0xf6) if the group does not use the pairwise

mode, regardless whether the endpoint supports the pairwise

mode or not. Otherwise, this parameter MUST encode the value

of Pairwise Key Agreement Algorithm as a CBOR integer or text

string, consistently with the "Value" field in the "COSE

Algorithms" Registry for this HKDF algorithm.

The new element 'request_kid_context' contains the value of the

'kid context' in the COSE object of the request (see 

Section 4.2).

This enables endpoints to safely keep an observation [RFC7641] or

a Non-Notification Group Exchange active beyond a possible change

of Gid (i.e., of ID Context), following a group rekeying (see 

Section 3.2). In fact, it ensures that every response, regardless

whether it is an Observe notification or not, cryptographically

matches with only one request, rather than with multiple ones

that were protected with different keying material but share the

same 'request_kid' and 'request_piv' values.

The new element 'OSCORE_option', containing the value of the

OSCORE Option present in the protected message, encoded as a

binary string. This prevents the attack described in Section 13.7

when using the group mode, as further explained in 

Section 13.7.2.

Note for implementation: this construction requires the OSCORE

option of the message to be generated and finalized before

computing the ciphertext of the COSE_Encrypt0 object (when using

the group mode or the pairwise mode) and before calculating the

countersignature (when using the group mode). Also, the aad_array

needs to be large enough to contain the largest possible OSCORE

option.

The new element 'sender_cred', containing the sender's

authentication credential. This parameter MUST be set to a CBOR

byte string, which encodes the sender's authentication credential

in its original binary representation made available to other

endpoints in the group (see Section 2.3).

The new element 'gm_cred', containing the Group Manager's

authentication credential. If no Group Manager maintains the

group, this parameter MUST encode the CBOR simple value "null"
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(0xf6). Otherwise, this parameter MUST be set to a CBOR byte

string, which encodes the Group Manager's authentication

credential in its original binary representation made available

to other endpoints in the group (see Section 2.3). This prevents

the attack described in Section 13.8.

5. OSCORE Header Compression

The OSCORE header compression defined in Section 6 of [RFC8613] is

used, with the following differences.

The payload of the OSCORE message SHALL encode the ciphertext of

the COSE_Encrypt0 object. In the group mode, the ciphertext above

is concatenated with the value of the COSE_Countersignature0 of

the COSE object, computed as described in Section 4.1.

This document defines the usage of the sixth least significant

bit, called "Group Flag", in the first byte of the OSCORE option

containing the OSCORE flag bits. This flag bit is specified in 

Section 14.1.

The Group Flag MUST be set to 1 if the OSCORE message is

protected using the group mode (see Section 8).

The Group Flag MUST be set to 0 if the OSCORE message is

protected using the pairwise mode (see Section 9). The Group Flag

MUST also be set to 0 for ordinary OSCORE messages processed

according to [RFC8613].

5.1. Examples of Compressed COSE Objects

This section covers a list of OSCORE Header Compression examples of

Group OSCORE used in group mode (see Section 5.1.1) or in pairwise

mode (see Section 5.1.2).

The examples assume that the COSE_Encrypt0 object is set (which

means the CoAP message and cryptographic material is known). Note

that the examples do not include the full CoAP unprotected message

or the full Security Context, but only the input necessary to the

compression mechanism, i.e., the COSE_Encrypt0 object. The output is

the compressed COSE object as defined in Section 5 and divided into

two parts, since the object is transported in two CoAP fields:

OSCORE option and payload.

The examples assume that the plaintext (see Section 5.3 of

[RFC8613]) is 6 bytes long, and that the AEAD tag is 8 bytes long,

hence resulting in a ciphertext which is 14 bytes long. When using

the group mode, the COSE_Countersignature0 byte string as described

in Section 4 is assumed to be 64 bytes long.
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5.1.1. Examples in Group Mode

Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =

0x25, Partial IV = 5 and kid context = 0x44616c.

Response with ciphertext = 0x60b035059d9ef5667c5a0710823b, kid =

0x52 and no Partial IV.

5.1.2. Examples in Pairwise Mode

Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =

0x25, Partial IV = 5 and kid context = 0x44616c.

*

¶

   * Before compression (96 bytes):

      [

      h'',

      { 4:h'25', 6:h'05', 10:h'44616c', 11:h'de9e ... f1' },

      h'aea0155667924dff8a24e4cb35b9'

      ]

¶

   * After compression (85 bytes):

      Flag byte: 0b00111001 = 0x39 (1 byte)

      Option Value: 0x39 05 03 44 61 6c 25 (7 bytes)

      Payload: 0xaea0155667924dff8a24e4cb35b9 de9e ... f1

      (14 bytes + size of the encrypted countersignature)

¶

*

¶

   * Before compression (88 bytes):

      [

      h'',

      { 4:h'52', 11:h'ca1e ... b3' },

      h'60b035059d9ef5667c5a0710823b'

      ]

¶

   * After compression (80 bytes):

      Flag byte: 0b00101000 = 0x28 (1 byte)

      Option Value: 0x28 52 (2 bytes)

      Payload: 0x60b035059d9ef5667c5a0710823b ca1e ... b3

      (14 bytes + size of the encrypted countersignature)

¶

*

¶



Response with ciphertext = 0x60b035059d9ef5667c5a0710823b and no

Partial IV.

6. Message Binding, Sequence Numbers, Freshness and Replay Protection

Like OSCORE, also Group OSCORE provides message binding of responses

to requests, as well as uniqueness of AEAD (key, nonce) pair (see

Sections 7.1 and 7.2 of [RFC8613], respectively).

Furthermore, the following also holds for Group OSCORE.

6.1. Supporting Observe and Multiple Non-Notification Responses

A client maintains for each ongoing Non-Notification Group Exchange

one Response Number for each different server. Then, separately for

each server, the client uses the associated Response Number to

perform ordering and replay protection of non-notification responses

received from that server (see Section 6.4.1).

   * Before compression (29 bytes):

      [

      h'',

      { 4:h'25', 6:h'05', 10:h'44616c' },

      h'aea0155667924dff8a24e4cb35b9'

      ]

¶

   * After compression (21 bytes):

      Flag byte: 0b00011001 = 0x19 (1 byte)

      Option Value: 0x19 05 03 44 61 6c 25 (7 bytes)

      Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

¶

*

¶

   * Before compression (18 bytes):

      [

      h'',

      {},

      h'60b035059d9ef5667c5a0710823b'

      ]

¶

   * After compression (14 bytes):

      Flag byte: 0b00000000 = 0x00 (1 byte)

      Option Value: 0x (0 bytes)

      Payload: 0x60b035059d9ef5667c5a0710823b (14 bytes)

¶

¶

¶
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When Observe [RFC7641] is used, a client maintains for each ongoing

observation one Notification Number for each different server. Then,

separately for each server, the client uses the associated

Notification Number to perform ordering and replay protection of

notifications received from that server (see Section 8.4.1).

Group OSCORE allows to preserve a Non-Notification Group Exchange

and an observation active indefinitely, even in case the group is

rekeyed, with consequent change of ID Context, or in case the client

obtains a new Sender ID.

As defined in Section 8, this is achieved by the client and

server(s) storing the 'kid' and 'kid context' used in the original

request, throughout the whole duration of the Non-Notification Group

Exchange or of the observation.

Upon leaving the group or before re-joining the group, a group

member MUST terminate all the ongoing Non-Notification Group

Exchanges and observations that it has started in the group as a

client, and hence frees up the CoAP Token associated with the

corresponding request.

6.2. Update of Replay Window

Sender Sequence Numbers seen by a server as Partial IV values in

request messages can spontaneously increase at a fast pace, for

example when a client exchanges unicast messages with other servers

using the Group OSCORE Security Context. As in OSCORE [RFC8613], a

server always needs to accept such increases and accordingly updates

the Replay Window in each of its Recipient Contexts.

As discussed in Section 2.5.1, a newly created Recipient Context

would have an invalid Replay Window, if its installation has

required to delete another Recipient Context. Hence, the server is

not able to verify if a request from the client associated with the

new Recipient Context is a replay. When this happens, the server

MUST validate the Replay Window of the new Recipient Context, before

accepting messages from the associated client (see Section 2.5.1).

Furthermore, when the Group Manager establishes a new Security

Context for the group (see Section 2.5.3.2), every server re-

initializes the Replay Window in each of its Recipient Contexts.

6.3. Message Freshness

When receiving a request from a client for the first time, the

server is not synchronized with the client's Sender Sequence Number,

i.e., it is not able to verify if that request is fresh. This

applies to a server that has just joined the group, with respect to

¶
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already present clients, and recurs as new clients are added as

group members.

During its operations in the group, the server may also lose

synchronization with a client's Sender Sequence Number. This can

happen, for instance, if the server has rebooted or has deleted its

previously synchronized version of the Recipient Context for that

client (see Section 2.5.1).

If the application requires message freshness, e.g., according to

time- or event-based policies, the server has to (re-)synchronize

with a client's Sender Sequence Number before delivering request

messages from that client to the application. To this end, the

server can use the approach in Section 10 based on the Echo Option

for CoAP [RFC9175], as a variant of the approach defined in 

Appendix B.1.2 of [RFC8613] applicable to Group OSCORE.

Assuming an honest server, the message binding guarantees that a

response is not older than its request. Hence, the following holds.

For non-notification responses to a non-group request, there is

at most a single such response and only from one, individually

targeted server in the group. Therefore, absolute freshness of

such responses is guaranteed.

For non-notification responses to a group request, multiple such

responses can be received from the same server in reply to the

same group request, until the CoAP Token value associated with

the group request is freed up [I-D.ietf-core-groupcomm-bis].

Therefore, the absolute freshness of such responses gets weaker

with time.

For notifications, the absolute freshness gets weaker with time,

and it is RECOMMENDED that the client regularly re-register the

observation.

For requests, notifications, and non-notification responses to

group requests, Group OSCORE also provides relative freshness.

That is, the received Partial IV allows a recipient to determine

the relative order of requests or responses.

It is not guaranteed that a misbehaving server did not create the

response before receiving the request, i.e., Group OSCORE does

not verify server aliveness.

6.4. Replay Protection

Like in OSCORE [RFC8613], the replay protection relies on the

Partial IV of incoming messages. The operation of validating the

Partial IV and performing replay protection MUST be atomic.
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The protection from replay of requests is performed as per 

Section 7.4 of [RFC8613], separately for each client by leveraging

the Replay Window in the corresponding Recipient Context. When

supporting Observe [RFC7641], the protection from replay of

notifications is performed as per Section 7.4.1 of [RFC8613].

6.4.1. Replay Protection of Non-notification Responses

This section refers specifically to non-notification responses to a

group request. A client can receive multiple such responses from the

same server in the group as a reply to the same group request, until

the CoAP Token value associated with the group request is freed up 

[I-D.ietf-core-groupcomm-bis].

When replying to a group request with a non-notification response

(both successful and error), a server MUST include a Partial IV,

except for the first non-notification response where the Partial IV

MAY be omitted. A server supporting Observe [RFC7641] MUST NOT reply

to a group request with 2.xx responses of which some are

notifications and some are not.

When processing responses from a same server to an Observe

registration request, a client supporting Observe MUST accept either

only notifications or only non-notification responses. The specific

way to achieve this is implementation specific.

In order to protect against replay, the client SHALL maintain for

each ongoing Non-Notification Group Exchange one Response Number for

each different server. The Response Number is a non-negative integer

containing the largest Partial IV of the received non-notification

responses from that server within the Non-Notification Group

Exchange.

Then, separately for each server, the client uses the associated

Response Number to perform ordering and replay protection of the

non-notification responses to a group request received from that

server, by comparing their Partial IVs with one another and against

the Response Number.

For each server, the associated Response Number is initialized to

the Partial IV of the first successfully verified non-notification

response to a group request. A client MUST only accept at most one

such response without Partial IV from each server in the group, and

treat it as the oldest non-notification response to the group

request received from that server.

A client receiving a non-notification response to a group request

containing a Partial IV SHALL compare the Partial IV with the

Response Number associated with the replying server within the

ongoing Non-Notification Group Exchange. The client MUST stop
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processing non-observation responses to a group request from a

server, if those have a Partial IV that has been previously received

before from that server within the Non-Notification Group Exchange.

Applications MAY decide that a client only processes non-

notification responses to a group request if those have a greater

Partial IV than the Response Number associated with the replying

server within the ongoing Non-Notification Group Exchange.

If the verification of the non-notification response succeeds, and

the received Partial IV was greater than the Response Number

associated with the replying server, then the client SHALL overwrite

that Response Number with the received Partial IV.

For each server, a client MUST consider the non-notification

response to a group request with the highest Partial IV as the

freshest, regardless of the order of arrival. Given a group request,

implementations need to make sure that the corresponding non-

notification response from a server without Partial IV is considered

the oldest from that server.

What is defined in this section does not apply to non-notification

responses to non-group requests, since there is at most a single

such response and only from one, individually targeted server in the

group.

7. Message Reception

Upon receiving a protected message, a recipient endpoint retrieves a

Security Context as in [RFC8613]. An endpoint MUST be able to

distinguish between a Security Context to process OSCORE messages as

in [RFC8613] and a Group OSCORE Security Context to process Group

OSCORE messages as defined in this document.

To this end, an endpoint can take into account the different

structure of the Security Context defined in Section 2, for example

based on the presence of Signature Algorithm and/or Pairwise Key

Agreement Algorithm in the Common Context. Alternatively

implementations can use an additional parameter in the Security

Context, to explicitly signal that it is intended for processing

Group OSCORE messages.

If either of the following conditions holds, a recipient endpoint

MUST discard the incoming protected message:

The Group Flag is set to 0, and the recipient endpoint retrieves

a Security Context which is both valid to process the message and

also associated with an OSCORE group, but the endpoint does not

support the pairwise mode.

¶

¶

¶

¶

¶

¶

¶

*

¶



The Group Flag is set to 1, and the recipient endpoint retrieves

a Security Context which is both valid to process the message and

also associated with an OSCORE group, but the endpoint does not

support the group mode.

The Group Flag is set to 1, and the recipient endpoint can not

retrieve a Security Context which is both valid to process the

message and also associated with an OSCORE group.

As per Section 6.1 of [RFC8613], this holds also when retrieving

a Security Context which is valid but not associated with an

OSCORE group. Future specifications may define how to process

incoming messages protected with a Security Contexts as in 

[RFC8613], when the Group Flag bit is set to 1.

Otherwise, if a Security Context associated with an OSCORE group and

valid to process the message is retrieved, the recipient endpoint

processes the message with Group OSCORE, using the group mode (see 

Section 8) if the Group Flag is set to 1, or the pairwise mode (see 

Section 9) if the Group Flag is set to 0.

Note that, if the Group Flag is set to 0, and the recipient endpoint

retrieves a Security Context which is valid to process the message

but is not associated with an OSCORE group, then the message is

processed according to [RFC8613].

8. Message Processing in Group Mode

When using the group mode, messages are protected and processed as

specified in [RFC8613], with the modifications described in this

section. The security objectives of the group mode are discussed in 

Appendix A.2.

The Group Manager indicates that the group uses (also) the group

mode, as part of the group data provided to candidate group members

when joining the group.

During all the steps of the message processing, an endpoint MUST use

the same Security Context for the considered group. That is, an

endpoint MUST NOT install a new Security Context for that group (see

Section 2.5.3.2) until the message processing is completed.

The group mode SHOULD be used to protect group requests intended for

multiple recipients or for the whole group. For an example where

this is not fulfilled, see [I-D.amsuess-core-cachable-oscore]. This

applies to both requests directly addressed to multiple recipients,

e.g., sent by the client over multicast, as well as requests sent by

the client over unicast to a proxy, that forwards them to the

intended recipients over multicast [I-D.ietf-core-groupcomm-bis].
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For encryption and decryption operations, the Signature Encryption

Algorithm from the Common Context is used.

As per [RFC7252][I-D.ietf-core-groupcomm-bis], group requests sent

over multicast MUST be Non-confirmable, and thus are not

retransmitted by the CoAP messaging layer. Instead, applications

should store such outgoing messages for a predefined, sufficient

amount of time, in order to correctly perform potential

retransmissions at the application layer. According to Section 5.2.3

of [RFC7252], responses to Non-confirmable group requests SHOULD

also be Non-confirmable, but endpoints MUST be prepared to receive

Confirmable responses in reply to a Non-confirmable group request.

Confirmable group requests are acknowledged when sent over non-

multicast transports, as specified in [RFC7252].

Furthermore, endpoints in the group locally perform error handling

and processing of invalid messages according to the same principles

adopted in [RFC8613]. However, a recipient MUST stop processing and

reject any message which is malformed and does not follow the format

specified in Section 4 of this document, or which is not

cryptographically validated in a successful way.

In either case, it is RECOMMENDED that a server does not send back

any error message in reply to a received request, if any of the two

following conditions holds:

The server is not able to identify the received request as a

group request, i.e., as sent to all servers in the group.

The server identifies the received request as a group request.

This prevents servers from replying with multiple error messages to

a client sending a group request, so avoiding the risk of flooding

and possibly congesting the network.

8.1. Protecting the Request

A client transmits a secure group request as described in 

Section 8.1 of [RFC8613], with the following modifications.

In step 2, the Additional Authenticated Data is modified as

described in Section 4 of this document.

In step 4, the encryption of the COSE object is modified as

described in Section 4 of this document. The encoding of the

compressed COSE object is modified as described in Section 5 of

this document. In particular, the Group Flag MUST be set to 1.

The Signature Encryption Algorithm from the Common Context MUST

be used.

¶

¶

¶

¶

*

¶

* ¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc7252#section-5.2.3
https://rfc-editor.org/rfc/rfc8613#section-8.1


In step 5, the countersignature is computed and the format of the

OSCORE message is modified as described in Section 4 and 

Section 5 of this document. In particular the payload of the

OSCORE message includes also the encrypted countersignature (see 

Section 4.1).

In addition, when sending a group request, the following applies for

the corresponding Non-Notification Group Exchange.

If the client intends to keep the Non-Notification Group Exchange

active beyond a possible change of Sender ID, the client MUST

store the value of the 'kid' parameter from the group request,

and retain it until the Non-Notification Group Exchange is

terminated. Even in case the client is individually rekeyed and

receives a new Sender ID from the Group Manager (see 

Section 2.5.3.1), the client MUST NOT update the stored 'kid'

parameter value associated with the Non-Notification Group

Exchange and the corresponding group request.

If the client intends to keep the Non-Notification Group Exchange

active beyond a possible change of ID Context following a group

rekeying (see Section 3.2), then the following applies.

The client MUST store the value of the 'kid context' parameter

from the group request, and retain it until the Non-

Notification Group Exchange is terminated. Upon establishing a

new Security Context with a new Gid as ID Context (see 

Section 2.5.3.2), the client MUST NOT update the stored 'kid

context' parameter value associated with the Non-Notification

Group Exchange and the corresponding group request.

The client MUST store an invariant identifier of the group,

which is immutable even in case the Security Context of the

group is re-established. For example, this invariant

identifier can be the "group name" in 

[I-D.ietf-ace-key-groupcomm-oscore], where it is used for

joining the group and retrieving the current group keying

material from the Group Manager.

After a group rekeying, such an invariant information makes it

simpler for the client to retrieve the current group keying

material from the Group Manager, in case the client has missed

both the rekeying messages and the first response protected

with the new Security Context (see Section 8.3).
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8.1.1. Supporting Observe

If Observe [RFC7641] is supported, the following holds for each

newly started observation.

If the client intends to keep the observation active beyond a

possible change of Sender ID, the client MUST store the value of

the 'kid' parameter from the original Observe request, and retain

it for the whole duration of the observation. Even in case the

client is individually rekeyed and receives a new Sender ID from

the Group Manager (see Section 2.5.3.1), the client MUST NOT

update the stored value associated with a particular Observe

request.

If the client intends to keep the observation active beyond a

possible change of ID Context following a group rekeying (see 

Section 3.2), then the following applies.

The client MUST store the value of the 'kid context' parameter

from the original Observe request, and retain it for the whole

duration of the observation. Upon establishing a new Security

Context with a new Gid as ID Context (see Section 2.5.3.2),

the client MUST NOT update the stored value associated with a

particular Observe request.

Just like defined in Section 8.1, the client MUST store an

invariant identifier of the group, which is immutable even in

case the Security Context of the group is re-established.

After a group rekeying, such an invariant information makes it

simpler for the observer client to retrieve the current group

keying material from the Group Manager, in case the client has

missed both the rekeying messages and the first observe

notification protected with the new Security Context (see 

Section 8.3.1).

8.2. Verifying the Request

Upon receiving a secure group request with the Group Flag set to 1,

following the procedure in Section 7, a server proceeds as described

in Section 8.2 of [RFC8613], with the following modifications.

In step 2, the decoding of the compressed COSE object follows 

Section 5 of this document. In particular:

If the server discards the request due to not retrieving a

Security Context associated with the OSCORE group, the server

MAY respond with a 4.01 (Unauthorized) error message. When

doing so, the server MAY set an Outer Max-Age option with
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value zero, and MAY include a descriptive string as diagnostic

payload.

If the received 'kid context' matches an existing ID Context

(Gid) but the received 'kid' does not match any Recipient ID

in this Security Context, then the server MAY create a new

Recipient Context for this Recipient ID and initialize it

according to Section 3 of [RFC8613], and also retrieve the

authentication credential associated with the Recipient ID to

be stored in the new Recipient Context. Such a configuration

is application specific. If the application does not specify

dynamic derivation of new Recipient Contexts, then the server

SHALL stop processing the request.

In step 4, the Additional Authenticated Data is modified as

described in Section 4 of this document.

In step 6, the server also verifies the countersignature, by

using the public key from the client's authentication credential

stored in the associated Recipient Context. In particular:

If the server does not have the public key of the client yet,

the server MUST stop processing the request and MAY respond

with a 5.03 (Service Unavailable) response. The response MAY

include a Max-Age Option, indicating to the client the number

of seconds after which to retry. If the Max-Age Option is not

present, a retry time of 60 seconds will be assumed by the

client, as default value defined in Section 5.10.5 of

[RFC7252].

The server MUST perform signature verification before

decrypting the COSE object, as defined below. Implementations

that cannot perform the two steps in this order MUST ensure

that no access to the plaintext is possible before a

successful signature verification and MUST prevent any

possible leak of time-related information that can yield side-

channel attacks.

The server retrieves the encrypted countersignature

ENC_SIGNATURE from the message payload, and computes the

original countersignature SIGNATURE as

SIGNATURE = ENC_SIGNATURE XOR KEYSTREAM

where KEYSTREAM is derived as per Section 4.1.1.

The server verifies the original countersignature SIGNATURE.

If the signature verification fails, the server SHALL stop

processing the request, SHALL NOT update the Replay Window,
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and MAY respond with a 4.00 (Bad Request) response. The server

MAY set an Outer Max-Age option with value zero. The

diagnostic payload MAY contain a string, which, if present,

MUST be "Decryption failed" as if the decryption had failed.

When decrypting the COSE object using the Recipient Key, the

Signature Encryption Algorithm from the Common Context MUST be

used.

Additionally, if the used Recipient Context was created upon

receiving this group request and the message is not verified

successfully, the server MAY delete that Recipient Context. Such

a configuration, which is specified by the application, mitigates

attacks that aim at overloading the server's storage.

A server SHOULD NOT process a request if the received Recipient ID

('kid') is equal to its own Sender ID in its own Sender Context. For

an example where this is not fulfilled, see Section 9.2.1 of

[I-D.ietf-core-observe-multicast-notifications].

In addition, the following applies if the server intends to reply

with multiple non-notification responses to a group request.

The server MUST store the value of the 'kid' parameter from the

group request, and retain it until the last non-notification

response has been sent. The server MUST NOT update the stored

value of a 'kid' parameter associated with a particular group

request, even in case the client is individually rekeyed and

starts using a new Sender ID received from the Group Manager (see

Section 2.5.3.1).

The server MUST store the value of the 'kid context' parameter

from the group request, and retain it until the last non-

notification response has been sent, i.e., beyond a possible

change of ID Context following a group rekeying (see 

Section 3.2). That is, upon establishing a new Security Context

with a new Gid as ID Context (see Section 2.5.3.2), the server

MUST NOT update the stored value of a 'kid context' parameter

associated with a particular group request.

8.2.1. Supporting Observe

If Observe [RFC7641] is supported, the following holds for each

newly started observation.

The server MUST store the value of the 'kid' parameter from the

original Observe request, and retain it for the whole duration of

the observation. The server MUST NOT update the stored value of a

'kid' parameter associated with a particular Observe request,

even in case the observer client is individually rekeyed and
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starts using a new Sender ID received from the Group Manager (see

Section 2.5.3.1).

The server MUST store the value of the 'kid context' parameter

from the original Observe request, and retain it for the whole

duration of the observation, beyond a possible change of ID

Context following a group rekeying (see Section 3.2). That is,

upon establishing a new Security Context with a new Gid as ID

Context (see Section 2.5.3.2), the server MUST NOT update the

stored value associated with the ongoing observation.

8.3. Protecting the Response

If a server generates a CoAP message in response to a Group OSCORE

request, then the server SHALL follow the description in Section 8.3

of [RFC8613], with the modifications described in this section.

Note that the server always protects a response with the Sender

Context from its latest Security Context, and that establishing a

new Security Context resets the Sender Sequence Number to 0 (see 

Section 3.2).

In step 2, the Additional Authenticated Data is modified as

described in Section 4 of this document.

In addition, the following applies if the server intends to reply

with multiple non-notification responses to a group request.

The server MUST use the stored value of the 'kid' parameter

from the group request (see Section 8.2), as value for the

'request_kid' parameter in the external_aad structure (see 

Section 4.3).

The server MUST use the stored value of the 'kid context'

parameter from the group request (see Section 8.2), as value

for the 'request_kid_context' parameter in the external_aad

structure (see Section 4.3).

In step 3, if any of the following two conditions holds, the

server MUST include its Sender Sequence Number as Partial IV in

the response and use it to build the AEAD nonce to protect the

response. This prevents the AEAD nonce from the request from

being reused.

The response is not the first response that the server sends

to the request, regardless whether it is an Observe

notification [RFC7641] or a non-notification response to a

group request (see Section 6.4.1).
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The server is using a different Security Context for the

response compared to what was used to verify the request (see 

Section 3.2).

In step 4, the encryption of the COSE object is modified as

described in Section 4 of this document. The encoding of the

compressed COSE object is modified as described in Section 5 of

this document. In particular, the Group Flag MUST be set to 1.

The Signature Encryption Algorithm from the Common Context MUST

be used.

In addition, the following applies.

If the server is using a different ID Context (Gid) for the

response compared to what was used to verify the request (see 

Section 3.2) and this is the first response from the server to

that request, then the new ID Context MUST be included in the

'kid context' parameter of the response.

The server may be replying to a request that was protected

with an old Security Context. After completing the

establishment of a new Security Context, the server MUST

protect all the responses to that request with the Sender

Context of the new Security Context.

For each ongoing Non-Notification Group Exchange, the server

can help the client to synchronize, by including also the 'kid

context' parameter in non-notification responses following a

group rekeying, with value set to the ID Context (Gid) of the

new Security Context.

If there is a known upper limit to the duration of a group

rekeying, the server SHOULD include the 'kid context'

parameter during that time. Otherwise, the server SHOULD

include it until the Max-Age has expired for the last non-

notification response sent before the installation of the new

Security Context.

The server can obtain a new Sender ID from the Group Manager,

when individually rekeyed (see Section 2.5.3.1) or when re-

joining the group. In such a case, the server can help the

client to synchronize, by including the 'kid' parameter in a

response protected in group mode, even when the request was

protected in pairwise mode (see Section 9.3).

That is, when responding to a request protected in pairwise

mode, the server SHOULD include the 'kid' parameter in a

response protected in group mode, if it is replying to that

client for the first time since the assignment of its new

Sender ID.
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In step 5, the countersignature is computed and the format of the

OSCORE message is modified as described in Section 4 and 

Section 5 of this document. In particular the payload of the

OSCORE message includes also the encrypted countersignature (see 

Section 4.1).

8.3.1. Supporting Observe

If Observe [RFC7641] is supported, the following holds when

protecting notifications for an ongoing observation.

The server MUST use the stored value of the 'kid' parameter from

the original Observe request (see Section 8.2.1), as value for

the 'request_kid' parameter in the external_aad structure (see 

Section 4.3).

The server MUST use the stored value of the 'kid context'

parameter from the original Observe request (see Section 8.2.1),

as value for the 'request_kid_context' parameter in the

external_aad structure (see Section 4.3).

Furthermore, the server may have ongoing observations started by

Observe requests protected with an old Security Context. After

completing the establishment of a new Security Context, the server

MUST protect the following notifications with the Sender Context of

the new Security Context.

For each ongoing observation, the server can help the client to

synchronize, by including also the 'kid context' parameter in

notifications following a group rekeying, with value set to the ID

Context (Gid) of the new Security Context.

If there is a known upper limit to the duration of a group rekeying,

the server SHOULD include the 'kid context' parameter during that

time. Otherwise, the server SHOULD include it until the Max-Age has

expired for the last notification sent before the installation of

the new Security Context.

As per Section 6.4.1, the server MUST NOT reply to a group request

with 2.xx responses of which some are notifications and some are

not. That is, if the server receives an observation request and

registers the observation, then any following 2.xx response from the

server to that request MUST be a notification. Also, if the server

receives an observation request and registers the observation, then

any following 2.xx response from the server to that request MUST be

a notification.
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8.4. Verifying the Response

Upon receiving a secure response message with the Group Flag set to

1, following the procedure in Section 7, the client proceeds as

described in Section 8.4 of [RFC8613], with the following

modifications.

Note that a client may receive a response protected with a Security

Context different from the one used to protect the corresponding

request, and that, upon the establishment of a new Security Context,

the client re-initializes its Replay Windows in its Recipient

Contexts (see Section 3.2).

In step 2, the decoding of the compressed COSE object is modified

as described in Section 5 of this document. In particular, a

'kid' may not be present, if the response is a reply to a request

protected in pairwise mode. In such a case, the client assumes

the response 'kid' to be the Recipient ID for the server to which

the request protected in pairwise mode was intended for.

If the response 'kid context' matches an existing ID Context

(Gid) but the received/assumed 'kid' does not match any Recipient

ID in this Security Context, then the client MAY create a new

Recipient Context for this Recipient ID and initialize it

according to Section 3 of [RFC8613], and also retrieve the

authentication credential associated with the Recipient ID to be

stored in the new Recipient Context. If the application does not

specify dynamic derivation of new Recipient Contexts, then the

client SHALL stop processing the response.

In step 3, the Additional Authenticated Data is modified as

described in Section 4 of this document.

In addition, the following applies if the client processes a

response to a group request.

The client MUST use the stored value of the 'kid' parameter

from the group request (see Section 8.1), as value for the

'request_kid' parameter in the external_aad structure (see 

Section 4.3).

The client MUST use the stored value of the 'kid context'

parameter from the group request (see Section 8.1), as value

for the 'request_kid_context' parameter in the external_aad

structure (see Section 4.3).

This ensures that, throughout a Non-Notification Group Exchange,

the client can correctly verify non-notification responses to a

group request, even in case the client is individually rekeyed

and starts using a new Sender ID received from the Group Manager
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(see Section 2.5.3.1), as well as when it installs a new Security

Context with a new ID Context (Gid) following a group rekeying

(see Section 3.2).

In step 5, the client also verifies the countersignature, by

using the public key from the server's authentication credential

stored in the associated Recipient Context. In particular:

The client MUST perform signature verification as defined

below, before decrypting the COSE object. Implementations that

cannot perform the two steps in this order MUST ensure that no

access to the plaintext is possible before a successful

signature verification and MUST prevent any possible leak of

time-related information that can yield side-channel attacks.

The client retrieves the encrypted countersignature

ENC_SIGNATURE from the message payload, and computes the

original countersignature SIGNATURE as

SIGNATURE = ENC_SIGNATURE XOR KEYSTREAM

where KEYSTREAM is derived as per Section 4.1.1.

The client verifies the original countersignature SIGNATURE.

If the verification of the countersignature fails, the server:

i) SHALL stop processing the response; ii) SHALL NOT update

the Response Number associated with the server, if the

response is a non-notification response to a group request;

and iii) SHALL NOT update the Notification Number associated

with the server, if the response is an Observe notification 

[RFC7641].

After a successful verification of the countersignature, the

client performs also the following actions in case the request

was protected in pairwise mode (see Section 9.3).

If the 'kid' parameter is present in the response, the

client checks whether this received 'kid' is equal to the

expected 'kid', i.e., the known Recipient ID for the server

to which the request was intended for.

If the 'kid' parameter is not present in the response, the

client checks whether the server that has sent the response

is the same one to which the request was intended for. This

can be done by checking that the public key used to verify

the countersignature of the response is equal to the public

key included in the authentication credential Recipient

Auth Cred, which was taken as input to derive the Pairwise
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Sender Key used for protecting the request (see 

Section 2.4.1).

In either case, if the client determines that the response has

come from a different server than the expected one, then the

client: i) SHALL discard the response and SHALL NOT deliver it

to the application; ii) SHALL NOT update the Response Number

associated with the server, if the response is a non-

notification response to a group request; and iii) SHALL NOT

update the Notification Number associated with the server, if

the response is an Observe notification [RFC7641].

Otherwise, the client hereafter considers the received 'kid'

as the current Recipient ID for the server.

In step 5, when decrypting the COSE object using the Recipient

Key, the Signature Encryption Algorithm from the Common Context

MUST be used.

In addition, the client performs the following actions for each

ongoing Non-Notification Group Exchange.

The ordering and the replay protection of non-notification

responses received from a server in reply to a group request

are performed as per Section 6.4.1 of this document, by using

the Response Number associated with that server for the Non-

Notification Group Exchange in question. In case of

unsuccessful decryption and verification of a non-notification

response, the client SHALL NOT update the Response Number

associated with the server.

When receiving the first valid non-notification response from

a server in reply to a group request, the client MUST store

the current kid "kid1" of that server for the Non-Notification

Group Exchange in question. If the 'kid' field is included in

the OSCORE option of the response, its value specifies "kid1".

If the group request was protected in pairwise mode (see 

Section 9.3), the 'kid' field may not be present in the OSCORE

option of the response (see Section 4.2). In this case, the

client assumes "kid1" to be the Recipient ID for the server to

which the group request was intended for.

When receiving another valid non-notification response to the

same group request from the same server - which can be

identified and recognized through the same public key used to

verify the countersignature and included in the server's

authentication credential - the client determines the current

kid "kid2" of the server as above for "kid1", and MUST check

whether "kid2" is equal to the stored "kid1". If "kid1" and
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"kid2" are different, the client: i) SHALL discard the

response and SHALL NOT deliver it to the application; and ii)

SHALL NOT update the Response Number associated with the

server.

Note that, if "kid2" is different from "kid1" and the 'kid' field

is omitted from the response - which is possible if the group

request was protected in pairwise mode - then the client will

compute a wrong keystream to decrypt the countersignature (i.e.,

by using "kid1" rather than "kid2" in the 'id' field of the

'info' array in Section 4.1.1), thus subsequently failing to

verify the countersignature and discarding the response.

This ensures that the client remains able to correctly perform

the ordering and replay protection of non-notification responses

to group requests, even in case a server legitimately starts

using a new Sender ID, as received from the Group Manager when

individually rekeyed (see Section 2.5.3.1) or when re-joining the

group.

In step 8, if the used Recipient Context was created upon

receiving this response and the message is not verified

successfully, the client MAY delete that Recipient Context. Such

a configuration, which is specified by the application, mitigates

attacks that aim at overloading the client's storage.

8.4.1. Supporting Observe

If Observe [RFC7641] is supported, the following holds when

verifying notifications for an ongoing observation.

The client MUST use the stored value of the 'kid' parameter from

the original Observe request (see Section 8.1.1), as value for

the 'request_kid' parameter in the external_aad structure (see 

Section 4.3).

The client MUST use the stored value of the 'kid context'

parameter from the original Observe request (see Section 8.1.1),

as value for the 'request_kid_context' parameter in the

external_aad structure (see Section 4.3).

This ensures that the client can correctly verify notifications,

even in case it is individually rekeyed and starts using a new

Sender ID received from the Group Manager (see Section 2.5.3.1), as

well as when it installs a new Security Context with a new ID

Context (Gid) following a group rekeying (see Section 3.2).

The ordering and the replay protection of notifications received

from a server are performed as per Sections 4.1.3.5.2 and 7.4.1

of [RFC8613], by using the Notification Number associated with
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that server for the observation in question. In addition, the

client performs the following actions for each ongoing

observation.

When receiving the first valid notification from a server, the

client MUST store the current kid "kid1" of that server for

the observation in question. If the 'kid' field is included in

the OSCORE option of the notification, its value specifies

"kid1". If the Observe request was protected in pairwise mode

(see Section 9.3), the 'kid' field may not be present in the

OSCORE option of the notification (see Section 4.2). In this

case, the client assumes "kid1" to be the Recipient ID for the

server to which the Observe request was intended for.

When receiving another valid notification from the same server

- which can be identified and recognized through the same

public key used to verify the countersignature and included in

the server's authentication credential - the client determines

the current kid "kid2" of the server as above for "kid1", and

MUST check whether "kid2" is equal to the stored "kid1". If

"kid1" and "kid2" are different, the client: i) SHALL discard

the response and SHALL NOT deliver it to the application; ii)

SHALL NOT update the Notification Number associated with the

server; and iii) MUST cancel or re-register the observation in

question.

Note that, if "kid2" is different from "kid1" and the 'kid'

field is omitted from the notification - which is possible if

the Observe request was protected in pairwise mode - then the

client will compute a wrong keystream to decrypt the

countersignature (i.e., by using "kid1" rather than "kid2" in

the 'id' field of the 'info' array in Section 4.1.1), thus

subsequently failing to verify the countersignature and

discarding the notification.

This ensures that the client remains able to correctly perform the

ordering and replay protection of notifications, even in case a

server legitimately starts using a new Sender ID, as received from

the Group Manager when individually rekeyed (see Section 2.5.3.1) or

when re-joining the group.

8.5. External Signature Checkers

When receiving a message protected in group mode, a signature

checker (see Section 3.1) proceeds as follows.

The signature checker retrieves the encrypted countersignature

ENC_SIGNATURE from the message payload, and computes the original

countersignature SIGNATURE as
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SIGNATURE = ENC_SIGNATURE XOR KEYSTREAM

where KEYSTREAM is derived as per Section 4.1.1.

The signature checker verifies the original countersignature

SIGNATURE, by using the public key of the sender endpoint as

included in that endpoint's authentication credential. The

signature checker determines the right authentication credential

based on the ID Context (Gid) and the Sender ID of the sender

endpoint.

Note that the following applies when attempting to verify the

countersignature of a response message.

The response may not include a Partial IV and/or an ID Context.

In such a case, the signature checker considers the same values

from the corresponding request, i.e., the request matching with

the response by CoAP Token value.

The response may not include a Sender ID. This can happen when

the response protected in group mode matches a request protected

in pairwise mode (see Section 9.1), with a case in point provided

by [I-D.amsuess-core-cachable-oscore]. In such a case, the

signature checker needs to use other means (e.g., source

addressing information of the server endpoint) to identify the

correct authentication credential including the public key to use

for verifying the countersignature of the response.

The particular actions following a successful or unsuccessful

verification of the countersignature are application specific and

out of the scope of this document.

9. Message Processing in Pairwise Mode

When using the pairwise mode of Group OSCORE, messages are protected

and processed as in [RFC8613], with the modifications described in

this section. The security objectives of the pairwise mode are

discussed in Appendix A.2.

The pairwise mode takes advantage of an existing Security Context

for the group mode to establish a Security Context shared

exclusively with any other member. In order to use the pairwise mode

in a group that uses also the group mode, the signature scheme of

the group mode MUST support a combined signature and encryption

scheme. This can be, for example, signature using ECDSA, and

encryption using AES-CCM with a key derived with ECDH. For

encryption and decryption operations, the AEAD Algorithm from the

Common Context is used (see Section 2.1.1).
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The pairwise mode does not support the use of additional entities

acting as verifiers of source authentication and integrity of group

messages, such as intermediary gateways (see Section 3).

An endpoint implementing only a silent server does not support the

pairwise mode.

If the signature algorithm used in the group supports ECDH (e.g.,

ECDSA, EdDSA), the pairwise mode MUST be supported by endpoints that

use the CoAP Echo Option [RFC9175] and/or block-wise transfers 

[RFC7959], for instance for responses after the first block-wise

request, which possibly targets all servers in the group and

includes the CoAP Block2 option (see Section 3.8 of

[I-D.ietf-core-groupcomm-bis]). This prevents the attack described

in Section 13.9, which leverages requests sent over unicast to a

single group member and protected with the group mode.

Senders cannot use the pairwise mode to protect a message intended

for multiple recipients. In fact, the pairwise mode is defined only

between two endpoints and the keying material is thus only available

to one recipient.

However, a sender can use the pairwise mode to protect a message

sent to (but not intended for) multiple recipients, if interested in

a response from only one of them. For instance, this is useful to

support the address discovery service defined in Section 9.1, when a

single 'kid' value is indicated in the payload of a request sent to

multiple recipients, e.g., over multicast.

The Group Manager indicates that the group uses (also) the pairwise

mode, as part of the group data provided to candidate group members

when joining the group.

9.1. Pre-Conditions

In order to protect an outgoing message in pairwise mode, the sender

needs to know the authentication credential and the Recipient ID for

the recipient endpoint, as stored in the Recipient Context

associated with that endpoint (see Section 2.4.4).

Furthermore, the sender needs to know the individual address of the

recipient endpoint. This information may not be known at any given

point in time. For instance, right after having joined the group, a

client may know the authentication credential and Recipient ID for a

given server, but not the addressing information required to reach

it with an individual, one-to-one request.

To make addressing information of individual endpoints available,

servers in the group MAY expose a resource to which a client can

send a group request targeting a set of servers, identified by their
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'kid' values specified in the request payload. The specified set may

be empty, hence identifying all the servers in the group. Further

details of such an interface are out of scope for this document.

9.2. Main Differences from OSCORE

The pairwise mode protects messages between two members of a group,

essentially following [RFC8613], but with the following notable

differences.

The 'kid' and 'kid context' parameters of the COSE object are

used as defined in Section 4.2 of this document.

The external_aad defined in Section 4.3 of this document is used

for the encryption process.

The Pairwise Sender/Recipient Keys used as Sender/Recipient keys

are derived as defined in Section 2.4 of this document.

9.3. Protecting the Request

When using the pairwise mode, the request is protected as defined in

Section 8.1 of [RFC8613], with the differences summarized in 

Section 9.2 of this document. The following differences also apply.

When sending a group request, what is specified in Section 8.1 of

this document holds for the corresponding Non-Notification Group

Exchange, with respect to storing the value of the 'kid' and 'kid

context' parameters, and to storing an invariant identifier of

the group.

If Observe [RFC7641] is supported, what is defined in 

Section 8.1.1 of this document holds.

9.4. Verifying the Request

Upon receiving a request with the Group Flag set to 0, following the

procedure in Section 7, the server MUST process it as defined in 

Section 8.2 of [RFC8613], with the differences summarized in 

Section 9.2 of this document. The following differences also apply.

If the server discards the request due to not retrieving a

Security Context associated with the OSCORE group or to not

supporting the pairwise mode, the server MAY respond with a 4.01

(Unauthorized) error message or a 4.02 (Bad Option) error

message, respectively. When doing so, the server MAY set an Outer

Max-Age option with value zero, and MAY include a descriptive

string as diagnostic payload.
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If a new Recipient Context is created for this Recipient ID, new

Pairwise Sender/Recipient Keys are also derived (see 

Section 2.4.1). The new Pairwise Sender/Recipient Keys are

deleted if the Recipient Context is deleted as a result of the

message not being successfully verified.

What is specified in Section 8.2 of this document holds with

respect to the following points.

The possible, dynamic creation and configuration of a

Recipient Context upon receiving the request.

The possible deletion of a Recipient Context created upon

receiving the request, in case the request is not verified

successfully.

The rule about processing the request where the received

Recipient ID ('kid') is equal to the server's Sender ID.

The storing of the value of the 'kid' and 'kid context'

parameters from the group request, if the server intends to

reply with multiple non-notification responses to a group

request.

If Observe [RFC7641] is supported, what is defined in 

Section 8.2.1 of this document holds.

9.5. Protecting the Response

When using the pairwise mode, a response is protected as defined in 

Section 8.3 of [RFC8613], with the differences summarized in 

Section 9.2 of this document. The following differences also apply.

What is specified in Section 8.3 of this document holds with

respect to the following points.

The protection of a response when using a different Security

Context than the one used to protect the corresponding

request. That is, the server always protects a response with

the Sender Context from its latest Security Context, and

establishing a new Security Context resets the Sender Sequence

Number to 0 (see Section 3.2).

The use of the stored value of the 'kid' and 'kid context'

parameters, if the server intends to reply with multiple non-

notification responses to a group request.

The rules for the inclusion of the server's Sender Sequence

Number as Partial IV in a response, as used to build the AEAD

nonce to protect the response.
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The rules for the inclusion of the ID Context (Gid) in the

'kid context' parameter of a response, if the ID Context used

for the response differs from the one used to verify the

request (see Section 3.2), also for helping the client to

synchronize.

The rules for the inclusion of the Sender ID in the 'kid'

parameter of a response to a request that was protected in

pairwise mode, if the server has obtained a new Sender ID from

the Group Manager when individually rekeyed (see 

Section 2.5.3.1), thus helping the client to synchronize.

If Observe [RFC7641] is supported, what is defined in 

Section 8.3.1 of this document holds.

9.6. Verifying the Response

Upon receiving a response with the Group Flag set to 0, following

the procedure in Section 7, the client MUST process it as defined

in Section 8.4 of [RFC8613], with the differences summarized in 

Section 9.2 of this document. The following differences also apply.

The client may receive a response protected with a Security

Context different from the one used to protect the corresponding

request. Also, upon the establishment of a new Security Context,

the client re-initializes its Replay Windows in its Recipient

Contexts (see Section 2.2).

The same as described in Section 8.4 holds with respect to

handling the 'kid' parameter of the response, when received as a

reply to a request protected in pairwise mode. The client can

also in this case check whether the replying server is the

expected one, by relying on the server's public key. However,

since the response is protected in pairwise mode, the public key

is not used for verifying a countersignature as in Section 8.4.

Instead, the expected server's authentication credential - namely

Recipient Auth Cred and including the server's public key - was

taken as input to derive the Pairwise Recipient Key used to

decrypt and verify the response (see Section 2.4.1).

If a new Recipient Context is created for this Recipient ID, new

Pairwise Sender/Recipient Keys are also derived (see 

Section 2.4.1). The new Pairwise Sender/Recipient Keys are

deleted if the Recipient Context is deleted as a result of the

message not being successfully verified.
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What is specified in Section 8.4 of this document holds with

respect to the following points.

The possible, dynamic creation and configuration of a

Recipient Context upon receiving the response.

The use of the stored value of the 'kid' and 'kid context'

parameters, when processing a response to a group request.

The performing of ordering and replay protection for non-

notification responses to a group request.

The possible deletion of a Recipient Context created upon

receiving the response, in case the response is not verified

successfully.

If Observe [RFC7641] is supported, what is defined in 

Section 8.4.1 of this document holds. The client can also in this

case identify a server to be the same one across a change of

Sender ID, by relying on the server's public key. As to the

expected server's authentication credential, the same holds as

specified above for non-notification responses.

10. Challenge-Response Synchronization

This section describes how a server endpoint can synchronize with

Sender Sequence Numbers of client endpoints in the group. Similarly

to what is defined in Appendix B.1.2 of [RFC8613], the server

performs a challenge-response exchange with a client, by using the

Echo Option for CoAP specified in Section 2 of [RFC9175].

Upon receiving a request from a particular client for the first

time, the server processes the message as described in this

document, but, even if valid, does not deliver it to the

application. Instead, the server replies to the client with an

OSCORE protected 4.01 (Unauthorized) response message, including

only the Echo Option and no diagnostic payload. The Echo option

value SHOULD NOT be reused; when it is reused, it MUST be highly

unlikely to have been recently used with this client. Since this

response is protected with the Security Context used in the group,

the client will consider the response valid upon successfully

decrypting and verifying it.

The server stores the Echo Option value included in the response

together with the pair (gid,kid), where 'gid' is the Group

Identifier of the OSCORE group and 'kid' is the Sender ID of the

client in the group. These are specified in the 'kid context' and

'kid' fields of the OSCORE Option of the request, respectively.

After a group rekeying has been completed and a new Security Context

has been established in the group, which results also in a new Group
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Identifier (see Section 3.2), the server MUST delete all the stored

Echo values associated with members of the group.

Upon receiving a 4.01 (Unauthorized) response that includes an Echo

Option and originates from a verified group member, the client sends

a request as a unicast message addressed to the same server, echoing

the Echo Option value. The client MUST NOT send the request

including the Echo Option over multicast.

If the group uses also the group mode and the used Signature

Algorithm supports ECDH (e.g., ECDSA, EdDSA), the client MUST use

the pairwise mode to protect the request, as per Section 9.3. Note

that, as defined in Section 9, endpoints that are members of such a

group and that use the Echo Option MUST support the pairwise mode.

The client does not necessarily resend the same group request, but

can instead send a more recent one, if the application permits it.

This allows the client to not retain previously sent group requests

for full retransmission, unless the application explicitly requires

otherwise. In either case, the client uses a fresh Sender Sequence

Number value from its own Sender Context. If the client stores group

requests for possible retransmission with the Echo Option, it should

not store a given request for longer than a preconfigured time

interval. Note that the unicast request echoing the Echo Option is

correctly treated and processed, since the 'kid context' field

including the Group Identifier of the OSCORE group is still present

in the OSCORE Option as part of the COSE object (see Section 4).

Upon receiving the unicast request including the Echo Option, the

server performs the following verifications.

If the server does not store an Echo Option value for the pair

(gid,kid), it considers: i) the time t1 when it has established

the Security Context used to protect the received request; and

ii) the time t2 when the request has been received. Since a valid

request cannot be older than the Security Context used to protect

it, the server verifies that (t2 - t1) is less than the largest

amount of time acceptable to consider the request fresh.

If the server stores an Echo Option value for the pair (gid,kid)

associated with that same client in the same group, the server

verifies that the option value equals that same stored value

previously sent to that client.

If the verifications above fail, the server MUST NOT process the

request further and MAY send a 4.01 (Unauthorized) response

including an Echo Option, hence performing a new challenge-response

exchange.
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If the verifications above are successful, the server proceeds as

follows. In case the Replay Window in the Recipient Context

associated with the client has not been set yet, the server updates

the Replay Window to mark the current Sender Sequence Number from

the latest received request as seen (but all newer ones as new), and

delivers the message as fresh to the application. Otherwise, the

server discards the verification result and treats the message as

fresh or as a replay, according to the existing Replay Window.

A server should not deliver requests from a given client to the

application until one valid request from that same client has been

verified as fresh, as conveying an echoed Echo Option. A server may

perform the challenge-response described above at any time, if

synchronization with Sender Sequence Numbers of clients is lost,

e.g., after a device reboot. A client has to be ready to perform the

challenge-response based on the Echo Option if a server starts it.

It is the role of the server application to define under what

circumstances Sender Sequence Numbers lose synchronization. This can

include experiencing a "large enough" gap D = (SN2 - SN1), between

the Sender Sequence Number SN1 of the latest accepted group request

from a client and the Sender Sequence Number SN2 of a group request

just received from that client. However, a client may send several

unicast requests to different group members as protected with the

pairwise mode, which may result in the server experiencing the gap D

in a relatively short time. This would induce the server to perform

more challenge-response exchanges than actually needed.

In order to ameliorate this, the server may rely on a trade-off

between the Sender Sequence Number gap D and a time gap T = (t2 -

t1), where t1 is the time when the latest group request from a

client was accepted and t2 is the time when the latest group request

from that client has been received, respectively. Then, the server

can start a challenge-response when experiencing a time gap T larger

than a given, preconfigured threshold. Also, the server can start a

challenge-response when experiencing a Sender Sequence Number gap D

greater than a different threshold, computed as a monotonically

increasing function of the currently experienced time gap T.

The challenge-response approach described in this section provides

an assurance of absolute message freshness. However, it can result

in an impact on performance which is undesirable or unbearable,

especially in large groups where many endpoints at the same time

might join as new members or lose synchronization.

Endpoints configured as silent servers are not able to perform the

challenge-response described above, as they do not store a Sender

Context to secure the 4.01 (Unauthorized) response to the client.

Thus, silent servers should adopt alternative approaches to achieve
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and maintain synchronization with Sender Sequence Numbers of

clients.

Since requests including the Echo Option are sent over unicast, a

server can be victim of the attack discussed in Section 13.9, in

case such requests are protected with the group mode. Instead,

protecting those requests with the pairwise mode prevents the attack

above. In fact, only the exact server involved in the challenge-

response exchange is able to derive the pairwise key used by the

client to protect the request including the Echo Option.

In either case, an internal on-path adversary would not be able to

mix up the Echo Option value of two different unicast requests, sent

by a same client to any two different servers in the group. In fact,

even if the group mode was used, this would require the adversary to

forge the countersignature of both requests. As a consequence, each

of the two servers remains able to selectively accept a request with

the Echo Option only if it is waiting for that exact integrity-

protected Echo Option value, and is thus the intended recipient.

11. Implementation Compliance

Like in [RFC8613], HKDF SHA-256 is the mandatory to implement HKDF.

An endpoint may support only the group mode, or only the pairwise

mode, or both.

For endpoints that support the group mode, the following applies.

For endpoints that use authenticated encryption, the AEAD

algorithm AES-CCM-16-64-128 defined in Section 4.2 of [RFC9053]

is mandatory to implement as Signature Encryption Algorithm (see 

Section 2.1.4).

For many constrained IoT devices it is problematic to support

more than one signature algorithm. Existing devices can be

expected to support either EdDSA or ECDSA. In order to enable as

much interoperability as we can reasonably achieve, the following

applies with respect to the Signature Algorithm (see 

Section 2.1.5).

Less constrained endpoints SHOULD implement both: the EdDSA

signature algorithm together with the elliptic curve Ed25519 

[RFC8032]; and the ECDSA signature algorithm together with the

elliptic curve P-256.

Constrained endpoints SHOULD implement: the EdDSA signature

algorithm together with the elliptic curve Ed25519 [RFC8032]; or

the ECDSA signature algorithm together with the elliptic curve

P-256.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9053#section-4.2


Endpoints that implement the ECDSA signature algorithm MAY use

"deterministic ECDSA" as specified in [RFC6979]. Pure

deterministic elliptic-curve signature algorithms such as

deterministic ECDSA and EdDSA have the advantage of not requiring

access to a source of high-quality randomness. However, these

signature algorithms have been shown vulnerable to some side-

channel and fault injection attacks due to their determinism,

which can result in extracting a device's private key. As

suggested in Section 2.1.1 of [RFC9053], this can be addressed by

combining both randomness and determinism 

[I-D.irtf-cfrg-det-sigs-with-noise].

For endpoints that support the pairwise mode, the following applies.

The AEAD algorithm AES-CCM-16-64-128 defined in Section 4.2 of

[RFC9053] is mandatory to implement as AEAD Algorithm (see 

Section 2.1.1).

The ECDH-SS + HKDF-256 algorithm specified in Section 6.3.1 of

[RFC9053] is mandatory to implement as Pairwise Key Agreement

Algorithm (see Section 2.1.7).

In order to enable as much interoperability as we can reasonably

achieve in the presence of constrained devices (see above), the

following applies.

Less constrained endpoints SHOULD implement both the X25519 curve

[RFC7748] and the P-256 curve as ECDH curves.

Constrained endpoints SHOULD implement the X25519 curve [RFC7748]

or the P-256 curve as ECDH curve.

Constrained IoT devices may alternatively represent Montgomery

curves and (twisted) Edwards curves [RFC7748] in the short-

Weierstrass form Wei25519, with which the algorithms ECDSA25519 and

ECDH25519 can be used for signature operations and Diffie-Hellman

secret calculation, respectively 

[I-D.ietf-lwig-curve-representations].

12. Web Linking

The use of Group OSCORE or OSCORE [RFC8613] MAY be indicated by a

target "gosc" attribute in a web link [RFC8288] to a resource, e.g.,

using a link-format document [RFC6690] if the resource is accessible

over CoAP.

The "gosc" attribute is a hint indicating that the destination of

that link is only accessible using Group OSCORE or OSCORE, and

unprotected access to it is not supported. Note that this is simply
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a hint, it does not include any security context material or any

other information required to run Group OSCORE or OSCORE.

A value MUST NOT be given for the "gosc" attribute; any present

value MUST be ignored by parsers. The "gosc" attribute MUST NOT

appear more than once in a given link-value; occurrences after the

first MUST be ignored by parsers.

When a link-value includes the "gosc" attribute, the link-value MUST

also include the "osc" attribute defined in Section 9 of [RFC8613].

If the endpoint parsing the link-value supports Group OSCORE and

understands the "gosc" attribute, then the parser MUST ignore the

"osc" attribute, which is overshadowed by the "gosc" attribute.

The example in Figure 4 shows a use of the "gosc" attribute: the

client does resource discovery on a server and gets back a list of

resources, one of which includes the "gosc" attribute indicating

that the resource is protected with Group OSCORE or OSCORE. The

link-format notation (see Section 5 of [RFC6690]) is used.

Figure 4: Example of using the "gosc" attribute in a web link.

13. Security Considerations

The same threat model discussed for OSCORE in Appendix D.1 of

[RFC8613] holds for Group OSCORE. In addition, when using the group

mode, source authentication of messages is explicitly ensured by

means of countersignatures, as discussed in Section 13.1.

Note that, even if an endpoint is authorized to be a group member

and to take part in group communications, there is a risk that it

behaves inappropriately. For instance, it can forward the content of

messages in the group to unauthorized entities. However, in many use

cases, the devices in the group belong to a common authority and are

configured by a commissioner (see Appendix B), which results in a

practically limited risk and enables a prompt detection/reaction in

case of misbehaving.

The same considerations on supporting Proxy operations discussed for

OSCORE in Appendix D.2 of [RFC8613] hold for Group OSCORE.

The same considerations on protected message fields for OSCORE

discussed in Appendix D.3 of [RFC8613] hold for Group OSCORE.
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REQ: GET /.well-known/core

RES: 2.05 Content

    </sensors/temp>;gosc;osc,

    </sensors/light>;if="sensor"
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The same considerations on uniqueness of (key, nonce) pairs for

OSCORE discussed in Appendix D.4 of [RFC8613] hold for Group OSCORE.

This is further discussed in Section 13.3 of this document.

The same considerations on unprotected message fields for OSCORE

discussed in Appendix D.5 of [RFC8613] hold for Group OSCORE, with

the following differences. First, the 'kid context' of request

messages is part of the Additional Authenticated Data, thus safely

enabling to keep Non-Notification Group Exchanges and observations

active beyond a possible change of ID Context (Gid), following a

group rekeying (see Section 4.3). Second, the countersignature

included in a Group OSCORE message protected in group mode is

computed also over the value of the OSCORE option, which is also

part of the Additional Authenticated Data used in the signing

process. This is further discussed in Section 13.7 of this document.

As discussed in Section 6.2.3 of [I-D.ietf-core-groupcomm-bis],

Group OSCORE addresses security attacks against CoAP listed in

Sections 11.2-11.6 of [RFC7252], especially when run over IP

multicast.

The rest of this section first discusses security aspects to be

taken into account when using Group OSCORE. Then it goes through

aspects covered in the security considerations of OSCORE (see 

Section 12 of [RFC8613]), and discusses how they hold when Group

OSCORE is used.

13.1. Security of the Group Mode

The group mode defined in Section 8 relies on commonly shared group

keying material to protect communication within a group. Using the

group mode has the implications discussed below. The following

refers to group members as the endpoints in the group storing the

latest version of the group keying material.

Messages are encrypted at a group level (group-level data

confidentiality), i.e., they can be decrypted by any member of

the group, but not by an external adversary or other external

entities.

If the used encryption algorithm provides integrity protection,

then it also ensures group authentication and proof of group

membership, but not source authentication. That is, it ensures

that a message sent to a group has been sent by a member of that

group, but not necessarily by the alleged sender. In fact, any

group member is able to derive the Sender Key used by the actual

sender endpoint, and thus can compute a valid authentication tag.

Therefore, the message content could originate from any of the

current group members.
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Furthermore, if the used encryption algorithm does not provide

integrity protection, then it does not ensure any level of

message authentication or proof of group membership.

On the other hand, proof of group membership is always ensured by

construction through the strict management of the group keying

material (see Section 3.2). That is, the group is rekeyed in case

of members' leaving, and the current group members are informed

of former group members. Thus, a current group member storing the

latest group keying material does not store the authentication

credential of any former group member.

This allows a recipient endpoint to rely on the stored

authentication credentials and public keys included therin, in

order to always confidently assert the group membership of a

sender endpoint when processing an incoming message, i.e., to

assert that the sender endpoint was a group member when it signed

the message. In turn, this prevents a former group member to

possibly re-sign and inject in the group a stored message that

was protected with old keying material.

Source authentication of messages sent to a group is ensured

through a countersignature, which is computed by the sender using

its own private key and then appended to the message payload.

Also, the countersignature is encrypted by using a keystream

derived from the group keying material (see Section 4.1). This

ensures group privacy, i.e., an attacker cannot track an endpoint

over two groups by linking messages between the two groups,

unless being also a member of those groups.

The security properties of the group mode are summarized below.

Asymmetric source authentication, by means of a

countersignature.

Symmetric group authentication, by means of an authentication

tag (only for encryption algorithms providing integrity

protection).

Symmetric group confidentiality, by means of symmetric

encryption.

Proof of group membership, by strictly managing the group

keying material, as well as by means of integrity tags when

using an encryption algorithm that provides also integrity

protection.

Group privacy, by encrypting the countersignature.
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The group mode fulfills the security properties above while also

displaying the following benefits. First, the use of an encryption

algorithm that does not provide integrity protection results in a

minimal communication overhead, by limiting the message payload to

the ciphertext and the encrypted countersignature. Second, it is

possible to deploy semi-trusted entities such as signature checkers

(see Section 3.1), which can break property 5, but cannot break

properties 1, 2 and 3.

13.2. Security of the Pairwise Mode

The pairwise mode defined in Section 9 protects messages by using

pairwise symmetric keys, derived from the static-static Diffie-

Hellman shared secret computed from the asymmetric keys of the

sender and recipient endpoint (see Section 2.4).

The used encryption algorithm MUST provide integrity protection.

Therefore, the pairwise mode ensures both pairwise data-

confidentiality and source authentication of messages, without using

countersignatures. Furthermore, the recipient endpoint achieves

proof of group membership for the sender endpoint, since only

current group members have the required keying material to derive a

valid Pairwise Sender/Recipient Key.

The long-term storing of the Diffie-Hellman shared secret is a

potential security issue. In fact, if the shared secret of two group

members is leaked, a third group member can exploit it to

impersonate any of those two group members, by deriving and using

their pairwise key. The possibility of such leakage should be

contemplated, as more likely to happen than the leakage of a private

key, which could be rather protected at a significantly higher level

than generic memory, e.g., by using a Trusted Platform Module.

Therefore, there is a trade-off between the maximum amount of time a

same shared secret is stored and the frequency of its re-computing.

13.3. Uniqueness of (key, nonce)

The proof for uniqueness of (key, nonce) pairs in Appendix D.4 of

[RFC8613] is also valid in group communication scenarios. That is,

given an OSCORE group:

Uniqueness of Sender IDs within the group is enforced by the

Group Manager. In fact, from the moment when a Gid is assigned to

a group until the moment a new Gid is assigned to that same

group, the Group Manager does not reassign a Sender ID within the

group (see Section 3.2).

The case A in Appendix D.4 of [RFC8613] concerns all group

requests and responses including a Partial IV (e.g., Observe

notifications and non-notification responses to group requests).
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In this case, same considerations from [RFC8613] apply here as

well.

The case B in Appendix D.4 of [RFC8613] concerns responses not

including a Partial IV (e.g., single response to a non-group

request). In this case, same considerations from [RFC8613] apply

here as well.

As a consequence, each message encrypted/decrypted with the same

Sender Key is processed by using a different (ID_PIV, PIV) pair.

This means that nonces used by any fixed encrypting endpoint are

unique. Thus, each message is processed with a different (key,

nonce) pair.

13.4. Management of Group Keying Material

The approach described in this document should take into account the

risk of compromise of group members. In particular, this document

specifies that a key management scheme for secure revocation and

renewal of Security Contexts and group keying material MUST be

adopted.

[I-D.ietf-ace-key-groupcomm-oscore] specifies a simple rekeying

scheme for renewing the Security Context in a group.

Alternative rekeying schemes which are more scalable with the group

size may be needed in dynamic, large groups where endpoints can join

and leave at any time, in order to limit the impact on performance

due to the Security Context and keying material update.

13.5. Update of Security Context and Key Rotation

A group member can receive a message shortly after the group has

been rekeyed, and new security parameters and keying material have

been distributed by the Group Manager.

This may result in a client using an old Security Context to protect

a request, and a server using a different new Security Context to

protect a corresponding response. As a consequence, clients may

receive a response protected with a Security Context different from

the one used to protect the corresponding request.

In particular, a server may first get a request protected with the

old Security Context, then install the new Security Context, and

only after that produce a response to send back to the client. In

such a case, as specified in Section 8.3, the server MUST protect

the potential response using the new Security Context. Specifically,

the server MUST include its Sender Sequence Number as Partial IV in

the response and use it to build the AEAD nonce to protect the
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response. This prevents the AEAD nonce from the request from being

reused with the new Security Context.

The client will process that response using the new Security

Context, provided that it has installed the new security parameters

and keying material before the message processing.

In case block-wise transfer [RFC7959] is used, the same

considerations from Section 10.3 of [I-D.ietf-ace-key-groupcomm]

hold.

Furthermore, as described below, a group rekeying may temporarily

result in misaligned Security Contexts between the sender and

recipient of a same message.

13.5.1. Late Update on the Sender

In this case, the sender protects a message using the old Security

Context, i.e., before having installed the new Security Context.

However, the recipient receives the message after having installed

the new Security Context, and is thus unable to correctly process

it.

A possible way to ameliorate this issue is to preserve the old,

recent, Security Context for a maximum amount of time defined by the

application. By doing so, the recipient can still try to process the

received message using the old retained Security Context as a second

attempt. This makes particular sense when the recipient is a client,

that would hence be able to process incoming responses protected

with the old, recent, Security Context used to protect the

associated group request. Instead, a recipient server would better

and more simply discard an incoming group request which is not

successfully processed with the new Security Context.

This tolerance preserves the processing of secure messages

throughout a long-lasting key rotation, as group rekeying processes

may likely take a long time to complete, especially in large groups.

On the other hand, a former (compromised) group member can abusively

take advantage of this, and send messages protected with the old

retained Security Context. Therefore, a conservative application

policy should not admit the retention of old Security Contexts.

13.5.2. Late Update on the Recipient

In this case, the sender protects a message using the new Security

Context, but the recipient receives that message before having

installed the new Security Context. Therefore, the recipient would

not be able to correctly process the message and hence discards it.
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If the recipient installs the new Security Context shortly after

that and the sender endpoint retransmits the message, the former

will still be able to receive and correctly process the message.

In any case, the recipient should actively ask the Group Manager for

an updated Security Context according to an application-defined

policy, for instance after a given number of unsuccessfully

decrypted incoming messages.

13.6. Collision of Group Identifiers

In case endpoints are deployed in multiple groups managed by

different non-synchronized Group Managers, it is possible for Group

Identifiers of different groups to coincide.

This does not impair the security of the AEAD algorithm. In fact, as

long as the Master Secret is different for different groups and this

condition holds over time, AEAD keys are different among different

groups.

In case multiple groups use the same IP multicast address, the

entity assigning that address may help limiting the chances to

experience such collisions of Group Identifiers. In particular, it

may allow the Group Managers of those groups using the same IP

multicast address to share their respective list of assigned Group

Identifiers currently in use.

13.7. Cross-group Message Injection

A same endpoint is allowed to and would likely use the same pair

(private key, authentication credential) in multiple OSCORE groups,

possibly administered by different Group Managers.

When a sender endpoint sends a message protected in pairwise mode to

a recipient endpoint in an OSCORE group, a malicious group member

may attempt to inject the message to a different OSCORE group also

including the same endpoints (see Section 13.7.1).

This practically relies on altering the content of the OSCORE

option, and having the same MAC in the ciphertext still correctly

validating, which has a success probability depending on the size of

the MAC.

As discussed in Section 13.7.2, the attack is practically infeasible

if the message is protected in group mode, thanks to the

countersignature also bound to the OSCORE option through the

Additional Authenticated Data used in the signing process (see 

Section 4.3).
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13.7.1. Attack Description

Let us consider:

Two OSCORE groups G1 and G2, with ID Context (Group ID) Gid1 and

Gid2, respectively. Both G1 and G2 use the AEAD cipher AES-

CCM-16-64-128, i.e., the MAC of the ciphertext is 8 bytes in

size.

A sender endpoint X which is member of both G1 and G2, and uses

the same pair (private key, authentication credential) in both

groups. The endpoint X has Sender ID Sid1 in G1 and Sender ID

Sid2 in G2. The pairs (Sid1, Gid1) and (Sid2, Gid2) identify the

same authentication credential of X in G1 and G2, respectively.

A recipient endpoint Y which is member of both G1 and G2, and

uses the same pair (private key, authentication credential) in

both groups. The endpoint Y has Sender ID Sid3 in G1 and Sender

ID Sid4 in G2. The pairs (Sid3, Gid1) and (Sid4, Gid2) identify

the same authentication credential of Y in G1 and G2,

respectively.

A malicious endpoint Z is also member of both G1 and G2. Hence, Z

is able to derive the Sender Keys used by X in G1 and G2.

When X sends a message M1 addressed to Y in G1 and protected in

pairwise mode, Z can intercept M1, and attempt to forge a valid

message M2 to be injected in G2, making it appear as still sent by X

to Y and valid to be accepted.

More in detail, Z intercepts and stops message M1, and forges a

message M2 by changing the value of the OSCORE option from M1 as

follows: the 'kid context' is set to G2 (rather than G1); and the

'kid' is set to Sid2 (rather than Sid1). Then, Z injects message M2

as addressed to Y in G2.

Upon receiving M2, there is a probability equal to 2^-64 that Y

successfully verifies the same unchanged MAC by using the Pairwise

Recipient Key associated with X in G2.

Note that Z does not know the pairwise keys of X and Y, since it

does not know and is not able to compute their shared Diffie-Hellman

secret. Therefore, Z is not able to check offline if a performed

forgery is actually valid, before sending the forged message to G2.

13.7.2. Attack Prevention in Group Mode

When a Group OSCORE message is protected with the group mode, the

countersignature is computed also over the value of the OSCORE
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option, which is part of the Additional Authenticated Data used in

the signing process (see Section 4.3).

That is, other than over the ciphertext, the countersignature is

computed over: the ID Context (Gid) and the Partial IV, which are

always present in group requests; as well as the Sender ID of the

message originator, which is always present in group requests as

well as in responses to requests protected in group mode.

Since the signing process takes as input also the ciphertext of the

COSE_Encrypt0 object, the countersignature is bound not only to the

intended OSCORE group, hence to the triplet (Master Secret, Master

Salt, ID Context), but also to a specific Sender ID in that group

and to its specific symmetric key used for AEAD encryption, hence to

the quartet (Master Secret, Master Salt, ID Context, Sender ID).

This makes it practically infeasible to perform the attack described

in Section 13.7.1, since it would require the adversary to

additionally forge a valid countersignature that replaces the

original one in the forged message M2.

If, hypothetically, the countersignature did not cover the OSCORE

option:

The attack described in Section 13.7.1 would still be possible

against response messages protected in group mode, since the same

unchanged countersignature from message M1 would be also valid in

message M2.

A simplification would also be possible in performing the attack,

since Z is able to derive the Sender/Recipient Keys of X and Y in

G1 and G2. That is, Z can also set a convenient Partial IV in the

response, until the same unchanged MAC is successfully verified

by using G2 as 'request_kid_context', Sid2 as 'request_kid', and

the symmetric key associated with X in G2.

Since the Partial IV is 5 bytes in size, this requires 2^40

operations to test all the Partial IVs, which can be done in

real-time. The probability that a single given message M1 can be

used to forge a response M2 for a given request would be equal to

2^-24, since there are more MAC values (8 bytes in size) than

Partial IV values (5 bytes in size).

Note that, by changing the Partial IV as discussed above, any

member of G1 would also be able to forge a valid signed response

message M2 to be injected in the same group G1.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶



13.8. Prevention of Group Cloning Attack

Both when using the group mode and the pairwise mode, the message

protection covers also the Group Manager's authentication

credential. This is included in the Additional Authenticated Data

used in the signing process and/or in the integrity-protected

encryption process (see Section 4.3).

By doing so, an endpoint X member of a group G1 cannot perform the

following attack.

X sets up a group G2 where it acts as Group Manager.

X makes G2 a "clone" of G1, i.e., G1 and G2 use the same

algorithms and have the same Master Secret, Master Salt and ID

Context.

X collects a message M sent to G1 and injects it in G2.

Members of G2 accept M and believe it to be originated in G2.

The attack above is effectively prevented, since message M is

protected by including the authentication credential of G1's Group

Manager in the Additional Authenticated Data. Therefore, members of

G2 do not successfully verify and decrypt M, since they correctly

use the authentication credential of X as Group Manager of G2 when

attempting to.

13.9. Group OSCORE for Unicast Requests

If a request is intended to be sent over unicast as addressed to a

single group member, it is NOT RECOMMENDED for the client to protect

the request by using the group mode as defined in Section 8.1.

This does not include the case where the client sends a request over

unicast to a proxy, to be forwarded to multiple intended recipients

over multicast [I-D.ietf-core-groupcomm-bis]. In this case, the

client MUST protect the request with the group mode, even though it

is sent to the proxy over unicast (see Section 8).

If the client uses the group mode with its own Sender Key to protect

a unicast request to a group member, an on-path adversary can, right

then or later on, redirect that request to one/many different group

member(s) over unicast, or to the whole OSCORE group over multicast.

By doing so, the adversary can induce the target group member(s) to

perform actions intended for one group member only. Note that the

adversary can be external, i.e., (s)he does not need to also be a

member of the OSCORE group.
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This is due to the fact that the client is not able to indicate the

single intended recipient in a way which is secure and possible to

process for Group OSCORE on the server side. In particular, Group

OSCORE does not protect network addressing information such as the

IP address of the intended recipient server. It follows that the

server(s) receiving the redirected request cannot assert whether

that was the original intention of the client, and would thus simply

assume so.

The impact of such an attack depends especially on the REST method

of the request, i.e., the Inner CoAP Code of the OSCORE request

message. In particular, safe methods such as GET and FETCH would

trigger (several) unintended responses from the targeted server(s),

while not resulting in destructive behavior. On the other hand, non

safe methods such as PUT, POST and PATCH/iPATCH would result in the

target server(s) taking active actions on their resources and

possible cyber-physical environment, with the risk of destructive

consequences and possible implications for safety.

A client can instead use the pairwise mode as defined in 

Section 9.3, in order to protect a request sent to a single group

member by using pairwise keying material (see Section 2.4). This

prevents the attack discussed above by construction, as only the

intended server is able to derive the pairwise keying material used

by the client to protect the request. A client supporting the

pairwise mode SHOULD use it to protect requests sent to a single

group member over unicast, instead of using the group mode. For an

example where this is not fulfilled, see Section 9.2.1 of

[I-D.ietf-core-observe-multicast-notifications].

With particular reference to block-wise transfers [RFC7959], 

Section 3.8 of [I-D.ietf-core-groupcomm-bis] points out that, while

an initial request including the CoAP Block2 option can be sent over

multicast, any other request in a transfer has to occur over

unicast, individually addressing the servers in the group.

Additional considerations are discussed in Section 10, with respect

to requests including a CoAP Echo Option [RFC9175] that have to be

sent over unicast, as a challenge-response method for servers to

achieve synchronization of clients' Sender Sequence Number.

13.10. End-to-end Protection

The same considerations from Section 12.1 of [RFC8613] hold for

Group OSCORE.

Additionally, (D)TLS and Group OSCORE can be combined for protecting

message exchanges occurring over unicast. However, it is not
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possible to combine (D)TLS and Group OSCORE for protecting message

exchanges where messages are (also) sent over multicast.

13.11. Master Secret

Group OSCORE derives the Security Context using the same

construction as OSCORE, and by using the Group Identifier of a group

as the related ID Context. Hence, the same required properties of

the Security Context parameters discussed in Section 3.3 of

[RFC8613] hold for this document.

With particular reference to the OSCORE Master Secret, it has to be

kept secret among the members of the respective OSCORE group and the

Group Manager responsible for that group. Also, the Master Secret

must have a good amount of randomness, and the Group Manager can

generate it offline using a good random number generator. This

includes the case where the Group Manager rekeys the group by

generating and distributing a new Master Secret. Randomness

requirements for security are described in [RFC4086].

13.12. Replay Protection

As in OSCORE [RFC8613], also Group OSCORE relies on Sender Sequence

Numbers included in the COSE message field 'Partial IV' and used to

build AEAD nonces.

Note that the Partial IV of an endpoint does not necessarily grow

monotonically. For instance, upon exhaustion of the endpoint Sender

Sequence Number, the Partial IV also gets exhausted. As discussed in

Section 2.5.3, this results either in the endpoint being

individually rekeyed and getting a new Sender ID, or in the

establishment of a new Security Context in the group. Therefore,

uniqueness of (key, nonce) pairs (see Section 13.3) is preserved

also when a new Security Context is established.

Since one-to-many communication such as multicast usually involves

unreliable transports, the simplification of the Replay Window to a

size of 1 suggested in Section 7.4 of [RFC8613] is not viable with

Group OSCORE, unless exchanges in the group rely only on unicast

messages.

As discussed in Section 6.2, a Replay Window may be initialized as

not valid, following the loss of mutable Security Context 

Section 2.5.1. In particular, Section 2.5.1.1 and Section 2.5.1.2

define measures that endpoints need to take in such a situation,

before resuming to accept incoming messages from other group

members.
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13.13. Message Freshness

As discussed in Section 6.3, a server may not be able to assert

whether an incoming request is fresh, in case it does not have or

has lost synchronization with the client's Sender Sequence Number.

If freshness is relevant for the application, the server may

(re-)synchronize with the client's Sender Sequence Number at any

time, by using the approach described in Section 10 and based on the

CoAP Echo Option [RFC9175], as a variant of the approach defined in 

Appendix B.1.2 of [RFC8613] applicable to Group OSCORE.

13.14. Client Aliveness

Building on Section 12.5 of [RFC8613], a server may use the CoAP

Echo Option [RFC9175] to verify the aliveness of the client that

originated a received request, by using the approach described in 

Section 10 of this document.

13.15. Cryptographic Considerations

The same considerations from Section 12.6 of [RFC8613] about the

maximum Sender Sequence Number hold for Group OSCORE.

As discussed in Section 2.5.2, an endpoint that experiences an

exhaustion of its own Sender Sequence Numbers MUST NOT protect

further messages including a Partial IV, until it has derived a new

Sender Context. This prevents the endpoint to reuse the same AEAD

nonces with the same Sender Key.

In order to renew its own Sender Context, the endpoint SHOULD inform

the Group Manager, which can either renew the whole Security Context

by means of group rekeying, or provide only that endpoint with a new

Sender ID value. In either case, the endpoint derives a new Sender

Context, and in particular a new Sender Key.

Additionally, the same considerations from Section 12.6 of [RFC8613]

hold for Group OSCORE, about building the AEAD nonce and the secrecy

of the Security Context parameters.

The group mode uses the "encrypt-then-sign" construction, i.e., the

countersignature is computed over the COSE_Encrypt0 object (see 

Section 4.1). This is motivated by enabling additional entities

acting as signature checkers (see Section 3.1), which do not join a

group as members but are allowed to verify countersignatures of

messages protected in group mode without being able to decrypt them

(see Section 8.5).

If the encryption algorithm used in group mode provides integrity

protection, countersignatures of COSE_Encrypt0 with short
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authentication tags do not provide the security properties

associated with the same algorithm used in COSE_Sign (see Section 6

of [RFC9338]). To provide 128-bit security against collision

attacks, the tag length MUST be at least 256-bits. A

countersignature of a COSE_Encrypt0 with AES-CCM-16-64-128 provides

at most 32 bits of integrity protection.

The derivation of pairwise keys defined in Section 2.4.1 is

compatible with ECDSA and EdDSA asymmetric keys, but is not

compatible with RSA asymmetric keys.

For the public key translation from Ed25519 (Ed448) to X25519 (X448)

specified in Section 2.4.1, variable time methods can be used since

the translation operates on public information. Any byte string of

appropriate length is accepted as a public key for X25519 (X448) in 

[RFC7748]. It is therefore not necessary for security to validate

the translated public key (assuming the translation was successful).

The security of using the same key pair for Diffie-Hellman and for

signing (by considering the ECDH procedure in Section 2.4 as a Key

Encapsulation Mechanism (KEM)) is demonstrated in [Degabriele] and 

[Thormarker].

Applications using ECDH (except X25519 and X448) based KEM in 

Section 2.4 are assumed to verify that a peer endpoint's public key

is on the expected curve and that the shared secret is not the point

at infinity. The KEM in [Degabriele] checks that the shared secret

is different from the point at infinity, as does the procedure in

Section 5.7.1.2 of [NIST-800-56A] which is referenced in 

Section 2.4.

Extending Theorem 2 of [Degabriele], [Thormarker] shows that the

same key pair can be used with X25519 and Ed25519 (X448 and Ed448)

for the KEM specified in Section 2.4. By symmetry in the KEM used in

this document, both endpoints can consider themselves to have the

recipient role in the KEM - as discussed in Section 7 of 

[Thormarker] - and rely on the mentioned proofs for the security of

their key pairs.

Theorem 3 in [Degabriele] shows that the same key pair can be used

for an ECDH based KEM and ECDSA. The KEM uses a different KDF than

in Section 2.4, but the proof only depends on that the KDF has

certain required properties, which are the typical assumptions about

HKDF, e.g., that output keys are pseudorandom. In order to comply

with the assumptions of Theorem 3, received public keys MUST be

successfully validated, see Section 5.6.2.3.4 of [NIST-800-56A]. The

validation MAY be performed by a trusted Group Manager. For 

[Degabriele] to apply as it is written, public keys need to be in

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9338#section-6


the expected subgroup. For this we rely on cofactor DH, Section

5.7.1.2 of [NIST-800-56A] which is referenced in Section 2.4.

HashEdDSA variants of Ed25519 and Ed448 are not used by COSE, see 

Section 2.2 of [RFC9053], and are not covered by the analysis in 

[Thormarker]. Hence, they MUST NOT be used with the public keys used

to derive pairwise keys as specified in this document.

13.16. Message Segmentation

The same considerations from Section 12.7 of [RFC8613] hold for

Group OSCORE.

13.17. Privacy Considerations

Group OSCORE ensures end-to-end integrity protection and encryption

of the message payload and all options that are not used for proxy

operations. In particular, options are processed according to the

same class U/I/E that they have for OSCORE. Therefore, the same

privacy considerations from Section 12.8 of [RFC8613] hold for Group

OSCORE, with the following addition.

When protecting a message in group mode, the countersignature is

encrypted by using a keystream derived from the group keying

material (see Section 4.1 and Section 4.1.1). This ensures group

privacy. That is, an attacker cannot track an endpoint over two

groups by linking messages between the two groups, unless being

also a member of those groups.

Furthermore, the following privacy considerations hold about the

OSCORE option, which may reveal information on the communicating

endpoints.

The 'kid' parameter, which is intended to help a recipient

endpoint to find the right Recipient Context, may reveal

information about the Sender Endpoint. When both a request and

the corresponding responses include the 'kid' parameter, this may

reveal information about both a client sending a request and all

the possibly replying servers sending their own individual

response.

The 'kid context' parameter, which is intended to help a

recipient endpoint to find the right Security Context, reveals

information about the sender endpoint. In particular, it reveals

that the sender endpoint is a member of a particular OSCORE

group, whose current Group ID is indicated in the 'kid context'

parameter.

When receiving a group request, each of the recipient endpoints can

reply with a response that includes its Sender ID as 'kid'
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parameter. All these responses will be matchable with the request

through the Token. Thus, even if these responses do not include a

'kid context' parameter, it becomes possible to understand that the

responder endpoints are in the same group of the requester endpoint.

Furthermore, using the approach described in Section 10 to achieve

Sender Sequence Number synchronization with a client may reveal when

a server device goes through a reboot. This can be mitigated by the

server device storing the precise state of the Replay Window of each

known client on a clean shutdown.

Finally, the approach described in Section 13.6 to prevent

collisions of Group Identifiers from different Group Managers may

reveal information about events in the respective OSCORE groups. In

particular, a Group Identifier changes when the corresponding group

is rekeyed. Thus, Group Managers might use the shared list of Group

Identifiers to infer the rate and patterns of group membership

changes triggering a group rekeying, e.g., due to newly joined

members or evicted (compromised) members. In order to alleviate this

privacy concern, it should be hidden from the Group Managers which

exact Group Manager has currently assigned which Group Identifiers

in its OSCORE groups.

14. IANA Considerations

Note to RFC Editor: Please replace "[RFC-XXXX]" with the RFC number

of this document and delete this paragraph.

This document has the following actions for IANA.

14.1. OSCORE Flag Bits Registry

IANA is asked to add the following entry to the "OSCORE Flag Bits"

registry within the "Constrained RESTful Environments (CoRE)

Parameters" registry group.

14.2. Target Attributes Registry

IANA is asked to add the following entry to the "Target Attributes"

registry within the "CoRE Parameters" registry group.
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+--------------+-------+-----------------------------+------------+

| Bit Position | Name  | Description                 | Reference  |

+--------------+-------+-----------------------------+------------+

|       2      | Group | For using a Group OSCORE    | [RFC-XXXX] |

|              | Flag  | Security Context, set to 1  |            |

|              |       | if the message is protected |            |

|              |       | with the group mode         |            |

+--------------+-------+-----------------------------+------------+
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Appendix A. Assumptions and Security Objectives

This section presents a set of assumptions and security objectives

for the approach described in this document. The rest of this

section refers to three types of groups:

Application group, i.e., a set of CoAP endpoints that share a

common pool of resources.

Security group, as defined in Section 1.1 of this document. There

can be a one-to-one or a one-to-many relation between security

groups and application groups, and vice versa.

CoAP group, i.e., a set of CoAP endpoints where each endpoint is

configured to receive one-to-many CoAP requests, e.g., sent to

the group's associated IP multicast address and UDP port as
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defined in [I-D.ietf-core-groupcomm-bis]. An endpoint may be a

member of multiple CoAP groups. There can be a one-to-one or a

one-to-many relation between application groups and CoAP groups.

Note that a device sending a CoAP request to a CoAP group is not

necessarily itself a member of that group: it is a member only if

it also has a CoAP server endpoint listening to requests for this

CoAP group, sent to the associated IP multicast address and port.

In order to provide secure group communication, all members of a

CoAP group as well as all further endpoints configured only as

clients sending CoAP (multicast) requests to the CoAP group have

to be member of a security group. There can be a one-to-one or a

one-to-many relation between security groups and CoAP groups, and

vice versa.

A.1. Assumptions

The following points are assumed to be already addressed and are out

of the scope of this document.

Multicast communication topology: this document considers both 1-

to-N (one sender and multiple recipients) and M-to-N (multiple

senders and multiple recipients) communication topologies. The 1-

to-N communication topology is the simplest group communication

scenario that would serve the needs of a typical Low-power and

Lossy Network (LLN). Examples of use cases that benefit from

secure group communication are provided in Appendix B.

In a 1-to-N communication model, only a single client transmits

data to the CoAP group, in the form of request messages; in an M-

to-N communication model (where M and N do not necessarily have

the same value), M clients transmit data to the CoAP group.

According to [I-D.ietf-core-groupcomm-bis], any possible proxy

entity is supposed to know about the clients. Also, every client

expects and is able to handle multiple response messages

associated with a same request sent to the CoAP group.

Group size: security solutions for group communication should be

able to adequately support different and possibly large security

groups. The group size is the current number of members in a

security group. In the use cases mentioned in this document, the

number of clients (normally the controlling devices) is expected

to be much smaller than the number of servers (i.e., the

controlled devices). A security solution for group communication

that supports 1 to 50 clients would be able to properly cover the

group sizes required for most use cases that are relevant for

this document. The maximum group size is expected to be in the

range of 2 to 100 devices. Security groups larger than that

should be divided into smaller independent groups. One should not

assume that the set of members of a security group remains fixed.
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That is, the group membership is subject to changes, possibly on

a frequent basis.

Communication with the Group Manager: an endpoint must use a

secure dedicated channel when communicating with the Group

Manager, also when not registered as a member of the security

group.

Provisioning and management of Security Contexts: a Security

Context must be established among the members of the security

group. A secure mechanism must be used to generate, revoke and

(re-)distribute keying material, communication policies and

security parameters in the security group. The actual

provisioning and management of the Security Context is out of the

scope of this document.

Multicast data security ciphersuite: all members of a security

group must use the same ciphersuite to provide authenticity,

integrity and confidentiality of messages in the group. The

ciphersuite is specified as part of the Security Context.

Backward security: a new device joining the security group should

not have access to any old Security Contexts used before its

joining. This ensures that a new member of the security group is

not able to decrypt confidential data sent before it has joined

the security group. The adopted key management scheme should

ensure that the Security Context is updated to ensure backward

confidentiality. The actual mechanism to update the Security

Context and renew the group keying material in the security group

upon a new member's joining has to be defined as part of the

group key management scheme.

Forward security: entities that leave the security group should

not have access to any future Security Contexts or message

exchanged within the security group after their leaving. This

ensures that a former member of the security group is not able to

decrypt confidential data sent within the security group anymore.

Also, it ensures that a former member is not able to send

protected messages to the security group anymore. The actual

mechanism to update the Security Context and renew the group

keying material in the security group upon a member's leaving has

to be defined as part of the group key management scheme.

A.2. Security Objectives

The approach described in this document aims at fulfilling the

following security objectives:

Data replay protection: group request messages or response

messages replayed within the security group must be detected.
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Data confidentiality: messages sent within the security group

shall be encrypted.

Group-level data confidentiality: the group mode provides group-

level data confidentiality since messages are encrypted at a

group level, i.e., in such a way that they can be decrypted by

any member of the security group, but not by an external

adversary or other external entities.

Pairwise data confidentiality: the pairwise mode especially

provides pairwise data confidentiality, since messages are

encrypted using pairwise keying material shared between any two

group members, hence they can be decrypted only by the intended

single recipient.

Source message authentication: messages sent within the security

group shall be authenticated. That is, it is essential to ensure

that a message is originated by a member of the security group in

the first place, and in particular by a specific, identifiable

member of the security group.

Message integrity: messages sent within the security group shall

be integrity protected. That is, it is essential to ensure that a

message has not been tampered with, either by a group member, or

by an external adversary or other external entities which are not

members of the security group.

Message ordering: it must be possible to determine the ordering

of messages coming from a single sender. In accordance with

OSCORE [RFC8613], this is achieved by providing relative

freshness of requests and notification responses, hence ensuring

their absolute ordering. In addition, relative freshness of non-

notification responses to group requests is also provided, hence

ensuring their absolute ordering. It is not required to determine

ordering of messages from different senders.

Appendix B. List of Use Cases

Group Communication for CoAP [I-D.ietf-core-groupcomm-bis] provides

the necessary background for multicast-based CoAP communication,

with particular reference to low-power and lossy networks (LLNs) and

resource constrained environments. The interested reader is

encouraged to first read [I-D.ietf-core-groupcomm-bis] to understand

the non-security related details. This section discusses a number of

use cases that benefit from secure group communication, and refers

to the three types of groups from Appendix A. Specific security

requirements for these use cases are discussed in Appendix A.

Lighting control: consider a building equipped with IP-connected

lighting devices, switches, and border routers. The lighting
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devices acting as servers are organized into application groups

and CoAP groups, according to their physical location in the

building. For instance, lighting devices in a room or corridor

can be configured as members of a single application group and

corresponding CoAP group. Those lighting devices together with

the switches acting as clients in the same room or corridor can

be configured as members of the corresponding security group.

Switches are then used to control the lighting devices by sending

on/off/dimming commands to all lighting devices in the CoAP

group, while border routers connected to an IP network backbone

(which is also multicast-enabled) can be used to interconnect

routers in the building. Consequently, this would also enable

logical groups to be formed even if devices with a role in the

lighting application may be physically in different subnets

(e.g., on wired and wireless networks). Connectivity between

lighting devices may be realized, for instance, by means of IPv6

and (border) routers supporting 6LoWPAN [RFC4944][RFC6282]. Group

communication enables synchronous operation of a set of connected

lights, ensuring that the light preset (e.g., dimming level or

color) of a large set of luminaires are changed at the same

perceived time. This is especially useful for providing a visual

synchronicity of light effects to the user. As a practical

guideline, events within a 200 ms interval are perceived as

simultaneous by humans, which is necessary to ensure in many

setups. Devices may reply back to the switches that issue on/off/

dimming commands, in order to report about the execution of the

requested operation (e.g., OK, failure, error) and their current

operational status. In a typical lighting control scenario, a

single switch is the only entity responsible for sending commands

to a set of lighting devices. In more advanced lighting control

use cases, a M-to-N communication topology would be required, for

instance in case multiple sensors (presence or day-light) are

responsible to trigger events to a set of lighting devices.

Especially in professional lighting scenarios, the roles of

client and server are configured by the lighting commissioner,

and devices strictly follow those roles.

Integrated building control: enabling Building Automation and

Control Systems (BACSs) to control multiple heating, ventilation

and air-conditioning units to predefined presets. Controlled

units can be organized into application groups and CoAP groups in

order to reflect their physical position in the building, e.g.,

devices in the same room can be configured as members of a single

application group and corresponding CoAP group. As a practical

guideline, events within intervals of seconds are typically

acceptable. Controlled units are expected to possibly reply back

to the BACS issuing control commands, in order to report about

the execution of the requested operation (e.g., OK, failure,

error) and their current operational status.
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Software and firmware updates: software and firmware updates

often comprise quite a large amount of data. This can overload a

Low-power and Lossy Network (LLN) that is otherwise typically

used to deal with only small amounts of data, on an infrequent

base. Rather than sending software and firmware updates as

unicast messages to each individual device, multicasting such

updated data to a larger set of devices at once displays a number

of benefits. For instance, it can significantly reduce the

network load and decrease the overall time latency for

propagating this data to all devices. Even if the complete whole

update process itself is secured, securing the individual

messages is important, in case updates consist of relatively

large amounts of data. In fact, checking individual received data

piecemeal for tampering avoids that devices store large amounts

of partially corrupted data and that they detect tampering hereof

only after all data has been received. Devices receiving software

and firmware updates are expected to possibly reply back, in

order to provide a feedback about the execution of the update

operation (e.g., OK, failure, error) and their current

operational status.

Parameter and configuration update: by means of multicast

communication, it is possible to update the settings of a set of

similar devices, both simultaneously and efficiently. Possible

parameters are related, for instance, to network load management

or network access controls. Devices receiving parameter and

configuration updates are expected to possibly reply back, to

provide a feedback about the execution of the update operation

(e.g., OK, failure, error) and their current operational status.

Commissioning of Low-power and Lossy Network (LLN) systems: a

commissioning device is responsible for querying all devices in

the local network or a selected subset of them, in order to

discover their presence, and be aware of their capabilities,

default configuration, and operating conditions. Queried devices

displaying similarities in their capabilities and features, or

sharing a common physical location can be configured as members

of a single application group and corresponding CoAP group.

Queried devices are expected to reply back to the commissioning

device, in order to notify their presence, and provide the

requested information and their current operational status.

Emergency multicast: a particular emergency related information

(e.g., natural disaster) is generated and multicast by an

emergency notifier, and relayed to multiple devices. The latter

may reply back to the emergency notifier, in order to provide

their feedback and local information related to the ongoing

emergency. This kind of setups should additionally rely on a
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fault-tolerant multicast algorithm, such as Multicast Protocol

for Low-Power and Lossy Networks (MPL).

Appendix C. Example of Group Identifier Format

This section provides an example of how the Group Identifier (Gid)

can be specifically formatted. That is, the Gid can be composed of

two parts, namely a Group Prefix and a Group Epoch.

For each group, the Group Prefix is constant over time and is

uniquely defined in the set of all the groups associated with the

same Group Manager. The choice of the Group Prefix for a given

group's Security Context is application specific. The size of the

Group Prefix directly impact on the maximum number of distinct

groups under the same Group Manager.

The Group Epoch is set to 0 upon the group's initialization, and is

incremented by 1 each time new keying material, together with a new

Gid, is distributed to the group in order to establish a new

Security Context (see Section 3.2).

As an example, a 3-byte Gid can be composed of: i) a 1-byte Group

Prefix '0xb1' interpreted as a raw byte string; and ii) a 2-byte

Group Epoch interpreted as an unsigned integer ranging from 0 to

65535. Then, after having established the Common Context 61532 times

in the group, its Gid will assume value '0xb1f05c'.

Using an immutable Group Prefix for a group assumes that enough time

elapses before all possible Group Epoch values are used, i.e.,

before the Group Manager terminates the group or starts reassigning

Gid values to the group (see Section 3.2). Thus, the expected

highest rate for addition/removal of group members and consequent

group rekeying should be taken into account for a proper

dimensioning of the Group Epoch size.

As discussed in Section 13.6, if endpoints are deployed in multiple

groups managed by different non-synchronized Group Managers, it is

possible that Group Identifiers of different groups coincide at some

point in time. In this case, a recipient has to handle coinciding

Group Identifiers, and has to try using different Security Contexts

to process an incoming message, until the right one is found and the

message is correctly verified. Therefore, it is favorable that Group

Identifiers from different Group Managers have a size that result in

a small probability of collision. How small this probability should

be is up to system designers.

Appendix D. Set-up of New Endpoints

An endpoint joins a group by explicitly interacting with the

responsible Group Manager. When becoming members of a group,
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endpoints are not required to know how many and what endpoints are

in the same group.

Communications between a joining endpoint and the Group Manager rely

on the CoAP protocol and must be secured. Specific details on how to

secure communications between joining endpoints and a Group Manager

are out of the scope of this document.

The Group Manager must verify that the joining endpoint is

authorized to join the group. To this end, the Group Manager can

directly authorize the joining endpoint, or expect it to provide

authorization evidence previously obtained from a trusted entity.

Further details about the authorization of joining endpoints are out

of scope.

In case of successful authorization check, the Group Manager

generates a Sender ID assigned to the joining endpoint, before

proceeding with the rest of the join process. That is, the Group

Manager provides the joining endpoint with the keying material and

parameters to initialize the Security Context, including its own

authentication credential (see Section 2). The actual provisioning

of keying material and parameters to the joining endpoint is out of

the scope of this document.

As mentioned in Section 3, the Group Manager and the join process

can be as specified in [I-D.ietf-ace-key-groupcomm-oscore].

Appendix E. Document Updates

RFC EDITOR: PLEASE REMOVE THIS SECTION.

E.1. Version -16 to -17

Definition and registration of the target attribute "gosc".

Reference update and editorial fixes.

E.2. Version -15 to -16

Clients "SHOULD" use the group mode for one-to-many requests.

Handling of multiple non-notification responses.

Revised presentation of security properties.

Improved listing of operations defined for the group mode that

are inherited by the pairwise mode.

Editorial improvements.
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E.3. Version -14 to -15

Updated references and editorial fixes.

E.4. Version -13 to -14

Replaced "node" with "endpoint" where appropriate.

Replaced "owning" with "storing" (of keying material).

Distinction between "authentication credential" and "public key".

Considerations on storing whole authentication credentials.

Considerations on Denial of Service.

Recycling of Group IDs by tracking the "Birth Gid" of each group

member is now optional to support and use for the Group Manager.

Fine-grained suppression of error responses.

Changed section title "Mandatory-to-Implement Compliance

Requirements" to "Implementation Compliance".

"Challenge-Response Synchronization" moved to the document body.

RFC 7641 and draft-ietf-core-echo-request-tag as normative

references.

Clarifications and editorial improvements.

E.5. Version -12 to -13

Fixes in the derivation of the Group Encryption Key.

Added Mandatory-to-Implement compliance requirements.

Changed UCCS to CCS.

E.6. Version -11 to -12

No mode of operation is mandatory to support.

Revised parameters of the Security Context, COSE object and

external_aad.

Revised management of keying material for the Group Manager.

Informing of former members when rekeying the group.

Admit encryption-only algorithms in group mode.
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Encrypted countersignature through a keystream.

Added public key of the Group Manager as key material and

protected data.

Clarifications about message processing, especially

notifications.

Guidance for message processing of external signature checkers.

Updated derivation of pairwise keys, with more security

considerations.

Termination of ongoing observations as client, upon leaving or

before re-joining the group.

Recycling Group IDs by tracking the "Birth Gid" of each group

member.

Expanded security and privacy considerations about the group

mode.

Removed appendices on skipping signature verification and on COSE

capabilities.

Fixes and editorial improvements.

E.7. Version -10 to -11

Loss of Recipient Contexts due to their overflow.

Added diagram on keying material components and their relation.

Distinction between anti-replay and freshness.

Preservation of Sender IDs over rekeying.

Clearer cause-effect about reset of SSN.

The GM provides public keys of group members with associated

Sender IDs.

Removed 'par_countersign_key' from the external_aad.

One single format for the external_aad, both for encryption and

signing.

Presence of 'kid' in responses to requests protected with the

pairwise mode.
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Inclusion of 'kid_context' in notifications following a group

rekeying.

Pairwise mode presented with OSCORE as baseline.

Revised examples with signature values.

Decoupled growth of clients' Sender Sequence Numbers and loss of

synchronization for server.

Sender IDs not recycled in the group under the same Gid.

Processing and description of the Group Flag bit in the OSCORE

option.

Usage of the pairwise mode for multicast requests.

Clarifications on synchronization using the Echo option.

General format of context parameters and external_aad elements,

supporting future registered COSE algorithms (new Appendix).

Fixes and editorial improvements.

E.8. Version -09 to -10

Removed 'Counter Signature Key Parameters' from the Common

Context.

New parameters in the Common Context covering the DH secret

derivation.

New countersignature header parameter from draft-ietf-cose-

countersign.

Stronger policies non non-recycling of Sender IDs and Gid.

The Sender Sequence Number is reset when establishing a new

Security Context.

Added 'request_kid_context' in the aad_array.

The server can respond with 5.03 if the client's public key is

not available.

The observer client stores an invariant identifier of the group.

Relaxed storing of original 'kid' for observer clients.

Both client and server store the 'kid_context' of the original

observation request.
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The server uses a fresh PIV if protecting the response with a

Security Context different from the one used to protect the

request.

Clarifications on MTI algorithms and curves.

Removed optimized requests.

Overall clarifications and editorial revision.

E.9. Version -08 to -09

Pairwise keys are discarded after group rekeying.

Signature mode renamed to group mode.

The parameters for countersignatures use the updated COSE

registries. Newly defined IANA registries have been removed.

Pairwise Flag bit renamed as Group Flag bit, set to 1 in group

mode and set to 0 in pairwise mode.

Dedicated section on updating the Security Context.

By default, sender sequence numbers and replay windows are not

reset upon group rekeying.

An endpoint implementing only a silent server does not support

the pairwise mode.

Separate section on general message reception.

Pairwise mode moved to the document body.

Considerations on using the pairwise mode in non-multicast

settings.

Optimized requests are moved as an appendix.

Normative support for the signature and pairwise mode.

Revised methods for synchronization with clients' sender sequence

number.

Appendix with example values of parameters for countersignatures.

Clarifications and editorial improvements.
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E.10. Version -07 to -08

Clarified relation between pairwise mode and group communication

(Section 1).

Improved definition of "silent server" (Section 1.1).

Clarified when a Recipient Context is needed (Section 2).

Signature checkers as entities supported by the Group Manager

(Section 2.3).

Clarified that the Group Manager is under exclusive control of

Gid and Sender ID values in a group, with Sender ID values under

each Gid value (Section 2.3).

Mitigation policies in case of recycled 'kid' values (Section

2.4).

More generic exhaustion (not necessarily wrap-around) of sender

sequence numbers (Sections 2.5 and 10.11).

Pairwise key considerations, as to group rekeying and Sender

Sequence Numbers (Section 3).

Added reference to static-static Diffie-Hellman shared secret

(Section 3).

Note for implementation about the external_aad for signing

(Sectino 4.3.2).

Retransmission by the application for group requests over

multicast as Non-confirmable (Section 7).

A server MUST use its own Partial IV in a response, if protecting

it with a different context than the one used for the request

(Section 7.3).

Security considerations: encryption of pairwise mode as

alternative to group-level security (Section 10.1).

Security considerations: added approach to reduce the chance of

global collisions of Gid values from different Group Managers

(Section 10.5).

Security considerations: added implications for block-wise

transfers when using the signature mode for requests over unicast

(Section 10.7).
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Security considerations: (multiple) supported signature

algorithms (Section 10.13).

Security considerations: added privacy considerations on the

approach for reducing global collisions of Gid values (Section

10.15).

Updates to the methods for synchronizing with clients' sequence

number (Appendix E).

Simplified text on discovery services supporting the pairwise

mode (Appendix G.1).

Editorial improvements.

E.11. Version -06 to -07

Updated abstract and introduction.

Clarifications of what pertains a group rekeying.

Derivation of pairwise keying material.

Content re-organization for COSE Object and OSCORE header

compression.

Defined the Pairwise Flag bit for the OSCORE option.

Supporting CoAP Observe for group requests and responses.

Considerations on message protection across switching to new

keying material.

New optimized mode based on pairwise keying material.

More considerations on replay protection and Security Contexts

upon key renewal.

Security considerations on Group OSCORE for unicast requests,

also as affecting the usage of the Echo option.

Clarification on different types of groups considered

(application/security/CoAP).

New pairwise mode, using pairwise keying material for both

requests and responses.

E.12. Version -05 to -06

Group IDs mandated to be unique under the same Group Manager.
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Clarifications on parameter update upon group rekeying.

Updated external_aad structures.

Dynamic derivation of Recipient Contexts made optional and

application specific.

Optional 4.00 response for failed signature verification on the

server.

Removed client handling of duplicated responses to multicast

requests.

Additional considerations on public key retrieval and group

rekeying.

Added Group Manager responsibility on validating public keys.

Updates IANA registries.

Reference to RFC 8613.

Editorial improvements.

E.13. Version -04 to -05

Added references to draft-dijk-core-groupcomm-bis.

New parameter Counter Signature Key Parameters (Section 2).

Clarification about Recipient Contexts (Section 2).

Two different external_aad for encrypting and signing (Section

3.1).

Updated response verification to handle Observe notifications

(Section 6.4).

Extended Security Considerations (Section 8).

New "Counter Signature Key Parameters" IANA Registry (Section

9.2).

E.14. Version -03 to -04

Added the new "Counter Signature Parameters" in the Common

Context (see Section 2).

Added recommendation on using "deterministic ECDSA" if ECDSA is

used as countersignature algorithm (see Section 2).
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Clarified possible asynchronous retrieval of keying material from

the Group Manager, in order to process incoming messages (see

Section 2).

Structured Section 3 into subsections.

Added the new 'par_countersign' to the aad_array of the

external_aad (see Section 3.1).

Clarified non reliability of 'kid' as identity identifier for a

group member (see Section 2.1).

Described possible provisioning of new Sender ID in case of

Partial IV wrap-around (see Section 2.2).

The former signature bit in the Flag Byte of the OSCORE option

value is reverted to reserved (see Section 4.1).

Updated examples of compressed COSE object, now with the sixth

less significant bit in the Flag Byte of the OSCORE option value

set to 0 (see Section 4.3).

Relaxed statements on sending error messages (see Section 6).

Added explicit step on computing the countersignature for

outgoing messages (see Sections 6.1 and 6.3).

Handling of just created Recipient Contexts in case of

unsuccessful message verification (see Sections 6.2 and 6.4).

Handling of replied/repeated responses on the client (see Section

6.4).

New IANA Registry "Counter Signature Parameters" (see Section

9.1).

E.15. Version -02 to -03

Revised structure and phrasing for improved readability and

better alignment with draft-ietf-core-object-security.

Added discussion on wrap-Around of Partial IVs (see Section 2.2).

Separate sections for the COSE Object (Section 3) and the OSCORE

Header Compression (Section 4).

The countersignature is now appended to the encrypted payload of

the OSCORE message, rather than included in the OSCORE Option

(see Section 4).
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Extended scope of Section 5, now titled " Message Binding,

Sequence Numbers, Freshness and Replay Protection".

Clarifications about Non-confirmable messages in Section 5.1

"Synchronization of Sender Sequence Numbers".

Clarifications about error handling in Section 6 "Message

Processing".

Compacted list of responsibilities of the Group Manager in

Section 7.

Revised and extended security considerations in Section 8.

Added IANA considerations for the OSCORE Flag Bits Registry in

Section 9.

Revised Appendix D, now giving a short high-level description of

a new endpoint set-up.

E.16. Version -01 to -02

Terminology has been made more aligned with RFC7252 and draft-

ietf-core-object-security: i) "client" and "server" replace the

old "multicaster" and "listener", respectively; ii) "silent

server" replaces the old "pure listener".

Section 2 has been updated to have the Group Identifier stored in

the 'ID Context' parameter defined in draft-ietf-core-object-

security.

Section 3 has been updated with the new format of the Additional

Authenticated Data.

Major rewriting of Section 4 to better highlight the differences

with the message processing in draft-ietf-core-object-security.

Added Sections 7.2 and 7.3 discussing security considerations

about uniqueness of (key, nonce) and collision of group

identifiers, respectively.

Minor updates to Appendix A.1 about assumptions on multicast

communication topology and group size.

Updated Appendix C on format of group identifiers, with practical

implications of possible collisions of group identifiers.

Updated Appendix D.2, adding a pointer to draft-palombini-ace-

key-groupcomm about retrieval of nodes' public keys through the

Group Manager.
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Minor updates to Appendix E.3 about Challenge-Response

synchronization of sequence numbers based on the Echo option from

draft-ietf-core-echo-request-tag.

E.17. Version -00 to -01

Section 1.1 has been updated with the definition of group as

"security group".

Section 2 has been updated with:

Clarifications on establishment/derivation of Security

Contexts.

A table summarizing the the additional context elements

compared to OSCORE.

Section 3 has been updated with:

Examples of request and response messages.

Use of CounterSignature0 rather than CounterSignature.

Additional Authenticated Data including also the signature

algorithm, while not including the Group Identifier any

longer.

Added Section 6, listing the responsibilities of the Group

Manager.

Added Appendix A (former section), including assumptions and

security objectives.

Appendix B has been updated with more details on the use cases.

Added Appendix C, providing an example of Group Identifier

format.

Appendix D has been updated to be aligned with draft-palombini-

ace-key-groupcomm.
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