
Workgroup: CoRE Working Group

Internet-Draft:

draft-ietf-core-oscore-key-limits-02

Published: 10 January 2024

Intended Status: Informational

Expires: 13 July 2024

Authors: R. Höglund

RISE AB

M. Tiloca

RISE AB

Key Usage Limits for OSCORE

Abstract

Object Security for Constrained RESTful Environments (OSCORE) uses

AEAD algorithms to ensure confidentiality and integrity of exchanged

messages. Due to known issues allowing forgery attacks against AEAD

algorithms, limits should be followed on the number of times a

specific key is used for encryption or decryption. Among other

reasons, approaching key usage limits requires updating the OSCORE

keying material before communications can securely continue. This

document defines how two OSCORE peers can follow these key usage

limits and what steps they should take to preserve the security of

their communications.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

github.com/core-wg/oscore-key-limits.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://github.com/core-wg/oscore-key-limits
https://github.com/core-wg/oscore-key-limits
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 13 July 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. AEAD Key Usage Limits in OSCORE

2.1. Problem Overview

2.1.1. Limits for 'q' and 'v'

2.2. Additional Information in the Security Context

2.2.1. Common Context

2.2.2. Sender Context

2.2.3. Recipient Context

2.3. OSCORE Message Processing

2.3.1. Protecting a Request or a Response

2.3.2. Verifying a Request or a Response

3. Security Considerations

4. IANA Considerations

5. References

5.1. Normative References

5.2. Informative References

Appendix A. Detailed considerations for AEAD_AES_128_CCM_8

Appendix B. Estimation of 'count_q'

Appendix C. Document Updates

C.1. Version -01 to -02

C.2. Version -00 to -01

C.3. Version -00

Acknowledgments

Authors' Addresses

1. Introduction

Object Security for Constrained RESTful Environments (OSCORE)

[RFC8613] provides end-to-end protection of CoAP [RFC7252] messages

¶

¶

¶

https://trustee.ietf.org/license-info

at the application-layer, ensuring message confidentiality and

integrity, replay protection, as well as binding of response to

request between a sender and a recipient.

In particular, OSCORE uses AEAD algorithms to provide

confidentiality and integrity of messages exchanged between two

peers. Due to known issues allowing forgery attacks against AEAD

algorithms, limits should be followed on the number of times a

specific key is used to perform encryption or decryption

[I-D.irtf-cfrg-aead-limits].

The original OSCORE specification [RFC8613] does not consider such

key usage limits. However, should they be exceeded, an adversary may

break the security properties of the AEAD algorithm, such as message

confidentiality and integrity, e.g., by performing a message forgery

attack. Among other reasons, approaching the key usage limits

requires updating the OSCORE keying material before communications

can securely continue. This document defines what steps an OSCORE

peer should take to preserve the security of its communications, by

stopping to use the OSCORE Security Context shared with another peer

when approaching the key usage limits.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

related to CoAP [RFC7252] and OSCORE [RFC8613].

2. AEAD Key Usage Limits in OSCORE

This section details how key usage limits for AEAD algorithms can be

considered when using OSCORE. In particular, it discusses specific

limits for common AEAD algorithms used with OSCORE; parameters to

track associated to an OSCORE Security Context; and additions to the

OSCORE message processing.

2.1. Problem Overview

The OSCORE security protocol [RFC8613] uses AEAD algorithms to

provide integrity and confidentiality of messages, as exchanged

between two peers sharing an OSCORE Security Context.

When processing messages with OSCORE, each peer should follow

specific limits as to the number of times it uses a specific key.

This applies separately to the Sender Key used to encrypt outgoing

¶

¶

¶

¶

¶

¶

¶

messages, and to the Recipient Key used to decrypt and verify

incoming protected messages.

Exceeding these limits may allow an adversary to break the security

properties of the AEAD algorithm, such as message confidentiality

and integrity, e.g., by performing a message forgery attack.

The following refers to the two parameters 'q' and 'v' introduced in

[I-D.irtf-cfrg-aead-limits], to use when deploying an AEAD

algorithm.

'q': this parameter has as value the number of messages protected

with a specific key, i.e., the number of times the AEAD algorithm

has been invoked to encrypt data with that key.

'v': this parameter has as value the number of alleged forgery

attempts that have been made against a specific key, i.e., the

amount of failed decryptions that have occurred with the AEAD

algorithm for that key.

When a peer uses OSCORE:

The key used to protect outgoing messages is its Sender Key from

its Sender Context.

The key used to decrypt and verify incoming messages is its

Recipient Key from its Recipient Context.

Both keys are derived as part of the establishment of the OSCORE

Security Context, as defined in Section 3.2 of [RFC8613].

As mentioned above, exceeding specific limits for the 'q' or 'v'

value can weaken the security properties of the AEAD algorithm used,

thus compromising secure communication requirements.

Therefore, in order to preserve the security of the used AEAD

algorithm, OSCORE has to observe limits for the 'q' and 'v' values,

throughout the lifetime of the used AEAD keys.

2.1.1. Limits for 'q' and 'v'

Formulas for calculating the security levels, as Integrity Advantage

(IA) and Confidentiality Advantage (CA) probabilities, are presented

in [I-D.irtf-cfrg-aead-limits]. These formulas take as input

specific values for 'q' and 'v' (see section Section 2.1) and for

'l', i.e., the maximum length of each message (in cipher blocks).

For the algorithms shown in Figure 1 that can be used as AEAD

Algorithm for OSCORE, the key property to achieve is having IA and

CA values which are no larger than p = 2^-64, which will ensure a

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3.2

safe security level for the AEAD Algorithm. This can be entailed by

using the values q = 2^20, v = 2^20, and l = 2^10, that this

document recommends to use for these algorithms.

Figure 1 also shows the resulting IA and CA probabilities enjoyed by

the considered algorithms, when taking the value of 'q', 'v' and 'l'

above as input to the formulas defined in

[I-D.irtf-cfrg-aead-limits].

Figure 1: Probabilities for algorithms based on chosen q, v and l

values.

When AEAD_AES_128_CCM_8 is used as AEAD Algorithm for OSCORE, the

triplet (q, v, l) considered above yields larger values of IA and

CA. Hence, specifically for AEAD_AES_128_CCM_8, this document

recommends using the triplet (q, v, l) = (2^20, 2^14, 2^8). This is

appropriate, since the resulting CA and IA values are not greater

than the threshold value of 2^-50 defined in

[I-D.irtf-cfrg-aead-limits], and thus yields an acceptable security

level. Achieving smaller values of CA and IA would require to

inconveniently reduce 'q', 'v' or 'l', with no corresponding

increase in terms of security, as further elaborated in Appendix A.

Figure 2: Maximum length of each message (in bytes)

With regards to the limit for 'l', the recommended 'l' value for the

algorithms shown in Figure 1, and for AEAD_AES_128_CCM_8, is 2^10

(16384 bytes) and 2^8 (4096 bytes) respectively. Considering a

¶

¶

+------------------------+----------------+----------------+

| Algorithm name | IA probability | CA probability |

|------------------------+----------------+----------------|

| AEAD_AES_128_CCM | 2^-64 | 2^-66 |

| AEAD_AES_128_GCM | 2^-97 | 2^-89 |

| AEAD_AES_256_GCM | 2^-97 | 2^-89 |

| AEAD_CHACHA20_POLY1305 | 2^-73 | - |

+------------------------+----------------+----------------+

¶

+------------------------+----------+----------+-----------+

| Algorithm name | l=2^6 in | l=2^8 in | l=2^10 in |

| | bytes | bytes | bytes |

|------------------------+----------+----------|-----------|

| AEAD_AES_128_CCM | 1024 | 4096 | 16384 |

| AEAD_AES_128_GCM | 1024 | 4096 | 16384 |

| AEAD_AES_256_GCM | 1024 | 4096 | 16384 |

| AEAD_AES_128_CCM_8 | 1024 | 4096 | 16384 |

| AEAD_CHACHA20_POLY1305 | 4096 | 16384 | 65536 |

+------------------------+----------+----------+-----------+

typical MTU size of 1500 bytes, and the fact that the maximum block

size when using block-wise transfers with CoAP is 1024 bytes (see

Section 2 of [RFC7959]), it is unlikely that a larger size of 'l'

than what is recommended makes sense to use in typical network

setups.

However, although under typical circumstances an 'l' limit of 2^8

(4096 bytes) is acceptable, exceptional cases can warrant a higher

value of 'l'. For instance, Block-wise Extension for Reliable

Transport (BERT) extends the CoAP Block-Wise tranfer functionality,

enabling use of larger messages over reliable transports such as TCP

or WebSockets (see [RFC8323]). In case the OSCORE peers wish to take

full advantage of BERT functionality and the large message sizes it

allows for, the OSCORE peers must use higher values of 'l'.

An alternative means of allowing for larger values of 'l', while

still maintaining the security properties of the used AEAD

algorithm, is to adjust the 'q' and 'v' values to compensate. In

practice, this means reducing the value of 'q' and 'v' considering

the new value of 'l', to ensure an acceptably low value of the IA

and CA probabilities. A reasonable target for the IA and CA

probability values is the threshold value of 2^-50 defined in

[I-D.irtf-cfrg-aead-limits].

2.2. Additional Information in the Security Context

In addition to what is defined in Section 3.1 of [RFC8613], the

following parameters associated with a OSCORE Security Context can

be used for keeping track of the expiration of that OSCORE Security

Context and maintaining key usage below safe limits.

2.2.1. Common Context

The Common Context has the following associated parameter.

'exp': with value the expiration time of the OSCORE Security

Context, as a non-negative integer. The parameter contains a

numeric value representing the number of seconds from

1970-01-01T00:00:00Z UTC until the specified UTC date/time,

ignoring leap seconds, analogous to what is specified for

NumericDate in Section 2 of [RFC7519].

At the time indicated by this parameter, a peer must stop using

this Security Context to process any incoming or outgoing

message, and is required to establish a new Security Context to

continue OSCORE-protected communications with the other peer.

That is, the expiration of an OSCORE Security Context means that

the current Sender Key must no longer be used for protecting

outgoing messages, and the Recipient Key must no longer be used

for unprotecting incoming messages.

¶

¶

¶

¶

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc7959#section-2
https://rfc-editor.org/rfc/rfc8613#section-3.1
https://rfc-editor.org/rfc/rfc7519#section-2

The value of 'exp' must be set upon installing the OSCORE

Security Context, namely at time t_1, considering a lifetime

value t_l. In particular, t_l can be a default value (potentially

differing between the two peers sharing the OSCORE Security

Context), or can alternatively be agreed by the two peers during

the establishment of the OSCORE Security Context. For instance,

this value may be stored and/or transported in an OSCORE LwM2M

object, or specified as part of an EDHOC Application Profile

[I-D.ietf-lake-edhoc] used when running EDHOC for establishing

the OSCORE Security Context. Regardless of how the lifetime value

is determined, the 'exp' parameters is set to indicate the point

in time corresponding to t_1 offset by t_l.

2.2.2. Sender Context

The Sender Context has the following associated parameters.

'count_q': a non-negative integer counter, keeping track of the

current 'q' value for the Sender Key. At any time, 'count_q' has

as value the number of messages that have been encrypted using

the Sender Key. The value of 'count_q' is set to 0 when

establishing the Sender Context.

'limit_q': a non-negative integer, which specifies the highest

value that 'count_q' is allowed to reach, before stopping using

the Sender Key to process outgoing messages.

The value of 'limit_q' depends on the AEAD algorithm specified in

the Common Context, considering the properties of that algorithm.

The value of 'limit_q' is determined according to Section 2.1.1.

Note for implementation: it is possible to avoid storing and

maintaining the counter 'count_q'. Rather, an estimated value to be

compared against 'limit_q' can be computed, by leveraging the Sender

Sequence Number of the peer and (an estimate of) the other peer's. A

possible method to achieve this is described in Appendix B. While

this relieves peers from storing and maintaining the precise

'count_q' value, it results in overestimating the number of

encryptions performed with a Sender Key. This in turn results in

approaching 'limit_q' sooner and thus in performing a key update

procedure more frequently.

2.2.3. Recipient Context

The Recipient Context has the following associated parameters.

'count_v': a non-negative integer counter, keeping track of the

current 'v' value for the Recipient Key. At any time, 'count_v'

has as value the number of failed decryptions occurred on

¶

¶

*

¶

*

¶

¶

¶

¶

*

incoming messages using the Recipient Key. The value of 'count_v'

is set to 0 when establishing the Recipient Context.

'limit_v': a non-negative integer, which specifies the highest

value that 'count_v' is allowed to reach, before stopping using

the Recipient Key to process incoming messages.

The value of 'limit_v' depends on the AEAD algorithm specified in

the Common Context, considering the properties of that algorithm.

The value of 'limit_v' is determined according to Section 2.1.1.

2.3. OSCORE Message Processing

In order to keep track of the 'q' and 'v' values and ensure that

AEAD keys are not used beyond reaching their limits, OSCORE peers

protect messages with OSCORE as defined in this section.

A limitation that is introduced is that, in order to not exceed the

selected value for 'l', the total size of the COSE plaintext,

authentication Tag, and possible cipher padding for a message must

not exceed the block size for the selected algorithm multiplied with

'l‘. The size of the COSE plaintext is calculated as described in

Section 5.3 of [RFC8613].

If OSCORE peers need to transmit messages exceeding the maximum

recommended size caclulated from 'l', CoAP Block-Wise transfers

[RFC7959] may be used as a means to split the whole, large content

into smaller segments. The following steps can be adopted by a

client or server to determine whether the usage of block-wise

transfer is necessary for the transmission of a specific OSCORE

protected message.

The CoAP message to transmit is first produced.

The sum of the total size of the COSE plaintext, the length of

the authentication tag, and the length of any potential

ciphertext padding should be computed to produce a value T. It

should be noted that the size of the padding and the length of

the authentication tag depend on the used AEAD algorithm.

If the value of T exceeds the 'l' value for the used AEAD

algorithm, block-wise transfer is to be used with the CoAP

message before protecting it with OSCORE.

The processing of CoAP messages with OSCORE follows the steps

outlined in Section 8 of [RFC8613], with the additions defined

below.

¶

*

¶

¶

¶

¶

¶

1. ¶

2.

¶

3.

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-5.3
https://rfc-editor.org/rfc/rfc8613#section-8

[RFC2119]

[RFC7252]

[RFC8174]

2.3.1. Protecting a Request or a Response

Before encrypting the COSE object using the Sender Key, the

'count_q' counter is incremented.

If 'count_q' exceeds the 'limit_q' limit, the message processing is

aborted. From then on, the Sender Key must not be used to encrypt

further messages.

2.3.2. Verifying a Request or a Response

If an incoming message is detected to be a replay (see Section 7.4

of [RFC8613]), the 'count_v' counter is not incremented.

If the decryption and verification of the COSE object using the

Recipient Key fails, the 'count_v' counter is incremented.

After 'count_v' has exceeded the 'limit_v' limit, incoming messages

must not be decrypted and verified using the Recipient Key, and

their processing must be aborted.

3. Security Considerations

This document mainly covers security considerations about using AEAD

keys in OSCORE and their usage limits, in addition to the security

considerations of [RFC8613].

[TODO: Add more considerations.]

4. IANA Considerations

This document has no IANA actions.

5. References

5.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-7.4
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8174

[RFC8613]

[I-D.ietf-lake-edhoc]

[I-D.irtf-cfrg-aead-limits]

[RFC7519]

[RFC7959]

[RFC8323]

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

5.2. Informative References

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-22, 25 August 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-lake-edhoc-22>.

Günther, F., Thomson, M., and C. A.

Wood, "Usage Limits on AEAD Algorithms", Work in

Progress, Internet-Draft, draft-irtf-cfrg-aead-limits-07,

31 May 2023, <https://datatracker.ietf.org/doc/html/

draft-irtf-cfrg-aead-limits-07>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

the Constrained Application Protocol (CoAP)", RFC 7959,

DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/info/rfc8323>.

Appendix A. Detailed considerations for AEAD_AES_128_CCM_8

For the AEAD_AES_128_CCM_8 algorithm when used as AEAD Algorithm for

OSCORE, larger IA and CA values are achieved, depending on the value

of 'q', 'v' and 'l'. Figure 3 shows the resulting IA and CA

probabilities enjoyed by AEAD_AES_128_CCM_8, when taking different

values of 'q', 'v' and 'l' as input to the formulas defined in

[I-D.irtf-cfrg-aead-limits].

As shown in Figure 3, it is especially possible to achieve the

lowest IA = 2^-50 and a good CA = 2^-70 by considering the largest

possible value of the (q, v, l) triplet equal to (2^20, 2^10, 2^8),

while still keeping a good security level. Note that the value of

'l' does not impact on IA, while CA displays good values for every

considered value of 'l'.

¶

¶

https://www.rfc-editor.org/info/rfc8613
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-22
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-22
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-07
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-07
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323

Figure 3: Probabilities for AEAD_AES_128_CCM_8 based on chosen q, v and

l values.

Appendix B. Estimation of 'count_q'

This section defines a method to compute an estimate of the counter

'count_q' (see Section 2.2.2), hence not requiring a peer to store

it in its own Sender Context.

This method relies on the fact that, at any point in time, a peer

has performed at most ENC = (SSN + SSN*) encryptions using its own

Sender Key, where:

SSN is the current value of this peer's Sender Sequence Number.

SSN* is the current value of other peer's Sender Sequence Number.

That is, SSN* is an overestimation of the responses without

Partial IV that this peer has sent.

+-----------------------+----------------+----------------+

| 'q', 'v' and 'l' | IA probability | CA probability |

|-----------------------+----------------+----------------|

| q=2^20, v=2^20, l=2^8 | 2^-44 | 2^-70 |

| q=2^15, v=2^20, l=2^8 | 2^-44 | 2^-80 |

| q=2^10, v=2^20, l=2^8 | 2^-44 | 2^-90 |

| q=2^20, v=2^15, l=2^8 | 2^-49 | 2^-70 |

| q=2^15, v=2^15, l=2^8 | 2^-49 | 2^-80 |

| q=2^10, v=2^15, l=2^8 | 2^-49 | 2^-90 |

| q=2^20, v=2^14, l=2^8 | 2^-50 | 2^-70 |

| q=2^15, v=2^14, l=2^8 | 2^-50 | 2^-80 |

| q=2^10, v=2^14, l=2^8 | 2^-50 | 2^-90 |

| q=2^20, v=2^10, l=2^8 | 2^-54 | 2^-70 |

| q=2^15, v=2^10, l=2^8 | 2^-54 | 2^-80 |

| q=2^10, v=2^10, l=2^8 | 2^-54 | 2^-90 |

|-----------------------+----------------+----------------|

| q=2^20, v=2^20, l=2^6 | 2^-44 | 2^-74 |

| q=2^15, v=2^20, l=2^6 | 2^-44 | 2^-84 |

| q=2^10, v=2^20, l=2^6 | 2^-44 | 2^-94 |

| q=2^20, v=2^15, l=2^6 | 2^-49 | 2^-74 |

| q=2^15, v=2^15, l=2^6 | 2^-49 | 2^-84 |

| q=2^10, v=2^15, l=2^6 | 2^-49 | 2^-94 |

| q=2^20, v=2^14, l=2^6 | 2^-50 | 2^-74 |

| q=2^15, v=2^14, l=2^6 | 2^-50 | 2^-84 |

| q=2^10, v=2^14, l=2^6 | 2^-50 | 2^-94 |

| q=2^20, v=2^10, l=2^6 | 2^-54 | 2^-74 |

| q=2^15, v=2^10, l=2^6 | 2^-54 | 2^-84 |

| q=2^10, v=2^10, l=2^6 | 2^-54 | 2^-94 |

+-----------------------+----------------+----------------+

¶

¶

* ¶

*

¶

Thus, when protecting an outgoing message (see Section 2.3.1), the

peer aborts the message processing if the estimated est_q > limit_q,

where est_q = (SSN + X) and X is determined as follows.

If the outgoing message is a response, X is the Partial IV

specified in the corresponding request that this peer is

responding to. Note that X < SSN* always holds.

If the outgoing message is a request, X is the highest Partial IV

value marked as received in this peer's Replay Window plus 1, or

0 if it has not accepted any protected message from the other

peer yet. That is, X is the highest Partial IV specified in

message received from the other peer, i.e., the highest seen

Sender Sequence Number of the other peer. Note that, also in this

case, X < SSN* always holds.

Appendix C. Document Updates

RFC EDITOR: PLEASE REMOVE THIS SECTION.

C.1. Version -01 to -02

Updated references

C.2. Version -00 to -01

Extended discussion on setting the lifetime of OSCORE Security

Contexts.

Mention adjusting the 'q' and 'v' values to compensate for a

larger 'l' value.

Specify how to perform pre-calculation of message size to

determine need for block-wise.

Cover exceptional cases where the 'l' value needs to be larger

than 2^8.

Note on relevance of 'l' limit considering maximum block size and

typical MTU.

C.3. Version -00

Editorial improvements.

Extended terminology.

Recommendation on limits for CCM_8. Details in Appendix.

Example of method to estimate and not store 'count_q'.

¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

Split out material from Key Update for OSCORE draft into this new

document.

Acknowledgments

The authors sincerely thank Christian Amsüss, Carsten Bormann, John

Preuß Mattsson, Göran Selander and Rafa Marin-Lopez for their

feedback and comments.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-

Home (Grant agreement 952652).

Authors' Addresses

Rikard Höglund

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: rikard.hoglund@ri.se

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: marco.tiloca@ri.se

*

¶

¶

¶

mailto:rikard.hoglund@ri.se
mailto:marco.tiloca@ri.se

	Key Usage Limits for OSCORE
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. AEAD Key Usage Limits in OSCORE
	2.1. Problem Overview
	2.1.1. Limits for 'q' and 'v'

	2.2. Additional Information in the Security Context
	2.2.1. Common Context
	2.2.2. Sender Context
	2.2.3. Recipient Context

	2.3. OSCORE Message Processing
	2.3.1. Protecting a Request or a Response
	2.3.2. Verifying a Request or a Response

	3. Security Considerations
	4. IANA Considerations
	5. References
	5.1. Normative References
	5.2. Informative References

	Appendix A. Detailed considerations for AEAD_AES_128_CCM_8
	Appendix B. Estimation of 'count_q'
	Appendix C. Document Updates
	C.1. Version -01 to -02
	C.2. Version -00 to -01
	C.3. Version -00

	Acknowledgments
	Authors' Addresses

