
Workgroup: CoRE Working Group

Internet-Draft:

draft-ietf-core-oscore-key-update-00

Updates: 8613 (if approved)

Published: 6 December 2021

Intended Status: Standards Track

Expires: 9 June 2022

Authors: R. Höglund

RISE AB

M. Tiloca

RISE AB

Key Update for OSCORE (KUDOS)

Abstract

Object Security for Constrained RESTful Environments (OSCORE) uses

AEAD algorithms to ensure confidentiality and integrity of exchanged

messages. Due to known issues allowing forgery attacks against AEAD

algorithms, limits should be followed on the number of times a

specific key is used for encryption or decryption. This document

defines how two OSCORE peers must follow these limits and what steps

they must take to preserve the security of their communications.

Therefore, this document updates RFC8613. Furthermore, this document

specifies Key Update for OSCORE (KUDOS), a lightweight procedure

that two peers can use to update their keying material and establish

a new OSCORE Security Context.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 June 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8613
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. AEAD Key Usage Limits in OSCORE

2.1. Problem Overview

2.1.1. Limits for 'q' and 'v'

2.2. Additional Information in the Security Context

2.2.1. Common Context

2.2.2. Sender Context

2.2.3. Recipient Context

2.3. OSCORE Messages Processing

2.3.1. Protecting a Request or a Response

2.3.2. Verifying a Request or a Response

3. Current methods for Rekeying OSCORE

4. Key Update for OSCORE (KUDOS)

4.1. Extensions to the OSCORE Option

4.2. Function for Security Context Update

4.3. Establishment of the New OSCORE Security Context

4.3.1. Client-Initiated Key Update

4.3.2. Server-Initiated Key Update

4.4. Retention Policies

4.5. Discussion

5. Security Considerations

6. IANA Considerations

6.1. OSCORE Flag Bits Registry

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

Object Security for Constrained RESTful Environments (OSCORE)

[RFC8613] provides end-to-end protection of CoAP [RFC7252] messages

at the application-layer, ensuring message confidentiality and

integrity, replay protection, as well as binding of response to

request between a sender and a recipient.

¶

¶

https://trustee.ietf.org/license-info

In particular, OSCORE uses AEAD algorithms to provide

confidentiality and integrity of messages exchanged between two

peers. Due to known issues allowing forgery attacks against AEAD

algorithms, limits should be followed on the number of times a

specific key is used to perform encryption or decryption [I-D.irtf-

cfrg-aead-limits].

Should these limits be exceeded, an adversary may break the security

properties of the AEAD algorithm, such as message confidentiality

and integrity, e.g. by performing a message forgery attack. The

original OSCORE specification [RFC8613] does not consider such

limits.

This document updates [RFC8613] as follows.

It defines when a peer must stop using an OSCORE Security Context

shared with another peer, due to the reached key usage limits.

When this happens, the two peers have to establish a new Security

Context with new keying material, in order to continue their

secure communication with OSCORE.

It specifies KUDOS, a lightweight key update procedure that the

two peers can use in order to update their current keying

material and establish a new OSCORE Security Context. This

deprecates and replaces the procedure specified in Appendix B.2

of [RFC8613].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

related to the CoAP [RFC7252] and OSCORE [RFC8613] protocols.

2. AEAD Key Usage Limits in OSCORE

The following sections details how key usage limits for AEAD

algorithms must be considered when using OSCORE. It covers specific

limits for common AEAD algorithms used with OSCORE; necessary

additions to the OSCORE Security Context, updates to the OSCORE

message processing, and existing methods for rekeying OSCORE.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#appendix-B.2

2.1. Problem Overview

The OSCORE security protocol [RFC8613] uses AEAD algorithms to

provide integrity and confidentiality of messages, as exchanged

between two peers sharing an OSCORE Security Context.

When processing messages with OSCORE, each peer should follow

specific limits as to the number of times it uses a specific key.

This applies separately to the Sender Key used to encrypt outgoing

messages, and to the Recipient Key used to decrypt and verify

incoming protected messages.

Exceeding these limits may allow an adversary to break the security

properties of the AEAD algorithm, such as message confidentiality

and integrity, e.g. by performing a message forgery attack.

The following refers to the two parameters 'q' and 'v' introduced in

[I-D.irtf-cfrg-aead-limits], to use when deploying an AEAD

algorithm.

'q': this parameter has as value the number of messages protected

with a specific key, i.e. the number of times the AEAD algorithm

has been invoked to encrypt data with that key.

'v': this parameter has as value the number of alleged forgery

attempts that have been made against a specific key, i.e. the

amount of failed decryptions that has been done with the AEAD

algorithm for that key.

When a peer uses OSCORE:

The key used to protect outgoing messages is its Sender Key, in

its Sender Context.

The key used to decrypt and verify incoming messages is its

Recipient Key, in its Recipient Context.

Both keys are derived as part of the establishment of the OSCORE

Security Context, as defined in Section 3.2 of [RFC8613].

As mentioned above, exceeding specific limits for the 'q' or 'v'

value can weaken the security properties of the AEAD algorithm used,

thus compromising secure communication requirements.

Therefore, in order to preserve the security of the used AEAD

algorithm, OSCORE has to observe limits for the 'q' and 'v' values,

throughout the lifetime of the used AEAD keys.

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3.2

2.1.1. Limits for 'q' and 'v'

Formulas for calculating the security levels as Integrity Advantage

(IA) and Confidentiality Advantage (CA) probabilities, are presented

in [I-D.irtf-cfrg-aead-limits]. These formulas take as input

specific values for 'q' and 'v' (see section Section 2.1) and for

'l', i.e., the maximum length of each message (in cipher blocks).

For the algorithms that can be used as AEAD Algorithm for OSCORE

shows in Figure 1, the key property to achieve is having IA and CA

values which are no larger than p = 2^-64, which will ensure a safe

security level for the AEAD Algorithm. This can be entailed by using

the values q = 2^20, v = 2^20, and l = 2^10, that this document

recommends to use for these algorithms.

Figure 1 shows the resulting IA and CA probabilities enjoyed by the

considered algorithms, when taking the value of 'q', 'v' and 'l'

above as input to the formulas defined in [I-D.irtf-cfrg-aead-

limits].

Figure 1: Probabilities for algorithms based on chosen q, v and l

values.

For the AEAD_AES_128_CCM_8 algorithm when used as AEAD Algorithm for

OSCORE, larger IA and CA values are achieved, depending on the value

of 'q', 'v' and 'l'. Figure 2 shows the resulting IA and CA

probabilities enjoyed by AEAD_AES_128_CCM_8, when taking different

values of 'q', 'v' and 'l' as input to the formulas defined in [I-

D.irtf-cfrg-aead-limits].

As shown in Figure 2, it is especially possible to achieve the

lowest IA = 2^-54 and a good CA = 2^-70 by considering the largest

possible value of the (q, v, l) triplet equal to (2^20, 2^10, 2^8),

while still keeping a good security level. Note that the value of

'l' does not impact on IA, while CA displays good values for every

considered value of 'l'.

When AEAD_AES_128_CCM_8 is used as AEAD Algorithm for OSCORE, this

document recommends to use the triplet (q, v, l) = (2^20, 2^10, 2^8)

¶

¶

¶

+------------------------+----------------+----------------+

| Algorithm name | IA probability | CA probability |

|------------------------+----------------+----------------|

| AEAD_AES_128_CCM | 2^-64 | 2^-66 |

| AEAD_AES_128_GCM | 2^-97 | 2^-89 |

| AEAD_AES_256_GCM | 2^-97 | 2^-89 |

| AEAD_CHACHA20_POLY1305 | 2^-73 | - |

+------------------------+----------------+----------------+

¶

¶

and to never use a triplet (q, v, l) such that the resulting IA and

CA probabilities are higher than 2^-54.

Figure 2: Probabilities for AEAD_AES_128_CCM_8 based on chosen q, v and

l values.

The algorithms using AES presented in this draft all use a block

size of 16 bytes (128 bits), while AEAD_CHACHA20_POLY1305 uses a

block size of 64 bytes (512 bits). As 'l' is defined as the maximum

size of each message in blocks, different block sizes will result in

different maximum messages sizes for the same value of 'l'. Figure 3

presents the resulting maximum message size in bytes for the

different algorithms and values of 'l' presented in this document.

¶

+-----------------------+----------------+----------------+

| 'q', 'v' and 'l' | IA probability | CA probability |

|-----------------------+----------------+----------------|

| q=2^20, v=2^20, l=2^8 | 2^-44 | 2^-70 |

| q=2^15, v=2^20, l=2^8 | 2^-44 | 2^-80 |

| q=2^10, v=2^20, l=2^8 | 2^-44 | 2^-90 |

| q=2^20, v=2^15, l=2^8 | 2^-49 | 2^-70 |

| q=2^15, v=2^15, l=2^8 | 2^-49 | 2^-80 |

| q=2^10, v=2^15, l=2^8 | 2^-49 | 2^-90 |

| q=2^20, v=2^14, l=2^8 | 2^-50 | 2^-70 |

| q=2^15, v=2^14, l=2^8 | 2^-50 | 2^-80 |

| q=2^10, v=2^14, l=2^8 | 2^-50 | 2^-90 |

| q=2^20, v=2^10, l=2^8 | 2^-54 | 2^-70 |

| q=2^15, v=2^10, l=2^8 | 2^-54 | 2^-80 |

| q=2^10, v=2^10, l=2^8 | 2^-54 | 2^-90 |

|-----------------------+----------------+----------------|

| q=2^20, v=2^20, l=2^6 | 2^-44 | 2^-74 |

| q=2^15, v=2^20, l=2^6 | 2^-44 | 2^-84 |

| q=2^10, v=2^20, l=2^6 | 2^-44 | 2^-94 |

| q=2^20, v=2^15, l=2^6 | 2^-49 | 2^-74 |

| q=2^15, v=2^15, l=2^6 | 2^-49 | 2^-84 |

| q=2^10, v=2^15, l=2^6 | 2^-49 | 2^-94 |

| q=2^20, v=2^14, l=2^6 | 2^-50 | 2^-74 |

| q=2^15, v=2^14, l=2^6 | 2^-50 | 2^-84 |

| q=2^10, v=2^14, l=2^6 | 2^-50 | 2^-94 |

| q=2^20, v=2^10, l=2^6 | 2^-54 | 2^-74 |

| q=2^15, v=2^10, l=2^6 | 2^-54 | 2^-84 |

| q=2^10, v=2^10, l=2^6 | 2^-54 | 2^-94 |

+-----------------------+----------------+----------------+

¶

Figure 3: Maximum length of each message (in bytes)

2.2. Additional Information in the Security Context

In addition to what defined in Section 3.1 of [RFC8613], the OSCORE

Security Context MUST also include the following information.

2.2.1. Common Context

The Common Context is extended to include the following parameter.

'exp': with value the expiration time of the OSCORE Security

Context, as a non-negative integer. The parameter contains a

numeric value representing the number of seconds from

1970-01-01T00:00:00Z UTC until the specified UTC date/time,

ignoring leap seconds, analogous to what specified for

NumericDate in Section 2 of [RFC7519].

At the time indicated in this field, a peer MUST stop using this

Security Context to process any incoming or outgoing message, and

is required to establish a new Security Context to continue

OSCORE-protected communications with the other peer.

2.2.2. Sender Context

The Sender Context is extended to include the following parameters.

'count_q': a non-negative integer counter, keeping track of the

current 'q' value for the Sender Key. At any time, 'count_q' has

as value the number of messages that have been encrypted using

the Sender Key. The value of 'count_q' is set to 0 when

establishing the Sender Context.

'limit_q': a non-negative integer, which specifies the highest

value that 'count_q' is allowed to reach, before stopping using

the Sender Key to process outgoing messages.

+------------------------+----------+----------+-----------+

| Algorithm name | l=2^6 in | l=2^8 in | l=2^10 in |

| | bytes | bytes | bytes |

|------------------------+----------+----------|-----------|

| AEAD_AES_128_CCM | 1024 | 4096 | 16384 |

| AEAD_AES_128_GCM | 1024 | 4096 | 16384 |

| AEAD_AES_256_GCM | 1024 | 4096 | 16384 |

| AEAD_AES_128_CCM_8 | 1024 | 4096 | 16384 |

| AEAD_CHACHA20_POLY1305 | 4096 | 16384 | 65536 |

+------------------------+----------+----------+-----------+

¶

¶

*

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8613#section-3.1
https://rfc-editor.org/rfc/rfc7519#section-2

The value of 'limit_q' depends on the AEAD algorithm specified in

the Common Context, considering the properties of that algorithm.

The value of 'limit_q' is determined according to Section 2.1.1.

2.2.3. Recipient Context

The Recipient Context is extended to include the following

parameters.

'count_v': a non-negative integer counter, keeping track of the

current 'v' value for the Recipient Key. At any time, 'count_v'

has as value the number of failed decryptions occurred on

incoming messages using the Recipient Key. The value of 'count_v'

is set to 0 when establishing the Recipient Context.

'limit_v': a non-negative integer, which specifies the highest

value that 'count_v' is allowed to reach, before stopping using

the Recipient Key to process incoming messages.

The value of 'limit_v' depends on the AEAD algorithm specified in

the Common Context, considering the properties of that algorithm.

The value of 'limit_v' is determined according to Section 2.1.1.

2.3. OSCORE Messages Processing

In order to keep track of the 'q' and 'v' values and ensure that

AEAD keys are not used beyond reaching their limits, the processing

of OSCORE messages is extended as defined in this section. A

limitation that is introduced is that, in order to not exceed the

selected value for 'l', the total size of the COSE plaintext,

authentication Tag, and possible cipher padding for a message may

not exceed the block size for the selected algorithm multiplied with

'l'.

In particular, the processing of OSCORE messages follows the steps

outlined in Section 8 of [RFC8613], with the additions defined

below.

2.3.1. Protecting a Request or a Response

Before encrypting the COSE object using the Sender Key, the

'count_q' counter MUST be incremented.

If 'count_q' exceeds the 'limit_q' limit, the message processing

MUST be aborted. From then on, the Sender Key MUST NOT be used to

encrypt further messages.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-8

2.3.2. Verifying a Request or a Response

If an incoming message is detected to be a replay (see Section 7.4

of [RFC8613]), the 'count_v' counter MUST NOT be incremented.

If the decryption and verification of the COSE object using the

Recipient Key fails, the 'count_v' counter MUST be incremented.

After 'count_v' has exceeded the 'limit_v' limit, incoming messages

MUST NOT be decrypted and verified using the Recipient Key, and

their processing MUST be aborted.

3. Current methods for Rekeying OSCORE

Before the limit of 'q' or 'v' defined in Section 2.1.1 has been

reached for an OSCORE Security Context, the two peers have to

establish a new OSCORE Security Context, in order to continue using

OSCORE for secure communication.

In practice, the two peers have to establish new Sender and

Recipient Keys, as the keys actually used by the AEAD algorithm.

When this happens, both peers reset their 'count_q' and 'count_v'

values to 0 (see Section 2.2).

Other specifications define a number of ways to accomplish this, as

summarized below.

The two peers can run the procedure defined in Appendix B.2 of

[RFC8613]. That is, the two peers exchange three or four

messages, protected with temporary Security Contexts adding

randomness to the ID Context.

As a result, the two peers establish a new OSCORE Security

Context with new ID Context, Sender Key and Recipient Key, while

keeping the same OSCORE Master Secret and OSCORE Master Salt from

the old OSCORE Security Context.

This procedure does not require any additional components to what

OSCORE already provides, and it does not provide perfect forward

secrecy.

The procedure defined in Appendix B.2 of [RFC8613] is used in

6TiSCH networks [RFC7554][RFC8180] when handling failure events.

That is, a node acting as Join Registrar/Coordinator (JRC)

assists new devices, namely "pledges", to securely join the

network as per the Constrained Join Protocol [RFC9031]. In

particular, a pledge exchanges OSCORE-protected messages with the

JRC, from which it obtains a short identifier, link-layer keying

material and other configuration parameters. As per Section 8.3.3

of [RFC9031], a JRC that experiences a failure event may likely

¶

¶

¶

¶

¶

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-7.4
https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc9031#section-8.3.3

lose information about joined nodes, including their assigned

identifiers. Then, the reinitialized JRC can establish a new

OSCORE Security Context with each pledge, through the procedure

defined in Appendix B.2 of [RFC8613].

The two peers can run the OSCORE profile [I-D.ietf-ace-oscore-

profile] of the Authentication and Authorization for Constrained

Environments (ACE) Framework [I-D.ietf-ace-oauth-authz].

When a CoAP client uploads an Access Token to a CoAP server as an

access credential, the two peers also exchange two nonces. Then,

the two peers use the two nonces together with information

provided by the ACE Authorization Server that issued the Access

Token, in order to derive an OSCORE Security Context.

This procedure does not provide perfect forward secrecy.

The two peers can run the EDHOC key exchange protocol based on

Diffie-Hellman and defined in [I-D.ietf-lake-edhoc], in order to

establish a pseudo-random key in a mutually authenticated way.

Then, the two peers can use the established pseudo-random key to

derive external application keys. This allows the two peers to

securely derive especially an OSCORE Master Secret and an OSCORE

Master Salt, from which an OSCORE Security Context can be

established.

This procedure additionally provides perfect forward secrecy.

If one peer is acting as LwM2M Client and the other peer as LwM2M

Server, according to the OMA Lightweight Machine to Machine Core

specification [LwM2M], then the LwM2M Client peer may take the

initiative to bootstrap again with the LwM2M Bootstrap Server,

and receive again an OSCORE Security Context. Alternatively, the

LwM2M Server can instruct the LwM2M Client to initiate this

procedure.

If the OSCORE Security Context information on the LwM2M Bootstrap

Server has been updated, the LwM2M Client will thus receive a

fresh OSCORE Security Context to use with the LwM2M Server.

In addition to that, the LwM2M Client, the LwM2M Server as well

as the LwM2M Bootstrap server are required to use the procedure

defined in Appendix B.2 of [RFC8613] and overviewed above, when

they use a certain OSCORE Security Context for the first time

[LwM2M-Transport].

Manually updating the OSCORE Security Context at the two peers

should be a last resort option, and it might often be not practical

or feasible.

¶

*

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc8613#appendix-B.2

Even when any of the alternatives mentioned above is available, it

is RECOMMENDED that two OSCORE peers update their Security Context

by using the KUDOS procedure as defined in Section 4 of this

document.

It is RECOMMENDED that the peer initiating the key update procedure

starts it before reaching the 'q' or 'v' limits. Otherwise, the AEAD

keys possibly to be used during the key update procedure itself may

already be or become invalid before the rekeying is completed, which

may prevent a successful establishment of the new OSCORE Security

Context altogether.

4. Key Update for OSCORE (KUDOS)

This section defines KUDOS, a lightweight procedure that two OSCORE

peers can use to update their keying material and establish a new

OSCORE Security Context.

KUDOS relies on the support function updateCtx() defined in Section

4.2 and the message exchange defined in Section 4.3. The following

properties are fulfilled.

KUDOS can be initiated by either peer. In particular, the client

or the server may start KUDOS by sending the first rekeying

message.

The new OSCORE Security Context enjoys Perfect Forward Secrecy.

The same ID Context value used in the old OSCORE Security Context

is preserved in the new Security Context. Furthermore, the ID

Context value never changes throughout the KUDOS execution.

KUDOS is robust against a peer rebooting, and it especially

avoids the reuse of AEAD (nonce, key) pairs.

KUDOS completes in one round trip. The two peers achieve mutual

proof-of-possession in the following exchange, which is protected

with the newly established OSCORE Security Context.

4.1. Extensions to the OSCORE Option

In order to support the message exchange for establishing a new

OSCORE Security Context as defined in Section 4.3, this document

extends the use of the OSCORE option originally defined in [RFC8613]

as follows.

This document defines the usage of the seventh least significant

bit, called "Extension-1 Flag", in the first byte of the OSCORE

option containing the OSCORE flag bits. This flag bit is

specified in Section 6.1.

¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

When the Extension-1 Flag is set to 1, the second byte of the

OSCORE option MUST include the set of OSCORE flag bits 8-15.

This document defines the usage of the first least significant

bit "ID Detail Flag", 'd', in the second byte of the OSCORE

option containing the OSCORE flag bits. This flag bit is

specified in Section 6.1.

When it is set to 1, the compressed COSE object contains an 'id

detail', to be used for the steps defined in Section 4.3. In

particular, the 1 byte following 'kid context' (if any) encodes

the length x of 'id detail', and the following x bytes encode 'id

detail'.

The second-to-eighth least significant bits in the second byte of

the OSCORE option containing the OSCORE flag bits are reserved

for future use. These bits SHALL be set to zero when not in use.

According to this specification, if any of these bits are set to

1, the message is considered to be malformed and decompression

fails as specified in item 2 of Section 8.2 of [RFC8613].

Figure 4 shows the OSCORE option value including also 'id detail'.

Figure 4: The OSCORE option value, including 'id detail'

4.2. Function for Security Context Update

The updateCtx() function shown in Figure 5 takes as input a nonce N

as well as an OSCORE Security Context CTX_IN, and returns as output

a new OSCORE Security Context CTX_OUT.

As a first step, the updateCtx() function derives the new values of

the Master Secret and Master Salt for CTX_OUT, according to one of

the two following methods. The used method depends on how the two

peers established their original Security Context, i.e., the

¶

*

¶

¶

*

¶

¶

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 <----- n bytes ----->

+-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+

|0|1|0|h|k| n | 0 | 0 | 0 | 0 | 0 | 0 | 0 | d | Partial IV (if any) |

+-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+

 <- 1 byte -> <----- s bytes ------> <- 1 byte -> <----- x bytes ---->

+------------+----------------------+---------------------------------+

| s (if any) | kid context (if any) | x (if any) | id detail (if any) |

+------------+----------------------+------------+--------------------+

+------------------+

| kid (if any) ... |

+------------------+

¶

https://rfc-editor.org/rfc/rfc8613#section-8.2

Security Context that they shared before performing KUDOS with one

another for the first time.

If the original Security Context was established by running the

EDHOC protocol [I-D.ietf-lake-edhoc], the following applies.

First, the EDHOC key PRK_4x3m shared by the two peers is updated

using the EDHOC-KeyUpdate() function defined in Section 4.4 of

[I-D.ietf-lake-edhoc], which takes the nonce N as input.

After that, the EDHOC-Exporter() function defined in Section 4.3

of [I-D.ietf-lake-edhoc] is used to derive the new values for the

Master Secret and Master Salt, consistently with what is defined

in Appendix A.2 of [I-D.ietf-lake-edhoc]. In particular, the

context parameter provided as second argument to the EDHOC-

Exporter() function is the empty CBOR byte string (0x40)

[RFC8949], which is denoted as h''.

Note that, compared to the compliance requirements in Section 7

of [I-D.ietf-lake-edhoc], a peer MUST support the EDHOC-

KeyUpdate() function, in case it establishes an original Security

Context through the EDHOC protocol and intends to perform KUDOS.

If the original Security Context was established through other

means than the EDHOC protocol, the new Master Secret is derived

through an HKDF-Expand() step, which takes as input N as well as

the Master Secret value from the Security Context CTX_IN.

Instead, the new Master Salt takes N as value.

In either case, the derivation of new values follows the same

approach used in TLS 1.3, which is also based on HKDF-Expand (see

Section 7.1 of [RFC8446]) and used for computing new keying material

in case of key update (see Section 4.6.3 of [RFC8446]).

After that, the new Master Secret and Master Salt parameters are

used to derive a new Security Context CTX_OUT as per Section 3.2 of

[RFC8613]. Any other parameter required for the derivation takes the

same value as in the Security Context CTX_IN. Finally, the function

returns the newly derived Security Context CTX_OUT.

¶

*

¶

¶

¶

¶

*

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-12#section-4.4
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-12#section-4.3
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-12#appendix-A.2
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-12#section-7
https://rfc-editor.org/rfc/rfc8446#section-7.1
https://rfc-editor.org/rfc/rfc8446#section-4.6.3
https://rfc-editor.org/rfc/rfc8613#section-3.2

Figure 5: Function for deriving a new OSCORE Security Context

updateCtx(N, CTX_IN) {

 CTX_OUT // The new Security Context

 MSECRET_NEW // The new Master Secret

 MSALT_NEW // The new Master Salt

 if <the original Security Context was established through EDHOC> {

 EDHOC-KeyUpdate(N)

 // This results in updating the key PRK_4x3m of the

 // EDHOC session, i.e., PRK_4x3m = Extract(N, PRK_4x3m)

 MSECRET_NEW = EDHOC-Exporter("OSCORE_Master_Secret",

 h'', key_length)

 = EDHOC-KDF(PRK_4x3m, TH_4,

 "OSCORE_Master_Secret", h'', key_length)

 MSALT_NEW = EDHOC-Exporter("OSCORE_Master_Salt",

 h'', salt_length)

 = EDHOC-KDF(PRK_4x3m, TH_4,

 "OSCORE_Master_Salt", h'', salt_length)

 }

 else {

 Master Secret Length = < Size of CTX_IN.MasterSecret in bytes >

 MSECRET_NEW = HKDF-Expand-Label(CTX_IN.MasterSecret, Label,

 N, Master Secret Length)

 = HKDF-Expand(CTX_IN.MasterSecret, HkdfLabel,

 Master Secret Length)

 MSALT_NEW = N;

 }

 < Derive CTX_OUT using MSECRET_NEW and MSALT_NEW,

 together with other parameters from CTX_IN >

 Return CTX_OUT;

}

Where HkdfLabel is defined as

struct {

 uint16 length = Length;

 opaque label<7..255> = "oscore " + Label;

 opaque context<0..255> = Context;

} HkdfLabel;

4.3. Establishment of the New OSCORE Security Context

This section defines the actual KUDOS procedure performed by two

peers to update their OSCORE keying material. Before starting KUDOS,

the two peers share the OSCORE Security Context CTX_OLD. Once

completed the KUDOS execution, the two peers agree on a newly

established OSCORE Security Context CTX_NEW.

In particular, each peer contributes by generating a fresh value R1

or R2, and providing it to the other peer. The byte string

concatenation of the two values, hereafter denoted as R1 | R2, is

used as input N by the updateCtx() function, in order to derive the

new OSCORE Security Context CTX_NEW. As for any new OSCORE Security

Context, the Sender Sequence Number and the replay window are re-

initialized accordingly (see Section 3.2.2 of [RFC8613]).

Once a peer has successfully derived the new OSCORE Security Context

CTX_NEW, that peer MUST terminate all the ongoing observations it

has with the other peer as protected with the old Security Context

CTX_OLD.

Once a peer has successfully decrypted and verified an incoming

message protected with CTX_NEW, that peer MUST discard the old

Security Context CTX_OLD.

KUDOS can be started by the client or the server, as defined in

Section 4.3.1 and Section 4.3.2, respectively. The following

properties hold for both the client- and server-initiated version of

KUDOS.

The initiator always offers the fresh value R1.

The responder always offers the fresh value R2.

The responder is always the first one deriving the new OSCORE

Security Context CTX_NEW.

The initiator is always the first one achieving key confirmation,

hence able to safely discard the old OSCORE Security Context

CTX_OLD.

Both the initiator and the responder use the same respective

OSCORE Sender ID and Recipient ID. Also, they both preserve and

use the same OSCORE ID Context from CTX_OLD.

The length of the nonces R1, and R2 is application specific. The

application needs to set the length of each nonce such that the

probability of its value being repeated is negligible; typically, at

least 8 bytes long.

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3.2.2

4.3.1. Client-Initiated Key Update

Figure 6 shows the KUDOS workflow with the client acting as

initiator.¶

 Client Server

 (initiator) (responder)

 | |

Generate R1 | |

 | |

CTX_1 = | |

 updateCtx(R1, | |

 CTX_OLD) | |

 | |

 | Request #1 |

Protect with CTX_1 |------------------->|

 | OSCORE Option: | CTX_1 =

 | ... | update(R1,

 | d flag: 1 | CTX_OLD)

 | ... |

 | ID Detail: R1 | Verify with CTX_1

 | ... |

 | | Generate R2

 | |

 | | CTX_NEW =

 | | update(R1|R2,

 | | CTX_OLD)

 | |

 | Response #1 |

 |<-------------------| Protect with CTX_NEW

CTX_NEW = | OSCORE Option: |

 updateCtx(R1|R2, | ... |

 CTX_OLD) | d flag: 1 |

 | ... |

Verify with CTX_NEW | ID Detail: R2 |

 | ... |

Discard CTX_OLD | |

 | |

// The actual key update process ends here.

// The two peers can use the new Security Context CTX_NEW.

 | |

 | Request #2 |

Protect with CTX_NEW |------------------->|

 | | Verify with CTX_NEW

 | |

 | | Discard CTX_OLD

 | |

 | Response #2 |

 |<-------------------| Protect with CTX_NEW

Verify with CTX_NEW | |

 | |

Figure 6: Client-Initiated KUDOS Workflow

First, the client generates a random value R1, and uses the nonce N

= R1 together with the old Security Context CTX_OLD, in order to

derive a temporary Security Context CTX_1. Then, the client sends an

OSCORE request to the server, protected with the Security Context

CTX_1. In particular, the request has the 'd' flag bit set to 1 and

specifies R1 as 'id detail' (see Section 4.1).

Upon receiving the OSCORE request, the server retrieves the value R1

from the 'id detail' of the request, and uses the nonce N = R1

together with the old Security Context CTX_OLD, in order to derive

the temporary Security Context CTX_1. Then, the server verifies the

request by using the Security Context CTX_1.

After that, the server generates a random value R2, and uses the

nonce N = R1 | R2 together with the old Security Context CTX_OLD, in

order to derive the new Security Context CTX_NEW. Then, the server

sends an OSCORE response to the client, protected with the new

Security Context CTX_NEW. In particular, the response has the 'd'

flag bit set to 1 and specifies R2 as 'id detail'.

Upon receiving the OSCORE response, the client retrieves the value

R2 from the 'id detail' of the response. Since the client has

received a response to an OSCORE request it made with the 'd' flag

bit set to 1, the client uses the nonce N = R1 | R2 together with

the old Security Context CTX_OLD, in order to derive the new

Security Context CTX_NEW. Finally, the client verifies the response

by using the Security Context CTX_NEW and deletes the old Security

Context CTX_OLD.

After that, the client can send a new OSCORE request protected with

the new Security Context CTX_NEW. When successfully verifying the

request using the Security Context CTX_NEW, the server deletes the

old Security Context CTX_OLD and can reply with an OSCORE response

protected with the new Security Context CTX_NEW.

From then on, the two peers can protect their message exchanges by

using the new Security Context CTX_NEW.

4.3.2. Server-Initiated Key Update

Figure 7 shows the KUDOS workflow with the server acting as

initiator.

¶

¶

¶

¶

¶

¶

¶

 Client Server

 (responder) (initiator)

 | |

 | Request #1 |

Protect with CTX_OLD |------------------->|

 | | Verify with CTX_OLD

 | |

 | | Generate R1

 | |

 | | CTX_1 =

 | | updateCtx(R1,

 | | CTX_OLD)

 | |

 | Response #1 |

 |<-------------------| Protect with CTX_1

CTX_1 = | OSCORE Option: |

 updateCtx(R1, | ... |

 CTX_OLD) | d flag: 1 |

 | ... |

Verify with CTX_1 | ID Detail: R1 |

 | ... |

Generate R2 | |

 | |

CTX_NEW = | |

 updateCtx(R1|R2, | |

 CTX_OLD) | |

 | |

 | Request #2 |

Protect with CTX_NEW |------------------->|

 | OSCORE Option: | CTX_NEW =

 | ... | updateCtx(R1|R2,

 | d flag: 1 | CTX_OLD)

 | ... |

 | ID Detail: R1|R2 | Verify with CTX_NEW

 | ... |

 | | Discard CTX_OLD

 | |

// The actual key update process ends here.

// The two peers can use the new Security Context CTX_NEW.

 | Response #2 |

 |<-------------------| Protect with CTX_NEW

Verify with CTX_NEW | |

 | |

Discard CTX_OLD | |

 | |

Figure 7: Server-Initiated KUDOS Workflow

First, the client sends a normal OSCORE request to the server,

protected with the old Security Context CTX_OLD and with the 'd'

flag bit set to 0.

Upon receiving the OSCORE request and after having verified it with

the old Security Context CTX_OLD as usual, the server generates a

random value R1 and uses the nonce N = R1 together with the old

Security Context CTX_OLD, in order to derive a temporary Security

Context CTX_1. Then, the server sends an OSCORE response to the

client, protected with the Security Context CTX_1. In particular,

the response has the 'd' flag bit set to 1 and specifies R1 as 'id

detail' (see Section 4.1).

Upon receiving the OSCORE response, the client retrieves the value

R1 from the 'id detail' of the response, and uses the nonce N = R1

together with the old Security Context CTX_OLD, in order to derive

the temporary Security Context CTX_1. Then, the client verifies the

response by using the Security Context CTX_1.

After that, the client generates a random value R2, and uses the

nonce N = R1 | R2 together with the old Security Context CTX_OLD, in

order to derive the new Security Context CTX_NEW. Then, the client

sends an OSCORE request to the server, protected with the new

Security Context CTX_NEW. In particular, the request has the 'd'

flag bit set to 1 and specifies R1 | R2 as 'id detail'.

Upon receiving the OSCORE request, the server retrieves the value R1

| R2 from the request. Then, the server verifies that: i) the value

R1 is identical to the value R1 specified in a previous OSCORE

response with the 'd' flag bit set to 1; and ii) the value R1 | R2

has not been received before in an OSCORE request with the 'd' flag

bit set to 1. If the verification succeeds, the server uses the

nonce N = R1 | R2 together with the old Security Context CTX_OLD, in

order to derive the new Security Context CTX_NEW. Finally, the

server verifies the request by using the Security Context CTX_NEW

and deletes the old Security Context CTX_OLD.

After that, the server can send an OSCORE response protected with

the new Security Context CTX_NEW. When successfully verifying the

response using the Security Context CTX_NEW, the client deletes the

old Security Context CTX_OLD.

From then on, the two peers can protect their message exchanges by

using the new Security Context CTX_NEW.

¶

¶

¶

¶

¶

¶

¶

4.4. Retention Policies

Applications MAY define policies that allows a peer to also

temporarily keep the old Security Context CTX_OLD, rather than

simply overwriting it to become CTX_NEW. This allows the peer to

decrypt late, still on-the-fly incoming messages protected with

CTX_OLD.

When enforcing such policies, the following applies.

Outgoing messages MUST be protected by using only CTX_NEW.

Incoming messages MUST first be attempted to decrypt by using

CTX_NEW. If decryption fails, a second attempt can use CTX_OLD.

When an amount of time defined by the policy has elapsed since

the establishment of CTX_NEW, the peer deletes CTX_OLD.

4.5. Discussion

KUDOS is intended to deprecate and replace the procedure defined in

Appendix B.2 of [RFC8613], as fundamentally achieving the same goal,

while displaying a number of improvements and advantages.

In particular, it is especially convenient for the handling of

failure events concerning the JRC node in 6TiSCH networks (see

Section 3). That is, among its intrinsic advantages compared to the

procedure defined in Appendix B.2 of [RFC8613], KUDOS preserves the

same ID Context value, when establishing a new OSCORE Security

Context.

Since the JRC uses ID Context values as identifiers of network

nodes, namely "pledge identifiers", the above implies that the JRC

does not have anymore to perform a mapping between a new, different

ID Context value and a certain pledge identifier (see Section 8.3.3

of [RFC9031]). It follows that pledge identifiers can remain

constant once assigned, and thus ID Context values used as pledge

identifiers can be employed in the long-term as originally intended.

5. Security Considerations

This document mainly covers security considerations about using AEAD

keys in OSCORE and their usage limits, in addition to the security

considerations of [RFC8613].

Depending on the specific key update procedure used to establish a

new OSCORE Security Context, the related security considerations

also apply.

TODO: Add more considerations.

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc9031#section-8.3.3

[I-D.ietf-lake-edhoc]

[RFC2119]

[RFC7252]

[RFC8174]

[RFC8613]

6. IANA Considerations

This document has the following actions for IANA.

6.1. OSCORE Flag Bits Registry

IANA is asked to add the following entries to the "OSCORE Flag Bits"

registry within the "Constrained RESTful Environments (CoRE)

Parameters" registry group.

7. References

7.1. Normative References

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-12, 20 October 2021, <https://www.ietf.org/archive/

id/draft-ietf-lake-edhoc-12.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

¶

¶

+----------+------------------+------------------------+-----------+

| Bit | Name | Description | Reference |

| Position | | | |

+----------+------------------+------------------------+-----------+

| 1 | Extension-1 Flag | Set to 1 if the OSCORE | [This |

| | | Option specifies a | Document] |

| | | second byte of OSCORE | |

| | | flag bits | |

+----------+------------------+------------------------+-----------+

| 15 | ID Detail Flag | Set to 1 if the | [This |

| | | compressed COSE object | Document] |

| | | contains 'id detail' | |

+----------+------------------+------------------------+-----------+

¶

https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-12.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-12.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8174

[RFC8949]

[I-D.ietf-ace-oauth-authz]

[I-D.ietf-ace-oscore-profile]

[I-D.irtf-cfrg-aead-limits]

[LwM2M]

[LwM2M-Transport]

[RFC7519]

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

7.2. Informative References

Seitz, L., Selander, G., Wahlstroem, E.,

Erdtman, S., and H. Tschofenig, "Authentication and

Authorization for Constrained Environments (ACE) using

the OAuth 2.0 Framework (ACE-OAuth)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-authz-46, 8 November

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

oauth-authz-46.txt>.

Palombini, F., Seitz, L., Selander,

G., and M. Gunnarsson, "OSCORE Profile of the

Authentication and Authorization for Constrained

Environments Framework", Work in Progress, Internet-

Draft, draft-ietf-ace-oscore-profile-19, 6 May 2021,

<https://www.ietf.org/archive/id/draft-ietf-ace-oscore-

profile-19.txt>.

Günther, F., Thomson, M., and C. A.

Wood, "Usage Limits on AEAD Algorithms", Work in

Progress, Internet-Draft, draft-irtf-cfrg-aead-limits-03,

12 July 2021, <https://www.ietf.org/archive/id/draft-

irtf-cfrg-aead-limits-03.txt>.

Open Mobile Alliance, "Lightweight Machine to Machine

Technical Specification - Core, Approved Version 1.2,

OMA-TS-LightweightM2M_Core-V1_2-20201110-A", November

2020, <http://www.openmobilealliance.org/release/

LightweightM2M/V1_2-20201110-A/OMA-TS-

LightweightM2M_Core-V1_2-20201110-A.pdf>.

Open Mobile Alliance, "Lightweight Machine to

Machine Technical Specification - Transport Bindings,

Approved Version 1.2, OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A", November 2020, <http://

www.openmobilealliance.org/release/LightweightM2M/

V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A.pdf>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oscore-profile-19.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oscore-profile-19.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-03.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-03.txt
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
https://www.rfc-editor.org/info/rfc7519

[RFC7554]

[RFC8180]

[RFC8446]

[RFC9031]

Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using

IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the

Internet of Things (IoT): Problem Statement", RFC 7554,

DOI 10.17487/RFC7554, May 2015, <https://www.rfc-

editor.org/info/rfc7554>.

Vilajosana, X., Ed., Pister, K., and T. Watteyne,

"Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e

(6TiSCH) Configuration", BCP 210, RFC 8180, DOI 10.17487/

RFC8180, May 2017, <https://www.rfc-editor.org/info/

rfc8180>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Vučinić, M., Ed., Simon, J., Pister, K., and M.

Richardson, "Constrained Join Protocol (CoJP) for

6TiSCH", RFC 9031, DOI 10.17487/RFC9031, May 2021,

<https://www.rfc-editor.org/info/rfc9031>.

Acknowledgments

The authors sincerely thank Christian Amsuess, John Mattsson and

Goeran Selander for their feedback and comments.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-

Home (Grant agreement 952652).

Authors' Addresses

Rikard Höglund

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: rikard.hoglund@ri.se

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: marco.tiloca@ri.se

¶

¶

https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc8180
https://www.rfc-editor.org/info/rfc8180
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9031
mailto:rikard.hoglund@ri.se
mailto:marco.tiloca@ri.se

	Key Update for OSCORE (KUDOS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. AEAD Key Usage Limits in OSCORE
	2.1. Problem Overview
	2.1.1. Limits for 'q' and 'v'

	2.2. Additional Information in the Security Context
	2.2.1. Common Context
	2.2.2. Sender Context
	2.2.3. Recipient Context

	2.3. OSCORE Messages Processing
	2.3.1. Protecting a Request or a Response
	2.3.2. Verifying a Request or a Response

	3. Current methods for Rekeying OSCORE
	4. Key Update for OSCORE (KUDOS)
	4.1. Extensions to the OSCORE Option
	4.2. Function for Security Context Update
	4.3. Establishment of the New OSCORE Security Context
	4.3.1. Client-Initiated Key Update
	4.3.2. Server-Initiated Key Update

	4.4. Retention Policies
	4.5. Discussion

	5. Security Considerations
	6. IANA Considerations
	6.1. OSCORE Flag Bits Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Authors' Addresses

