
Workgroup: CoRE Working Group

Internet-Draft:

draft-ietf-core-oscore-key-update-03

Updates: 8613 (if approved)

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: R. Höglund

RISE AB

M. Tiloca

RISE AB

Key Update for OSCORE (KUDOS)

Abstract

Object Security for Constrained RESTful Environments (OSCORE) uses

AEAD algorithms to ensure confidentiality and integrity of exchanged

messages. Due to known issues allowing forgery attacks against AEAD

algorithms, limits should be followed on the number of times a

specific key is used for encryption or decryption. Among other

reasons, approaching key usage limits requires updating the OSCORE

keying material before communications can securely continue.

This document defines how two OSCORE peers must follow these key

usage limits and what steps they must take to preserve the security

of their communications. Also, it specifies Key Update for OSCORE

(KUDOS), a lightweight procedure that two peers can use to update

their keying material and establish a new OSCORE Security Context.

Accordingly, it updates the use of the OSCORE flag bits in the CoAP

OSCORE Option. Finally, this document specifies a method that two

peers can use to update their OSCORE identifiers, as a stand-alone

procedure or embedded in a KUDOS execution. Thus, this document

updates RFC 8613.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

github.com/core-wg/oscore-key-update.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8613
https://mailarchive.ietf.org/arch/browse/core/
https://github.com/core-wg/oscore-key-update
https://github.com/core-wg/oscore-key-update

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. AEAD Key Usage Limits in OSCORE

2.1. Problem Overview

2.1.1. Limits for 'q' and 'v'

2.2. Additional Information in the Security Context

2.2.1. Common Context

2.2.2. Sender Context

2.2.3. Recipient Context

2.3. OSCORE Messages Processing

2.3.1. Protecting a Request or a Response

2.3.2. Verifying a Request or a Response

3. Current methods for Rekeying OSCORE

4. Key Update for OSCORE (KUDOS)

4.1. Extensions to the OSCORE Option

4.2. Function for Security Context Update

4.3. Key Update with Forward Secrecy

4.3.1. Client-Initiated Key Update

4.3.2. Server-Initiated Key Update

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4.4. Key Update with or without Forward Secrecy

4.4.1. Handling and Use of Keying Material

4.4.2. Selection of KUDOS Mode

4.5. Preserving Observations across Key Updates

4.5.1. Management of Observations

4.6. Retention Policies

4.7. Discussion

4.8. Signaling KUDOS support in EDHOC

5. Update of OSCORE Sender/Recipient IDs

5.1. The Recipient-ID Option

5.1.1. Client-Initiated OSCORE IDs Update

5.1.2. Server-Initiated OSCORE IDs Update

5.1.3. Additional Actions for Stand-Alone Execution

6. Security Considerations

7. IANA Considerations

7.1. CoAP Option Numbers Registry

7.2. OSCORE Flag Bits Registry

7.3. EDHOC External Authorization Data Registry

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Detailed considerations for AEAD_AES_128_CCM_8

Appendix B. Estimation of 'count_q'

Appendix C. Document Updates

C.1. Version -02 to -03

C.2. Version -01 to -02

C.3. Version -00 to -01

Acknowledgments

Authors' Addresses

1. Introduction

Object Security for Constrained RESTful Environments (OSCORE)

[RFC8613] provides end-to-end protection of CoAP [RFC7252] messages

at the application-layer, ensuring message confidentiality and

integrity, replay protection, as well as binding of response to

request between a sender and a recipient.

In particular, OSCORE uses AEAD algorithms to provide

confidentiality and integrity of messages exchanged between two

peers. Due to known issues allowing forgery attacks against AEAD

algorithms, limits should be followed on the number of times a

specific key is used to perform encryption or decryption

[I-D.irtf-cfrg-aead-limits].

The original OSCORE specification [RFC8613] does not consider such

key usage limits. However, should they be exceeded, an adversary may

break the security properties of the AEAD algorithm, such as message

confidentiality and integrity, e.g., by performing a message forgery

¶

¶

attack. Among other reasons, approaching the key usage limits

requires updating the OSCORE keying material before communications

can securely continue.

This document updates [RFC8613] as follows.

It defines what steps an OSCORE peer takes to preserve the

security of its communications, by stopping using the OSCORE

Security Context shared with another peer when approaching the

key usage limits.

It specifies KUDOS, a lightweight key update procedure that the

two peers can use in order to update their current keying

material and establish a new OSCORE Security Context. This

deprecates and replaces the procedure specified in Appendix B.2

of [RFC8613].

With reference to the "OSCORE Flag Bits" registry defined in

Section 13.7 of [RFC8613] as part of the "Constrained RESTful

Environments (CoRE) Parameters" registry group, it updates the

entries with Bit Position 0 and 1 (see Section 7), both

originally marked as "Reserved". That is, it defines and

registers the usage of the OSCORE flag bit with Bit Position 0,

as the one intended to expand the space for the OSCORE flag bits

in the OSCORE Option (see Section 4.1). Also, it marks the bit

with Bit Position of 1 as "Unassigned".

It specifies a method that two peers can use to update their

OSCORE identifiers. This can be run as a stand-alone procedure,

or instead embedded in a KUDOS execution.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

related to the CoAP [RFC7252], Observe [RFC7641], CBOR [RFC8949],

OSCORE [RFC8613] and EDHOC [I-D.ietf-lake-edhoc].

This document additionally defines the following terminology.

Initiator: the peer starting the KUDOS execution, by sending the

first KUDOS message.

Responder: the peer that receives the first KUDOS message in a

KUDOS execution.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc8613#section-13.7

FS mode: the KUDOS execution mode that achieves forward secrecy

(see Section 4.3).

No-FS mode: the KUDOS execution mode that does not achieve

forward secrecy (see Section 4.4).

2. AEAD Key Usage Limits in OSCORE

This section details how key usage limits for AEAD algorithms must

be considered when using OSCORE. In particular, it discusses

specific limits for common AEAD algorithms used with OSCORE;

necessary additions to the OSCORE Security Context; and updates to

the OSCORE message processing.

2.1. Problem Overview

The OSCORE security protocol [RFC8613] uses AEAD algorithms to

provide integrity and confidentiality of messages, as exchanged

between two peers sharing an OSCORE Security Context.

When processing messages with OSCORE, each peer should follow

specific limits as to the number of times it uses a specific key.

This applies separately to the Sender Key used to encrypt outgoing

messages, and to the Recipient Key used to decrypt and verify

incoming protected messages.

Exceeding these limits may allow an adversary to break the security

properties of the AEAD algorithm, such as message confidentiality

and integrity, e.g., by performing a message forgery attack.

The following refers to the two parameters 'q' and 'v' introduced in

[I-D.irtf-cfrg-aead-limits], to use when deploying an AEAD

algorithm.

'q': this parameter has as value the number of messages protected

with a specific key, i.e., the number of times the AEAD algorithm

has been invoked to encrypt data with that key.

'v': this parameter has as value the number of alleged forgery

attempts that have been made against a specific key, i.e., the

amount of failed decryptions that have occurred with the AEAD

algorithm for that key.

When a peer uses OSCORE:

The key used to protect outgoing messages is its Sender Key from

its Sender Context.

The key used to decrypt and verify incoming messages is its

Recipient Key from its Recipient Context.

*

¶

*

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

Both keys are derived as part of the establishment of the OSCORE

Security Context, as defined in Section 3.2 of [RFC8613].

As mentioned above, exceeding specific limits for the 'q' or 'v'

value can weaken the security properties of the AEAD algorithm used,

thus compromising secure communication requirements.

Therefore, in order to preserve the security of the used AEAD

algorithm, OSCORE has to observe limits for the 'q' and 'v' values,

throughout the lifetime of the used AEAD keys.

2.1.1. Limits for 'q' and 'v'

Formulas for calculating the security levels, as Integrity Advantage

(IA) and Confidentiality Advantage (CA) probabilities, are presented

in [I-D.irtf-cfrg-aead-limits]. These formulas take as input

specific values for 'q' and 'v' (see section Section 2.1) and for

'l', i.e., the maximum length of each message (in cipher blocks).

For the algorithms shown in Figure 1 that can be used as AEAD

Algorithm for OSCORE, the key property to achieve is having IA and

CA values which are no larger than p = 2^-64, which will ensure a

safe security level for the AEAD Algorithm. This can be entailed by

using the values q = 2^20, v = 2^20, and l = 2^10, that this

document recommends to use for these algorithms.

Figure 1 also shows the resulting IA and CA probabilities enjoyed by

the considered algorithms, when taking the value of 'q', 'v' and 'l'

above as input to the formulas defined in

[I-D.irtf-cfrg-aead-limits].

Figure 1: Probabilities for algorithms based on chosen q, v and l

values.

When AEAD_AES_128_CCM_8 is used as AEAD Algorithm for OSCORE, the

triplet (q, v, l) considered above yields larger values of IA and

CA. Hence, specifically for AEAD_AES_128_CCM_8, this document

recommends using the triplet (q, v, l) = (2^20, 2^14, 2^8). This is

appropriate, since the resulting CA and IA values are not greater

than the threshold value of 2^-50 defined in

¶

¶

¶

¶

¶

¶

+------------------------+----------------+----------------+

| Algorithm name | IA probability | CA probability |

|------------------------+----------------+----------------|

| AEAD_AES_128_CCM | 2^-64 | 2^-66 |

| AEAD_AES_128_GCM | 2^-97 | 2^-89 |

| AEAD_AES_256_GCM | 2^-97 | 2^-89 |

| AEAD_CHACHA20_POLY1305 | 2^-73 | - |

+------------------------+----------------+----------------+

https://rfc-editor.org/rfc/rfc8613#section-3.2

[I-D.irtf-cfrg-aead-limits], and thus yields an acceptable security

level. Achieving smaller values of CA and IA would require to

inconveniently reduce 'q', 'v' or 'l', with no corresponding

increase in terms of security, as further elaborated in Appendix A.

Figure 2: Maximum length of each message (in bytes)

2.2. Additional Information in the Security Context

In addition to what defined in Section 3.1 of [RFC8613], the OSCORE

Security Context MUST also include the following information.

2.2.1. Common Context

The Common Context is extended to include the following parameter.

'exp': with value the expiration time of the OSCORE Security

Context, as a non-negative integer. The parameter contains a

numeric value representing the number of seconds from

1970-01-01T00:00:00Z UTC until the specified UTC date/time,

ignoring leap seconds, analogous to what specified for

NumericDate in Section 2 of [RFC7519].

At the time indicated in this field, a peer MUST stop using this

Security Context to process any incoming or outgoing message, and

is required to establish a new Security Context to continue

OSCORE-protected communications with the other peer.

2.2.2. Sender Context

The Sender Context is extended to include the following parameters.

'count_q': a non-negative integer counter, keeping track of the

current 'q' value for the Sender Key. At any time, 'count_q' has

as value the number of messages that have been encrypted using

the Sender Key. The value of 'count_q' is set to 0 when

establishing the Sender Context.

¶

+------------------------+----------+----------+-----------+

| Algorithm name | l=2^6 in | l=2^8 in | l=2^10 in |

| | bytes | bytes | bytes |

|------------------------+----------+----------|-----------|

| AEAD_AES_128_CCM | 1024 | 4096 | 16384 |

| AEAD_AES_128_GCM | 1024 | 4096 | 16384 |

| AEAD_AES_256_GCM | 1024 | 4096 | 16384 |

| AEAD_AES_128_CCM_8 | 1024 | 4096 | 16384 |

| AEAD_CHACHA20_POLY1305 | 4096 | 16384 | 65536 |

+------------------------+----------+----------+-----------+

¶

¶

*

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc8613#section-3.1
https://rfc-editor.org/rfc/rfc7519#section-2

'limit_q': a non-negative integer, which specifies the highest

value that 'count_q' is allowed to reach, before stopping using

the Sender Key to process outgoing messages.

The value of 'limit_q' depends on the AEAD algorithm specified in

the Common Context, considering the properties of that algorithm.

The value of 'limit_q' is determined according to Section 2.1.1.

Note for implementation: it is possible to avoid storing and

maintaining the counter 'count_q'. Rather, an estimated value to be

compared against 'limit_q' can be computed, by leveraging the Sender

Sequence Number of the peer and (an estimate of) the other peer's. A

possible method to achieve this is described in Appendix B. While

this relieves peers from storing and maintaining the precise

'count_q' value, it results in overestimating the number of

encryptions performed with a Sender Key. This in turn results in

approaching 'limit_q' sooner and thus in performing a key update

procedure more frequently.

2.2.3. Recipient Context

The Recipient Context is extended to include the following

parameters.

'count_v': a non-negative integer counter, keeping track of the

current 'v' value for the Recipient Key. At any time, 'count_v'

has as value the number of failed decryptions occurred on

incoming messages using the Recipient Key. The value of 'count_v'

is set to 0 when establishing the Recipient Context.

'limit_v': a non-negative integer, which specifies the highest

value that 'count_v' is allowed to reach, before stopping using

the Recipient Key to process incoming messages.

The value of 'limit_v' depends on the AEAD algorithm specified in

the Common Context, considering the properties of that algorithm.

The value of 'limit_v' is determined according to Section 2.1.1.

2.3. OSCORE Messages Processing

In order to keep track of the 'q' and 'v' values and ensure that

AEAD keys are not used beyond reaching their limits, the processing

of OSCORE messages is extended as defined in this section. A

limitation that is introduced is that, in order to not exceed the

selected value for 'l', the total size of the COSE plaintext,

authentication Tag, and possible cipher padding for a message may

not exceed the block size for the selected algorithm multiplied with

'l'.

*

¶

¶

¶

¶

*

¶

*

¶

¶

¶

In particular, the processing of OSCORE messages follows the steps

outlined in Section 8 of [RFC8613], with the additions defined

below.

2.3.1. Protecting a Request or a Response

Before encrypting the COSE object using the Sender Key, the

'count_q' counter MUST be incremented.

If 'count_q' exceeds the 'limit_q' limit, the message processing

MUST be aborted. From then on, the Sender Key MUST NOT be used to

encrypt further messages.

2.3.2. Verifying a Request or a Response

If an incoming message is detected to be a replay (see Section 7.4

of [RFC8613]), the 'count_v' counter MUST NOT be incremented.

If the decryption and verification of the COSE object using the

Recipient Key fails, the 'count_v' counter MUST be incremented.

After 'count_v' has exceeded the 'limit_v' limit, incoming messages

MUST NOT be decrypted and verified using the Recipient Key, and

their processing MUST be aborted.

3. Current methods for Rekeying OSCORE

Two peers communicating using OSCORE may choose to renew their

shared keying information by establishing a new OSCORE Security

Context for a variety of reasons. A particular reason is approaching

the limits set for key usage defined in Section 2.1.1. Practically,

when the relevant limits have been reached for an OSCORE Security

Context, the two peers have to establish a new OSCORE Security

Context, in order to continue using OSCORE for secure communication.

That is, the two peers have to establish new Sender and Recipient

Keys, as the keys actually used by the AEAD algorithm.

In addition to approaching the key usage limits, there may be other

reasons for a peer to initiate a key update procedure. These

include: the OSCORE Security Context approaching its expiration

time, as per the 'exp' parameter defined in Section 2.2.1;

application policies prescribing a regular key rollover; approaching

the exhaustion of the Sender Sequence Number space in the OSCORE

Sender Context.

It is RECOMMENDED that the peer initiating the key update procedure

starts it with some margin, i.e., well before actually experiencing

the trigger event forcing to perform a key update, e.g., the OSCORE

Security Context expiration or the exhaustion of the Sender Sequence

Number space. If the rekeying is not initiated ahead of these

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-8
https://rfc-editor.org/rfc/rfc8613#section-7.4

events, it may become practically impossible to perform a key update

with certain methods.

Other specifications define a number of ways for rekeying OSCORE, as

summarized below.

The two peers can run the procedure defined in Appendix B.2 of

[RFC8613]. That is, the two peers exchange three or four

messages, protected with temporary Security Contexts adding

randomness to the ID Context.

As a result, the two peers establish a new OSCORE Security

Context with new ID Context, Sender Key and Recipient Key, while

keeping the same OSCORE Master Secret and OSCORE Master Salt from

the old OSCORE Security Context.

This procedure does not require any additional components to what

OSCORE already provides, and it does not provide forward secrecy.

The procedure defined in Appendix B.2 of [RFC8613] is used in

6TiSCH networks [RFC7554][RFC8180] when handling failure events.

That is, a node acting as Join Registrar/Coordinator (JRC)

assists new devices, namely "pledges", to securely join the

network as per the Constrained Join Protocol [RFC9031]. In

particular, a pledge exchanges OSCORE-protected messages with the

JRC, from which it obtains a short identifier, link-layer keying

material and other configuration parameters. As per Section 8.3.3

of [RFC9031], a JRC that experiences a failure event may likely

lose information about joined nodes, including their assigned

identifiers. Then, the reinitialized JRC can establish a new

OSCORE Security Context with each pledge, through the procedure

defined in Appendix B.2 of [RFC8613].

The two peers can run the OSCORE profile [RFC9203] of the

Authentication and Authorization for Constrained Environments

(ACE) Framework [RFC9200].

When a CoAP client uploads an Access Token to a CoAP server as an

access credential, the two peers also exchange two nonces. Then,

the two peers use the two nonces together with information

provided by the ACE Authorization Server that issued the Access

Token, in order to derive an OSCORE Security Context.

This procedure does not provide forward secrecy.

The two peers can run the EDHOC key exchange protocol based on

Diffie-Hellman and defined in [I-D.ietf-lake-edhoc], in order to

establish a pseudo-random key in a mutually authenticated way.

¶

¶

*

¶

¶

¶

¶

*

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc9031#section-8.3.3
https://rfc-editor.org/rfc/rfc8613#appendix-B.2

Then, the two peers can use the established pseudo-random key to

derive external application keys. This allows the two peers to

securely derive an OSCORE Master Secret and an OSCORE Master

Salt, from which an OSCORE Security Context can be established.

This procedure additionally provides forward secrecy.

If one peer is acting as LwM2M Client and the other peer as LwM2M

Server, according to the OMA Lightweight Machine to Machine Core

specification [LwM2M], then the LwM2M Client peer may take the

initiative to bootstrap again with the LwM2M Bootstrap Server,

and receive again an OSCORE Security Context. Alternatively, the

LwM2M Server can instruct the LwM2M Client to initiate this

procedure.

If the OSCORE Security Context information on the LwM2M Bootstrap

Server has been updated, the LwM2M Client will thus receive a

fresh OSCORE Security Context to use with the LwM2M Server.

In addition to that, the LwM2M Client, the LwM2M Server as well

as the LwM2M Bootstrap server are required to use the procedure

defined in Appendix B.2 of [RFC8613] and overviewed above, when

they use a certain OSCORE Security Context for the first time

[LwM2M-Transport].

Manually updating the OSCORE Security Context at the two peers

should be a last resort option, and it might often be not practical

or feasible.

Even when any of the alternatives mentioned above is available, it

is RECOMMENDED that two OSCORE peers update their Security Context

by using the KUDOS procedure as defined in Section 4 of this

document.

4. Key Update for OSCORE (KUDOS)

This section defines KUDOS, a lightweight procedure that two OSCORE

peers can use to update their keying material and establish a new

OSCORE Security Context.

KUDOS relies on the OSCORE Option defined in [RFC8613] and extended

as defined in Section 4.1, as well as on the support function

updateCtx() defined in Section 4.2.

The message exchange between the two peers is defined in

Section 4.3, with particular reference to the stateful FS mode

providing forward secrecy. Building on the same message exchange,

the possible use of the stateless no-FS mode is defined in

Section 4.4, as intended to peers that are not able to write in non-

¶

¶

*

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#appendix-B.2

volatile memory. Two peers MUST run KUDOS in FS mode if they are

both capable to.

The key update procedure fulfills the following properties.

KUDOS can be initiated by either peer. In particular, the client

or the server may start KUDOS by sending the first rekeying

message.

The new OSCORE Security Context enjoys forward secrecy, unless

KUDOS is run in no-FS mode (see Section 4.4).

The same ID Context value used in the old OSCORE Security Context

is preserved in the new Security Context. Furthermore, the ID

Context value never changes throughout the KUDOS execution.

KUDOS is robust against a peer rebooting, and it especially

avoids the reuse of AEAD (nonce, key) pairs.

KUDOS completes in one round trip. The two peers achieve mutual

proof-of-possession in the following exchange, which is protected

with the newly established OSCORE Security Context.

4.1. Extensions to the OSCORE Option

In order to support the message exchange for establishing a new

OSCORE Security Context, this document extends the use of the OSCORE

Option originally defined in [RFC8613] as follows.

This document defines the usage of the eight least significant

bit, called "Extension-1 Flag", in the first byte of the OSCORE

Option containing the OSCORE flag bits. This flag bit is

specified in Section 7.2.

When the Extension-1 Flag is set to 1, the second byte of the

OSCORE Option MUST include the OSCORE flag bits 8-15.

This document defines the usage of the least significant bit

"Nonce Flag", 'd', in the second byte of the OSCORE Option

containing the OSCORE flag bits 8-15. This flag bit is specified

in Section 7.2.

When it is set to 1, the compressed COSE object contains a

'nonce', to be used for the steps defined in Section 4.3. The 1

byte 'x' following 'kid context' (if any) encodes the length of

'nonce', together with signaling bits that indicate the specific

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

behavior to adopt during the KUDOS execution. Specifically, the

encoding of 'x' is as follows:

The four least significant bits encode the 'nonce' length in

bytes minus 1, namely 'm'.

The fifth least significant bit is the "No Forward Secrecy"

'p' bit. The sender peer indicates its wish to run KUDOS in FS

mode or in no-FS mode, by setting the 'p' bit to 0 or 1,

respectively. This makes KUDOS possible to run also for peers

that cannot support the FS mode. At the same time, two peers

MUST run KUDOS in FS mode if they are both capable to, as per

Section 4.3. The execution of KUDOS in no-FS mode is defined

in Section 4.4.

The sixth least significant bit is the "Preserve Observations"

'b' bit. The sender peer indicates its wish to preserve

ongoing observations beyond the KUDOS execution or not, by

setting the 'b' bit to 1 or 0, respectively. The related

processing is defined in Section 4.5.

The seventh and eight least significant bits are reserved for

future use. These bits SHALL be set to zero when not in use.

According to this specification, if any of these bits are set

to 1, the message is considered to be malformed and

decompression fails as specified in item 2 of Section 8.2 of

[RFC8613].

Hereafter, this document refers to a message where the 'd' flag

is set to 0 as "non KUDOS (request/response) message", and to a

message where the 'd' flag is set to 1 as "KUDOS (request/

response) message".

The second-to-eighth least significant bits in the second byte of

the OSCORE Option containing the OSCORE flag bits are reserved

for future use. These bits SHALL be set to zero when not in use.

According to this specification, if any of these bits are set to

1, the message is considered to be malformed and decompression

fails as specified in item 2 of Section 8.2 of [RFC8613].

Figure 3 shows the OSCORE Option value including also 'nonce'.

¶

-

¶

-

¶

-

¶

-

¶

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-8.2
https://rfc-editor.org/rfc/rfc8613#section-8.2

Figure 3: The OSCORE Option value, including 'nonce'

4.2. Function for Security Context Update

The updateCtx() function shown in Figure 4 takes as input three

parameters X, N and CTX_IN. In particular, X and N are built from

the 'x' and 'nonce' fields transported in the OSCORE Option value of

the exchanged KUDOS messages (see Section 4.3.1), while CTX_IN is

the OSCORE Security Context to update. The function returns a new

OSCORE Security Context CTX_OUT.

As a first step, the updateCtx() function builds the two CBOR byte

strings X_cbor and N_cbor, with value the input parameter X and N,

respectively. Then, it builds X_N, as the byte concatenation of

X_cbor and N_cbor.

After that, the updateCtx() function derives the new values of the

Master Secret and Master Salt for CTX_OUT. In particular, the new

Master Secret is derived through a KUDOS-Expand() step, which takes

as input the Master Secret value from the Security Context CTX_IN,

the literal string "key update", X_N and the length of the Master

Secret. Instead, the new Master Salt takes N as value.

The definition of KUDOS-Expand depends on the key derivation

function used for OSCORE by the two peers, as specified in CTX_IN.

If the key derivation function is an HKDF Algorithm (see Section 3.1

of [RFC8613]), then KUDOS-Expand is mapped to HKDF-Expand [RFC5869],

as shown below. Also, the hash algorithm is the same one used by the

HKDF Algorithm specified in CTX_IN.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 <----- n bytes ----->

+-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+

|1|0|0|h|k| n | 0 | 0 | 0 | 0 | 0 | 0 | 0 | d | Partial IV (if any) |

+-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+

 <- 1 byte -> <----- s bytes ------> <- 1 byte -> <--- m + 1 bytes --->

+------------+----------------------+---------------------------------+

| s (if any) | kid context (if any) | x (if any) | nonce (if any) |

+------------+----------------------+------------+--------------------+

 / ____

 / |

 / 0 1 2 3 4 5 6 7 |

+------------------+ | +-+-+-+-+-+-+-+-+ |

| kid (if any) ... | | |0|0|b|p| m | |

+------------------+ | +-+-+-+-+-+-+-+-+ |

¶

¶

¶

¶

¶

 KUDOS-Expand(CTX_IN.MasterSecret, ExpandLabel, oscore_key_length) =

 HKDF-Expand(CTX_IN.MasterSecret, ExpandLabel, oscore_key_length)

¶

https://rfc-editor.org/rfc/rfc8613#section-3.1

If a future specification updates [RFC8613] by admitting different

key derivation functions than HKDF Algorithms (e.g., KMAC as based

on the SHAKE128 or SHAKE256 hash functions), that specification has

to update also the present document in order to define the mapping

between such key derivation functions and KUDOS-Expand.

When an HKDF Algorithm is used, the derivation of new values follows

the same approach used in TLS 1.3, which is also based on HKDF-

Expand (see Section 7.1 of [RFC8446]) and used for computing new

keying material in case of key update (see Section 4.6.3 of

[RFC8446]).

After that, the new Master Secret and Master Salt parameters are

used to derive a new Security Context CTX_OUT as per Section 3.2 of

[RFC8613]. Any other parameter required for the derivation takes the

same value as in the Security Context CTX_IN. Finally, the function

returns the newly derived Security Context CTX_OUT.

Since the updateCtx() function also takes X as input, the derivation

of CTX_OUT also considers as input the information from the 'x'

field transported in the OSCORE Option value of the exchanged KUDOS

messages. In turn, this ensures that, if successfully completed, a

KUDOS execution occurs as intended by the two peers.

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-7.1
https://rfc-editor.org/rfc/rfc8446#section-4.6.3
https://rfc-editor.org/rfc/rfc8613#section-3.2

Figure 4: Function for deriving a new OSCORE Security Context

4.3. Key Update with Forward Secrecy

This section defines the actual KUDOS procedure performed by two

peers to update their OSCORE keying material. Before starting KUDOS,

the two peers share the OSCORE Security Context CTX_OLD. Once

successfully completed the KUDOS execution, the two peers agree on a

newly established OSCORE Security Context CTX_NEW.

The following specifically defines how KUDOS is run in its stateful

FS mode achieving forward secrecy. That is, in the OSCORE Option

updateCtx(X, N, CTX_IN) {

 CTX_OUT // The new Security Context

 MSECRET_NEW // The new Master Secret

 MSALT_NEW // The new Master Salt

 X_cbor = bstr .cbor X // CBOR bstr wrapping of X

 N_cbor = bstr .cbor N // CBOR bstr wrapping of N

 X_N = X_cbor | N_cbor

 oscore_key_length = < Size of CTX_IN.MasterSecret in bytes >

 Label = "key update"

 MSECRET_NEW = KUDOS-Expand-Label(CTX_IN.MasterSecret, Label,

 X_N, oscore_key_length)

 = KUDOS-Expand(CTX_IN.MasterSecret, ExpandLabel,

 oscore_key_length)

 MSALT_NEW = N;

 < Derive CTX_OUT using MSECRET_NEW and MSALT_NEW,

 together with other parameters from CTX_IN >

 Return CTX_OUT;

}

Where ExpandLabel is defined as

struct {

 uint16 length = oscore_key_length;

 opaque label<7..255> = "oscore " + Label;

 opaque context<0..255> = X_N;

} ExpandLabel;

¶

value of all the exchanged KUDOS messages, the "No Forward Secrecy"

bit is set to 0.

In order to run KUDOS in FS mode, both peers have to be able to

write in non-volatile memory the OSCORE Master Secret and OSCORE

Master Salt from the newly derived Security Context CTX_NEW. If this

is not the case, the two peers have to run KUDOS in its stateless

no-FS mode (see Section 4.4).

When running KUDOS, each peer contributes by generating a fresh

value N1 or N2, and providing it to the other peer. Furthermore, X1

and X2 are the value of the 'x' byte specified in the OSCORE Option

of the first and second KUDOS message, respectively. As defined in

Section 4.3.1, these values are used by the peers to build the input

N and X to the updateCtx() function, in order to derive a new OSCORE

Security Context. As for any new OSCORE Security Context, the Sender

Sequence Number and the replay window are re-initialized accordingly

(see Section 3.2.2 of [RFC8613]).

Once a peer has successfully derived the new OSCORE Security Context

CTX_NEW, that peer MUST use CTX_NEW to protect outgoing non KUDOS

messages.

Also, that peer MUST terminate all the ongoing observations

[RFC7641] that it has with the other peer as protected with the old

Security Context CTX_OLD, unless the two peers have explicitly

agreed otherwise as defined in Section 4.5. More specifically, if

either or both peers indicate the wish to cancel their observations,

those will be all cancelled following a successful KUDOS execution.

Note that, even though that peer had no real reason to update its

OSCORE keying material, running KUDOS can be intentionally exploited

as a more efficient way to terminate all the ongoing observations

with the other peer, compared to sending one cancellation request

per observation (see Section 3.6 of [RFC7641]).

Once a peer has successfully decrypted and verified an incoming

message protected with CTX_NEW, that peer MUST discard the old

Security Context CTX_OLD.

KUDOS can be started by the client or the server, as defined in

Section 4.3.1 and Section 4.3.2, respectively. The following

properties hold for both the client- and server-initiated version of

KUDOS.

The initiator always offers the fresh value N1.

The responder always offers the fresh value N2

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc8613#section-3.2.2
https://rfc-editor.org/rfc/rfc7641#section-3.6

The responder is always the first one deriving the new OSCORE

Security Context CTX_NEW.

The initiator is always the first one achieving key confirmation,

hence the first one able to safely discard the old OSCORE

Security Context CTX_OLD.

Both the initiator and the responder use the same respective

OSCORE Sender ID and Recipient ID. Also, they both preserve and

use the same OSCORE ID Context from CTX_OLD.

If the client acts as initiator (see Section 4.3.1), the server MUST

include its Sender Sequence Number as Partial IV in its response

sent as the second KUDOS message. This prevents the AEAD nonce used

for the request from being reused for a later response protected

with the new OSCORE keying material.

The length of the nonces N1 and N2 is application specific. The

application needs to set the length of each nonce such that the

probability of its value being repeated is negligible. To this end,

each nonce is typically at least 8 bytes long.

Once a peer acting as initiator (responder) has sent (received) the

first KUDOS message, that peer MUST NOT send a non KUDOS message to

the other peer, until having completed the key update process on its

side. The initiator completes the key update process when receiving

the second KUDOS message and successfully verifying it with the new

OSCORE Security Context CTX_NEW. The responder completes the key

update process when sending the second KUDOS message, as protected

with the new OSCORE Security Context CTX_NEW.

In the following sections, 'Comb(a,b)' denotes the byte

concatenation of two CBOR byte strings, where the first one has

value 'a' and the second one has value 'b'. That is, Comb(a,b) =

bstr .cbor a | bstr .cbor b, where | denotes byte concatenation.

4.3.1. Client-Initiated Key Update

Figure 5 shows the KUDOS workflow with the client acting as

initiator.

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

 Client Server

 (initiator) (responder)

 | |

Generate N1 | |

 | |

CTX_1 = | |

 updateCtx(X1, N1, | |

 CTX_OLD) | |

 | |

 | Request #1 |

Protect with CTX_1 |------------------->|

 | OSCORE Option: | CTX_1 =

 | ... | updateCtx(X1, N1,

 | d flag: 1 | CTX_OLD)

 | X1 |

 | Nonce: N1 | Verify with CTX_1

 | ... |

 | | Generate N2

 | |

 | | CTX_NEW =

 | | updateCtx(Comb(X1,X2),

 | | Comb(N1,N2),

 | | CTX_OLD)

 | |

 | Response #1 |

 |<-------------------| Protect with CTX_NEW

CTX_NEW = | OSCORE Option: |

 updateCtx(Comb(X1,X2), | ... |

 Comb(N1,N2), | Partial IV: 0 |

 CTX_OLD) | ... |

 | |

Verify with CTX_NEW | d flag: 1 |

 | X2 |

Discard CTX_OLD | Nonce: N2 |

 | ... |

 | |

// The actual key update process ends here.

// The two peers can use the new Security Context CTX_NEW.

 | |

 | Request #2 |

Protect with CTX_NEW |------------------->|

 | | Verify with CTX_NEW

 | |

 | | Discard CTX_OLD

 | |

 | Response #2 |

 |<-------------------| Protect with CTX_NEW

Verify with CTX_NEW | |

 | |

Figure 5: Client-Initiated KUDOS Workflow

First, the client generates a random value N1, and uses the nonce N

= N1 and X = X1 together with the old Security Context CTX_OLD, in

order to derive a temporary Security Context CTX_1.

Then, the client sends an OSCORE request to the server, protected

with the Security Context CTX_1. In particular, the request has the

'd' flag bit set to 1, and specifies X1 as 'x' and N1 as 'nonce'

(see Section 4.1). After that, the client deletes CTX_1.

Upon receiving the OSCORE request, the server retrieves the value N1

from the 'nonce' field of the request, the value X1 from the 'x'

byte of the OSCORE Option, and provides the updateCtx() function

with the input N = N1, X = X1 and the old Security Context CTX_OLD,

in order to derive the temporary Security Context CTX_1.

Figure 6 shows an example of how the two peers compute X and N

provided as input to the updateCtx() function, and how they compute

X_N within the updateCtx() function, when deriving CTX_1 (see

Section 4.2).

Figure 6: Example of X, N and X_N computing for the first KUDOS

message

Then, the server verifies the request by using the Security Context

CTX_1.

After that, the server generates a random value N2, and uses N =

Comb(N1, N2) and X = Comb(X1, X2) together with the old Security

Context CTX_OLD, in order to derive the new Security Context

CTX_NEW.

¶

¶

¶

¶

 X1 and N1 expressed as raw values

 X1 = 0x80

 N1 = 0x018a278f7faab55a

 updateCtx() is called with

 X = 0x80

 N = 0x018a278f7faab55a

 In updateCtx(), X_cbor and N_cbor are built as CBOR byte strings

 X_cbor = 0x4180 (h'80')

 N_cbor = 0x48018a278f7faab55a (h'018a278f7faab55a')

 In updateCtx(), X_N is the byte concatenation of X_cbor and N_cbor

 X_N = 0x418048018a278f7faab55a

¶

¶

An example of this nonce processing on the server with values for

N1, X1, N2 and X2 is presented in Figure 7.

Figure 7: Example of X, N and X_N computing for the second KUDOS

message

Then, the server sends an OSCORE response to the client, protected

with the new Security Context CTX_NEW. In particular, the response

has the 'd' flag bit set to 1 and specifies N2 as 'nonce'. Also, the

server MUST include its Sender Sequence Number as Partial IV in the

response. After that, the server deletes CTX_1.

Upon receiving the OSCORE response, the client retrieves the value

N2 from the 'nonce' field of the response, and the value X2 from the

'x' byte of the OSCORE Option. Since the client has received a

response to an OSCORE request it made with the 'd' flag bit set to

1, the client provides the updateCtx() function with the input N =

Comb(N1, N2), X = Comb(X1, X2) and the old Security Context CTX_OLD,

in order to derive the new Security Context CTX_NEW. Finally, the

client verifies the response by using the Security Context CTX_NEW

and deletes the old Security Context CTX_OLD.

Then, the client can send a new OSCORE request protected with the

new Security Context CTX_NEW.

¶

 X1, X2, N1 and N2 expressed as raw values

 X1 = 0x80

 X2 = 0x80

 N1 = 0x018a278f7faab55a

 N2 = 0x25a8991cd700ac01

 X1, X2, N1 and N2 as CBOR byte strings

 X1 = 0x4180 (h'80')

 X2 = 0x4180 (h'80')

 N1 = 0x48018a278f7faab55a (h'018a278f7faab55a')

 N2 = 0x4825a8991cd700ac01 (h'25a8991cd700ac01')

 updateCtx() is called with

 X = 0x41804180

 N = 0x48018a278f7faab55a4825a8991cd700ac01

 In updateCtx(), X_cbor and N_cbor are built as CBOR byte strings

 X_cbor = 0x4441804180 (h'41804180')

 N_cbor = 0x5248018a278f7faab55a4825a8991cd700ac01

 (h'48018a278f7faab55a4825a8991cd700ac01')

 In updateCtx(), X_N is the byte concatenation of X_cbor and N_cbor

 X_N = 0x44418041805248018a278f7faab55a4825a8991cd700ac01

¶

¶

¶

When successfully verifying the request using the Security Context

CTX_NEW, the server deletes the old Security Context CTX_OLD and can

reply with an OSCORE response protected with the new Security

Context CTX_NEW.

From then on, the two peers can protect their message exchanges by

using the new Security Context CTX_NEW.

Note that the server achieves key confirmation only when receiving a

message from the client as protected with the new Security Context

CTX_NEW. If the server sends a non KUDOS request to the client

protected with CTX_NEW before then, and the server receives a 4.01

(Unauthorized) error response as reply, the server SHOULD delete the

new Security Context CTX_NEW and start a new client-initiated key

update process, by taking the role of initiator as per Figure 5.

Also note that, if both peers reboot simultaneously, they will run

the client-initiated version of KUDOS defined in this section. That

is, one of the two peers implementing a CoAP client will send KUDOS

Request #1 in Figure 5.

4.3.1.1. Avoiding In-Transit Requests During a Key Update

Before sending the KUDOS message Request #1 in Figure 5, the client

MUST ensure that it has no outstanding interactions with the server

(see Section 4.7 of [RFC7252]), with the exception of ongoing

observations [RFC7641] with that server.

If there are any, the client MUST NOT initiate the KUDOS execution,

before either: i) having all those outstanding interactions cleared;

or ii) freeing up the Token values used with those outstanding

interactions, with the exception of ongoing observations with the

server.

Later on, this prevents a non KUDOS response protected with the new

Security Context CTX_NEW to cryptographically match with both the

corresponding request also protected with CTX_NEW and with an older

request protected with CTX_OLD, in case the two requests were

protected using the same OSCORE Partial IV.

During an ongoing KUDOS execution the client MUST NOT send any non-

KUDOS requests to the server. This could otherwise be possible, if

the client is using a value of NSTART greater than 1 (see

Section 4.7 of [RFC7252]).

4.3.2. Server-Initiated Key Update

Figure 8 shows the KUDOS workflow with the server acting as

initiator.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-4.7
https://rfc-editor.org/rfc/rfc7252#section-4.7

 Client Server

 (responder) (initiator)

 | |

 | Request #1 |

Protect with CTX_OLD |------------------->|

 | | Verify with CTX_OLD

 | |

 | | Generate N1

 | |

 | | CTX_1 =

 | | updateCtx(X1, N1,

 | | CTX_OLD)

 | |

 | Response #1 |

 |<-------------------| Protect with CTX_1

CTX_1 = | OSCORE Option: |

 updateCtx(X1, N1, | ... |

 CTX_OLD) | d flag: 1 |

 | X1 |

Verify with CTX_1 | Nonce: N1 |

 | ... |

Generate N2 | |

 | |

CTX_NEW = | |

 updateCtx(Comb(X1,X2), | |

 Comb(N1,N2 | |

 CTX_OLD) | |

 | |

 | Request #2 |

Protect with CTX_NEW |------------------->|

 | OSCORE Option: | CTX_NEW =

 | ... | updateCtx(Comb(X1,X2),

 | | Comb(N1,N2),

 | d flag: 1 | CTX_OLD)

 | X2 |

 | Nonce: N1|N2 | Verify with CTX_NEW

 | ... |

 | | Discard CTX_OLD

 | |

// The actual key update process ends here.

// The two peers can use the new Security Context CTX_NEW.

 | Response #2 |

 |<-------------------| Protect with CTX_NEW

Verify with CTX_NEW | |

 | |

Discard CTX_OLD | |

 | |

Figure 8: Server-Initiated KUDOS Workflow

First, the client sends a normal OSCORE request to the server,

protected with the old Security Context CTX_OLD and with the 'd'

flag bit set to 0.

Upon receiving the OSCORE request and after having verified it with

the old Security Context CTX_OLD as usual, the server generates a

random value N1 and provides the updateCtx() function with the input

N = N1, X = X1 and the old Security Context CTX_OLD, in order to

derive the temporary Security Context CTX_1.

Then, the server sends an OSCORE response to the client, protected

with the Security Context CTX_1. In particular, the response has the

'd' flag bit set to 1 and specifies N1 as 'nonce' (see Section 4.1).

After that, the server deletes CTX_1.

Upon receiving the OSCORE response, the client retrieves the value

N1 from the 'nonce' field of the response, the value X1 from the 'x'

byte of the OSCORE Option, and provides the updateCtx() function

with the input N = N1, X = X1 and the old Security Context CTX_OLD,

in order to derive the temporary Security Context CTX_1.

Then, the client verifies the response by using the Security Context

CTX_1.

After that, the client generates a random value N2, and provides the

updateCtx() function with the input N = Comb(N1, N2), X = Comb(X1,

X2) and the old Security Context CTX_OLD, in order to derive the new

Security Context CTX_NEW. Then, the client sends an OSCORE request

to the server, protected with the new Security Context CTX_NEW. In

particular, the request has the 'd' flag bit set to 1 and specifies

N1 | N2 as 'nonce'. After that, the client deletes CTX_1.

Upon receiving the OSCORE request, the server retrieves the value N1

| N2 from the request and the value X2 from the 'x' byte of the

OSCORE Option. Then, the server verifies that: i) the value N1 is

identical to the value N1 specified in a previous OSCORE response

with the 'd' flag bit set to 1; and ii) the value N1 | N2 has not

been received before in an OSCORE request with the 'd' flag bit set

to 1.

If the verification succeeds, the server provides the updateCtx()

function with the input N = Comb(N1, N2), X = Comb(X1, X2) and the

old Security Context CTX_OLD, in order to derive the new Security

Context CTX_NEW. Finally, the server verifies the request by using

the Security Context CTX_NEW and deletes the old Security Context

CTX_OLD.

¶

¶

¶

¶

¶

¶

¶

¶

After that, the server can send an OSCORE response protected with

the new Security Context CTX_NEW.

When successfully verifying the response using the Security Context

CTX_NEW, the client deletes the old Security Context CTX_OLD.

From then on, the two peers can protect their message exchanges by

using the new Security Context CTX_NEW.

Note that the client achieves key confirmation only when receiving a

message from the server as protected with the new Security Context

CTX_NEW. If the client sends a non KUDOS request to the server

protected with CTX_NEW before then, and the client receives a 4.01

(Unauthorized) error response as reply, the client SHOULD delete the

new Security Context CTX_NEW and start a new client-initiated key

update process, by taking the role of initiator as per Figure 5 in

Section 4.3.1.

4.3.2.1. Avoiding In-Transit Requests During a Key Update

Before sending the KUDOS message Request #2 in Figure 8, the client

MUST ensure that it has no outstanding interactions with the server

(see Section 4.7 of [RFC7252]), with the exception of ongoing

observations [RFC7641] with that server.

If there are any, the client MUST NOT initiate the KUDOS execution,

before either: i) having all those outstanding interactions cleared;

or ii) freeing up the Token values used with those outstanding

interactions, with the exception of ongoing observations with the

server.

Later on, this prevents a non KUDOS response protected with the new

Security Context CTX_NEW to cryptographically match with both the

corresponding request also protected with CTX_NEW and with an older

request protected with CTX_OLD, in case the two requests were

protected using the same OSCORE Partial IV.

During an ongoing KUDOS execution the client MUST NOT send any non-

KUDOS requests to the server. This could otherwise be possible, if

the client is using a value of NSTART greater than 1 (see

Section 4.7 of [RFC7252]).

4.3.2.2. Preventing Deadlock Situations

When the server-initiated version of KUDOS is used, the two peers

risk to run into a deadlock, if all the following conditions hold.

The client is a client-only device, i.e., it does not act as CoAP

server and thus does not listen for incoming requests.

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc7252#section-4.7
https://rfc-editor.org/rfc/rfc7252#section-4.7

The server needs to execute KUDOS, which, due to the previous

point, can only be performed in its server-initiated version as

per Figure 8. That is, the server has to wait for an incoming non

KUDOS request, in order to initiate KUDOS by replying with the

first KUDOS message as a response.

The client sends only Non-confirmable CoAP requests to the server

and does not expect responses sent back as reply, hence freeing

up a request's Token value once the request is sent.

In such a case, in order to avoid experiencing a deadlock situation

where the server needs to execute KUDOS but cannot practically

initiate it, a client-only device that supports KUDOS SHOULD

intersperse Non-confirmable requests it sends to that server with

confirmable requests.

4.4. Key Update with or without Forward Secrecy

The FS mode of the KUDOS procedure defined in Section 4.3 ensures

forward secrecy of the OSCORE keying material. However, it requires

peers executing KUDOS to preserve their state (e.g., across a device

reboot), by writing information such as data from the newly derived

OSCORE Security Context CTX_NEW in non-volatile memory.

This can be problematic for devices that cannot dynamically write

information to non-volatile memory. For example, some devices may

support only a single writing in persistent memory when initial

keying material is provided (e.g., at manufacturing or commissioning

time), but no further writing after that. Therefore, these devices

cannot perform a stateful key update procedure, and thus are not

capable to run KUDOS in FS mode to achieve forward secrecy.

In order to address these limitations, KUDOS can be run in its

stateless no-FS mode, as defined in the following. This allows two

peers to achieve the same results as when running KUDOS in FS mode

(see Section 4.3), with the difference that no forward secrecy is

achieved and no state information is required to be dynamically

written in non-volatile memory.

From a practical point of view, the two modes differ as to what

exact OSCORE Master Secret and Master Salt are used as part of the

OSCORE Security Context CTX_OLD provided as input to the updateCtx()

function (see Section 4.2).

If either or both peers are not able to write in non-volatile memory

the OSCORE Master Secret and OSCORE Master Salt from the newly

derived Security Context CTX_NEW, then the two peers have to run

KUDOS in no-FS mode.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

4.4.1. Handling and Use of Keying Material

In the following, a device is denoted as "CAPABLE" if it is able to

store information in non-volatile memory (e.g., on disk), beyond a

one-time-only writing occurring at manufacturing or

(re-)commissioning time. If that is not the case, the device will be

denoted as "non-CAPABLE".

The following terms are used to refer to OSCORE keying material.

Bootstrap Master Secret and Bootstrap Master Salt. If pre-

provisioned during manufacturing or (re-)commissioning, these

OSCORE Master Secret and Master Salt are initially stored on disk

and are never going to be overwritten by the device.

Latest Master Secret and Latest Master Salt. These OSCORE Master

Secret and Master Salt can be dynamically updated by the device.

In case of reboot, they are lost unless they have been stored on

disk.

Note that:

A peer running KUDOS can have none of the pairs above associated

with another peer, only one or both.

A peer that has neither of the pairs above associated with

another peer, cannot run KUDOS in any mode with that other peer.

A peer that has only one of the pairs above associated with

another peer can attempt to run KUDOS with that other peer, but

the procedure might fail depending on the other peer's

capabilities. In particular:

In order to run KUDOS in FS mode, a peer must be a CAPABLE

device. It follows that two peers have to both be CAPABLE

devices in order to be able to run KUDOS in FS mode with one

another.

In order to run KUDOS in no-FS mode, a peer must have

Bootstrap Master Secret and Bootstrap Master Salt available as

stored on disk.

A peer that is a non-CAPABLE device MUST support no-FS mode.

A peer that is a CAPABLE device MUST support the FS mode and

SHOULD support the no-FS mode.

As a general rule, once successfully generated a new OSCORE Security

Context CTX (e.g., CTX is the CTX_NEW resulting from a KUDOS

execution, or it has been established through the EDHOC protocol

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

-

¶

-

¶

* ¶

*

¶

[I-D.ietf-lake-edhoc]), a peer considers the Master Secret and

Master Salt of CTX as Latest Master Secret and Latest Master Salt.

After that:

If the peer is a CAPABLE device, it SHOULD store Latest Master

Secret and Latest Master Salt on disk.

As an exception, this does not apply to possible temporary OSCORE

Security Contexts used during a key update procedure, such as

CTX_1 used during the KUDOS execution. That is, the OSCORE Master

Secret and Master Salt from such temporary Security Contexts MUST

NOT be stored on disk.

The peer MUST store Latest Master Secret and Latest Master Salt

in volatile memory, thus making them available to OSCORE message

processing and possible key update procedures.

4.4.1.1. Actions after Device Reboot

Building on the above, after having experienced a reboot, a peer A

checks whether it has stored on disk a pair P1 = (Latest Master

Secret, Latest Master Salt) associated with any another peer B.

If a pair P1 is found, the peer A performs the following actions.

The peer A loads the Latest Master Secret and Latest Master

Salt to volatile memory, and uses them to derive an OSCORE

Security Context CTX_OLD.

The peer A runs KUDOS with the other peer B, acting as

initiator. If the peer A is a CAPABLE device, it stores on

disk the Master Secret and Master Salt from the newly

established OSCORE Security Context CTX_NEW, as Latest Master

Secret and Latest Master Salt, respectively.

If a pair P1 is not found, the peer A checks whether it has

stored on disk a pair P2 = (Bootstrap Master Secret, Bootstrap

Master Salt) associated with the other peer B.

If a pair P2 is found, the peer A performs the following

actions.

The peer A loads the Bootstrap Master Secret and Bootstrap

Master Salt to volatile memory, and uses them to derive an

OSCORE Security Context CTX_OLD.

If the peer A is a CAPABLE device, it stores on disk

Bootstrap Master Secret and Bootstrap Master Salt as Latest

Master Secret and Latest Master Salt, respectively. This

¶

*

¶

¶

*

¶

¶

* ¶

-

¶

-

¶

*

¶

-

¶

o

¶

o

supports the situation where A is a CAPABLE device and has

never run KUDOS with the other peer B before.

The peer A runs KUDOS with the other peer B, acting as

initiator. If the peer A is a CAPABLE device, it stores on

disk the Master Secret and Master Salt from the newly

established OSCORE Security Context CTX_NEW, as Latest

Master Secret and Latest Master Salt, respectively.

If a pair P2 is not found, the peer A has to use alternative

ways to establish a first OSCORE Security Context CTX_NEW with

the other peer B, e.g., by running the EDHOC protocol. After

that, if A is a CAPABLE device, it stores on disk the OSCORE

Master Secret and Master Salt from the newly established

OSCORE Security Context CTX_NEW, as Latest Master Secret and

Latest Master Salt, respectively.

4.4.2. Selection of KUDOS Mode

During a KUDOS execution, the two peers agree on whether to perform

the key update procedure in FS mode or no-FS mode, by leveraging the

"No Forward Secrecy" bit, 'p', in the 'x' byte of the OSCORE Option

value of the KUDOS messages (see Section 4.1). The 'p' bit

practically determines what OSCORE Security Context to use as

CTX_OLD during the KUDOS execution, consistently with the indicated

mode.

If the 'p' bit is set to 0 (FS mode), the updateCtx() function

used to derive CTX_1 or CTX_NEW considers as input CTX_OLD the

current OSCORE Security Context shared with the other peer as is.

In particular, CTX_OLD includes Latest Master Secret as OSCORE

Master Secret and Latest Master Salt as OSCORE Master Salt.

If the 'p' bit is set to 1 (no-FS mode), the updateCtx() function

used to derive CTX_1 or CTX_NEW considers as input CTX_OLD the

current OSCORE Security Context shared with the other peer, with

the following difference: Bootstrap Master Secret is used as

OSCORE Master Secret and Bootstrap Master Salt is used as OSCORE

Master Salt. That is, every execution of KUDOS in no-FS mode

between these two peers considers the same pair (Master Secret,

Master Salt) in the OSCORE Security Context CTX_OLD provided as

input to the updateCtx() function, hence the impossibility to

achieve forward secrecy.

A peer determines to run KUDOS either in FS or no-FS mode with

another peer as follows.

If a peer A is not a CAPABLE device, it MUST run KUDOS only in

no-FS mode. That is, when sending a KUDOS message, it MUST set to

1 the 'p' bit of the 'x' byte in the OSCORE Option value.

¶

o

¶

-

¶

¶

*

¶

*

¶

¶

*

¶

If a peer A is a CAPABLE device, it SHOULD run KUDOS only in FS

mode and SHOULD NOT run KUDOS as initiator in no-FS mode. That

is, when sending a KUDOS message, it SHOULD set to 0 the 'p' bit

of the 'x' byte in the OSCORE Option value. An exception applies

in the following cases.

The peer A is running KUDOS with another peer B, which A has

learned to not be a CAPABLE device (and hence not able to run

KUDOS in FS mode).

Note that, if the peer A is a CAPABLE device, it is able to

store such information about the other peer B on disk and it

MUST do so. From then on, the peer A will perform every

execution of KUDOS with the peer B in no-FS mode, including

after a possible reboot.

The peer A is acting as responder and running KUDOS with

another peer B without knowing its capabilities, and A

receives a KUDOS message where the 'p' bit of the 'x' byte in

the OSCORE Option value is set to 1.

If the peer A is a CAPABLE device and has learned that another

peer B is also a CAPABLE device (and hence able to run KUDOS in

FS mode), then the peer A MUST NOT run KUDOS with the peer B in

no-FS mode. This also means that, if the peer A acts as responder

when running KUDOS with the peer B, the peer A MUST terminate the

KUDOS execution if it receives a KUDOS message from the peer B

where the 'p' bit of the 'x' byte in the OSCORE Option value is

set to 1.

Note that, if the peer A is a CAPABLE device, it is able to store

such information about the other peer B on disk and it MUST do

so. This ensures that the peer A will perform every execution of

KUDOS with the peer B in FS mode. In turn, this prevents a

possible downgrading attack, aimed at making A believe that B is

not a CAPABLE device, and thus to run KUDOS in no-FS mode

although the FS mode can actually be used by both peers.

Within the limitations above, two peers running KUDOS generate the

new OSCORE Security Context CTX_NEW according to the mode indicated

per the bit 'p' set by the responder in the second KUDOS message.

If, after having received the first KUDOS message, the responder can

continue performing KUDOS, the bit 'p' in the reply message has the

same value as in the bit 'p' set by the initiator, unless the value

is 0 and the responder is not a CAPABLE device. More specifically:

If both peers are CAPABLE devices, they will run KUDOS in FS

mode. That is, both initiator and responder sets the 'p' bit to 0

in the respective sent KUDOS message.

*

¶

-

¶

¶

-

¶

*

¶

¶

¶

¶

*

¶

If both peers are non-CAPABLE devices or only the peer acting as

initiator is a non-CAPABLE device, they will run KUDOS in no-FS

mode. That is, both initiator and responder sets the 'p' bit to 1

in the respective sent KUDOS message.

If only the peer acting as initiator is a CAPABLE device and it

has knowledge of the other peer being a non-CAPABLE device, they

will run KUDOS in no-FS mode. That is, both initiator and

responder sets the 'p' bit to 1 in the respective sent KUDOS

message.

If only the peer acting as initiator is a CAPABLE device and it

has no knowledge of the other peer being a non-CAPABLE device,

they will not run KUDOS in FS mode and will rather set to ground

for possibly retrying in no-FS mode. In particular, the initiator

sets the 'p' bit of its sent KUDOS message to 0. Then:

If the responder is a server, it MUST reply with a 5.03

(Service Unavailable) error response. The response MUST be

protected with the newly derived OSCORE Security Context

CTX_NEW. The diagnostic payload MAY provide additional

information. In the error response, the 'p' bit MUST be set to

1.

When receiving the error response, the initiator learns that

the responder is not a CAPABLE device (and hence not able to

run KUDOS in FS mode). The initiator MAY try running KUDOS

again. If it does so, the initiator MUST set the 'p' bit to 1,

when sending a new request as first KUDOS message.

If the responder is a client, it sends to the initiator the

second KUDOS message as a new request, which MUST be protected

with the newly derived OSCORE Security Context CTX_NEW. In the

newly sent request, the 'p' bit MUST be set to 1.

When receiving the new request above (i.e., with the 'p' bit

set to 1 as a follow-up to the previous KUDOS response having

the 'p' bit set to 0), the initiator learns that the responder

is not a CAPABLE device (and hence not able to run KUDOS in FS

mode).

In either case, both KUDOS peers delete the OSCORE Security Contexts

CTX_1 and CTX_NEW.

4.5. Preserving Observations across Key Updates

As defined in Section 4.3, once a peer has completed the KUDOS

execution and successfully derived the new OSCORE Security Context

CTX_NEW, that peer normally terminates all the ongoing observations

*

¶

*

¶

*

¶

-

¶

¶

-

¶

¶

¶

it has with the other peer [RFC7641], as protected with the old

OSCORE Security Context CTX_OLD.

This section describes a method that the two peers can use to safely

preserve the ongoing observations that they have with one another,

beyond the completion of a KUDOS execution. In particular, this

method ensures that an Observe notification can never successfully

cryptographically match against the Observe requests of two

different observations, i.e., against an Observe request protected

with CTX_OLD and an Observe request protected with CTX_NEW.

The actual preservation of ongoing observations has to be agreed by

the two peers at each execution of KUDOS that they run with one

another, as defined in Section 4.5.1. If, at the end of a KUDOS

execution, the two peers have not agreed on that, they MUST

terminate the ongoing observations that they have with one another,

just as defined in Section 4.3.

[

NOTE: While a dedicated signaling would have to be introduced, this

rationale may be of more general applicability, i.e., in case an

update of the OSCORE keying material is performed through a

different means than KUDOS.

]

4.5.1. Management of Observations

As per Section 3.1 of [RFC7641], a client can register its interest

in observing a resource at a server, by sending a registration

request including the Observe Option with value 0.

If the server registers the observation as ongoing, the server sends

back a successful response also including the Observe Option, hence

confirming that an entry has been successfully added for that

client.

If the client receives back the successful response above from the

server, then the client also registers the observation as ongoing.

In case the client can ever consider to preserve ongoing

observations beyond a key update as defined below, then the client

MUST NOT simply forget about an ongoing observation if not

interested in it anymore. Instead, the client MUST send an explicit

cancellation request to the server, i.e., a request including the

Observe Option with value 1 (see Section 3.6 of [RFC7641]). After

sending this cancellation request, if the client does not receive

back a response confirming that the observation has been terminated,

the client MUST NOT consider the observation terminated. The client

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7641#section-3.1
https://rfc-editor.org/rfc/rfc7641#section-3.6

MAY try again to terminate the observation by sending a new

cancellation request.

In case a peer A performs a KUDOS execution with another peer B, and

A has ongoing observations with B that it is interested to preserve

beyond the key update, then A can explicitly indicate its interest

to do so. To this end, the peer A sets to 1 the bit "Preserve

Observations", 'b', in the 'x' byte of the OSCORE Option value (see

Section 4.1), in the KUDOS message it sends to the other peer B.

If a peer acting as responder receives the first KUDOS message with

the bit 'b' set to 0, then the peer MUST set to 0 the bit 'b' in the

KUDOS message it sends as follow-up, regardless of its wish to

preserve ongoing observations with the other peer.

If a peer acting as initiator has sent the first KUDOS message with

the bit 'b' set to 0, the peer MUST ignore the bit 'b' in the

follow-up KUDOS message that it receives from the other peer.

After successfully completing the KUDOS execution (i.e., after

having successfully derived the new OSCORE Security Context

CTX_NEW), both peers have expressed their interest in preserving

their common ongoing observations if and only if the bit 'b' was set

to 1 in both the exchanged KUDOS messages. In such a case, each peer

X performs the following actions.

The peer X considers all the still ongoing observations that it

has with the other peer, such that X acts as client in those

observations. If there are no such observations, the peer X

takes no further actions. Otherwise, it moves to step 2.

The peer X considers all the OSCORE Partial IV values used in

the Observe registration request associated with any of the

still ongoing observations determined at step 1.

The peer X determines the value PIV* as the highest OSCORE

Partial IV value among those considered at step 2.

In the Sender Context of the OSCORE Security Context shared

with the other peer, the peer X sets its own Sender Sequence

Number to (PIV* + 1), rather than to 0.

As a result, each peer X will "jump" beyond the OSCORE Partial IV

(PIV) values that are occupied and in use for ongoing observations

with the other peer where X acts as client.

Note that, each time it runs KUDOS, a peer must determine if it

wishes to preserve ongoing observations with the other peer or not,

before sending its KUDOS message.

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

To this end, the peer should also assess the new value that PIV*

would take after a successful completion of KUDOS, in case ongoing

observations with the other peer are going to be preserved. If the

peer considers such a new value of PIV* to be too close to the

maximum possible value admitted for the OSCORE Partial IV, then the

peer may choose to run KUDOS with no intention to preserve its

ongoing observations with the other peer, in order to "start over"

from a fresh, entirely unused PIV space.

Application policies can further influence whether attempting to

preserve observations beyond a key update is appropriate or not.

4.6. Retention Policies

Applications MAY define policies that allow a peer to temporarily

keep the old Security Context CTX_OLD beyond having established the

new Security Context CTX_NEW and having achieved key confirmation,

rather than simply overwriting CTX_OLD with CTX_NEW. This allows the

peer to decrypt late, still on-the-fly incoming messages protected

with CTX_OLD.

When enforcing such policies, the following applies.

Outgoing non KUDOS messages MUST be protected by using only

CTX_NEW.

Incoming non KUDOS messages MUST first be attempted to decrypt by

using CTX_NEW. If decryption fails, a second attempt can use

CTX_OLD.

When an amount of time defined by the policy has elapsed since

the establishment of CTX_NEW, the peer deletes CTX_OLD.

A peer MUST NOT retain CTX_OLD beyond the establishment of CTX_NEW

and the achievement of key confirmation, if any of the following

conditions holds: CTX_OLD is expired (see Section 2.2.1); an amount

'limit_v' of failed decryptions and verifications of incoming

messages has been experienced, by using the Recipient Key of the

Recipient Context of CTX_OLD (see Section 2.3.2).

4.7. Discussion

KUDOS is intended to deprecate and replace the procedure defined in

Appendix B.2 of [RFC8613], as fundamentally achieving the same goal,

while displaying a number of improvements and advantages.

In particular, it is especially convenient for the handling of

failure events concerning the JRC node in 6TiSCH networks (see

Section 3). That is, among its intrinsic advantages compared to the

procedure defined in Appendix B.2 of [RFC8613], KUDOS preserves the

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#appendix-B.2
https://rfc-editor.org/rfc/rfc8613#appendix-B.2

same ID Context value, when establishing a new OSCORE Security

Context.

Since the JRC uses ID Context values as identifiers of network

nodes, namely "pledge identifiers", the above implies that the JRC

does not have to perform anymore a mapping between a new, different

ID Context value and a certain pledge identifier (see Section 8.3.3

of [RFC9031]). It follows that pledge identifiers can remain

constant once assigned, and thus ID Context values used as pledge

identifiers can be employed in the long-term as originally intended.

4.8. Signaling KUDOS support in EDHOC

The EDHOC protocol defines the transport of additional External

Authorization Data (EAD) within an optional EAD field of the EDHOC

messages (see Section 3.8 of [I-D.ietf-lake-edhoc]). An EAD field is

composed of one or multiple EAD items, each of which specifies an

identifying 'ead_label' encoded as a CBOR integer, and an

'ead_value' encoded as a CBOR bstr.

This document defines a new EDHOC EAD item KUDOS_EAD and registers

its 'ead_label' in Section 7.3. By including this EAD item in an

outgoing EDHOC message, a sender peer can indicate whether it

supports KUDOS and in which modes, as well as query the other peer

about its support. The possible values of the 'ead_value' are as

follows:

¶

¶

¶

¶

+------+--------==+--+

| Name | Value | Description |

+======+==========+==+

| ASK | h'' | Used only in EDHOC message_1. It asks the |

| | (0x40) | recipient peer to specify in EDHOC message_2 |

| | | whether it supports KUDOS. |

+------+----------+--+

| NONE | h'00' | Used only in EDHOC message_2 and message_3. |

| | (0x4100) | It specifies that the sender peer does not |

| | | support KUDOS. |

+------+----------+--+

| FULL | h'01' | Used only in EDHOC message_2 and message_3. |

| | (0x4101) | It specifies that the sender peer supports |

| | | KUDOS in FS mode and no-FS mode. |

+------+----------+--+

| PART | h'02' | Used only in EDHOC message_2 and message_3. |

| | (0x4102) | It specifies that the sender peer supports |

| | | KUDOS in no-FS mode only. |

+------+----------+--+

¶

https://rfc-editor.org/rfc/rfc9031#section-8.3.3
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-17#section-3.8

When the KUDOS_EAD item is included in EDHOC message_1 with

'ead_value' ASK, a recipient peer that supports the KUDOS_EAD item

MUST specify whether it supports KUDOS in EDHOC message_2.

When the KUDOS_EAD item is not included in EDHOC message_1 with

'ead_value' ASK, a recipient peer that supports the KUDOS_EAD item

MAY still specify whether it supports KUDOS in EDHOC message_2.

When the KUDOS_EAD item is included in EDHOC message_2 with

'ead_value' FULL or PART, a recipient peer that supports the

KUDOS_EAD item SHOULD specify whether it supports KUDOS in EDHOC

message_3. An exception applies in case, based on application

policies or other context information, the recipient peer that

receives EDHOC message_2 already knows that the sender peer is

supposed to have such knowledge.

When the KUDOS_EAD item is included in EDHOC message_2 with

'ead_value' NONE, a recipient peer that supports the KUDOS_EAD item

MUST NOT specify whether it supports KUDOS in EDHOC message_3.

In the following cases, the recipient peer silently ignores the

KUDOS_EAD item specified in the received EDHOC message, and does not

include a KUDOS_EAD item in the next EDHOC message it sends (if

any).

The recipient peer does not support the KUDOS_EAD item.

The KUDOS_EAD item is included in EDHOC message_1 with

'ead_value' different than ASK

The KUDOS_EAD item is included in EDHOC message_2 or message_3

with 'ead_value' ASK.

The KUDOS_EAD item is included in EDHOC message_4.

That is, by specifying 'ead_value' ASK in EDHOC message_1, a peer A

can indicate to the other peer B that it wishes to know if B

supports KUDOS and in what mode(s). In the following EDHOC

message_2, B indicates whether it supports KUDOS and in what

mode(s), by specifying either NONE, FULL or PART as 'ead_value'.

Specifying the 'ead_value' FULL or PART in EDHOC message_2 also asks

A to indicate whether it supports KUDOS in EDHOC message_3.

To further illustrate the functionality, two examples are presented

below as EDHOC executions where only the new KUDOS_EAD item is shown

when present, and assuming that no other EAD items are used by the

two peers.

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

¶

¶

In the example above, the Initiator asks the EDHOC Responder about

its support for KUDOS ('ead_value' = ASK). In EDHOC message_2, the

Responder indicates that it supports both the FS and no-FS mode of

KUDOS ('ead_value' = FULL). Finally, in EDHOC message_3, the

Initiator indicates that it also supports both the FS and no-FS mode

of KUDOS ('ead_value' = FULL). After the EDHOC execution has

successfully finished, both peers are aware that they both support

KUDOS, in the FS and no-FS modes.

In this second example, the Initiator asks the EDHOC Responder about

its support for KUDOS ('ead_value' = ASK). In EDHOC message_2, the

Responder indicates that it does not support KUDOS at all

('ead_value' = NONE). Finally, in EDHOC message_3, the Initiator

does not include the KUDOS_EAD item, since it already knows that

using KUDOS with the other peer will not be possible. After the

EDHOC execution has successfully finished, the Initiator is aware

that the Responder does not support KUDOS, which the two peers are

not going to use with each other.

EDHOC EDHOC

Initiator Responder

| |

| EAD_1: (TBD_LABEL, ASK) |

+-->|

| message_1 |

| |

| EAD_2: (TBD_LABEL, FULL) |

|<--+

| message_2 |

| |

| EAD_3: (TBD_LABEL, FULL) |

+-->|

| message_3 |

| |

¶

¶

EDHOC EDHOC

Initiator Responder

| |

| EAD_1: (TBD_LABEL, ASK) |

+-->|

| message_1 |

| |

| EAD_2: (TBD_LABEL, NONE) |

|<--+

| message_2 |

| |

+-->|

| message_3 |

| |

¶

¶

5. Update of OSCORE Sender/Recipient IDs

This section defines a procedure that two peers can perform, in

order to update the OSCORE Sender/Recipient IDs that they use in

their shared OSCORE Security Context.

This procedure can be initiated by either peer. In particular, the

client or the server may start it by sending the first OSCORE IDs

update message. When sending an OSCORE IDs update message, a peer

provides its new intended OSCORE Recipient ID to the other peer.

Furthermore, this procedure can be executed stand-alone, or instead

seamlessly integrated in an execution of KUDOS (see Section 4) using

its FS mode or no-FS mode (see Section 4.4).

In the former stand-alone case, updating the OSCORE Sender/

Recipient IDs effectively results in updating part of the current

OSCORE Security Context.

That is, both peers derive a new Sender Key, Recipient Key and

Common IV, as defined in Section 3.2 of [RFC8613]. Also, both

peer re-initialize the Sender Sequence Number and the replay

window accordingly, as defined in Section 3.2.2 of [RFC8613].

Since the same Master Secret is preserved, forward secrecy is not

achieved.

As defined in Section 5.1.3, the two peers must take additional

actions to ensure a safe execution of the OSCORE IDs update

procedure.

In the latter integrated case, the KUDOS initiator (responder)

also acts as initiator (responder) for the OSCORE IDs update

procedure.

[TODO: think about the possibility of safely preserving ongoing

observations following an update of OSCORE IDs alone.]

5.1. The Recipient-ID Option

The Recipient ID Option defined in this section has the properties

summarized in Figure 9, which extends Table 4 of [RFC7252]. That is,

the option is elective, safe to forward, part of the cache key and

non repeatable.

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3.2
https://rfc-editor.org/rfc/rfc8613#section-3.2.2

Figure 9: The Recipient-ID Option.

This document particularly defines how this option is used in

messages protected with OSCORE. That is, when the option is included

in an outgoing message, the option value specifies the new OSCORE

Recipient ID that the sender endpoint intends to use with the other

endpoint sharing the OSCORE Security Context.

The Recipient-ID Option is of class E in terms of OSCORE processing

(see Section 4.1 of [RFC8613]).

5.1.1. Client-Initiated OSCORE IDs Update

Figure 10 shows the stand-alone OSCORE IDs update workflow, with the

client acting as initiator.

On each peer, SID and RID denote the OSCORE Sender ID and Recipient

ID of that peer, respectively.

+------+---+---+---+---+--------------+--------+--------+---------+

| No. | C | U | N | R | Name | Format | Length | Default |

+------+---+---+---+---+--------------+--------+--------+---------+

| | | | | | | | | |

| TBD1 | | | | | Recipient-ID | opaque | 0-7 | (none) |

| | | | | | | | | |

+------+---+---+---+---+--------------+--------+--------+---------+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-4.1

 Client Server

 (initiator) (responder)

 | |

CTX_A { | | CTX_A {

 SID = 1 | | SID = 0

 RID = 0 | | RID = 1

} | | }

 | |

 | Request #1 |

Protect |---------------------------------->|

with CTX_A | OSCORE Option: ..., kid:1 | Verify

 | Encrypted_Payload { | with CTX_A

 | ... |

 | RecipientID: 42 |

 | ... |

 | Application Payload |

 | } |

 | |

 // When embedded in KUDOS, CTX_1 is CTX_A,

 // and there cannot be application payload.

 | |

 | Response #1 |

 |<----------------------------------| Protect

Verify | OSCORE Option: ... | with CTX_A

with CTX_A | Encrypted_Payload { |

 | ... |

 | Recipient-ID: 78 |

 | ... |

 | Application Payload |

 | } |

 | |

 // When embedded in KUDOS, this message

 // is protected using CTX_NEW, and there

 // cannot be application payload.

 //

 // Then, CTX_B builds on CTX_NEW by updating

 // the new Sender/Recipient IDs

 | |

CTX_B { | | CTX_B {

 SID = 78 | | SID = 42

 RID = 42 | | RID = 78

} | | }

 | |

 | Request #2 |

Protect |---------------------------------->|

with CTX_B | OSCORE Option: ..., kid:78 | Verify

 | Encrypted_Payload { | with CTX_B

 | ... |

 | Application Payload |

 | } |

 | |

 | Response #2 |

 |<----------------------------------| Protect

Verify | OSCORE Option: ... | with CTX_B

with CTX_B | Encrypted_Payload { |

 | ... |

 | Application Payload |

 | } |

 | |

Discard | |

CTX_A | |

 | |

 | Request #3 |

Protect |---------------------------------->|

with CTX_B | OSCORE Option: ..., kid:78 | Verify

 | Encrypted_Payload { | with CTX_B

 | ... |

 | Application Payload |

 | } |

 | | Discard

 | | CTX_A

 | |

 | Response #3 |

 |<----------------------------------| Protect

Verify | OSCORE Option: ... | with CTX_B

with CTX_B | Encrypted_Payload { |

 | ... |

 | Application Payload |

 | } |

 | |

Figure 10: Client-Initiated OSCORE IDs Update Workflow

[TODO: discuss the example]

5.1.2. Server-Initiated OSCORE IDs Update

Figure 11 shows the stand-alone OSCORE IDs update workflow, with the

server acting as initiator.

On each peer, SID and RID denote the OSCORE Sender ID and Recipient

ID of that peer, respectively.

¶

¶

¶

 Client Server

 (responder) (initiator)

 | |

CTX_A { | | CTX_A {

 SID = 1 | | SID = 0

 RID = 0 | | RID = 1

} | | }

 | |

 | Request #1 |

Protect |---------------------------------->|

with CTX_A | OSCORE Option: ..., kid:1 | Verify

 | Encrypted_Payload { | with CTX_A

 | ... |

 | Application Payload |

 | } |

 | |

 // When (to be) embedded in KUDOS,

 // CTX_OLD is CTX_A

 | |

 | Response #1 |

 |<----------------------------------| Protect

Verify | OSCORE Option: ... | with CTX_A

with CTX_A | Encrypted_Payload { |

 | ... |

 | Recipient-ID: 78 |

 | Application Payload |

 | } |

 // When embedded in KUDOS, this message is

 // protected with CTX_1 instead, and

 // there cannot be application payload.

 | |

CTX_A { | | CTX_A {

 SID = 1 | | SID = 0

 RID = 0 | | RID = 1

} | | }

 | |

 | Request #2 |

Protect |---------------------------------->|

with CTX_A | OSCORE Option: ..., kid:1 | Verify

 | Encrypted_Payload { | with CTX_A

 | ... |

 | Recipient-ID: 42 |

 | Application Payload |

 | } |

 | |

 // When embedded in KUDOS, this message is

 // protected with CTX_NEW instead, and

 // there cannot be application payload.

 | |

 | Response #2 |

 |<----------------------------------| Protect

Verify | OSCORE Option: ... | with CTX_A

with CTX_A | Encrypted_Payload { |

 | ... |

 | Application Payload |

 | } |

 | |

 // When embedded in KUDOS, this message is

 // protected with CTX_NEW instead, and

 // there cannot be application payload.

 | |

CTX_B { | | CTX_B {

 SID = 78 | | SID = 42

 RID = 42 | | RID = 78

} | | }

 | |

 | Request #3 |

Protect |---------------------------------->|

with CTX_B | OSCORE Option: ..., kid:78 | Verify

 | Encrypted_Payload { | with CTX_B

 | ... |

 | Application Payload |

 | } |

 | |

 | Response #3 |

 |<----------------------------------| Protect

Verify | OSCORE Option: ... | with CTX_B

with CTX_B | Encrypted_Payload { |

 | ... |

 | Application Payload |

 | } |

 | |

Discard | |

CTX_A | |

 | |

 | Request #4 |

Protect |---------------------------------->|

with CTX_B | OSCORE Option: ..., kid:78 | Verify

 | Encrypted_Payload { | with CTX_B

 | ... |

 | Application Payload |

 | } |

 | |

 | | Discard

 | | CTX_A

 | |

 | Response #4 |

 |<----------------------------------| Protect

Verify | OSCORE Option: ... | with CTX_B

with CTX_B | Encrypted_Payload { |

 | ... |

 | Application Payload |

 | } |

 | |

Figure 11: Server-Initiated OSCORE IDs Update Workflow

[TODO: discuss the example]

5.1.3. Additional Actions for Stand-Alone Execution

After having experienced a loss of state, a peer MUST NOT

participate in a stand-alone OSCORE IDs update procedure with

another peer, until having performed a full-fledged establishment/

renewal of an OSCORE Security Context with the other peer (e.g., by

running KUDOS or the EDHOC protocol [I-D.ietf-lake-edhoc]).

More precisely, a peer has experienced a loss of state if it cannot

access the latest snapshot of the latest OSCORE Security Context

CTX_OLD or the whole set of OSCORE Sender/Recipient IDs that have

been used with the triplet (Master Secret, Master Salt, ID Context)

of CTX_OLD. This can happen, for instance, after a device reboot.

Furthermore, when participating in a stand-alone OSCORE IDs update

procedure, a peer performs the following additional steps.

When sending an OSCORE IDs update message, the peer MUST specify

its new intended OSCORE Recipient ID as value of the Recipient-ID

Option only if such a Recipient ID is not only available (see

Section 3.3 of [RFC8613], but it has also never been used as

Recipient ID with the current triplet (Master Secret, Master

Salt, ID Context).

When receiving an OSCORE IDs update message, the peer MUST abort

the procedure if it has already used the identifier specified in

the Recipient-ID Option as its own Sender ID with current triplet

(Master Secret, Master Salt, ID Context).

In order to fulfill the conditions above, a peer has to keep track

of the OSCORE Sender/Recipient IDs that it has used with the current

triplet (Master Secret, Master Salt, ID Context) since the latest

update of OSCORE Master Secret (e.g, performed by running KUDOS).

6. Security Considerations

This document mainly covers security considerations about using AEAD

keys in OSCORE and their usage limits, in addition to the security

considerations of [RFC8613].

Depending on the specific key update procedure used to establish a

new OSCORE Security Context, the related security considerations

also apply.

[TODO: Add more considerations.]

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3.3

7. IANA Considerations

This document has the following actions for IANA.

Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"

with the RFC number of this specification and delete this paragraph.

7.1. CoAP Option Numbers Registry

IANA is asked to enter the following option number to the "CoAP

Option Numbers" registry within the "CoRE Parameters" registry

group.

The number suggested to IANA for the Recipient-ID Option is 24.

7.2. OSCORE Flag Bits Registry

IANA is asked to add the following entries to the "OSCORE Flag Bits"

registry within the "Constrained RESTful Environments (CoRE)

Parameters" registry group.

¶

¶

¶

+--------+--------------+------------+

| Number | Name | Reference |

+--------+--------------+------------+

| TBD | Recipient-ID | [RFC-XXXX] |

+--------+--------------+------------+

¶

¶

¶

+----------+-------------+-------------------------------+------------+

| Bit | Name | Description | Reference |

| Position | | | |

+----------+-------------+-------------------------------+------------+

| 0 | Extension-1 | Set to 1 if the OSCORE Option | [RFC-XXXX] |

| | Flag | specifies a second byte, | |

| | | which includes the OSCORE | |

| | | flag bits 8-15 | |

+----------+-------------+-------------------------------+------------+

| 8 | Extension-2 | Set to 1 if the OSCORE Option | [RFC-XXXX] |

| | Flag | specifies a third byte, | |

| | | which includes the OSCORE | |

| | | flag bits 16-23 | |

+----------+-------------+-------------------------------+------------+

| 15 | Nonce Flag | Set to 1 if nonce is present | [RFC-XXXX] |

| | | in the compressed COSE object | |

+----------+-------------+-------------------------------+------------+

| 16 | Extension-3 | Set to 1 if the OSCORE Option | [RFC-XXXX] |

| | Flag | specifies a fourth byte, | |

| | | which includes the OSCORE | |

| | | flag bits 24-31 | |

| | | | |

+----------+-------------+-------------------------------+------------+

| 24 | Extension-4 | Set to 1 if the OSCORE Option | [RFC-XXXX] |

| | Flag | specifies a fifth byte, | |

| | | which includes the OSCORE | |

| | | flag bits 32-39 | |

| | | | |

+----------+-------------+-------------------------------+------------+

| 32 | Extension-5 | Set to 1 if the OSCORE Option | [RFC-XXXX] |

| | Flag | specifies a sixth byte, | |

| | | which includes the OSCORE | |

| | | flag bits 40-47 | |

| | | | |

+----------+-------------+-------------------------------+------------+

| 40 | Extension-6 | Set to 1 if the OSCORE Option | [RFC-XXXX] |

| | Flag | specifies a seventh byte, | |

| | | which includes the OSCORE | |

| | | flag bits 48-55 | |

| | | | |

+----------+-------------+-------------------------------+------------+

| 48 | Extension-7 | Set to 1 if the OSCORE Option | [RFC-XXXX] |

| | Flag | specifies an eigth byte, | |

| | | which includes the OSCORE | |

| | | flag bits 56-63 | |

| | | | |

+----------+-------------+-------------------------------+------------+

¶

[RFC2119]

[RFC5869]

[RFC7252]

[RFC7641]

[RFC8174]

In the same registry, IANA is asked to mark as 'Unassigned' the

entry with Bit Position of 1, i.e., to update the entry as follows.

7.3. EDHOC External Authorization Data Registry

IANA is asked to add the following entries to the "EDHOC External

Authorization Data" registry within the "Ephemeral Diffie-Hellman

Over COSE (EDHOC)" registry group.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

¶

+----------+------------------+--------------------------+------------+

| Bit | Name | Description | Reference |

| Position | | | |

+----------+------------------+--------------------------+------------+

| 1 | Unassigned | | |

+----------+------------------+--------------------------+------------+

¶

¶

+---------+--------------------------------------+--------------------+

| Label | Description | Reference |

+=========+======================================+====================+

| TBD1 | Indicates whether this peer supports | [RFC-XXXX] |

| | KUDOS and in which mode(s) | |

+---------+--------------------------------------+--------------------+

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8174

[RFC8613]

[RFC8949]

[I-D.ietf-lake-edhoc]

[I-D.irtf-cfrg-aead-limits]

[LwM2M]

[LwM2M-Transport]

[RFC7519]

[RFC7554]

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

8.2. Informative References

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-17, 12 October 2022, <https://www.ietf.org/archive/

id/draft-ietf-lake-edhoc-17.txt>.

Günther, F., Thomson, M., and C. A.

Wood, "Usage Limits on AEAD Algorithms", Work in

Progress, Internet-Draft, draft-irtf-cfrg-aead-limits-05,

11 July 2022, <https://www.ietf.org/archive/id/draft-

irtf-cfrg-aead-limits-05.txt>.

Open Mobile Alliance, "Lightweight Machine to Machine

Technical Specification - Core, Approved Version 1.2,

OMA-TS-LightweightM2M_Core-V1_2-20201110-A", November

2020, <http://www.openmobilealliance.org/release/

LightweightM2M/V1_2-20201110-A/OMA-TS-

LightweightM2M_Core-V1_2-20201110-A.pdf>.

Open Mobile Alliance, "Lightweight Machine to

Machine Technical Specification - Transport Bindings,

Approved Version 1.2, OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A", November 2020, <http://

www.openmobilealliance.org/release/LightweightM2M/

V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A.pdf>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using

IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the

Internet of Things (IoT): Problem Statement", RFC 7554,

DOI 10.17487/RFC7554, May 2015, <https://www.rfc-

editor.org/info/rfc7554>.

https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-17.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-17.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-05.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-05.txt
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc7554

[RFC8180]

[RFC8446]

[RFC9031]

[RFC9200]

[RFC9203]

Vilajosana, X., Ed., Pister, K., and T. Watteyne,

"Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e

(6TiSCH) Configuration", BCP 210, RFC 8180, DOI 10.17487/

RFC8180, May 2017, <https://www.rfc-editor.org/info/

rfc8180>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Vučinić, M., Ed., Simon, J., Pister, K., and M.

Richardson, "Constrained Join Protocol (CoJP) for

6TiSCH", RFC 9031, DOI 10.17487/RFC9031, May 2021,

<https://www.rfc-editor.org/info/rfc9031>.

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S.,

and H. Tschofenig, "Authentication and Authorization for

Constrained Environments Using the OAuth 2.0 Framework

(ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August

2022, <https://www.rfc-editor.org/info/rfc9200>.

Palombini, F., Seitz, L., Selander, G., and M.

Gunnarsson, "The Object Security for Constrained RESTful

Environments (OSCORE) Profile of the Authentication and

Authorization for Constrained Environments (ACE)

Framework", RFC 9203, DOI 10.17487/RFC9203, August 2022,

<https://www.rfc-editor.org/info/rfc9203>.

Appendix A. Detailed considerations for AEAD_AES_128_CCM_8

For the AEAD_AES_128_CCM_8 algorithm when used as AEAD Algorithm for

OSCORE, larger IA and CA values are achieved, depending on the value

of 'q', 'v' and 'l'. Figure 12 shows the resulting IA and CA

probabilities enjoyed by AEAD_AES_128_CCM_8, when taking different

values of 'q', 'v' and 'l' as input to the formulas defined in

[I-D.irtf-cfrg-aead-limits].

As shown in Figure 12, it is especially possible to achieve the

lowest IA = 2^-50 and a good CA = 2^-70 by considering the largest

possible value of the (q, v, l) triplet equal to (2^20, 2^10, 2^8),

while still keeping a good security level. Note that the value of

'l' does not impact on IA, while CA displays good values for every

considered value of 'l'.

¶

¶

https://www.rfc-editor.org/info/rfc8180
https://www.rfc-editor.org/info/rfc8180
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9031
https://www.rfc-editor.org/info/rfc9200
https://www.rfc-editor.org/info/rfc9203

Figure 12: Probabilities for AEAD_AES_128_CCM_8 based on chosen q, v

and l values.

Appendix B. Estimation of 'count_q'

This section defines a method to compute an estimate of the counter

'count_q' (see Section 2.2.2), hence not requiring a peer to store

it in its own Sender Context.

This method relies on the fact that, at any point in time, a peer

has performed at most ENC = (SSN + SSN*) encryptions using its own

Sender Key, where:

SSN is the current value of this peer's Sender Sequence Number.

SSN* is the current value of other peer's Sender Sequence Number.

That is, SSN* is an overestimation of the responses without

Partial IV that this peer has sent.

+-----------------------+----------------+----------------+

| 'q', 'v' and 'l' | IA probability | CA probability |

|-----------------------+----------------+----------------|

| q=2^20, v=2^20, l=2^8 | 2^-44 | 2^-70 |

| q=2^15, v=2^20, l=2^8 | 2^-44 | 2^-80 |

| q=2^10, v=2^20, l=2^8 | 2^-44 | 2^-90 |

| q=2^20, v=2^15, l=2^8 | 2^-49 | 2^-70 |

| q=2^15, v=2^15, l=2^8 | 2^-49 | 2^-80 |

| q=2^10, v=2^15, l=2^8 | 2^-49 | 2^-90 |

| q=2^20, v=2^14, l=2^8 | 2^-50 | 2^-70 |

| q=2^15, v=2^14, l=2^8 | 2^-50 | 2^-80 |

| q=2^10, v=2^14, l=2^8 | 2^-50 | 2^-90 |

| q=2^20, v=2^10, l=2^8 | 2^-54 | 2^-70 |

| q=2^15, v=2^10, l=2^8 | 2^-54 | 2^-80 |

| q=2^10, v=2^10, l=2^8 | 2^-54 | 2^-90 |

|-----------------------+----------------+----------------|

| q=2^20, v=2^20, l=2^6 | 2^-44 | 2^-74 |

| q=2^15, v=2^20, l=2^6 | 2^-44 | 2^-84 |

| q=2^10, v=2^20, l=2^6 | 2^-44 | 2^-94 |

| q=2^20, v=2^15, l=2^6 | 2^-49 | 2^-74 |

| q=2^15, v=2^15, l=2^6 | 2^-49 | 2^-84 |

| q=2^10, v=2^15, l=2^6 | 2^-49 | 2^-94 |

| q=2^20, v=2^14, l=2^6 | 2^-50 | 2^-74 |

| q=2^15, v=2^14, l=2^6 | 2^-50 | 2^-84 |

| q=2^10, v=2^14, l=2^6 | 2^-50 | 2^-94 |

| q=2^20, v=2^10, l=2^6 | 2^-54 | 2^-74 |

| q=2^15, v=2^10, l=2^6 | 2^-54 | 2^-84 |

| q=2^10, v=2^10, l=2^6 | 2^-54 | 2^-94 |

+-----------------------+----------------+----------------+

¶

¶

* ¶

*

¶

Thus, when protecting an outgoing message (see Section 2.3.1), the

peer aborts the message processing if the estimated est_q > limit_q,

where est_q = (SSN + X) and X is determined as follows.

If the outgoing message is a response, X is the Partial IV

specified in the corresponding request that this peer is

responding to. Note that X < SSN* always holds.

If the outgoing message is a request, X is the highest Partial IV

value marked as received in this peer's Replay Window plus 1, or

0 if it has not accepted any protected message from the other

peer yet. That is, X is the highest Partial IV specified in

message received from the other peer, i.e., the highest seen

Sender Sequence Number of the other peer. Note that, also in this

case, X < SSN* always holds.

Appendix C. Document Updates

RFC EDITOR: PLEASE REMOVE THIS SECTION.

C.1. Version -02 to -03

Use of the OSCORE flag bit 0 to signal more flag bits.

In UpdateCtx(), open for future key derivation different than

HKDF.

Simplified updateCtx() to use only Expand(); used to be METHOD 2.

Included the Partial IV if the second KUDOS message is a

response.

Added signaling of support for KUDOS in EDHOC.

Clarifications on terminology and reasons for rekeying.

Updated IANA considerations.

Editorial improvements.

C.2. Version -01 to -02

Extended terminology.

Moved procedure for preserving observations across key updates to

main body.

Moved procedure to update OSCORE Sender/Recipient IDs to main

body.

¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

Moved key update without forward secrecy section to main body.

Define signaling bits present in the 'x' byte.

Modifications and alignment of updateCtx() with EDHOC.

Rules for deletion of old EDHOC keys PRK_out and PRK_exporter.

Describe CBOR wrapping of involved nonces with examples.

Renamed 'id detail' to 'nonce'.

Editorial improvements.

C.3. Version -00 to -01

Recommendation on limits for CCM_8. Details in Appendix.

Improved message processing, also covering corner cases.

Example of method to estimate and not store 'count_q'.

Added procedure to update OSCORE Sender/Recipient IDs.

Added method for preserving observations across key updates.

Added key update without forward secrecy.

Acknowledgments

The authors sincerely thank Christian Amsüss, Carsten Bormann, John

Preuß Mattsson and Göran Selander for their feedback and comments.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-

Home (Grant agreement 952652).

Authors' Addresses

Rikard Höglund

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: rikard.hoglund@ri.se

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

mailto:rikard.hoglund@ri.se

Sweden

Email: marco.tiloca@ri.se

mailto:marco.tiloca@ri.se

	Key Update for OSCORE (KUDOS)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. AEAD Key Usage Limits in OSCORE
	2.1. Problem Overview
	2.1.1. Limits for 'q' and 'v'

	2.2. Additional Information in the Security Context
	2.2.1. Common Context
	2.2.2. Sender Context
	2.2.3. Recipient Context

	2.3. OSCORE Messages Processing
	2.3.1. Protecting a Request or a Response
	2.3.2. Verifying a Request or a Response

	3. Current methods for Rekeying OSCORE
	4. Key Update for OSCORE (KUDOS)
	4.1. Extensions to the OSCORE Option
	4.2. Function for Security Context Update
	4.3. Key Update with Forward Secrecy
	4.3.1. Client-Initiated Key Update
	4.3.1.1. Avoiding In-Transit Requests During a Key Update

	4.3.2. Server-Initiated Key Update
	4.3.2.1. Avoiding In-Transit Requests During a Key Update
	4.3.2.2. Preventing Deadlock Situations

	4.4. Key Update with or without Forward Secrecy
	4.4.1. Handling and Use of Keying Material
	4.4.1.1. Actions after Device Reboot

	4.4.2. Selection of KUDOS Mode

	4.5. Preserving Observations across Key Updates
	4.5.1. Management of Observations

	4.6. Retention Policies
	4.7. Discussion
	4.8. Signaling KUDOS support in EDHOC

	5. Update of OSCORE Sender/Recipient IDs
	5.1. The Recipient-ID Option
	5.1.1. Client-Initiated OSCORE IDs Update
	5.1.2. Server-Initiated OSCORE IDs Update
	5.1.3. Additional Actions for Stand-Alone Execution

	6. Security Considerations
	7. IANA Considerations
	7.1. CoAP Option Numbers Registry
	7.2. OSCORE Flag Bits Registry
	7.3. EDHOC External Authorization Data Registry

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Detailed considerations for AEAD_AES_128_CCM_8
	Appendix B. Estimation of 'count_q'
	Appendix C. Document Updates
	C.1. Version -02 to -03
	C.2. Version -01 to -02
	C.3. Version -00 to -01

	Acknowledgments
	Authors' Addresses

