
CoRE Working Group K. Hartke
Internet-Draft Ericsson
Updates: 7252, 8323 (if approved) March 1, 2019
Intended status: Standards Track
Expires: September 2, 2019

Extended Tokens and Stateless Clients
in the Constrained Application Protocol (CoAP)

draft-ietf-core-stateless-00

Abstract

 This document provides considerations for alleviating CoAP clients
 and intermediaries of maintaining per-request state. Additionally,
 it introduces a new, optional CoAP protocol extension for extended
 token lengths.

 This document updates RFCs 7252 and 8323.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 2, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Hartke Expires September 2, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 4

2. Extended Tokens . 4
2.1. Extended Token Length (TKL) Field 4
2.2. Discovering Support 5
2.2.1. Extended-Token-Lengths Capability Option 5
2.2.2. Trial and Error 5

2.3. Intermediaries . 6
3. Stateless Clients . 6
3.1. Intermediaries . 7
3.2. Extended Tokens . 7
3.3. Message Transmission 9

4. Security Considerations 9
4.1. Extended Tokens . 9
4.2. Stateless Clients . 10
4.2.1. Recommended Algorithms 10

5. IANA Considerations . 11
5.1. CoAP Signaling Option Number 11

6. References . 11
6.1. Normative References 11
6.2. Informative References 12

Appendix A. Updated Message Formats 12
A.1. CoAP over UDP . 13
A.2. CoAP over TCP . 14
A.3. CoAP over WebSockets 15

 Acknowledgements . 16
 Author's Address . 16

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a RESTful
 application-layer protocol for constrained environments [RFC7228].
 In CoAP, clients (or intermediaries in the client role) make requests
 to servers (or intermediaries in the server role), which serve the
 requests by returning responses.

 While a request is ongoing, a client typically maintains some state
 that it requires for processing the response when it arrives.
 Identification of this state is done by means of a _token_ in CoAP,
 an opaque sequence of bytes chosen by the client and included in the
 CoAP request. The server returns the token verbatim in any resulting
 CoAP response (Figure 1).

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228

Hartke Expires September 2, 2019 [Page 2]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

 +-----------------+ request with +------------+
 | | | state identifier | | |
 | | | as token | |
 | .-<-+->------|--------------------->|------. |
 | _|_ | | | |
 | / \ stored | | | |
 | ___/ state | | | |
 | | | | | |
 | '->-+-<------|<---------------------|------' |
 | | | response with | |
 | v | token echoed back | |
 +-----------------+ +------------+
 Client Server

 Figure 1: Token as an Identifier for Request State

 In some scenarios, it can be beneficial to reduce the amount of state
 stored at the client at the cost of increased message sizes. Clients
 can implement this by serializing (parts of) their state into the
 token itself and recovering the state from the token in the response
 (Figure 2).

 +-----------------+ request with +------------+
 | | | serialized state | |
 | | | as token | |
 | +--------|=====================>|------. |
 | | | | |
 | look ma, | | | |
 | no state! | | | |
 | | | | |
 | +--------|<=====================|------' |
 | | | response with | |
 | v | token echoed back | |
 +-----------------+ +------------+
 Client Server

 Figure 2: Token as Serialization of Request State

Section 3 of this document provides considerations for making clients
 "stateless" in this way, i.e., avoiding per-request state. (They'll
 still need to maintain per-server state and other kinds of state, so
 they're not entirely stateless.)

 Serializing state into tokens is complicated by the fact that both
 CoAP over UDP [RFC7252] and CoAP over reliable transports [RFC8323]
 limit the maximum token length to 8 bytes. To overcome this
 limitation, Section 2 of this document first introduces a CoAP
 protocol extension for extended token lengths.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323

Hartke Expires September 2, 2019 [Page 3]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

 While the mechanism (extended token lengths) and the use case
 (stateless clients) presented in this document are closely related,
 both can be used independently of the other: Some implementations may
 fit their state in 8 bytes; some implementations may have other use
 cases for extended token lengths.

1.1. Terminology

 Stateless
 In this document, "stateless" refers to an implementation strategy
 for a client (or intermediary in the client role) that doesn't
 keep state for the individual requests it sends to a server (or
 intermediary in the server role). The client still needs to keep
 state for each server it communicates with (such as state for
 generating tokens and congestion control), so it's not free of any
 state.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Extended Tokens

2.1. Extended Token Length (TKL) Field

 This document updates the message formats defined for CoAP over UDP
 [RFC7252] and CoAP over TCP, TLS, and WebSockets [RFC8323] with the
 following new definition of the TKL field, increasing the maximum
 token length to 65804 bytes.

 Token Length (TKL): 4-bit unsigned integer. A value between 0 and
 12 inclusive indicates the length of the variable-length Token
 field in bytes. Three values are reserved for special constructs:

 13: An 8-bit unsigned integer precedes the Token field and
 indicates the length of the Token field minus 13.

 14: A 16-bit unsigned integer in network byte order precedes the
 Token field and indicates the length of the Token field minus
 269.

 15: Reserved. This value MUST NOT be sent and MUST be processed
 as a message format error.

 All other fields retain their definition.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323

Hartke Expires September 2, 2019 [Page 4]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

 The updated message formats are illustrated in Appendix A.

2.2. Discovering Support

 Extended token lengths require support from the server or, if there
 are one or more intermediaries between the client and the server, the
 intermediary in the server role that the client is interacting with.

 Support can be discovered by a client (or intermediary in the client
 role) in one of two ways: In case Capabilities and Settings Messages
 (CSMs) are available, such as in CoAP over TCP, support can be
 discovered using the Extended-Token-Lengths Capability Option defined
 in Section 2.2.1. Otherwise, such as in CoAP over UDP, support can
 only be discovered by trial and error, as described in Section 2.2.2.

2.2.1. Extended-Token-Lengths Capability Option

 A sender can use the elective Extended-Token-Lengths Capability
 Option to indicate its support for the new TKL field definition
 specified in Section 2.1.

 +----+---+---+-------+--------------------+-------+--------+--------+
 | # | C | R | Appli | Name | Forma | Length | Base |
 | | | | es to | | t | | Value |
 +----+---+---+-------+--------------------+-------+--------+--------+
 | TB | | | CSM | Extended-Token- | empty | 0 | (none) |
 | D | | | | Lengths | | | |
 +----+---+---+-------+--------------------+-------+--------+--------+

 C=Critical, R=Repeatable

 Table 1: The Extended-Token-Lengths Capability Option

2.2.2. Trial and Error

 A request with a TKL field value outside the range from 0 to 8 will
 be considered a message format error (Section 3 of RFC 7252) and be
 rejected by a recipient that does not support the updated TKL field
 definition. A client thus can determine support by sending a request
 with an extended token length and checking whether it's rejected by
 the recipient or not.

 In CoAP over UDP, a recipient rejects a malformed confirmable message
 by sending a Reset message (Section 4.2 of RFC 7252). In case of a
 non-confirmable message, sending a Reset message is permitted but not
 required (Section 4.3 of RFC 7252). It is therefore RECOMMENDED that
 clients use a confirmable message.

https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-4.2
https://datatracker.ietf.org/doc/html/rfc7252#section-4.3

Hartke Expires September 2, 2019 [Page 5]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

 As per RFC 7252, Reset messages are empty and don't contain a token;
 they only return the Message ID (Figure 3). They also don't contain
 any indication of what caused a message format error. It is
 therefore RECOMMENDED that clients use a request that contains no
 potential message format error other than the extended token length.

 In CoAP over TCP, TLS, and WebSockets, a recipient rejects a
 malformed message by sending an Abort message and shutting down the
 connection (Section 5.6 of RFC 8323).

 +-----------------+ request message +------------+
 | | | with extended | | |
 | | | token length | |
 | .-<-+->------|--------------------->|------. |
 | _|_ | | | |
 | / \ stored | | | |
 | ___/ state | | | |
 | | | | | |
 | '->-+-<------|<---------------------|------' |
 | | | reset message | |
 | v | with only message | |
 +-----------------+ ID echoed back +------------+
 Client Server

 Figure 3: A Confirmable Request With an Extended Token is Rejected
 With a Reset Message if the Next Hop Does Not Support It

2.3. Intermediaries

 Tokens are a hop-by-hop feature: When an intermediary receives a
 request, the only requirement is that it echoes the token back in any
 resulting response. There is no requirement or expectation that an
 intermediary passes a client's token on to a server or that an
 intermediary uses extended token lengths itself when receiving a
 request with an extended token length.

3. Stateless Clients

 A client can be alleviated of keeping request state by serializing
 the state into a sequence of bytes and sending the result as the
 token of the request. The server will return the token to the client
 in the response, so that the client can recover the state and process
 the response as if it had kept the state locally.

 The format of the serialized state is an implementation detail of the
 client and opaque to any server implementation. Using tokens to
 serialize state has significant and non-obvious security and privacy
 implications that need to be mitigated; see Section 4.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323#section-5.6

Hartke Expires September 2, 2019 [Page 6]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

3.1. Intermediaries

 Tokens are a hop-by-hop feature: If a client makes a request to an
 intermediary, that intermediary needs to store the client's token
 (along with the client's transport address) while it makes its own
 request to the next hop towards the origin server and waits for the
 response.

 An intermediary might want to be "stateless" as well, i.e., be
 alleviated of storing the client's token and transport address for
 ongoing requests. This can be implemented by serializing this
 information along the request state into the token to the next hop.
 When the next hop returns the response, the intermediary can recover
 the information from the token and use it to satisfy the client's
 request.

 The downside of this approach is that an intermediary, without
 keeping request state, is unable to aggregate requests, which reduces
 efficiency. In particular, when multiple clients observe [RFC7641]
 the same resource, aggregating requests is REQUIRED for efficiency
 (Section 3.1 of RFC 7641). This implies that an intermediary MUST
 NOT include an Observe Option in requests it sends without keeping
 request state.

 When using blockwise transfers [RFC7959], a server might not be able
 to distinguish blocks originating from different clients once they
 have been forwarded by an intermediary. To ensure that this does not
 lead to inconsistent resource state, a stateless intermediary MUST
 include the Request-Tag Option [I-D.ietf-core-echo-request-tag] in
 blockwise transfers with a value that uniquely identifies the next
 hop towards the client in the intermediary's namespace.

3.2. Extended Tokens

 A client (or intermediary in the role of a client) that depends on
 support for extended token lengths (Section 2) from the next hop to
 avoid keeping request state MUST perform a discovery of support
 (Section 2.2) before it can be stateless. This discovery MUST be
 performed in a stateful way, i.e., keeping state for the request
 (Figure 4): If the client was stateless from the start and the next
 hop doesn't support extended tokens, then any error message couldn't
 be processed since the state would neither be present at the client
 nor returned in the Reset message (Figure 5).

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641#section-3.1
https://datatracker.ietf.org/doc/html/rfc7959

Hartke Expires September 2, 2019 [Page 7]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

 +-----------------+ dummy request +------------+
 | | | with extended | | |
 | | | token | |
 | .-<-+->------|=====================>|------. |
 | _|_ | | | |
 | / \ stored | | | |
 | ___/ state | | | |
 | | | | | |
 | '->-+-<------|<=====================|------' |
 | | | response with | |
 | | | extended token | |
 | | | echoed back | |
 | | | | |
 | | | | |
 | | | request with | |
 | | | serialized state | |
 | | | as token | |
 | +--------|=====================>|------. |
 | | | | |
 | look ma, | | | |
 | no state! | | | |
 | | | | |
 | +--------|<=====================|------' |
 | | | response with | |
 | v | token echoed back | |
 +-----------------+ +------------+
 Client Server

 Figure 4: Depending on Extended Tokens for Being Stateless First
 Requires a Successful Stateful Discovery of Support

 +-----------------+ dummy request +------------+
 | | | with extended | |
 | | | token | |
 | +--------|=====================>|------. |
 | | | | |
 | | | | |
 | | | | |
 | | | | |
 | ???|<---------------------|------' |
 | | reset message | |
 | | with only message | |
 +-----------------+ ID echoed back +------------+
 Client Server

 Figure 5: Stateless Discovery of Support Does Not Work

Hartke Expires September 2, 2019 [Page 8]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

3.3. Message Transmission

 As a further step in the case of CoAP over UDP [RFC7252], a client
 (or intermediary in the client role) might want to also avoid keeping
 message transmission state.

 Generally, a client can use confirmable or non-confirmable messages
 for requests. When using confirmable messages, it needs to keep
 message exchange state for performing retransmissions and handling
 Acknowledgement and Reset messages. When using non-confirmable
 messages, it can keep no message exchange state. However, in either
 case the client needs to keep congestion control state. That is, it
 needs to maintain state for each node it communicates with and, e.g.,
 enforce NSTART.

 As per RFC 7252, a client must be prepared to receive a response as a
 piggybacked response, a separate response or non-confirmable response
 (Section 5.2 of RFC 7252), regardless of the message type used for
 the request. A stateless client needs to handle these response types
 as follows:

 o If a piggybacked response contains a valid authentication tag and
 freshness indicator in the token, the client MUST process the
 message as specified in RFC 7252; otherwise, it MUST silently
 ignore the message.

 o If a separate response contains a valid authentication tag and
 freshness indicator in the token, the client MUST process the
 message as specified in RFC 7252; otherwise, it MUST reject the
 message as specified in Section 4.2 of RFC 7252.

 o If a non-confirmable response contains a valid authentication tag
 and freshness indicator in the token, the client MUST process the
 message as specified in RFC 7252; otherwise, it MUST reject the
 message as specified in Section 4.3 of RFC 7252.

4. Security Considerations

4.1. Extended Tokens

 Tokens significantly larger than the 8 bytes specified in RFC 7252
 have implications for nodes in particular with constrained memory
 size that need to be mitigated.

 A node in the server role supporting extended token lengths may be
 vulnerable to a denial-of-service when an attacker (either on-path or
 a malicious client) sends large tokens to fill up the memory of the
 node. Implementations MUST be prepared for this and mitigate it.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.2
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-4.2
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-4.3
https://datatracker.ietf.org/doc/html/rfc7252

Hartke Expires September 2, 2019 [Page 9]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

4.2. Stateless Clients

 Transporting the state needed by a client to process a response as
 serialized state information in the token has several significant and
 non-obvious security and privacy implications that need to be
 mitigated.

 Serialized state information is an attractive target for both
 unwanted nodes (attackers between the node in client role and the
 next hop) and wanted nodes (the next hop itself) on the path.
 Therefore, a node in the client role MUST integrity protect the state
 information, unless processing a response does not modify state or
 cause other significant side effects.

 Even when the serialized state is integrity protected, an attacker
 may still replay a response, making the client believe it sent the
 same request twice. Therefore, the node in client role MUST
 implement replay protection (e.g., by using sequence numbers and a
 replay window), unless processing a response does not modify state or
 cause other significant side effects. Integrity protection is
 REQUIRED for replay protection.

 If processing a response without keeping request state is sensitive
 to the time elapsed to sending the request, then the serialized state
 MUST include freshness information (e.g., a timestamp).

 Information in the serialized state may be privacy sensitive. A node
 in client role MUST encrypt the serialized state if it contains
 privacy sensitive information that an attacker would not get
 otherwise. For example, an intermediary that serializes the client's
 token and transport address into its token leaks that information to
 the next hop, which may be undesirable. In wireless mesh networks,
 where all traffic is visible to a passive attacker, encryption may
 not be needed as the attacker can get the same information from
 analyzing the traffic flows.

 A node in client role using OSCORE [I-D.ietf-core-object-security]
 always MUST encrypt the serialized state.

4.2.1. Recommended Algorithms

 The use of encryption, integrity protection, and replay protection of
 serialized state is recommended in general, unless a careful analysis
 of any potential attacks to security and privacy is performed.
 AES_CCM with a 64 bit tag is recommended, combined with a sequence
 number and a replay window. Where encryption is not needed, HMAC-
 SHA-256, combined with a sequence number and a replay window, may be
 used.

Hartke Expires September 2, 2019 [Page 10]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

5. IANA Considerations

5.1. CoAP Signaling Option Number

 The following entries are added to the "CoAP Signaling Option
 Numbers" registry within the "CoRE Parameters" registry.

 +------------+--------+------------------------+-------------------+
 | Applies to | Number | Name | Reference |
 +------------+--------+------------------------+-------------------+
 | 7.01 | TBD | Extended-Token-Lengths | [[this document]] |
 +------------+--------+------------------------+-------------------+

6. References

6.1. Normative References

 [I-D.ietf-core-echo-request-tag]
 Amsuess, C., Mattsson, J., and G. Selander, "Echo and
 Request-Tag", draft-ietf-core-echo-request-tag-03 (work in
 progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Hartke Expires September 2, 2019 [Page 11]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/info/rfc8323>.

6.2. Informative References

 [I-D.ietf-6tisch-minimal-security]
 Vucinic, M., Simon, J., Pister, K., and M. Richardson,
 "Minimal Security Framework for 6TiSCH", draft-ietf-

6tisch-minimal-security-09 (work in progress), November
 2018.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-15 (work in
 progress), August 2018.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

Appendix A. Updated Message Formats

 This appendix illustrates the CoAP message formats updated with the
 new definition of the TKL field (Section 2).

https://datatracker.ietf.org/doc/html/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-09
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-15
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228

Hartke Expires September 2, 2019 [Page 12]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

A.1. CoAP over UDP

 0 1 2 3 4 5 6 7
 +-------+-------+---------------+
 | | | |
 | Ver | T | TKL | 1 byte
 | | | |
 +-------+-------+---------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 | |
 | |
 | |
 +- Message ID -+ 2 bytes
 | |
 | |
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0 or more bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

Hartke Expires September 2, 2019 [Page 13]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

A.2. CoAP over TCP

 0 1 2 3 4 5 6 7
 +---------------+---------------+
 | | |
 | Len | TKL | 1 byte
 | | |
 +---------------+---------------+
 \ \
 / Len / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0 or more bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

Hartke Expires September 2, 2019 [Page 14]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

A.3. CoAP over WebSockets

 0 1 2 3 4 5 6 7
 +---------------+---------------+
 | | |
 | 0 | TKL | 1 byte
 | | |
 +---------------+---------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0 or more bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

Hartke Expires September 2, 2019 [Page 15]

Internet-DraftExtended Tokens and Stateless Clients in CoAP March 2019

Acknowledgements

 This document is based on the requirements of and work on the Minimal
 Security Framework for 6TiSCH [I-D.ietf-6tisch-minimal-security] by
 Malisa Vucinic, Jonathan Simon, Kris Pister, and Michael Richardson.

 Thanks to Carsten Bormann, Ari Keranen, John Mattsson, Jim Schaad,
 Goeran Selander, and Malisa Vucinic for helpful comments and
 discussions that have shaped the document.

Author's Address

 Klaus Hartke
 Ericsson
 Torshamnsgatan 23
 Stockholm SE-16483
 Sweden

 Email: klaus.hartke@ericsson.com

Hartke Expires September 2, 2019 [Page 16]

