
CoRE Working Group K. Hartke
Internet-Draft Ericsson
Updates: 7252, 8323 (if approved) M. Richardson
Intended status: Standards Track Sandelman
Expires: May 20, 2021 November 16, 2020

Extended Tokens and Stateless Clients
in the Constrained Application Protocol (CoAP)

draft-ietf-core-stateless-08

Abstract

 This document provides considerations for alleviating CoAP clients
 and intermediaries of keeping per-request state. To facilitate this,
 this document additionally introduces a new, optional CoAP protocol
 extension for extended token lengths.

 This document updates RFCs 7252 and 8323 with an extended definition
 of the TKL field in the CoAP message header.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 20, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Hartke & Richardson Expires May 20, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Extended Tokens in CoAP November 2020

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 4

2. Extended Tokens . 4
2.1. Extended Token Length (TKL) Field 4
2.2. Discovering Support 5
2.2.1. Extended-Token-Length Capability Option 5
2.2.2. Trial-and-Error 6

2.3. Intermediaries . 8
3. Stateless Clients . 9
3.1. Serializing Client State 9
3.2. Using Extended Tokens 10
3.3. Transmitting Messages 12

4. Stateless Intermediaries 12
4.1. Observing Resources 13
4.2. Block-Wise Transfers 13
4.3. Gateway Timeouts . 14
4.4. Extended Tokens . 14

5. Security Considerations 14
5.1. Extended Tokens . 14
5.2. Stateless Clients and Intermediaries 14

6. IANA Considerations . 16
6.1. CoAP Signaling Option Number 16

7. References . 16
7.1. Normative References 16
7.2. Informative References 17

Appendix A. Updated Message Formats 18
A.1. CoAP over UDP . 18
A.2. CoAP over TCP/TLS . 20
A.3. CoAP over WebSockets 21

 Acknowledgements . 21
 Authors' Addresses . 22

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a RESTful
 application-layer protocol for constrained environments [RFC7228].
 In CoAP, clients (or intermediaries in the client role) make requests
 to servers (or intermediaries in the server role), which satisfy the
 requests by returning responses.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228

Hartke & Richardson Expires May 20, 2021 [Page 2]

Internet-Draft Extended Tokens in CoAP November 2020

 While a request is ongoing, a client typically needs to keep some
 state that it requires for processing the response when that arrives.
 Identification of this state is done in CoAP by means of a token, an
 opaque sequence of bytes chosen by the client and included in the
 CoAP request, and that is returned by the server verbatim in any
 resulting CoAP response (Figure 1).

 +-----------------+ request with +------------+
 | | | state identifier | | |
 | | | as token | |
 | .-<-+->------|--------------------->|------. |
 | _|_ | | | |
 | / \ stored | | | |
 | ___/ state | | | |
 | | | | | |
 | '->-+-<------|<---------------------|------' |
 | | | response with | |
 | v | token echoed back | |
 +-----------------+ +------------+
 Client Server

 Figure 1: Token as an Identifier for Request State

 In some scenarios, it can be beneficial to reduce the amount of state
 that is stored at the client at the cost of increased message sizes.
 A client can opt into this by serializing (parts of) its state into
 the token itself and then recovering this state from the token in the
 response (Figure 2).

 +-----------------+ request with +------------+
 | | | serialized state | |
 | | | as token | |
 | +--------|=====================>|------. |
 | | | | |
 | look ma, | | | |
 | no state! | | | |
 | | | | |
 | +--------|<=====================|------' |
 | | | response with | |
 | v | token echoed back | |
 +-----------------+ +------------+
 Client Server

 Figure 2: Token as Serialization of Request State

Section 3 of this document provides considerations for clients
 becoming "stateless" in this way. (The term "stateless" is in quotes
 here, because it's a bit oversimplified. Such clients still need to

Hartke & Richardson Expires May 20, 2021 [Page 3]

Internet-Draft Extended Tokens in CoAP November 2020

 maintain per-server state and other kinds of state. So it would be
 more accurate to just say that the clients are avoiding per-request
 state.)

Section 4 of this document extends the considerations for clients to
 intermediaries, which may not only want to avoid keeping state for
 the requests they send to servers but also for the requests they
 receive from clients.

 The serialization of state into tokens is limited by the fact that
 both CoAP over UDP [RFC7252] and CoAP over reliable transports
 [RFC8323] restrict the maximum token length to 8 bytes. To overcome
 this limitation, Section 2 of this document first introduces a CoAP
 protocol extension for extended token lengths.

 While the use case (avoiding per-request state) and the mechanism
 (extended token lengths) presented in this document are closely
 related, both can be used independently of each other: Some
 implementations may be able to fit their state in just 8 bytes; some
 implementations may have other use cases for extended token lengths.

1.1. Terminology

 In this document, the term "stateless" refers to an implementation
 strategy for a client (or intermediary in the client role) that does
 not require it to keep state for the individual requests it sends to
 a server (or intermediary in the server role). The client still
 needs to keep state for each server it communicates with (e.g., for
 token generation, message retransmission, and congestion control).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Extended Tokens

 This document updates the message formats defined for CoAP over UDP
 [RFC7252] and CoAP over TCP, TLS, and WebSockets [RFC8323] with a new
 definition of the TKL field.

2.1. Extended Token Length (TKL) Field

 The definition of the TKL field is updated as follows:

 Token Length (TKL): 4-bit unsigned integer. A value between 0 and
 12 inclusive indicates the length of the variable-length Token

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323

Hartke & Richardson Expires May 20, 2021 [Page 4]

Internet-Draft Extended Tokens in CoAP November 2020

 field in bytes. The other three values are reserved for special
 constructs:

 13: An 8-bit unsigned integer directly precedes the Token field
 and indicates the length of the Token field minus 13.

 14: A 16-bit unsigned integer in network byte order directly
 precedes the Token field and indicates the length of the Token
 field minus 269.

 15: Reserved. This value MUST NOT be sent and MUST be processed
 as a message format error.

 All other fields retain their definitions.

 The updated message formats are illustrated in Appendix A.

 The new definition of the TKL field increases the maximum token
 length that can be represented in a message to 65804 bytes. However,
 the maximum token length that sender and recipient implementations
 support may be shorter. For example, a constrained node of Class 1
 [RFC7228] might support extended token lengths only up to 32 bytes.

 In CoAP over UDP, it is often beneficial to keep CoAP messages small
 enough to avoid IP fragmentation. The maximum practical token length
 may therefore also be influenced by the Path MTU. See Section 4.6 of
 RFC 7252 for details.

2.2. Discovering Support

 Extended token lengths require support from server implementations.
 Support can be discovered by a client implementation in one of two
 ways:

 o Where Capabilities and Settings Messages (CSMs) are available,
 such as in CoAP over TCP, support can be discovered using the
 Extended-Token-Length Capability Option defined in Section 2.2.1.

 o Otherwise, such as in CoAP over UDP, support can only be
 discovered by trial-and-error, as described in Section 2.2.2.

2.2.1. Extended-Token-Length Capability Option

 A server can use the elective Extended-Token-Length Capability Option
 to indicate the maximum token length it can accept in requests.

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252#section-4.6
https://datatracker.ietf.org/doc/html/rfc7252#section-4.6

Hartke & Richardson Expires May 20, 2021 [Page 5]

Internet-Draft Extended Tokens in CoAP November 2020

 +----+---+---+--------+--------------------+-------+--------+-------+
 | # | C | R | Applie | Name | Forma | Length | Base |
 | | | | s to | | t | | Value |
 +----+---+---+--------+--------------------+-------+--------+-------+
 | TB | | | CSM | Extended-Token- | uint | 0-3 | 8 |
 | D | | | | Length | | | |
 +----+---+---+--------+--------------------+-------+--------+-------+

 C=Critical, R=Repeatable

 Table 1: The Extended-Token-Length Capability Option

 As per Section 3 of RFC 7252, the base value (and the value used when
 this option is not implemented) is 8.

 The active value of the Extended-Token-Length Option is replaced each
 time the option is sent with a modified value. Its starting value is
 its base value.

 The option value MUST NOT be less than 8 or greater than 65804. If
 an option value less than 8 is received, the option MUST be ignored.
 If an option value greater than 65804 is received, the option value
 MUST be set to 65804.

 Any option value greater than 8 implies support for the new
 definition of the TKL field specified in Section 2.1. Indication of
 support by a server does not oblige a client to actually make use of
 token lengths greater than 8.

 If a server receives a request with a token of a length greater than
 what it indicated in its Extended-Token-Length Option, it MUST handle
 the request as a message format error.

 If a server receives a request with a token of a length less than or
 equal to what it indicated in its Extended-Token-Length Option but is
 unwilling or unable to handle the token at that time, it MUST NOT
 handle the request as a message format error. Instead, it SHOULD
 return a 5.03 (Service Unavailable) response.

 The Extended-Token-Length Capability Option does not apply to
 responses. The sender of a request is simply expected not to use a
 token of a length greater than it is willing to accept in a response.

2.2.2. Trial-and-Error

 A server implementation that does not support the updated definition
 of the TKL field specified in Section 2.1 will consider a request
 with a TKL field value outside the range 0 to 8 a message format

https://datatracker.ietf.org/doc/html/rfc7252#section-3

Hartke & Richardson Expires May 20, 2021 [Page 6]

Internet-Draft Extended Tokens in CoAP November 2020

 error and reject it (Section 3 of RFC 7252). A client can therefore
 determine support by sending a request with an extended token length
 and checking whether it is rejected by the server or not.

 In CoAP over UDP, the way a request message is rejected depends on
 the message type. A Confirmable message with a message format error
 is rejected with a Reset message (Section 4.2 of RFC 7252). A Non-
 confirmable message with a message format error is either rejected
 with a Reset message or just silently ignored (Section 4.3 of RFC

7252). To reliably get a Reset message, it is therefore REQUIRED
 that clients use a Confirmable message for determining support.

 As per RFC 7252, Reset messages are empty and do not contain a token;
 they only return the Message ID (Figure 3). They also do not contain
 any indication of what caused a message format error. To avoid any
 ambiguity, it is therefore RECOMMENDED that clients use a request
 that has no potential message format error other than the extended
 token length.

 +-----------------+ request message +------------+
 | | | with extended | | |
 | | | token length | |
 | .-<-+->------|--------------------->|------. |
 | _|_ | | | |
 | / \ stored | | | |
 | ___/ state | | | |
 | | | | | |
 | '->-+-<------|<---------------------|------' |
 | | | reset message | |
 | v | with only message | |
 +-----------------+ ID echoed back +------------+
 Client Server

 Figure 3: A Confirmable Request With an Extended Token is Rejected
 With a Reset Message if the Server Does Not Have Support

 An example of a suitable request is a GET request in a Confirmable
 message that includes only an If-None-Match option and a token of the
 greatest length that the client intends to use. Any response with
 the same token echoed back indicates that tokens up to that length
 are supported by the server.

 Since network addresses may change, a client SHOULD NOT assume that
 extended token lengths are supported by a server for an unlimited
 duration. Unless additional information is available, the client
 should assume that addresses (and therefore extended token lengths)
 are valid for a minimum of 1800 s, and for a maximum of 86400 s (1
 day). A client may use additional forms of input into this

https://datatracker.ietf.org/doc/html/rfc7252#section-3
https://datatracker.ietf.org/doc/html/rfc7252#section-4.2
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Hartke & Richardson Expires May 20, 2021 [Page 7]

Internet-Draft Extended Tokens in CoAP November 2020

 determination. For instance a client may assume a server which is in
 the same subnet as the client has a similar address lifetime as the
 client. The client may use DHCP lease times or Router Advertisements
 to set the limits. For servers that are not local, if the server was
 looked up using DNS, then the DNS resource record will have a Time To
 Live, and the extended token length should be kept for only that
 amount of time.

 If a server supports extended token lengths but receives a request
 with a token of a length it is unwilling or unable to handle, it MUST
 NOT reject the message, as that would imply that extended token
 lengths are not supported at all. Instead, if the server cannot
 handle the request at the time, it SHOULD return a 5.03 (Service
 Unavailable) response; if the server will never be able to handle the
 request (e.g., because the token is too large), it SHOULD return a
 4.00 (Bad Request) response.

 Design Note: The requirement to return an error response when a
 token cannot be handled might seem somewhat contradictory, as
 returning the error response requires the server also to return
 the token it cannot handle. However, processing a request usually
 involves a number of steps from receiving the message to passing
 it to application logic. The idea is that a server implementing
 this extension supports large tokens at least in its first few
 processing steps, enough to return an error response rather than a
 Reset message.

 Design Note: To make the trial-and-error-based discovery not too
 complicated, no effort is made to indicate the maximum supported
 token length. A client implementation would probably already
 choose the shortest token possible for the task (like being
 stateless as described in Section 3), so it would probably not be
 able to reduce the length any further anyway should a server
 indicate a lower limit.

2.3. Intermediaries

 Tokens are a hop-by-hop feature: If there are one or more
 intermediaries between a client and a server, every token is scoped
 to the exchange between a node in the client role and the node in the
 server role that it is immediately interacting with.

 When an intermediary receives a request, the only requirement is that
 it echoes the token back in any resulting response. There is no
 requirement or expectation that an intermediary passes a client's
 token on to a server or that an intermediary uses extended token
 lengths itself in its request to satisfy a request with an extended

Hartke & Richardson Expires May 20, 2021 [Page 8]

Internet-Draft Extended Tokens in CoAP November 2020

 token length. Discovery needs to be performed for each hop where
 extended token lengths are to be used.

3. Stateless Clients

 A client can be alleviated of keeping per-request state as follows:

 1. The client serializes (parts of) its per-request state into a
 sequence of bytes and sends those bytes as the token of its
 request to the server.

 2. The server returns the token verbatim in the response to the
 client, which allows the client to recover the state and process
 the response as if it had kept the state locally.

 As servers are just expected to return any token verbatim to the
 client, this implementation strategy for clients does not impact the
 interoperability of client and server implementations. However,
 there are a number of significant, non-obvious implications (e.g.,
 related to security and other CoAP protocol features) that client
 implementations need take into consideration.

 The following subsections discuss some of these considerations.

3.1. Serializing Client State

 The format of the serialized state is generally an implementation
 detail of the client and opaque to the server. However, serialized
 state information is an attractive target for both unwanted nodes
 (e.g., on-path attackers) and wanted nodes (e.g., any configured
 forward proxy) on the path. The serialization format therefore needs
 to include security measures such as the following:

 o A client SHOULD protect the integrity of the state information
 serialized in a token.

 o Even when the integrity of the serialized state is protected, an
 attacker may still replay a response, making the client believe it
 sent the same request twice. For this reason, the client SHOULD
 implement replay protection (e.g., by using sequence numbers and a
 replay window). For replay protection, integrity protection is
 REQUIRED.

 o If processing a response without keeping request state is
 sensitive to the time elapsed since sending the request, then the
 client SHOULD include freshness information (e.g., a timestamp) in
 the serialized state and reject any response where the freshness
 information is insufficiently fresh.

Hartke & Richardson Expires May 20, 2021 [Page 9]

Internet-Draft Extended Tokens in CoAP November 2020

 o Information in the serialized state may be privacy sensitive. A
 client SHOULD encrypt the serialized state if it contains privacy
 sensitive information that an attacker would not get otherwise.

 o When a client changes the format of the serialized state, it
 SHOULD prevent false interoperability with the previous format
 (e.g., by changing the key used for integrity protection or
 changing a field in the serialized state).

3.2. Using Extended Tokens

 A client that depends on support for extended token lengths
 (Section 2) from the server to avoid keeping request state needs to
 perform a discovery of support (Section 2.2) before it can be
 stateless.

 This discovery MUST be performed in a stateful way, i.e., keeping
 state for the request (Figure 4): If the client was stateless from
 the start and the server does not support extended tokens, then any
 error message could not be processed since the state would neither be
 present at the client nor returned in the Reset message (Figure 5).

Hartke & Richardson Expires May 20, 2021 [Page 10]

Internet-Draft Extended Tokens in CoAP November 2020

 +-----------------+ dummy request +------------+
 | | | with extended | | |
 | | | token | |
 | .-<-+->------|=====================>|------. |
 | _|_ | | | |
 | / \ stored | | | |
 | ___/ state | | | |
 | | | | | |
 | '->-+-<------|<=====================|------' |
 | | | response with | |
 | | | extended token | |
 | | | echoed back | |
 | | | | |
 | | | | |
 | | | request with | |
 | | | serialized state | |
 | | | as token | |
 | +--------|=====================>|------. |
 | | | | |
 | look ma, | | | |
 | no state! | | | |
 | | | | |
 | +--------|<=====================|------' |
 | | | response with | |
 | v | token echoed back | |
 +-----------------+ +------------+
 Client Server

 Figure 4: Depending on Extended Tokens for Being Stateless First
 Requires a Successful Stateful Discovery of Support

 +-----------------+ dummy request +------------+
 | | | with extended | |
 | | | token | |
 | +--------|=====================>|------. |
 | | | | |
 | | | | |
 | | | | |
 | | | | |
 | ???|<---------------------|------' |
 | | reset message | |
 | | with only message | |
 +-----------------+ ID echoed back +------------+
 Client Server

 Figure 5: Stateless Discovery of Support Does Not Work

Hartke & Richardson Expires May 20, 2021 [Page 11]

Internet-Draft Extended Tokens in CoAP November 2020

 In environments where support can be reliably discovered through some
 other means, the discovery of support is OPTIONAL. An example for
 this is the Constrained Join Protocol (CoJP) in a 6TiSCH network
 [I-D.ietf-6tisch-minimal-security], where support for extended tokens
 is required from all relevant parties.

3.3. Transmitting Messages

 In CoAP over UDP [RFC7252], a client has the choice between
 Confirmable and Non-confirmable messages for requests. When using
 Non-confirmable messages, a client does not have to keep any message
 exchange state, which can help in the goal of avoiding state. When
 using Confirmable messages, a client needs to keep message exchange
 state for performing retransmissions and handling Acknowledgement and
 Reset messages, however. Non-confirmable messages are therefore
 better suited for avoiding state. In any case, a client still needs
 to keep congestion control state, i.e., maintain state for each node
 it communicates with and enforce limits like NSTART.

 As per Section 5.2 of RFC 7252, a client must be prepared to receive
 a response as a piggybacked response, a separate response, or Non-
 confirmable response, regardless of the message type used for the
 request. A stateless client MUST handle these response types as
 follows:

 o If a piggybacked response passes the checks for token integrity
 and freshness (Section 3.1), the client processes the message as
 specified in RFC 7252; otherwise, it processes the acknowledgement
 portion of the message as specified in RFC 7252 and silently
 discards the response portion.

 o If a separate response passes the checks for token integrity and
 freshness, the client processes the message as specified in RFC

7252; otherwise, it rejects the message as specified in
Section 4.2 of RFC 7252.

 o If a Non-confirmable response passes the checks for token
 integrity and freshness, the client processes the message as
 specified in RFC 7252; otherwise, it rejects the message as
 specified in Section 4.3 of RFC 7252.

4. Stateless Intermediaries

 Tokens are a hop-by-hop feature: If a client makes a request to an
 intermediary, that intermediary needs to store the client's token
 (along with the client's transport address) while it makes its own
 request towards the origin server and waits for the response. When
 the intermediary receives the response, it looks up the client's

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-5.2
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-4.2
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252#section-4.3

Hartke & Richardson Expires May 20, 2021 [Page 12]

Internet-Draft Extended Tokens in CoAP November 2020

 token and transport address for the received request and sends an
 appropriate response to the client.

 An intermediary might want to be "stateless" not only in its role as
 a client but also in its role as a server, i.e., be alleviated of
 storing the client information for the requests it receives.

 Such an intermediary can be implemented by serializing the client
 information along with the request state into the token towards the
 origin server. When the intermediary receives the response, it can
 recover the client information from the token and use it to satisfy
 the client's request and therefore doesn't need to store it itself.

 The following subsections discuss some considerations for this
 approach.

4.1. Observing Resources

 One drawback of the approach is that an intermediary, without keeping
 request state, is unable to aggregate multiple requests for the same
 target resource, which can significantly reduce efficiency. In
 particular, when clients observe [RFC7641] the same resource,
 aggregating requests is REQUIRED (Section 3.1 of RFC 7641). This
 requirement cannot be satisfied without keeping request state.

 Furthermore, an intermediary that does not keep track of the clients
 observing a resource is not able to determine whether these clients
 are still interested in receiving further notifications (Section 3.5
 of RFC 7641) or want to cancel an observation (Section 3.6 of RFC

7641).

 Therefore, an intermediary MUST NOT include an Observe Option in
 requests it sends without keeping both the request state for the
 requests it sends and the client information for the requests it
 receives.

4.2. Block-Wise Transfers

 When using block-wise transfers [RFC7959], a server might not be able
 to distinguish blocks originating from different clients once they
 have been forwarded by an intermediary. Intermediaries need to
 ensure that this does not lead to inconsistent resource state by
 keeping distinct block-wise request operations on the same resource
 apart, e.g., utilizing the Request-Tag Option
 [I-D.ietf-core-echo-request-tag].

https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641#section-3.1
https://datatracker.ietf.org/doc/html/rfc7641#section-3.5
https://datatracker.ietf.org/doc/html/rfc7641#section-3.5
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959

Hartke & Richardson Expires May 20, 2021 [Page 13]

Internet-Draft Extended Tokens in CoAP November 2020

4.3. Gateway Timeouts

 As per Section 5.7.1 of RFC 7252, an intermediary is REQUIRED to
 return a 5.04 (Gateway Timeout) response if it cannot obtain a
 response within a timeout. However, if an intermediary does not keep
 the client information for the requests it receives, it cannot return
 such a response. Therefore, in this case, the gateway cannot return
 such a response and as such cannot implement such a timeout.

4.4. Extended Tokens

 A client may make use of extended token lengths in a request to an
 intermediary that wants to be "stateless". This means that such an
 intermediary may have to serialize potentially very large client
 information into its token towards the origin server. The tokens can
 grow even further when it progresses along a chain of intermediaries
 that all want to be "stateless".

 Intermediaries SHOULD limit the size of client information they are
 serializing into their own tokens. An intermediary can do this, for
 example, by limiting the extended token lengths it accepts from its
 clients (see Section 2.2) or by keeping the client information
 locally when the client information exceeds the limit (i.e., not
 being "stateless").

5. Security Considerations

5.1. Extended Tokens

 Tokens significantly larger than the 8 bytes specified in RFC 7252
 have implications in particular for nodes with constrained memory
 size that need to be mitigated. A node in the server role supporting
 extended token lengths may be vulnerable to a denial-of-service when
 an attacker (either on-path or a malicious client) sends large tokens
 to fill up the memory of the node. Implementations need to be
 prepared to handle such messages.

5.2. Stateless Clients and Intermediaries

 Transporting the state needed by a client to process a response as
 serialized state information in the token has several significant and
 non-obvious security and privacy implications that need to be
 mitigated; see Section 3.1 for recommendations.

 In addition to the format requirements outlined there,
 implementations need to ensure that they are not vulnerable to
 maliciously crafted, delayed, or replayed tokens.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.7.1
https://datatracker.ietf.org/doc/html/rfc7252

Hartke & Richardson Expires May 20, 2021 [Page 14]

Internet-Draft Extended Tokens in CoAP November 2020

 It is generally expected that the use of encryption, integrity
 protection, and replay protection for serialized state is
 appropriate.

 In the absence of integrity and replay protection, an on-path
 attacker or rogue server/intermediary could return a state (either
 one modified in a reply, or an unsolicited one) that could alter the
 internal state of the client.

 It is for this reason that at least the use of integrity protection
 on the token is always recommended.

 It maybe that in some very specific case, as a result of a careful
 and detailed analysis of any potential attacks, that there may be
 cases where such cryptographic protections do not add value. The
 authors of this document have not found such a use case as yet, but
 this is a local decision.

 It should further be emphasized that the encrypted state is created
 by the sending node, and decrypted by the same node when receiving a
 response. The key is not shared with any other system. Therefore
 the choice of encryption scheme and the generation of the key for
 this system is purely a local matter.

 When encryption is used, the use of AES-CCM [RFC3610] with a 64-bit
 tag is recommended, combined with a sequence number and a replay
 window. This choice is informed by available hardware acceleration
 of on many constrained systems. If a different algorithm is
 available accelerated on the sender, with similar or stronger
 strength, then it SHOULD be preferred. Where privacy of the state is
 not required, and encryption is not needed, HMAC-SHA-256 [RFC6234],
 combined with a sequence number and a replay window, may be used.

 This size of the replay window depends upon the number of requests
 that need to be outstanding. This can be determined from the rate at
 which new ones are made, and the expected duration in which responses
 are expected.

 For instance, given a CoAP MAX_TRANSMIT_WAIT of 93 s (Section 4.8.2
 of [RFC7252], any request that is not answered within 93 s will be
 considered to have failed. At a request rate of one request per 10
 s, at most 10 (ceil(9.3)) requests can be outstanding at a time, and
 any convenient replay window larger than 20 will work. As replay
 windows are often implemented with a sliding window and a bit, the
 use of a 32-bit window would be sufficient.

 For use cases where requests are being relayed from another node, the
 request rate may be estimated by the total link capacity allocated

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8.2
https://datatracker.ietf.org/doc/html/rfc7252#section-4.8.2

Hartke & Richardson Expires May 20, 2021 [Page 15]

Internet-Draft Extended Tokens in CoAP November 2020

 for that kind of traffic. An alternate view would consider how many
 IPv6 Neighbor Cache Entries (NCEs) the system can afford to allocate
 for this use.

 When using an encryption mode that depends on a nonce, such as AES-
 CCM, repeated use of the same nonce under the same key causes the
 cipher to fail catastrophically.

 If a nonce is ever used for more than one encryption operation with
 the same key, then the same key stream gets used to encrypt both
 plaintexts and the confidentiality guarantees are voided. Devices
 with low-quality entropy sources -- as is typical with constrained
 devices, which incidentally happen to be a natural candidate for the
 stateless mechanism described in this document -- need to carefully
 pick a nonce generation mechanism that provides the above uniqueness
 guarantee.

 [RFC8613] appendix B.1.1 ("Sender Sequence Number") provides a model
 for how to maintain non-repeating nonces without causing excessive
 wear of flash memory.

6. IANA Considerations

6.1. CoAP Signaling Option Number

 The following entries are added to the "CoAP Signaling Option
 Numbers" registry within the "CoRE Parameters" registry.

 +------------+--------+-----------------------+-------------------+
 | Applies to | Number | Name | Reference |
 +------------+--------+-----------------------+-------------------+
 | 7.01 | TBD | Extended-Token-Length | [[this document]] |
 +------------+--------+-----------------------+-------------------+

 [[NOTE TO RFC EDITOR: Please replace "TBD" in this section and in
 Table 1 with the code point assigned by IANA.]]

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Hartke & Richardson Expires May 20, 2021 [Page 16]

Internet-Draft Extended Tokens in CoAP November 2020

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/info/rfc8323>.

7.2. Informative References

 [I-D.ietf-6tisch-minimal-security]
 Vucinic, M., Simon, J., Pister, K., and M. Richardson,
 "Constrained Join Protocol (CoJP) for 6TiSCH", draft-ietf-

6tisch-minimal-security-15 (work in progress), December
 2019.

 [I-D.ietf-core-echo-request-tag]
 Amsuess, C., Mattsson, J., and G. Selander, "CoAP: Echo,
 Request-Tag, and Token Processing", draft-ietf-core-echo-

request-tag-11 (work in progress), November 2020.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September
 2003, <https://www.rfc-editor.org/info/rfc3610>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-15
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-15
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-11
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-11
https://datatracker.ietf.org/doc/html/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234

Hartke & Richardson Expires May 20, 2021 [Page 17]

Internet-Draft Extended Tokens in CoAP November 2020

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

Appendix A. Updated Message Formats

 In Section 2, this document updates the CoAP message formats by
 specifying a new definition of the TKL field in the message header.
 As an alternative presentation of this update, this appendix shows
 the CoAP message formats for CoAP over UDP [RFC7252] and CoAP over
 TCP, TLS, and WebSockets [RFC8323] with the new definition applied.

A.1. CoAP over UDP

https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc8613
https://www.rfc-editor.org/info/rfc8613
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323

Hartke & Richardson Expires May 20, 2021 [Page 18]

Internet-Draft Extended Tokens in CoAP November 2020

 0 1 2 3 4 5 6 7
 +-------+-------+---------------+
 | | | |
 | Ver | T | TKL | 1 byte
 | | | |
 +-------+-------+---------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 | |
 | |
 | |
 +- Message ID -+ 2 bytes
 | |
 | |
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0-65804 bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

Hartke & Richardson Expires May 20, 2021 [Page 19]

Internet-Draft Extended Tokens in CoAP November 2020

A.2. CoAP over TCP/TLS

 0 1 2 3 4 5 6 7
 +---------------+---------------+
 | | |
 | Len | TKL | 1 byte
 | | |
 +---------------+---------------+
 \ \
 / Len / 0-4 bytes
 \ (extended) \
 +-------------------------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0-65804 bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

Hartke & Richardson Expires May 20, 2021 [Page 20]

Internet-Draft Extended Tokens in CoAP November 2020

A.3. CoAP over WebSockets

 0 1 2 3 4 5 6 7
 +---------------+---------------+
 | | |
 | 0 | TKL | 1 byte
 | | |
 +---------------+---------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0-65804 bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

Acknowledgements

 This document is based on the requirements of and work on the Minimal
 Security Framework for 6TiSCH [I-D.ietf-6tisch-minimal-security] by
 Malisa Vucinic, Jonathan Simon, Kris Pister, and Michael Richardson.

Hartke & Richardson Expires May 20, 2021 [Page 21]

Internet-Draft Extended Tokens in CoAP November 2020

 Thanks to Christian Amsuss, Carsten Bormann, Roman Danyliw, Christer
 Holmberg, Benjamin Kaduk, Ari Keranen, Erik Kline, Murray Kucherawy,
 Warren Kumari, Barry Leiba, David Mandelberg, Dan Romascanu, Jim
 Schaad, Goran Selander, Malisa Vucinic, Eric Vyncke, and Robert
 Wilton for helpful comments and discussions that have shaped the
 document.

 Special thanks to John Mattsson for his contributions to the security
 considerations of the document, and to Thomas Fossati for his in-
 depth review, copious comments, and suggested text.

Authors' Addresses

 Klaus Hartke
 Ericsson
 Torshamnsgatan 23
 Stockholm SE-16483
 Sweden

 Email: klaus.hartke@ericsson.com

 Michael C. Richardson
 Sandelman Software Works

 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

http://www.sandelman.ca/

Hartke & Richardson Expires May 20, 2021 [Page 22]

