
Workgroup: CoRE

Internet-Draft:

draft-ietf-core-transport-indication-05

Published: 19 March 2024

Intended Status: Standards Track

Expires: 20 September 2024

Authors: C. Amsüss M. S. Lenders

TU Dresden

CoAP Transport Indication

Abstract

The Constrained Application Protocol (CoAP, [RFC7252]) is available

over different transports (UDP, DTLS, TCP, TLS, WebSockets), but

lacks a way to unify these addresses. This document provides

terminology and provisions based on Web Linking [RFC8288] to express

alternative transports available to a device, and to optimize

exchanges using these.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

github.com/core-wg/transport-indication.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 September 2024.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://github.com/core-wg/transport-indication
https://github.com/core-wg/transport-indication
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.1.1. Using URIs to identify transport endpoints

1.2. Goals

2. Indicating alternative transports

2.1. Example

2.2. Security context propagation

2.3. Choice of transports

2.4. Selection of a canonical origin

2.4.1. Unreachable canonical origin addresses

2.5. Advertisement through a Resource Directory

3. Elision of Proxy-Scheme and Uri-Host

3.1. Impact on caches

3.2. Using unique proxies securely

4. Third party proxy services

4.1. Generic proxy advertisements

5. Client picked proxies

6. Guidance to upcoming transports

7. Security considerations

7.1. Security context propagation

7.2. Traffic misdirection

7.3. Protecting the proxy

8. IANA considerations

8.1. Link Relation Types

8.2. Resource Types

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Change log

Appendix B. Related work and applicability to related fields

B.1. On HTTP

B.2. Using DNS

¶

¶

https://trustee.ietf.org/license-info

Same-host proxy:

B.3. Using names outside regular DNS

B.4. Multipath TCP

Appendix C. Open Questions / further ideas

Appendix D. EDHOC EAD for verifying legitimate proxies

Appendix E. Alternative History: What if SVCB had been around

before CoAP over TCP?

E.1. Hypothetical retrospecification

E.2. Shortcomings

Appendix F. Literals beyond IP addresses

F.1. Motivation for new literal-ish names

F.2. Structure of service.arpa

F.3. Syntax of service.arpa

F.4. Processing service.arpa

F.5. Examples

Appendix G. Acknowledgements

Authors' Addresses

1. Introduction

The Constrained Application Protocol (CoAP) provides transports

mechanisms (UDP and DTLS since [RFC7252], TCP, TLS and WebSockets

since [RFC8323]), with some additional being used in LwM2M [lwm2m]

and even more being explored ([I-D.bormann-t2trg-slipmux],

[I-D.amsuess-core-coap-over-gatt]). These are mutually incompatible

on the wire, but CoAP implementations commonly support several of

them, and proxies can translate between them.

CoAP currently lacks a way to indicate which transports are

available for a given resource, and to indicate that a device is

prepared to serve as a proxy; this document solves both by

introducing the "has-proxy" terminology to Web Linking [RFC8288]

that expresses the former through the latter. The additional "has-

unique-proxy" term is introduced to negate any per-request overhead

that would otherwise be introduced in the course of this.

CoAP also lacks a unified scheme to label a resource in a transport-

independent way. This document does not attempt to introduce any new

scheme here, or raise a scheme to be the canonical one. Instead,

each host or application can pick a canonical address for its

resources, and advertise other transports in addition.

1.1. Terminology

Readers are expected to be familiar with the terms and concepts

described in CoAP [RFC7252] and link format ([RFC6690] (or,

equivalently, web links as described in [RFC8288]).

A CoAP server that accepts forward proxy requests

(i.e., requests carrying the Proxy-Scheme option) exclusively for

¶

¶

¶

¶

hosts:

URIs that it is also the authoritative server for is defined as a

"same-host proxy".

The distinction between a same-host and any other proxy is only

relevant on a practical, server-implementation and illustrative

level; this specification does not use the distinction in

normative requirements, and clients need not make the distinction

at all.

The verb "to host" is used here in the sense of the link

relation of the same name defined in [RFC6690].

For resources discovered via CoAP's discovery interface, a

hosting statement is typically provided by the defaults implied

by [RFC6690] where a link like </sensor/temp> is implied to have

the relation "hosts" and the anchor /, such that a statement

"coap://hostname hosts coap://hostname/sensor/temp" is implied in

the link.

The link relation has been occasionally used with different

interpretations, which ascribe more meaning to the term than it

has in its definition. In particular,

the "hosts" relation can not be inferred merely by two URIs

having the same scheme, host and port (and vice versa), and

the "hosts" relation on its own does not make any statement

about the physical devices that hold the resource's

representation.

[TBD: The former could probably still be used without too many

ill effects; but things might also get weird when a dynamic

resource created with one transport from use with another

transport unless explicitly cleared.

Whether or not "to host" is used exclusively along the "hosts"

relation or using the more generic same-start-of-URI sense is the

largest open issue in this document.]

For the purpose of this document, "hosting" is used in a

transitive way: If A hosts B and B hosts C, it is implied that A

hosts C.

[TBD: It may make sense for many other relations to imply

"hosts", e.g. any relations that occur in a pub-sub context, but

that'd need further consideration.]

When talking of proxy requests, this document only talks of the

Proxy-Scheme option. Given that all URIs this is usable with can be

expressed in decomposed CoAP URIs, the need for using the Proxy-URI

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

option should never arise. The Proxy-URI option is still equivalent

to the decomposed options, and can be used if the server supports

it.

1.1.1. Using URIs to identify transport endpoints

The URI coap://[2001:db8::1] identifies a particular resource,

possibly a "welcome" text. It is, colloquially, also used to

identify the combination of a CoAP transport and the transport

specific details.

For precision, this document uses the term "the transport address

indicated by (a URI)" to refer to the transport and its details (in

the example, CoAP over UDP with an IPv6 address and the default

port), but otherwise no big deal is made of it.

The transport indicated by a URI is not only influenced by the URI

scheme, but also by the authority component. The transports and

resolution mechanisms currently specified make little use of this

possibility, mainly because the most prominent resolution mechanism

(SVCB records) has not been avaialble when [RFC8323] was published

(see also Appendix E), end because it can not be expressed in IP

literals (see Appendix F).

When the resolution mechanism used for a registered name authority

component yields multiple addresses, all of those are possible ways

to interact with the resource. The resolution mechanism or other

underlying transport can give guidance on how to find the best

usable one. With the currently specified transports and resolution

mechanisms, the most prominent example of making use of that

information is applying [RFC8305]'s Happy Eyeballs mechanism to

establish a TCP connection when a name resolves to both IPv4 and

IPv6 addresses,

1.1.1.1. Paths in URIs that indicate transport addresses

For the CoAP schemes (coap, coaps, coap+tcp, coaps+tcp, coap+ws,

coaps+ws), URIs indicating a transport are always given with an

empty path (which under their URI normalization rules is equivalent

to a path containing a single slash). For the coap and coap+tcp

schemes, URIs with different host names can indicate the same

transport as long as the names resolve to the same addresses. For

the others, the given host name informs the name set in TLS's Server

Name Indication (SNI) and/or the host sent in the "Host" header of

the underlying HTTP request.

If an update to this document extends the list, for new schemes it

might be allowed to have paths, queries or fragment identifiers

present in the URI indicating the transport address. No guidance can

be given here for these, as no realistic example is known. (Note

¶

¶

¶

¶

¶

¶

that while the coap+ws scheme does use the well-known path /.well-

known/coap internally, that is used purely on the HTTP side, and not

part of the CoAP URI, not even for indicating the transport

address). It is conceivable that a path such as the /.well-known/

coap of CoAP-over-WebSockets would be indicated in an SVCB

discovery's parameters similar to dohpath. This does not immediately

help with the question of whether a URI indicating a transport can

have a path, though. --CA

1.1.1.2. Existing use

A similar concept is used in

[I-D.ietf-core-observe-multicast-notifications] (expressed as pieces

of its tp_info parameter), but not expressed with URIs yet. As that

document migrates towards using CRIs ([I-D.ietf-core-href]), it is

expected that its transport addresses coincide with the URIs (CRIs,

equivalently) indicating a transport.

URIs indicating a transport are especially useful when talking about

proxies; this use is aligned with the way they are expressed in the

conventional environment variables http_proxy etc. [noproxy].

Furthermore, URIs processing is widespread in CoAP systems, and when

that changes (e.g. through the introduction of

[I-D.ietf-core-href]), URIs indicating a transport will still be

efficient to encode. And last but not least, it lines up well with

the colloquial identity mentioned above. (An alternative would be

using a dedicated naming scheme, say,

transport:coap:device.example.com:port, but that would needlessly

introduce implementation complexity).

Note that this mechanism can only used with proxies that use CoAP's

native address indication mechanisms. Proxies that perform URI

mapping (as described in Section 5 of [RFC8075], especially using

URI templates) are not supported in this document.

[TBD: Do we want to extend this to HTTP proxies? Probably just not,

and if so, only to those that can just take coap://... for a URI.]

1.2. Goals

This document introduces provisions for the seamless use of

different transport mechanisms for CoAP. Combined, these provide:

Enablement: Inform clients of the availability of other

transports of servers.

No Aliasing: Any URI aliasing must be opt-in by the server. Any

defined mechanisms must allow applications to keep working on

the canonical URIs given by the server.

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

Optimization: Do not incur per-request overhead from switching

transports. This may depend on the server's willingness to

create aliased URIs.

Proxy usability: All information provided must be usable by

aware proxies to reduce the need for duplicate cache entries.

Proxy announcement: Allow third parties to announce that they

provide alternative transports to a host.

For all these functions, security policies must be described that

allow the client to use them as securely as the original transport.

This document will not concern itself with changes in transport

availability over time, neither in causing them ("Please take up

your TCP interface, I'm going to send a firmware update") nor in

advertising their availability in advance. Hosts whose transport's

availability changes over time can utilize any suitable mechanism to

keep client updated, such as placing a suitable Max-Age value on

their resources or having them observable.

2. Indicating alternative transports

While CoAP can set the authority component of the requested URI in

all requests (by means of Uri-Host and Uri-Port), setting the scheme

of a requested URI (by means of Proxy-Scheme) makes the request

implicitly a proxy request. However, this needs to be of only little

practical concern: Any device can serve as a proxy for itself (a

"same-host proxy") by accepting requests that carry the Proxy-Scheme

option. Section 5.7.2 of [RFC7252] already mandates that a proxy

recognize its own addresses. A minimal same-host proxy supports only

those and respond with 5.05 (Proxying Not Supported). In many cases

(precisely: on hosts that alias their resources across transports),

this is equivalent to ignoring the Proxy-Scheme option in that

request.

A server can advertise a recommended proxy by serving a Web Link

with the "has-proxy" relation to a URI indicating its transport

address. In particular (and that is a typical case), it can indicate

its own transport address on an alternative transport when

implementing same-host proxy functionality.

The semantics of a link from S to P with relations has-proxy ("S

has-proxy P", <P>;rel=has-proxy;anchor="S") are that for any

resource R hosted on S ("S hosts R"), the proxy with the transport

address indicated by P can be used to obtain R.

3.

¶

4.

¶

5.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.7.2

2.1. Example

A constrained device at the address 2001:db8::1 that supports CoAP

over TCP in addition to CoAP can self-describe like this:

Figure 1: Discovery and follow-up request through a has-proxy relation

Note that generating this discovery file needs to be dynamic based

on its available addresses; only if queried using a link-local

source address, the server may also respond with a link-local

address in the authority component of the proxy URI.

Unless the device makes resources discoverable at coap+tcp://

[2001:db8::1]/.well-known/core or another discovery mechanism,

clients may not assume that coap+tcp://[2001:db8::1]/sensors/temp is

a valid resource (let alone is equivalent to the other resource on

the same path). The server advertising itself like this may reject

any request on CoAP-over-TCP unless it contains a Proxy-Scheme

option.

Clients that want to access the device using CoAP-over-TCP would

send a request by connecting to 2001:db8::1 TCP port 5683 and

sending a GET with the options Proxy-Scheme: coap, no Uri-Host or -

Port options (utilizing their default values), and the Uri-Paths

"sensors" and "temp".

¶

Req: to [ff02::fd]:5683 on UDP

Code: GET

Uri-Path: /.well-known/core

Uri-Query: if=tag:example.com,sensor

Res: from [2001:db8::1]:5683

Content-Format: application/link-format

Payload:

</sensors/temp>;if="tag:example.com,sensor",

<coap+tcp://[2001:db8::1]>;rel=has-proxy;anchor="/"

Req: to [2001:db8::1]:5683 on TCP

Code: GET

Proxy-Scheme: coap

Uri-Path: /sensors/temp

Observe: 0

Res: 2.05 Content

Observe: 0

Payload:

39.1°C

¶

¶

¶

2.2. Security context propagation

Any security requirements posed by a server or client application on

a CoAP request MUST be applied independently of the transport that

is used to perform the request. If a transport can not be used to

satisfy the requirements, it is ineligible for use with the request

(from a client's point of view), and unauthorized (from a server's

point of view).

If the requirements contain transport layer security, the proxy

needs to present the credentials required of the server to the

client, and those of the client to the server; this is only

practical when the proxy is a same-host proxy.

Some applications have requirements exceeding the requirements of a

secure connection, e.g., (explicitly or implicitly) requiring that

name resolution happen through a secure process and packets are only

routed into networks where it trusts that they will not be

intercepted on the path to the server. Such applications need to

extend their requirements to the source of the has-proxy statement;

a sufficient (but maybe needlessly strict) requirement is to only

follow has-proxy statements that are part of the same resource that

advertises the link currently being followed. Section Section 7.2

adds further considerations.

2.3. Choice of transports

It is up to the client whether to use an advertised proxy transport,

or (if multiple are provided) which to pick.

Links to proxies may be annotated with additional metadata that may

help guide such a choice; defining such metadata is out of scope for

this document.

Clients MAY switch between advertised transports as long as the

document describing them is fresh; they may even do so per request.

(For example, they may perform individual requests using CoAP-over-

UDP, but choose CoAP-over-TCP for requests with large expected

responses). When the describing document approaches expiry, the

client can use the representation's ETag to efficiently renew its

justification for using the alternative transport.

2.4. Selection of a canonical origin

While a server is at liberty to provide the same resource

independently on different transports (i.e. to create aliases), it

may make sense for it to pick a single scheme and authority under

which it announces its resources. Using only one address helps

proxies keep their caches efficient, and makes it easier for clients

to avoid exploring the same server twice from different angles.

¶

¶

¶

¶

¶

¶

¶

When there is a predominant scheme and authority through which an

existing service is discovered, it makes sense to use these for the

canonical addresses.

Otherwise, it is suggested to use the coap or coaps scheme (given

that these are the most basic and widespread ones), and the most

stable usable name the host has.

2.4.1. Unreachable canonical origin addresses

For devices that are not generally reachable at a stable address, it

may make sense to use a scheme and authority as the canonical

address that can not actually be dereferenced.

The registered names available for that purpose depend on the

locally defined host or service name registry. When the Domain Name

System (DNS) is used, such names would not be associated with any A

or AAAA records (but may still use, for example, TLSA records).

Such URIs are only usable to clients that discover a suitable proxy

along with the URI, and which can place sufficient trust in that

proxy.

2.5. Advertisement through a Resource Directory

In the Resource Directory specification [rfc9176], protocol

negotiation was anticipated to use multiple base values. This

approach was abandoned since then, as it would incur heavy URI

aliasing.

Instead, devices can submit their has-proxy links to the Resource

Directory like all their other metadata.

A client performing resource lookup can ask the RD to provide

available (same-host-)proxies in a follow-up request by asking for ?

anchor=<the-discovered-host>&rel=has-proxy. The RD may also

volunteer that information during resource lookups even though the

has-proxy link itself does not match the search criteria.

[

It may be useful to define RD parameters for use with lookup here,

which'd guide which available proxies to include. For example,

asking ?if=tag:example.com,sensor&proxy-links=tcp could give as a

result:

<coap://[2001:db8::1]/s>;rt=tag:example.com,sensor,<coap+tcp://

[2001:db8::1]/>;rel=has-proxy;anchor="coap://[2001:db8::1]/"

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This is similar to the extension suggested in Section 5 of

[I-D.amsuess-core-resource-directory-extensions].

]

3. Elision of Proxy-Scheme and Uri-Host

A CoAP server may publish and accept multiple URIs for the same

resource, for example when it accepts requests on different IP

addresses that do not carry a Uri-Host option, or when it accepts

requests both with and without the Uri-Host option carrying a

registered name. Likewise, the server may serve the same resources

on different transports. This makes for efficient requests (with no

Proxy-Scheme or Uri-Host option), but in general is discouraged

[aliases].

To make efficient requests possible without creating URI aliases

that propagate, the "has-unique-proxy" specialization of the has-

proxy relation is defined.

If a proxy is unique, it means that requests arriving at the proxy

are treated the same no matter whether the scheme, authority and

port of the link context are set in the Proxy-Scheme, Uri-Host and

Uri-Port options, respectively, or whether all of them are absent.

[The following two paragraphs are both true but follow different

approaches to explaining the observable and implementable behavior;

it may later be decided to focus on one or the other in this

document.]

While this creates URI aliasing in the requests as they are sent

over the network, applications that discover a proxy this way should

not "think" in terms of these URIs, but retain the originally

discovered URIs (which, because Cool URIs Don't Change[cooluris],

should be long-term usable). They use the proxy for as long as they

have fresh knowledge of the has-(unique-)proxy statement.

In a way, advertising has-unique-proxy can be viewed as a

description of the link target in terms of SCHC

[I-D.ietf-lpwan-coap-static-context-hc]: In requests to that target,

the link source's scheme and host are implicitly present.

While applications retain knowledge of the originally requested URI

(even if it is not expressed in full on the wire), the original URI

is not accessible to caches both within the host and on the network

(for the latter, see Section 5). Thus, cached responses to the

canonical and any aliased URI are mutually interchangeable as long

as both the response and the proxy statement are fresh.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-amsuess-core-resource-directory-extensions-10#section-5

A client MAY use a unique-proxy like a proxy and still send the

Proxy-Scheme and Uri-Host option; such a client needs to recognize

both relation types, as relations of the has-unique-proxy type are a

specialization of has-proxy and typically don't carry the latter

(redundant) annotation. [To be evaluated -- on one hand, supporting

it this way means that the server needs to identify all of its

addresses and reject others. Then again, is a server that (like many

now do) fully ignore any set Uri-Host correct at all?]

Example:

Figure 2: Follow-up request through a has-unique-proxy relation.

Compared to the last example, 5 bytes of scheme indication are saved

during the follow-up request.

It is noteworthy that when the URI reference /sensors/temperature is

resolved, the base URI is coap://device0815.example.com and not its

coaps+ws counterpart -- as the request is still for that URI, which

both the client and the server are aware of. However, this detail is

of little practical importance: A simplistic client that uses

coaps+ws://device0815.proxy.rd.example.com as a base URI will still

arrive at an identical follow-up request with no ill effect, as long

as it only uses the wrongly assembled URI for dereferencing

resources, the security context is the same, the state is kept no

longer than the has-unique-proxy statement is fresh, and it does not

(for example) pass the URI on to other devices.

¶

¶

Req: to [ff02::fd]:5683 on UDP

Code: GET

Uri-Path: /.well-known/core

Uri-Query: if=tag:example.com,sensor

Res: from [2001:db8::1]:5683

Content-Format: application/link-format

Payload:

</sensors/>;if="tag:example.com,collection",

<coaps+ws://[2001:db8::1]>;rel=has-unique-proxy;anchor="/"

Req: to [2001:db8::1] via WebSockets over HTTPS

Code: GET

Uri-Path: /sensors/

Res: 2.05 Content

Content-Format: application/link-format

Payload:

</sensors/temperature>;if="tag:example.com,sensor"

¶

3.1. Impact on caches

[This section is written with the "there is implied URI aliasing"

mindset; it should be possible to write it with the "compression"

mindset as well (but there is no point in having both around in the

document at this time).

It is also slightly duplicating, but also more detailed than, the

brief note on the topic in Section 5]

When a node that performs caching learns of a has-unique-proxy

statement, it can utilize the information about the implied URI

aliasing: Requests to resources hosted by S can be answered with

cached entries from P (because by the rules of has-unique-proxy a

request can be crafted that is sent to P for which a fresh response

is available). The inverse direction (serving resources whose URI

"starts with" P from a cached request that was sent to S) is harder

to serve because it additionaly requires a fresh statement that "S

hosts R" for the matching resource R.

3.2. Using unique proxies securely

The elision of the host name afforded by the unique-proxy relation

is only possible if the required security mechanisms verify the

scheme and host of the server.

This is given for OSCORE based mechanisms, where "unprotected

message fields (including Uri-Host [...]) MUST not lead to an OSCORE

message becoming verified".

With TLS based security mechanisms, name and scheme can not be

completely elided in general. While the use of the SNI HostName

field sets the default Uri-Host already, the scheme still needs to

be sent in a Proxy-Scheme option to satisfy the requirement of

Section 2.2.

[It may be possible to relax this requirement if the host publishes

a trustworthy statement about serving the same content on all

schemes; however, no urgent need for this optimization is currently

known that warrants the extra scrutiny.]

4. Third party proxy services

A server that is aware of a suitable cross proxy may use the has-

proxy relation to advertise that proxy. If the transport used

towards the proxy provides name indication (as CoAP over TLS or

WebSockets does), or by using a large number of addresses or ports,

it can even advertise a (more efficient) has-unique-proxy relation.

This is particularly interesting when the advertisements are made

available across transports, for example in a Resource Directory.

¶

¶

¶

¶

¶

¶

¶

¶

How the server can discover and trust such a proxy is out of scope

for this document, but generally involves the same kind of links. In

particular, a server may obtain a link to a third party proxy from

an administrator as part of its configuration.

The proxy may advertise itself without the origin server's

involvement; in that case, the client needs to take additional care

(see Section 7.2).

Figure 3: HTTP based discovery and CoAP-over-WS request to a CoAP

resource through a has-unique-proxy relation

4.1. Generic proxy advertisements

A third party proxy may advertise its availability to act as a proxy

for arbitrary CoAP requests. This use is not directly related to the

transport indication in other parts of this document, but

sufficiently similar to warrant being described in the same

document.

The resource type "TBDcore.proxy" can be used to describe such a

proxy.

¶

¶

Req: GET http://rd.example.com/rd-lookup?if=tag:example.com,sensor

Res:

Content-Format: application/link-format

Payload:

<coap://device0815.example.com/sensors/>;if="tag:example.com,collection",

<coap+wss://device0815.proxy.rd.example.com>;rel=has-unique-proxy;anchor="coap://device0815.example.com/"

Req: to device0815.proxy.rd.example.com on WebSocket

Host (indicated during upgrade): device0815.proxy.rd.example.com

Code: GET

Uri-Path: /sensors/

Res: 2.05 Content

Content-Format: application/link-format

Payload:

</sensors/temperature>;if="tag:example.com,sensor"

¶

¶

Figure 4: A CoAP client discovers that its border router can also serve

as a proxy, and uses that to access a resource on an HTTP server.

The considerations of Section 7.2 apply here.

A generic advertised proxy is always a forward proxy, and can not be

advertised as a "unique" proxy as it would lack information about

where to forward.

A proxy may be limited in the URIs it can service, for technical

reasons (e.g. when none of the URI's transports are supported by the

server) or for policy reasons (only accessing servers inside an

organizational structure). Future documents (or versions of this

document) may add target attributes that allow specifying the

capabilities of a proxy. [An earlier version of this document

contained a proxy-schemes attribute. This was discontinued because

it could already not express whether a proxy could access IPv4 or

IPv6 peers, and because the use of schemes is becoming less useful

given the new recommendation of incorporating details from

registered name resolution into the transport selection.]

The use of a generic proxy can be limited to a set of devices that

have permission to use it. Clients can be allowed by their network

address if they can be verified, or by using explicit client

authentication using the methods of

[I-D.tiloca-core-oscore-capable-proxies].

Req: GET coap://[fe80::1]/.well-known/core?rt=TBDcore.proxy

Res:

Content-Format: application/link-format

Payload:

<>;rt=TBDcore.proxy

Req: to [fe80::1] via CoAP

Code: GET

Proxy-Scheme: http

Uri-Host: example.com

Uri-Path: /motd

Accept: text/plain

Res: 2.05 Content

Content-Format: text/plain

Payload:

On Monday, October 25th 2021, there is no special message of the day.

¶

¶

¶

¶

5. Client picked proxies

This section is purely informative, and serves to illustrate that

the mechanisms introduced in this document do not hinder the

continued use of existing proxies.

When a resource is accessed through an "actual" proxy (i.e., a host

between the client and the server, which itself may have a same-host

proxy in addition to that), the proxy's choice of the upstream

server is originally (i.e., without the mechanisms of this document)

either configured (as in a "chain" of proxies) or determined by the

request URI (where a proxy picks CoAP over TCP and resolves the

given name for a request aimed at a coap+tcp URI).

A proxy that has learned, by active solicitation of the information

or by consulting links in its cache, that the requested URI is

available through a (possibly same-host) proxy, may use that

information in choosing the upstream transport, to correct the URI

associated with a cached response, and to use responses obtained

through one transport to satisfy requests on another.

For example, if a host at coap://h1.example.com has advertised </

res>,<coap+tcp://h1.example.com>;rel=has-proxy;anchor="/", then a

proxy that has an active CoAP-over-TCP connection to h1.example.com

can forward an incoming request for coap://h1.example.com/res

through that CoAP-over-TCP connection with a suitable Proxy-Scheme

and Uri-Host on that connection.

If the host had marked the proxy point as <coap+tcp://

h1.example.com>;rel=has-unique-proxy instead, then the proxy could

elide the Proxy-Scheme and Uri-Host options, and would (from the

original CoAP caching rules) also be allowed to use any fresh cache

representation of coap+tcp://h1.example.com/res to satisfy requests

for coap://h1.example.com/res.

A client that uses a forward proxy and learns of a different proxy

advertised to access a particular resource will not change its

behavior if its original proxy is part of its configuration. If the

forward proxy was only used out of necessity (e.g., to access a

resource whose indicated transport not supported by the client) it

can be practical for the client to use the advertised proxy instead.

6. Guidance to upcoming transports

When new transports are defined for CoAP, it is recommended to use

the "coap" scheme (or "coaps" for TLS based transports).

If the transport's identifiers are IP based and have identifiers

typically resolved through DNS, authors of new transports are

encouraged to specify Service Binding records ([RFC9460]) for CoAP

¶

¶

¶

¶

¶

¶

¶

(possibly taking inspiration from Appendix E), and if IP literals

are relevant to the transport, to follow up on Appendix F.

If the transport's native identifiers are compatible with the

structure of the authority component of a URI, those identifiers can

be used as an authority as-is. To help the host decide the

resolution mechanism, it may be helpful to register a subdomain of

.arpa as described in [rfc3172]. The guidence for users is to never

attempt to resolve such a name, and for the zone's implementation is

to return NXDOMAIN unconditionally.

If the transport's native identifiers are incompatible with that

structure (e.g. because they contain colons), the document may

define some transformation.

If a transport's native identifiers are only local, the zone .alt

[rfc9476] may be used instead.

For example, CoAP over GATT [I-D.amsuess-core-coap-over-gatt]

removes the colons from Bluetooth Low Energy MAC addresses like

00:11:22:33:44:55 and combines them into authority compoennts such

as 001122334455.ble.arpa. Slipmux [I-D.bormann-t2trg-slipmux] might

use the locally significant device name /dev/ttyUSB0 as coap://

ttyUSB0.dev.alt/.

URIs created from such names may not indicate the protocol uniquely:

Additional transports specified later may also provide CoAP services

for the same name. In the sense of Section 1.1.1, both transport

would be identified by that URI. That is not an issue as long as the

protocols underneath the CoAP transport provide a means of

advertising the precise protocol used. For example, a hypothetical

CoAP transport for BLE that is not GATT based can be selected for

the same scheme and authority based on data in the BLE

advertisement.

7. Security considerations

7.1. Security context propagation

Clients need to strictly enforce the rules of Section 2.2. Failure

to do so, in particular using a thusly announced proxy based on a

certificate that attests the proxy's name, would allow attackers to

circumvent the client's security expectation.

When security is terminated at proxies (as is in DTLS and TLS), a

third party proxy can usually not satisfy this requirement; these

transports are limited to same-host proxies.

¶

¶

¶

¶

¶

¶

¶

¶

7.2. Traffic misdirection

Accepting arbitrary proxies, even with security context propagation

performed properly, would allow attackers to redirect traffic

through systems under their control. Not only does that impact

availability, it also allows an attacker to observe traffic

patterns.

This affects both OSCORE and (D)TLS, as neither protect the

participants' network addresses.

Other than the security context propagation rules, there are no hard

and general rules about when an advertised proxy is a suitable

candidate. Aspects for consideration are:

When no direct connection is possible (e.g. because the resource

to be accessed is served as coap+tcp and TCP is not implemented

in the client, or because the resource's host is available on

IPv6 while the client has no default IPv6 route), using a proxy

is necessary if complete service disruption is to be avoided.

While an adversary can cause such a situation (e.g. by

manipulating routing or DNS entries), such an adversary is

usually already in a position to observe traffic patterns.

A proxy advertised by the device hosting the resource to be

accessed is less risky to use than one advertised by a third

party.

The /.well-known/core resource is regarded as a source of

authoritative information on the endpoint's CoAP related

metadata, and can be queried early in the discovery process, or

queried for verification (with filtering applied) after discovery

through an RD. Other resources may be less trustworthy as they

may be controlled by entities not trusted with the endpoint's

traffic.

Appendix D describes an extension to [I-D.ietf-lake-edhoc] by which

the client can verify that the proxy used by the client is

recognized by the server. This is similar to querying /.well-known/

core for any proxies advertised there, but happens earlier in the

connection establishment, and leaves the decision whether the proxy

is legitimate to the server.

It only conveys information about the URI of the proxy. The mapping

of any host name inside it to an IP address, or of an IP address to

a routing decision, is left to the security mechanisms of the

respective layers.

¶

¶

¶

*

¶

¶

*

¶

¶

¶

¶

[RFC7252]

7.3. Protecting the proxy

A widely published statement about a host's availability as a proxy

can cause many clients to attempt to use it.

This is mitigated in well-behaved clients by observing the rate

limits of [RFC7252], and by ceasing attempts to reach a proxy for

the Max-Age of received errors.

Operators can further limit ill-effects by ensuring that their

client systems do not needlessly use proxies advertised in an

unsecured way, and by providing own proxies when their clients need

them.

8. IANA considerations

8.1. Link Relation Types

IANA is asked to add two entries into the Link Relation Type

Registry last updated in [RFC8288]:

Relation

Name
Description Reference

has-proxy
The link target can be used as a proxy to

reach the link context.
RFCthis

has-unique-

proxy

Like has-proxy, and using this proxy implies

scheme and host of the target.
RFCthis

Table 1: New Link Relation types

8.2. Resource Types

IANA is asked to add an entry into the "Resource Type (rt=) Link

Target Attribute Values" registry under the Constrained RESTful

Environments (CoRE) Parameters:

[The RFC Editor is asked to replace any occurrence of TBDcore.proxy

with the actually registered attribute value.]

Attribute Value: core.proxy

Description: Forward proxying services

Reference: [this document]

9. References

9.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC8288]

[aliases]

[cooluris]

[evossl]

[I-D.amsuess-core-coap-over-gatt]

[I-D.amsuess-core-resource-directory-extensions]

[I-D.amsuess-t2trg-rdlink]

[I-D.bormann-t2trg-slipmux]

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/rfc/

rfc8288>.

9.2. Informative References

W3C, "Architecture of the World Wide Web, Section 2.3.1

URI aliases", n.d., <https://www.w3.org/TR/webarch/#uri-

aliases>.

BL, T., "Cool URIs don't change", n.d., <https://

www.w3.org/Provider/Style/URI>.

Baier, E., "The Evolution of SSL and TLS", 2 February

2015, <https://www.digicert.com/blog/evolution-of-ssl>.

Amsüss, C., "CoAP over GATT (Bluetooth Low Energy Generic

Attributes)", Work in Progress, Internet-Draft, draft-

amsuess-core-coap-over-gatt-05, 23 October 2023,

<https://datatracker.ietf.org/doc/html/draft-amsuess-

core-coap-over-gatt-05>.

Amsüss, C., "CoRE Resource Directory Extensions", Work in

Progress, Internet-Draft, draft-amsuess-core-resource-

directory-extensions-10, 4 March 2024, <https://

datatracker.ietf.org/doc/html/draft-amsuess-core-

resource-directory-extensions-10>.

Amsüss, C., "rdlink: Robust distributed links to

constrained devices", Work in Progress, Internet-Draft,

draft-amsuess-t2trg-rdlink-01, 23 September 2019,

<https://datatracker.ietf.org/doc/html/draft-amsuess-

t2trg-rdlink-01>.

Bormann, C. and T. Kaupat, "Slipmux:

Using an UART interface for diagnostics, configuration,

and packet transfer", Work in Progress, Internet-Draft,

draft-bormann-t2trg-slipmux-03, 4 November 2019,

https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc8288
https://www.rfc-editor.org/rfc/rfc8288
https://www.w3.org/TR/webarch/#uri-aliases
https://www.w3.org/TR/webarch/#uri-aliases
https://www.w3.org/Provider/Style/URI
https://www.w3.org/Provider/Style/URI
https://www.digicert.com/blog/evolution-of-ssl
https://datatracker.ietf.org/doc/html/draft-amsuess-core-coap-over-gatt-05
https://datatracker.ietf.org/doc/html/draft-amsuess-core-coap-over-gatt-05
https://datatracker.ietf.org/doc/html/draft-amsuess-core-resource-directory-extensions-10
https://datatracker.ietf.org/doc/html/draft-amsuess-core-resource-directory-extensions-10
https://datatracker.ietf.org/doc/html/draft-amsuess-core-resource-directory-extensions-10
https://datatracker.ietf.org/doc/html/draft-amsuess-t2trg-rdlink-01
https://datatracker.ietf.org/doc/html/draft-amsuess-t2trg-rdlink-01

[I-D.ietf-core-href]

[I-D.ietf-core-observe-multicast-notifications]

[I-D.ietf-lake-edhoc]

[I-D.ietf-lpwan-coap-static-context-hc]

[I-D.lenders-core-dnr]

[I-D.silverajan-core-coap-protocol-negotiation]

[I-D.tiloca-core-oscore-capable-proxies]

<https://datatracker.ietf.org/doc/html/draft-bormann-

t2trg-slipmux-03>.

Bormann, C. and H. Birkholz, "Constrained

Resource Identifiers", Work in Progress, Internet-Draft,

draft-ietf-core-href-14, 9 January 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-href-14>.

Tiloca, M., Höglund, R., Amsüss, C., and F. Palombini,

"Observe Notifications as CoAP Multicast Responses", Work

in Progress, Internet-Draft, draft-ietf-core-observe-

multicast-notifications-08, 4 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-observe-

multicast-notifications-08>.

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-23, 22 January 2024, <https://datatracker.ietf.org/

doc/html/draft-ietf-lake-edhoc-23>.

Minaburo, A., Toutain, L.,

and R. Andreasen, "Static Context Header Compression

(SCHC) for the Constrained Application Protocol (CoAP)",

Work in Progress, Internet-Draft, draft-ietf-lpwan-coap-

static-context-hc-19, 8 March 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-

static-context-hc-19>.

Lenders, M. S., Amsüss, C., Schmidt, T. C.,

and M. Wählisch, "Discovery of Network-designated CoRE

Resolvers", Work in Progress, Internet-Draft, draft-

lenders-core-dnr-00, 4 March 2024, <https://

datatracker.ietf.org/doc/html/draft-lenders-core-dnr-00>.

Silverajan, B. and

M. Ocak, "CoAP Protocol Negotiation", Work in Progress,

Internet-Draft, draft-silverajan-core-coap-protocol-

negotiation-09, 2 July 2018, <https://

datatracker.ietf.org/doc/html/draft-silverajan-core-coap-

protocol-negotiation-09>.

Tiloca, M. and R. Höglund,

"OSCORE-capable Proxies", Work in Progress, Internet-

Draft, draft-tiloca-core-oscore-capable-proxies-07, 10

https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-slipmux-03
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-slipmux-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-href-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-href-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-08
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-23
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-23
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-static-context-hc-19
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-static-context-hc-19
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-static-context-hc-19
https://datatracker.ietf.org/doc/html/draft-lenders-core-dnr-00
https://datatracker.ietf.org/doc/html/draft-lenders-core-dnr-00
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-protocol-negotiation-09
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-protocol-negotiation-09
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-protocol-negotiation-09

[lwm2m]

[noproxy]

[RFC1123]

[RFC2616]

[rfc3172]

[RFC3986]

[RFC4648]

[RFC5952]

[RFC6690]

[RFC6698]

July 2023, <https://datatracker.ietf.org/doc/html/draft-

tiloca-core-oscore-capable-proxies-07>.

OMA SpecWorks, "White Paper – Lightweight M2M 1.1", n.d.,

<https://omaspecworks.org/white-paper-lightweight-

m2m-1-1/>.

Hu, S., "We need to talk: Can we standardize NO_PROXY?",

27 January 2021, <https://about.gitlab.com/blog/

2021/01/27/we-need-to-talk-no-proxy/>.

Braden, R., Ed., "Requirements for Internet Hosts -

Application and Support", STD 3, RFC 1123, DOI 10.17487/

RFC1123, October 1989, <https://www.rfc-editor.org/rfc/

rfc1123>.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, DOI 10.17487/

RFC2616, June 1999, <https://www.rfc-editor.org/rfc/

rfc2616>.

Huston, G., Ed., "Management Guidelines & Operational

Requirements for the Address and Routing Parameter Area

Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,

September 2001, <https://www.rfc-editor.org/rfc/rfc3172>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Kawamura, S. and M. Kawashima, "A Recommendation for IPv6

Address Text Representation", RFC 5952, DOI 10.17487/

RFC5952, August 2010, <https://www.rfc-editor.org/rfc/

rfc5952>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/rfc/rfc6690>.

Hoffman, P. and J. Schlyter, "The DNS-Based

Authentication of Named Entities (DANE) Transport Layer

Security (TLS) Protocol: TLSA", RFC 6698, DOI 10.17487/

RFC6698, August 2012, <https://www.rfc-editor.org/rfc/

rfc6698>.

https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-capable-proxies-07
https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-capable-proxies-07
https://omaspecworks.org/white-paper-lightweight-m2m-1-1/
https://omaspecworks.org/white-paper-lightweight-m2m-1-1/
https://about.gitlab.com/blog/2021/01/27/we-need-to-talk-no-proxy/
https://about.gitlab.com/blog/2021/01/27/we-need-to-talk-no-proxy/
https://www.rfc-editor.org/rfc/rfc1123
https://www.rfc-editor.org/rfc/rfc1123
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc3172
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc5952
https://www.rfc-editor.org/rfc/rfc5952
https://www.rfc-editor.org/rfc/rfc6690
https://www.rfc-editor.org/rfc/rfc6698
https://www.rfc-editor.org/rfc/rfc6698

[RFC7838]

[RFC8075]

[RFC8305]

[RFC8323]

[rfc9176]

[RFC9460]

[rfc9476]

[w3address]

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

Castellani, A., Loreto, S., Rahman, A., Fossati, T., and

E. Dijk, "Guidelines for Mapping Implementations: HTTP to

the Constrained Application Protocol (CoAP)", RFC 8075,

DOI 10.17487/RFC8075, February 2017, <https://www.rfc-

editor.org/rfc/rfc8075>.

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/rfc/rfc8305>.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/rfc/rfc8323>.

Amsüss, C., Ed., Shelby, Z., Koster, M., Bormann, C.,

and P. van der Stok, "Constrained RESTful Environments

(CoRE) Resource Directory", RFC 9176, DOI 10.17487/

RFC9176, April 2022, <https://www.rfc-editor.org/rfc/

rfc9176>.

Schwartz, B., Bishop, M., and E. Nygren, "Service Binding

and Parameter Specification via the DNS (SVCB and HTTPS

Resource Records)", RFC 9460, DOI 10.17487/RFC9460,

November 2023, <https://www.rfc-editor.org/rfc/rfc9460>.

Kumari, W. and P. Hoffman, "The .alt Special-Use Top-

Level Domain", RFC 9476, DOI 10.17487/RFC9476, September

2023, <https://www.rfc-editor.org/rfc/rfc9476>.

BL, T., "W3 address syntax: BNF", 29 June 1992, <http://

info.cern.ch/hypertext/WWW/Addressing/BNF.html#43>.

Appendix A. Change log

Since draft-ietf-core-transport-indication-04:

Not just the scheme, but also the authority value influences the

transport selection.

Add guidance section for new transports.

¶

*

¶

- ¶

https://www.rfc-editor.org/rfc/rfc7838
https://www.rfc-editor.org/rfc/rfc8075
https://www.rfc-editor.org/rfc/rfc8075
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8323
https://www.rfc-editor.org/rfc/rfc8323
https://www.rfc-editor.org/rfc/rfc9176
https://www.rfc-editor.org/rfc/rfc9176
https://www.rfc-editor.org/rfc/rfc9460
https://www.rfc-editor.org/rfc/rfc9476
http://info.cern.ch/hypertext/WWW/Addressing/BNF.html#43
http://info.cern.ch/hypertext/WWW/Addressing/BNF.html#43

Point out that registerd names already can fan out to

different addresses.

Rephrase and simplify security considerations, especially by

limiting unique proxying for TLS.

Add recommendation to new scheme authors to use "coap"/"coaps"

and let the resolution process guide the selection.

Remove proxy-schemes attribute from core.proxy because of its

greatly reduced value.

Update "Related work" appendix to cover SVCB instead of SRV

records

Rename to "Transport Indication", using "protocol" only for other

protocols, in established phrases, or when referring to CoAP as a

general protocol.

Add note linking CoAP-over-WS's .well-known/coap to dohpath

Remove OSCORE vs. unique-proxy open point

EDHOC EAD: Describe response option content

Editorial updates

Since draft-ietf-core-transport-indication-03:

Added appendices on alternative history and Literals beyond IP

addresses. The remaining document was not brought in sync with

those new parts.

Since draft-ietf-core-transport-indication-02:

Added EAD appendix, adjusted security considerations to match.

Since draft-ietf-core-transport-indication-01:

Simplify same-host proxy behavior by referring to existing

RFC7252 mandate.

proxy-links= lookup: Refer to prior art.

Since draft-ietf-core-transport-indication-00:

Add section on canonical URIs that are not necessarily reachable.

Clarify that the the "hosts" relation is followed transitively.

Cross reference with compatible multicast-notifications concept.

-

¶

*

¶

*

¶

-

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

¶

* ¶

¶

*

¶

* ¶

¶

* ¶

* ¶

* ¶

Since draft-amsuess-core-transport-indication-03:

No changes (merely changing the name after WG adoption)

Since -02 (mainly processing reviews from Marco and Klaus):

Acknowledge that 'coap://hostname/' is not the proxy but a URI

that (in a particular phrasing) is used to stand in for the

proxy's address (while it regularly identifies a resurce on the

server)

Security: Referencing traffic misdirection already in the first

security block.

Security: Add (incomplete) considerations for unique-proxy case.

Narrow down "unique" proxy semantics to those properties used by

the client, allowing unique proxies to be co-hosted with forward

proxies.

"Client picked proxies" clarified to merely illustrate how this

is compatible with them.

Use of "hosts" relation sharpened.

Precision on how this does and does not consider changing

transports.

"Related work" section demoted to appendix.

Add note on DTLS session resumption.

Variable renaming.

Various editorial fixes.

Since -01:

Removed suggestion for generally trusted proxies; now stating

that with (D)TLS, "a third party proxy can usually not satisfy

[the security context propagation requirement]".

State more clearly that valid cache entries for resources aliased

through has-unique-proxy can be used.

Added considerations for Multipath TCP.

Added concrete suggestion and example for advertisement of

general proxies.

¶

* ¶

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

*

¶

Added concrete suggestion for RD lookup extension that provides

proxies.

Minor editorial and example changes.

Since -00:

Added introduction

Added examples

Added SCHC analogy

Expanded security considerations

Added guidance on choice of transport, and canonical addresses

Added subsection on interaction with a Resource Directory

Added comparisons with related work, including rdlink and DNS-SD

sketches

Added IANA considerations

Added section on open questions

Appendix B. Related work and applicability to related fields

B.1. On HTTP

The mechanisms introduced here are similar to the Alt-Svc header of

[RFC7838] in that they do not create different application-visible

addresses, but provide dispatch through lower transport

implementations.

In HTTP, different versions of the protocol (i.e., different

transports) are distinguished using a protocol identifier equivalent

to an ALPN. This works well because all relevant transports use

transport layer security and thus can use ALPNs. In contrast, the

currently specified CoAP transports predate ALPNs, and specified

per-transport schemes, which enable the use of URIs that indicate

transports.

To accommodate the message size constraints typical of CoRE

environments, and accounting for the differences between HTTP

headers and CoAP options, information is delivered once at discovery

time.

*

¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

Using the has-proxy and has-unique-proxy with HTTP URIs as the

context is NOT RECOMMENDED; the HTTP provisions of the Alt-Svc

header and ALPN are preferred.

B.2. Using DNS

DNS Service Binding resource records (SVCB RRs) described in

[RFC9460] can carry many of the details otherwise negotiated using

the proxy relations. In HTTP, they can be used in a way similar to

Alt-Svc headers.

SVCB records were not specified when CoAP was specified for TCP, but

could have been (see Appendix E).

If at any point SVCB records for CoAP are defined, name resolution

produces a set of transport details that can be used immediately

without the need for a has-proxy link. Explicit has-proxy links

would still be relevant for third party advertised proxies.

B.3. Using names outside regular DNS

Names that are resolved through different mechanisms than DNS, or

names which are defined within the scope of DNS but have no

universally valid answers to A/AAAA requests, can be advertised

using the relation types defined here and CoAP discovery.

In Figure 5, a server using a cryptographic name as described in

[I-D.amsuess-t2trg-rdlink] is discovered and used.

¶

¶

¶

¶

¶

¶

Figure 5: Obtaining a sensor value from a local device with a global

name

B.4. Multipath TCP

When CoAP-over-TCP is used over Multipath TCP and no Uri-Host option

is sent, the implicit assumption is that there is aliasing between

URIs containing any of the endpoints' addresses.

As these are negotiated within MPTCP, this works independently of

this document's mechanisms. As long as all the server's addresses

are equally reachable, there is no need to advertise multiple

addresses that can later be discovered through MPTCP anyway. When

advertisements are long-lived and there is no single more stable

address, several available addresses can be advertised

(independently of whether MPTCP is involved or not). If a client

uses an address that is merely a proxy address (and not a unique

proxy address), but during MPTCP finds out that the network location

being accessed is actually an MPTCP alternative address of the used

one, the client MAY forego sending of the Proxy-Scheme and Uri-Path

option.

[This follows from multiple addresses being valid for that TCP

connection; at some point we may want to say something about what

that means for the default value of the Uri-Host option -- maybe

Req: to [ff02::fd]:5683 on UDP

Code: GET

Uri-Path: /.well-known/core

Uri-Query: rel=has-proxy

Uri-Query: anchor=coap://nbswy3dpo5xxe3denbswy3dpo5xxe3de.ab.rdlink.arpa

Res: from [2001:db8::1]:5683

Content-Format: application/link-format

Payload:

<coap+tcp://[2001:db8::1]>;rel=has-unique-proxy;

 anchor="coap://nbswy3dpo5xxe3denbswy3dpo5xxe3de.ab.rdlink.arpa"

Req: to [2001:db8::1]:5683 on TCP

Code: GET

OSCORE: ...

Uri-Path: /sensors/temp

Observe: 0

Res: 2.05 Content

OSCORE: ...

Observe: 0

Payload:

39.1°C

¶

¶

something like "has the default value of any of the associated

addresses, but the server may only enable MPTCP if there is implicit

aliasing between all of them" (similar to OSCORE's statement)?]

[TBD: Do we need a section analog to this that deals with (D)TLS

session resumption in absence of SNI?]

Appendix C. Open Questions / further ideas

Self-uniqueness:

A host that wants to indicate that it doesn't care about Uri-Host

can probably publish something like </>;rel=has-unique-proxy to

do so.

This'd help applications justify when they can elide the Uri-

Host, even when no different transports are involved.

Advertising under a stable name:

If a host wants to advertise its host name rather than its IP

address during multicast, how does it best do that?

Options, when answering from 2001:db8::1 to a request to ff02::fd

are:

which is verbose but formally clear, and

which is compatible with unaware clients, but its correctness

with respect to canonical URIs needs to be argued by the client,

in this sequence

understanding the has-unique-proxy line,

understanding that the request that went to 2001:db8::1 was

really a Proxy-Scheme/Uri-Host-elided version of a request to

coap://myhostname, and then

processing any relative reference with this new base in mind.

(Not that it'd need to happen in software in that sequence, but

that's the sequence needed to understand how the /foo here is

really coap://myhostname/foo).

¶

¶

* ¶

¶

¶

* ¶

¶

¶

<coap://myhostname/foo>,...,

<coap://[2001:db8::1]>;rel=has-unique-proxy;anchor="coap://myhostname"

¶

¶

</foo>,...,

<coap://[2001:db8::1]>;rel=has-unique-proxy;anchor="coap://myhostname"

¶

¶

- ¶

-

¶

- ¶

¶

If CoRAL is used during discovery, a base directive or reverse

relation to has-unique-proxy would make this easier.

Appendix D. EDHOC EAD for verifying legitimate proxies

This document sketches an extension to [I-D.ietf-lake-edhoc] that

informs the server of the public address the client is using,

allowing it to detect undesired reverse proxies.

[This section is immature, and written up as a discussion starting

point. Further research into prior art is still necessary.]

The External Authorization Data (EAD) item with name "Proxy CRI",

label TBD24, is defined for use with messages 1, 2 and 3.

A client can set this label in uncritical form, followed by a CRI

([I-D.ietf-core-href]) that is CBOR-encoded in a byte string as a

CBOR sequence. The transport indicated by the URI is the proxy the

client chose from information advertised about the server.

If a server can not determine its set of legitimate proxies, it

ignores the option (as does any EDHOC implementation that is unaware

of it).

If it recognizes the CRI as belonging to a legitimate proxy, it

places the empty label in its non-critical form in the next message

to confirm the proxy choice. Otherwise, it places the label in its

critical form, either empty or containing a recommended CRI. The

client may then decide to discontinue using the proxy, or to use

more extensive padding options to sidestep the attack. Both the

client and the server may alert their administrators of a possible

traffic misdirection.

Appendix E. Alternative History: What if SVCB had been around before

CoAP over TCP?

This appendix explores a hypothetical scenario in which Service

Binding (SVCB, [RFC9460]) was around and supported before the

controversial decision to establish the "coap+tcp" scheme. It serves

to provide a fresh perspective of what parts are logically

necessary, and to ease the exploration of how it may be used in the

future.

E.1. Hypothetical retrospecification

CoAP is specified for several transports: CoAP over UDP, over DTLS,

over TCP, over TLS and over (secure or insecure) WebSockets. URIs of

all these are expressed using the "coap" or "coaps" scheme,

depending on whether a (D)TLS connection is to be used. [It is

currently unclear whether the two schemes should also be unified;

¶

¶

¶

¶

¶

¶

¶

¶

the rest of the text is left intentionally vague on that

distinction.]

Any server providing CoAP services announces not only its address

but also its SVCB Service Parameters, including at least one of alpn

and coaptransfer.

For example, a host serving "coap://sensor.example.com" and

"coaps://sensor.example.com" might have these records:

_coap.sensor.example.com IN SVCB 1 . alpn=coap,co

coaptransfer=tcp,udp port=61616 sensor.example.com IN AAAA

2001:db8::1

A client connecting to the server loops up the name's service

parameters using its system's discovery mechanisms.

For example, if DNS is used, it obtains SVCB records for

_coap.sensor.example.com, and receives the corresponding AAAA record

either immediately from an SVCB aware resolver or through a second

query. It learns that the service is available through CoAP-over-

DTLS (ALPN "co"), CoAP-over-TLS (ALPN "coap"), or through

unencrypted TCP or UDP, and that port 61616 needs to be used in all

cases.

If the server and the client do not have a transport in common, or

if one of them supports only IPv4 and the other only IPv6, no

exchange is possible; the client may resort to using a proxy.

E.2. Shortcomings

While the mechanism above would have unified the CoAP transports

under a pair of schemes, it would have rendered the use of IP

literals impossible: The URI coap://[2001:db8::1] would be ambiguous

as to whether CoAP-over-UDP or CoAP-over-TCP should be used.

Appendix F provides a solution for this issue.

Appendix F. Literals beyond IP addresses

[This section is placed here preliminarily: After initial review in

CoRE, this may be better moved into a separate document aiming for a

wider IETF audience.]

F.1. Motivation for new literal-ish names

IP literals were part of URIs from the start [w3address]. Initially,

they were equivalent to host names in their expressiveness, save for

their inherent difference that the former can be used without a

shared resolver, and the latter can be switched to a different

network address.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This equivalence got lost gradually: Certificates for TLS (its

precursor SSL has been available since 1995 [evossl]) have only

practically been available to host names. The Host header introduced

in HTTP 1.1 Section 14.23 of [RFC2616] introduced name based virtual

hosting in 1999. DANE [RFC6698], which provides TLS public keys

augmenting the or outside of the public key infrastructure, is only

available for host names resolved through DNSSEC. SVCB records

[RFC9460] introduced in 2023 allow starting newer HTTP transports

without going through HTTP/1.1 first, enables load balancing, fail-

over, and enable Encrypted Client Hello -- again, only for host

names resolved through DNS.

This document proposes an expression for the host component of a URI

that fills that gap. Note that no attempt is yet made to register

service.arpa in the .ARPA Zone Management; that name is used only

for the purpose of discussion.

The structure and even more the syntax used here is highly

preliminary. They serves to illustrate that the desired properties

can be obtained, and do not claim to be optimal. As one of many

aspects, they are missing considerations for normalization and for

internationalization.

F.2. Structure of service.arpa

Names under service.arpa are structured into an optional custom

prefix, an ordered list of key-value component pairs, and the common

suffix service.arpa.

The custom prefix can contain user defined components. The intended

use is labelling, and to differentiate services provided by a single

host. Any data is allowed within the structure of a URI (ABNF reg-

name) and DNS name rules (63 bytes per segment). (While not ever

carried by DNS, this upholds the constraints of DNS for names. That

decision may be revised later, but is upheld while demonstrating

that the desired properties can be obtained).

Component pairs consist of a registered component type (no precise

registry is proposed at this early point) followed by encoded data.

The component type "--" is special in that it concatenates the

values to its left and to its right, creating component values that

may exceed 63 bytes in length.

Initial component types are:

"6": The value encodes an IPv6 address in [RFC5952] format, with

the colon character (":") replaced with a dash ("-").

It indicates an address of a host providing the service.

¶

¶

¶

¶

¶

¶

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc2616#section-14.23

If any address information is present, a client SHOULD use that

information to access the service.

"4": The value encodes an IPv4 address in dotted decimal format

[RFC1123], with the dot character (".") replaced with a dash

("-").

It indicates an address of a host providing the service.

"tlsa": The data of a DNS TLSA record [RFC6698] encoded in base32

[RFC4648].

Depending on the usage, this describes TLS credentials through

which the service can be authenticated.

If present, a client MUST establish a secure connection, and MUST

fail the connection if the TLSA record's requirements are not

met.

"s": Service Parameters [RFC9460]). SvcbParams in base32 encoding

of their wire format.

TBD: There is likely a transformation of the parameters'

presentation format that is compatible with the requirements of

the authority component, but this will require some more work on

the syntax.

If present, a client SHOULD use these hints to establish a

connection.

TBD: Encoding only the SvcParams and not priorities and targets

appears to be the right thing to do for the immediate record, but

does not enable load balancing and failover. Further work is

required to explore how those can be expressed, and how data

pertaining to the target can be expressed, possibly in a nested

structure.

¶

*

¶

¶

*

¶

¶

¶

*

¶

¶

¶

¶

F.3. Syntax of service.arpa

Due to [RFC3986]'s rules, all components are case insensitive and

canonically lowercase.

Note that while using the IPvFuture mechanism of [RFC3986] would

avoid compatibility issues around the 63 character limit and some of

the character restrictions, it would not resolve the larger

limitation of case insensitivity.

F.4. Processing service.arpa

A client accessing a resource under a service.arpa name does not

consult DNS, but obtains information equivalent to the results of a

DNS query from parsing the name.

DNS resolvers should refuse to resolve service.arpa names. (They

would have all the information needed to produce sensible results,

but operational aspects would need a lot of consideration; future

versions of this document may revise this).

F.5. Examples

TBD: For SvcParams, the examples are inconsistent with the base32

recommendation; they serve to explore the possible alternatives.

http://s.alpn_h2c.6.2001-db8--1.service.arpa/ -- The server is

reachable on 2001:db8::1 using HTTP/2

https://

mail.-.tlsa.amaqckrkfivcukrkfivcukrkfivcukrkfivcukrkfivcukrkfivcukrk.service.arpa/

-- No address information is provided, the client needs to resort

to other discovery mechanisms. Any server is eligible to serve

the resource if it can present a (possibly self-signed)

certificate whose public key SHA256 matches the encoded value.

The "mail.-." part is provided to the server as part of the Host

header, and can be used for name based virtual hosting.

name = [custom ".-."] *(component) "service.arpa"

custom = reg-name

component = 1*63nodot "." comptype "."

comptype = nodotnodash / 2*63nodot

; unreserved/subdelims without dot

nodot = nodotnodash / "-"

; unreserved/subdelims without dot or dash

nodotnodash = ALPHA / DIGIT / "_" / "~" / sub-delims

; reg-name and sub-delims as in RFC3986

¶

¶

¶

¶

¶

¶

*

¶

*

¶

coap://s.coaptransfer_tcp_coapsecurity_edhoc.6.2001-

db8--1.service.arpa/ -- The server is reachable using CoAP over

TCP with EDHOC security at 2001:db8::1. (The SVCB parameters are

experimental values from [I-D.lenders-core-dnr]).

Appendix G. Acknowledgements

This document heavily builds on concepts explored by Bill Silverajan

and Mert Ocak in [I-D.silverajan-core-coap-protocol-negotiation],

and together with Ines Robles and Klaus Hartke inside T2TRG.

[TBD: reviewers Marco Klaus]

Authors' Addresses

Christian Amsüss

Austria

Email: christian@amsuess.com

Martine Sophie Lenders

TUD Dresden University of Technology

Helmholtzstr. 10

D-01069 Dresden

Germany

Email: martine.lenders@tu-dresden.de

*

¶

¶

¶

mailto:christian@amsuess.com
mailto:martine.lenders@tu-dresden.de

	CoAP Transport Indication
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.1.1. Using URIs to identify transport endpoints
	1.1.1.1. Paths in URIs that indicate transport addresses
	1.1.1.2. Existing use

	1.2. Goals

	2. Indicating alternative transports
	2.1. Example
	2.2. Security context propagation
	2.3. Choice of transports
	2.4. Selection of a canonical origin
	2.4.1. Unreachable canonical origin addresses

	2.5. Advertisement through a Resource Directory

	3. Elision of Proxy-Scheme and Uri-Host
	3.1. Impact on caches
	3.2. Using unique proxies securely

	4. Third party proxy services
	4.1. Generic proxy advertisements

	5. Client picked proxies
	6. Guidance to upcoming transports
	7. Security considerations
	7.1. Security context propagation
	7.2. Traffic misdirection
	7.3. Protecting the proxy

	8. IANA considerations
	8.1. Link Relation Types
	8.2. Resource Types

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Change log
	Appendix B. Related work and applicability to related fields
	B.1. On HTTP
	B.2. Using DNS
	B.3. Using names outside regular DNS
	B.4. Multipath TCP

	Appendix C. Open Questions / further ideas
	Appendix D. EDHOC EAD for verifying legitimate proxies
	Appendix E. Alternative History: What if SVCB had been around before CoAP over TCP?
	E.1. Hypothetical retrospecification
	E.2. Shortcomings

	Appendix F. Literals beyond IP addresses
	F.1. Motivation for new literal-ish names
	F.2. Structure of service.arpa
	F.3. Syntax of service.arpa
	F.4. Processing service.arpa
	F.5. Examples

	Appendix G. Acknowledgements
	Authors' Addresses

