
Workgroup: COSE Working Group

Published: 16 December 2020

Intended Status: Standards Track

Expires: 19 June 2021

Authors: J. Schaad

August Cellars

R. Housley, Ed.

Vigil Security

CBOR Object Signing and Encryption (COSE): Countersignatures

Abstract

Concise Binary Object Representation (CBOR) is a data format

designed for small code size and small message size. CBOR Object

Signing and Encryption (COSE) defines a set of security services for

CBOR. This document defines a countersignature algorithm along with

the needed header parameters and CBOR tags for COSE.

Contributing to this document

This note is to be removed before publishing as an RFC.

The source for this draft is being maintained in GitHub. Suggested

changes should be submitted as pull requests at https://github.com/

cose-wg/countersign. Instructions are on that page as well.

Editorial changes can be managed in GitHub, but any substantial

issues need to be discussed on the COSE mailing list.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 June 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/cose-wg/countersign
https://github.com/cose-wg/countersign
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Terminology

1.2. CBOR Grammar

1.3. Document Terminology

2. Countersignature Header Parameters

3. Version 2 Countersignatures

3.1. Full Countersignatures

3.2. Abbreviated Countersignatures

3.3. Signing and Verification Process

4. CBOR Encoding Restrictions

5. IANA Considerations

5.1. CBOR Tag Assignment

5.2. COSE Header Parameters Registry

6. Security Considerations

7. Implementation Status

7.1. Author's Versions

7.2. COSE Testing Library

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Examples

A.1. Use of Early Code Points

A.2. Examples of Signed Messages

A.2.1. Countersignature

A.3. Examples of Signed1 Messages

A.3.1. Countersignature

A.4. Examples of Enveloped Messages

A.4.1. Countersignature on Encrypted Content

A.5. Examples of Encrypted Messages

A.5.1. Countersignature on Encrypted Content

A.6. Examples of MACed Messages

A.6.1. Countersignature on MAC Content

A.7. Examples of MAC0 Messages

A.7.1. Countersignature on MAC0 Content

Acknowledgments

Authors' Addresses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

There has been an increased focus on small, constrained devices that

make up the Internet of Things (IoT). One of the standards that has

come out of this process is "Concise Binary Object Representation

(CBOR)" [I-D.ietf-cbor-7049bis]. CBOR extended the data model of the

JavaScript Object Notation (JSON) [STD90] by allowing for binary

data, among other changes. CBOR has been adopted by several of the

IETF working groups dealing with the IoT world as their encoding of

data structures. CBOR was designed specifically both to be small in

terms of messages transported and implementation size and to be a

schema-free decoder. A need exists to provide message security

services for IoT, and using CBOR as the message-encoding format

makes sense.

During the process of advancing COSE to an Internet Standard, it was

noticed the description of the security properties of

countersignatures was incorrect for the COSE_Sign1 structure. Since

the security properties that were described, those of a true

countersignature, were those that the working group desired, the

decision was made to remove all of the countersignature text from

[I-D.ietf-cose-rfc8152bis-struct] and create a new document to both

deprecate the old countersignature algorithm and to define a new one

with the desired security properties.

The problem with the previous countersignature algorithm was that

the cryptographically computed value was not always included. The

initial assumption that the cryptographic value was in the third

slot of the array was known not to be true at the time, but in the

case of the MAC structures this was not deemed to be an issue. The

new algorithm is more aggressive about the set of values included in

the countersignature computation so that the cryptographic computed

values is included. The exception to this is the COSE_Signature

structure where there is no cryptographic computed value.

The new algorithm is designed to produce the same countersignature

value in those cases where the cryptographic computed value was

already included. This means that for those structures the only

thing that would need to be done is to change the value of the

header parameter.

1.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

1.2. CBOR Grammar

CBOR grammar in the document is presented using CBOR Data Definition

Language (CDDL) [RFC8610].

The collected CDDL can be extracted from the XML version of this

document via the following XPath expression below. (Depending on the

XPath evaluator one is using, it may be necessary to deal with >

as an entity.)

//sourcecode[@type='CDDL']/text()

CDDL expects the initial non-terminal symbol to be the first symbol

in the file. For this reason, the first fragment of CDDL is

presented here.

start = COSE_Countersignature_Tagged / Internal_Types

; This is defined to make the tool quieter:

Internal_Types = Countersign_structure / COSE_Countersignature0

The non-terminal Internal_Types is defined for dealing with the

automated validation tools used during the writing of this document.

It references those non-terminals that are used for security

computations but are not emitted for transport.

1.3. Document Terminology

In this document, we use the following terminology:

Byte is a synonym for octet.

Constrained Application Protocol (CoAP) is a specialized web

transfer protocol for use in constrained systems. It is defined in

[RFC7252].

Context is used throughout the document to represent information

that is not part of the COSE message. Information which is part of

the context can come from several different sources including:

Protocol interactions, associated key structures, and program

configuration. The context to use can be implicit, identified using

the 'kid context' header parameter defined in [RFC8613], or

identified by a protocol-specific identifier. Context should

generally be included in the cryptographic construction; for more

details see Section 4.3 of [I-D.ietf-cose-rfc8152bis-struct].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-14#section-4.3

V2 countersignature:

The term 'byte string' is used for sequences of bytes, while the

term 'text string' is used for sequences of characters.

2. Countersignature Header Parameters

This section defines a set of common header parameters. A summary of

these header parameters can be found in Table 1. This table should

be consulted to determine the value of label and the type of the

value.

The set of header parameters defined in this section are:

This header parameter holds one or more

countersignature values. Countersignatures provide a method of

having a second party sign some data. The countersignature header

parameter can occur as an unprotected attribute in any of the

following structures: COSE_Sign1, COSE_Signature, COSE_Encrypt,

COSE_recipient, COSE_Encrypt0, COSE_Mac, and COSE_Mac0. Details

on version 2 countersignatures are found in Section 3.

Name Label Value Type
Value

Registry
Description

counter

signature

version 2

TBD10

COSE_Countersignature /

[+ COSE_Countersignature

]

V2 counter

signature

attribute

counter

signature

0 version

2

TBD11 COSE_Countersignature0

Abbreviated

Counter

signature

vesion 2

Table 1: Common Header Parameters

The CDDL fragment that represents the set of header parameters

defined in this section is given below. Each of the header

parameters is tagged as optional because they do not need to be in

every map; header parameters required in specific maps are discussed

above.

 Generic_Headers /= (

 ? TBD10 => COSE_Countersignature / [+COSE_Countersignature]

 ; V2 Countersignature

 ? TBD11 => COSE_Countersignature0 ; V2 Countersignature0

)

3. Version 2 Countersignatures

A countersignature is normally defined as a second signature that

confirms a primary signature. A normal example of a countersignature

¶

¶

¶

¶

¶

¶

is the signature that a notary public places on a document as

witnessing that you have signed the document. Thus applying a

countersignature to either the COSE_Signature or COSE_Sign1 objects

match this traditional definition. This document extends the context

of a countersignature to allow it to be applied to all of the

security structures defined. It needs to be noted that the

countersignature needs to be treated as a separate operation from

the initial operation even if it is applied by the same user as is

done in [I-D.ietf-core-groupcomm-bis].

COSE supports two different forms for countersignatures. Full

countersignatures use the structure COSE_Countersignature. This is

same structure as COSE_Signature and thus it can have protected and

unprotected attributes, including chained countersignatures.

Abbreviated countersignatures use the structure

COSE_Countersignature0. This structure only contains the signature

value and nothing else. The structures cannot be converted between

each other; as the signature computation includes a parameter

identifying which structure is being used, the converted structure

will fail signature validation.

The version 2 countersignature changes the algorithm used for

computing the signature from the original version Section 4.5 of

[RFC8152]. The new version now includes the cryptographic material

generated for all of the structures rather than just for a subset.

COSE was designed for uniformity in how the data structures are

specified. One result of this is that for COSE one can expand the

concept of countersignatures beyond just the idea of signing a

signature to being able to sign most of the structures without

having to create a new signing layer. When creating a

countersignature, one needs to be clear about the security

properties that result. When done on a COSE_Signature or COSE_Sign1,

the normal countersignature semantics are preserved. That is the

countersignature makes a statement about the existence of a

signature and, when used as a timestamp, a time point at which the

signature exists. When done on a COSE_Sign, this is the same as

applying a second signature to the payload and adding a parallel

signature as a new COSE_Signature is the preferred method. When done

on a COSE_Mac or COSE_Mac0, the payload is included as well as the

MAC value. When done on a COSE_Encrypt or COSE_Encrypt0, the

existence of the encrypted data is attested to. It should be noted

that there is a big difference between attesting to the encrypted

data as opposed to attesting to the unencrypted data. If the latter

is what is desired, then one needs to apply a signature to the data

and then encrypt that. It is always possible to construct cases

where the use of two different keys will appear to result in a

successful decryption (the tag check success), but which produce two

¶

¶

¶

https://rfc-editor.org/rfc/rfc8152#section-4.5

completely different plaintexts. This situation is not detectable by

a countersignature on the encrypted data.

3.1. Full Countersignatures

The COSE_Countersignature structure allows for the same set of

capabilities as a COSE_Signature. This means that all of the

capabilities of a signature are duplicated with this structure.

Specifically, the countersigner does not need to be related to the

producer of what is being countersigned as key and algorithm

identification can be placed in the countersignature attributes.

This also means that the countersignature can itself be

countersigned. This is a feature required by protocols such as long-

term archiving services. More information on how countersignatures

is used can be found in the evidence record syntax described in

[RFC4998].

The full countersignature structure can be encoded as either tagged

or untagged depending on the context it is used in. A tagged

COSE_Countersignature structure is identified by the CBOR tag TBD0.

The countersignature structure is the same as that used for a signer

on a signed object. The CDDL fragment for full countersignatures is:

COSE_Countersignature_Tagged = #6.9999(COSE_Countersignature)

COSE_Countersignature = COSE_Signature

The details of the fields of a countersignature can be found in

Section 4.1 of [I-D.ietf-cose-rfc8152bis-struct].

An example of a countersignature on a signature can be found in

Appendix A.2.1. An example of a countersignature in an encryption

object can be found in Appendix A.4.1.

It should be noted that only a signature algorithm with appendix

(see Section 8 of [I-D.ietf-cose-rfc8152bis-struct]) can be used for

countersignatures. This is because the body should be able to be

processed without having to evaluate the countersignature, and this

is not possible for signature schemes with message recovery.

3.2. Abbreviated Countersignatures

Abbreviated countersignatures were designed primarily to deal with

the problem of encrypted group messaging, but where it is required

to know who originated the message. The objective was to keep the

countersignature as small as possible while still providing the

needed security. For abbreviated countersignatures, there is no

provision for any protected attributes related to the signing

operation. Instead, the parameters for computing or verifying the

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-14#section-4.1
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-14#section-8

abbreviated countersignature are provided by the same context used

to describe the encryption, signature, or MAC processing.

The CDDL fragment for the abbreviated countersignatures is:

COSE_Countersignature0 = bstr

The byte string representing the signature value is placed in the

Countersignature0 attribute. This attribute is then encoded as an

unprotected header parameter. The attribute is defined below.

3.3. Signing and Verification Process

In order to create a signature, a well-defined byte string is

needed. The Countersign_structure is used to create the canonical

form. This signing and verification process takes in

countersignature target structure, the signer information

(COSE_Signature), and the application data (external source). A

Countersign_structure is a CBOR array. The target structure of the

countersignature needs to have all of it's cryptographic functions

finalized before the computing the signature. The fields of the

Countersign_structure in order are:

A context text string identifying the context of the signature.

The context text string is:

"CounterSignature" for signatures using the

COSE_Countersignature structure when other_fields is absent.

"CounterSignature0" for signatures using the

COSE_Countersignature0 structure when other_fields is

absent.

"CounterSignatureV2" for signatures using the

COSE_Countersignature structure when other_fields is

present.

"CounterSignature0V2" for signatures using the

COSE_Countersignature0 structure when other_fields is

present.

The protected attributes from the target structure encoded in a

bstr type. If there are no protected attributes, a zero-length

byte string is used.

The protected attributes from the signer structure encoded in a

bstr type. If there are no protected attributes, a zero-length

¶

¶

¶

¶

¶

1.

¶

¶

¶

¶

¶

2.

¶

3.

byte string is used. This field is omitted for the

Countersignature0V2 attribute.

The externally supplied data from the application encoded in a

bstr type. If this field is not supplied, it defaults to a

zero-length byte string. (See Section 4.3 of [I-D.ietf-cose-

rfc8152bis-struct] for application guidance on constructing

this field.)

The payload to be signed encoded in a bstr type. The payload is

placed here independent of how it is transported.

If there are only two bstr fields in the target structure, this

field is omitted. The field is an array of all bstr fields

after the second. As an example, this would be an array of one

element for the COSE_Sign1 structure containing the signature

value.

The CDDL fragment that describes the above text is:

Countersign_structure = [

 context : "CounterSignature" / "CounterSignature0" /

 "CounterSignatureV2" / "CounterSignature0V2" /,

 body_protected : empty_or_serialized_map,

 ? sign_protected : empty_or_serialized_map,

 external_aad : bstr,

 payload : bstr,

 ? other_fields : [+ bstr]

]

How to compute a countersignature:

Create a Countersign_structure and populate it with the

appropriate fields.

Create the value ToBeSigned by encoding the

Countersign_structure to a byte string, using the encoding

described in Section 4.

Call the signature creation algorithm passing in K (the key to

sign with), alg (the algorithm to sign with), and ToBeSigned

(the value to sign).

Place the resulting signature value in the correct location.

This is the 'signature' field of the COSE_Countersignature

structure. This is the value of the Countersignature0

attribute.

¶

4.

¶

5.

¶

6.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-14#section-4.3

The steps for verifying a countersignature are:

Create a Countersign_structure and populate it with the

appropriate fields.

Create the value ToBeSigned by encoding the

Countersign_structure to a byte string, using the encoding

described in Section 4.

Call the signature verification algorithm passing in K (the key

to verify with), alg (the algorithm used sign with), ToBeSigned

(the value to sign), and sig (the signature to be verified).

In addition to performing the signature verification, the

application performs the appropriate checks to ensure that the key

is correctly paired with the signing identity and that the signing

identity is authorized before performing actions.

4. CBOR Encoding Restrictions

In order to always regenerate the same byte string for the "to be

signed" value, the deterministic encoding rules defined in

Section 4.2 of [I-D.ietf-cbor-7049bis]. These rules match the ones

laid out in Section 11 of [I-D.ietf-cose-rfc8152bis-struct].

5. IANA Considerations

The registries and registrations listed below were created during

processing of RFC 8152 [RFC8152]. The majority of the actions are to

update the references to point to this document.

5.1. CBOR Tag Assignment

IANA is requested to register a new tag for the CounterSignature

type.

Tag: TBD0

Data Item: COSE_Countersignature

Semantics: COSE standalone V2 countersignature

Reference: [[this document]]

5.2. COSE Header Parameters Registry

IANA created a registry titled "COSE Header Parameters" as part of

processing [RFC8152].

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

https://tools.ietf.org/html/draft-ietf-cbor-7049bis-16#section-4.2
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-14#section-11

IANA is requested to register the following new items in the

registry. For these entries, the Value Registry column will be blank

and the Reference column will be [[This Document]].

Name Label Value Type Description

counter signature

version 2
TBD10

COSE_Countersignature /

[+ COSE_Countersignature

]

V2

countersignature

attribute

Countersignature0

version 2
TBD11 COSE_Countersignature0

Abbreviated

Counter

signature vesion

2

Table 2: New Common Header Parameters

IANA is requested to modify the Description field for "counter

signature" and "CounterSignature0" to include the words "(Deprecated

by [[This Document]]".

6. Security Considerations

There are a number of security considerations that need to be taken

into account by implementers of this specification. While some

considerations have been highlighted here, additional considerations

may be found in the documents listed in the references.

Implementations need to protect the private key material for any

individuals. There are some cases that need to be highlighted on

this issue.

Using the same key for two different algorithms can leak

information about the key. It is therefore recommended that keys

be restricted to a single algorithm.

Use of 'direct' as a recipient algorithm combined with a second

recipient algorithm exposes the direct key to the second

recipient.

Several of the algorithms in [I-D.ietf-cose-rfc8152bis-algs] have

limits on the number of times that a key can be used without

leaking information about the key.

The use of ECDH and direct plus KDF (with no key wrap) will not

directly lead to the private key being leaked; the one way function

of the KDF will prevent that. There is, however, a different issue

that needs to be addressed. Having two recipients requires that the

CEK be shared between two recipients. The second recipient therefore

has a CEK that was derived from material that can be used for the

weak proof of origin. The second recipient could create a message

¶

¶

¶

¶

*

¶

*

¶

*

¶

using the same CEK and send it to the first recipient; the first

recipient would, for either static-static ECDH or direct plus KDF,

make an assumption that the CEK could be used for proof of origin

even though it is from the wrong entity. If the key wrap step is

added, then no proof of origin is implied and this is not an issue.

Although it has been mentioned before, the use of a single key for

multiple algorithms has been demonstrated in some cases to leak

information about that key, provide the opportunity for attackers to

forge integrity tags, or gain information about encrypted content.

Binding a key to a single algorithm prevents these problems.

Key creators and key consumers are strongly encouraged not only to

create new keys for each different algorithm, but to include that

selection of algorithm in any distribution of key material and

strictly enforce the matching of algorithms in the key structure to

algorithms in the message structure. In addition to checking that

algorithms are correct, the key form needs to be checked as well. Do

not use an 'EC2' key where an 'OKP' key is expected.

Before using a key for transmission, or before acting on information

received, a trust decision on a key needs to be made. Is the data or

action something that the entity associated with the key has a right

to see or a right to request? A number of factors are associated

with this trust decision. Some of the ones that are highlighted here

are:

What are the permissions associated with the key owner?

Is the cryptographic algorithm acceptable in the current context?

Have the restrictions associated with the key, such as algorithm

or freshness, been checked and are they correct?

Is the request something that is reasonable, given the current

state of the application?

Have any security considerations that are part of the message

been enforced (as specified by the application or 'crit' header

parameter)?

Analysis of the size of encrypted messages can provide information

about the plaintext messages. This specification does not provide a

uniform method for padding messages prior to encryption. An observer

can distinguish between two different messages (for example, 'YES'

and 'NO') based on the length for all of the content encryption

algorithms that are defined in [I-D.ietf-cose-rfc8152bis-algs]. This

means that it is up to the applications to specify how content

padding is to be done to prevent or discourage such analysis. (For

example, the text strings could be defined as 'YES' and 'NO '.)

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

¶

7. Implementation Status

This section is to be removed before publishing as an RFC.

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

7.1. Author's Versions

There are three different implementations that have been created by

the author of the document both to create the examples that are

included in the document and to validate the structures and

methodology used in the design of COSE.

Implementation Location: https://github.com/cose-wg

Primary Maintainer: Jim Schaad

Languages: There are three different languages that are currently

supported: Java and C#.

Cryptography: The Java and C# libraries use Bouncy Castle to

provide the required cryptography.

Coverage: Both implementations can produce and consume both the

old and new countersignatures.

Testing: All of the examples in the example library are generated

by the C# library and then validated using the Java and C

libraries. Both libraries have tests to allow for the creating of

the same messages that are in the example library followed by

validating them. These are not compared against the example

library. The Java and C# libraries have unit testing included.

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

[RFC2119]

[I-D.ietf-cbor-7049bis]

[RFC8174]

[I-D.ietf-cose-rfc8152bis-algs]

Not all of the MUST statements in the document have been

implemented as part of the libraries. One such statement is the

requirement that unique labels be present.

Licensing: Revised BSD License

7.2. COSE Testing Library

Implementation Location: https://github.com/cose-wg/Examples

Primary Maintainer: Jim Schaad

Description: A set of tests for the COSE library is provided as

part of the implementation effort. Both success and fail tests

have been provided. All of the examples in this document are part

of this example set.

Coverage: An attempt has been made to have test cases for every

message type and algorithm in the document. Currently examples

dealing with countersignatures, and ECDH with Curve25519 and

Goldilocks are missing.

Licensing: Public Domain

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", Work in Progress, Internet-Draft,

draft-ietf-cbor-7049bis-16, 30 September 2020, <https://

tools.ietf.org/html/draft-ietf-cbor-7049bis-16>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", Work in Progress, Internet-Draft,

draft-ietf-cose-rfc8152bis-algs-12, 24 September 2020,

<https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-

algs-12>.

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-16
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-16
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-12
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-12

[RFC8610]

[RFC8152]

[STD90]

[RFC7252]

[RFC7942]

[RFC4998]

[I-D.ietf-core-groupcomm-bis]

[I-D.ietf-cose-rfc8152bis-struct]

[RFC8613]

8.2. Informative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, December

2017.

<https://www.rfc-editor.org/info/std90>

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Gondrom, T., Brandner, R., and U. Pordesch, "Evidence

Record Syntax (ERS)", RFC 4998, DOI 10.17487/RFC4998,

August 2007, <https://www.rfc-editor.org/info/rfc4998>.

Dijk, E., Wang, C., and M. Tiloca, "Group Communication

for the Constrained Application Protocol (CoAP)", Work in

Progress, Internet-Draft, draft-ietf-core-groupcomm-

bis-02, 2 November 2020, <https://tools.ietf.org/html/

draft-ietf-core-groupcomm-bis-02>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", Work in Progress, Internet-

Draft, draft-ietf-cose-rfc8152bis-struct-14, 24 September

2020, <https://tools.ietf.org/html/draft-ietf-cose-

rfc8152bis-struct-14>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/std90
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc4998
https://tools.ietf.org/html/draft-ietf-core-groupcomm-bis-02
https://tools.ietf.org/html/draft-ietf-core-groupcomm-bis-02
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-14
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-14
https://www.rfc-editor.org/info/rfc8613

Appendix A. Examples

This appendix includes a set of examples that show the different

features and message types that have been defined in this document.

To make the examples easier to read, they are presented using the

extended CBOR diagnostic notation (defined in [RFC8610]) rather than

as a binary dump.

The examples are presented using the CBOR's diagnostic notation. A

Ruby-based tool exists that can convert between the diagnostic

notation and binary. This tool can be installed with the command

line:

gem install cbor-diag

The diagnostic notation can be converted into binary files using the

following command line:

diag2cbor.rb < inputfile > outputfile

The examples can be extracted from the XML version of this document

via an XPath expression as all of the sourcecode is tagged with the

attribute type='CBORdiag'. (Depending on the XPath evaluator one is

using, it may be necessary to deal with > as an entity.)

//sourcecode[@type='CDDL']/text()

A.1. Use of Early Code Points

This section is to be removed before publishing as an RFC.

The examples in this Appendix use code points proposed for early

allocation by IANA. When IANA makes the allocation, these examples

will be updated as needed.

A.2. Examples of Signed Messages

A.2.1. Countersignature

This example uses the following:

Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

The same header parameters are used for both the signature and

the countersignature.

Size of binary file is 180 bytes

98(

 [

 / protected / h'',

 / unprotected / {

 / countersign / 11:[

 / protected h'a10126' / << {

 / alg / 1:-7 / ECDSA 256 /

 } >>,

 / unprotected / {

 / kid / 4:'11'

 },

 / signature / h'5ac05e289d5d0e1b0a7f048a5d2b643813ded50bc9e4

9220f4f7278f85f19d4a77d655c9d3b51e805a74b099e1e085aacd97fc29d72f887e

8802bb6650cceb2c'

]

 },

 / payload / 'This is the content.',

 / signatures / [

 [

 / protected h'a10126' / << {

 / alg / 1:-7 / ECDSA 256 /

 } >>,

 / unprotected / {

 / kid / 4:'11'

 },

 / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb

5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b

98f53afd2fa0f30a'

]

]

]

)

A.3. Examples of Signed1 Messages

A.3.1. Countersignature

This example uses the following:

Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

Countersignature Algorithm: ECDSA w/ SHA-512, Curve P-521

*

¶

¶

¶

¶

* ¶

* ¶

Size of binary file is 275 bytes

18(

 [

 / protected h'A201260300' / << {

 / alg / 1:-7, / ECDSA 256 /

 / ctyp / 3:0

 } >>,

 / unprotected / {

 / kid / 4: "11",

 / countersign / 11: [

 / protected h'A1013823' / << {

 / alg / 1:-36 / ECDSA 512 /

 } >>,

 / unprotected / {

 / kid / 4: "bilbo.baggins@hobbiton.example"

 },

 / signature / h'01B1291B0E60A79C459A4A9184A0D393E034B34AF069

A1CCA34F5A913AFFFF698002295FA9F8FCBFB6FDFF59132FC0C406E98754A98F1FBF

E81C03095F481856BC470170227206FA5BEE3C0431C56A66824E7AAF692985952E31

271434B2BA2E47A335C658B5E995AEB5D63CF2D0CED367D3E4CC8FFFD53B70D115BA

A9E86961FBD1A5CF'

]

 },

 / payload / 'This is the content.',

 / signature / h'BB587D6B15F47BFD54D2CBFCECEF75451E92B08A514BD439

FA3AA65C6AC92DF0D7328C4A47529B32ADD3DD1B4E940071C021E9A8F2641F1D8E3B

053DDD65AE52'

]

)

A.4. Examples of Enveloped Messages

A.4.1. Countersignature on Encrypted Content

This example uses the following:

CEK: AES-GCM w/ 128-bit key

Recipient class: ECDH Ephemeral-Static, Curve P-256

Countersignature Algorithm: ECDSA w/ SHA-512, Curve P-521

Size of binary file is 326 bytes

¶

¶

¶

* ¶

* ¶

* ¶

¶

96(

 [

 / protected h'a10101' / << {

 / alg / 1:1 / AES-GCM 128 /

 } >>,

 / unprotected / {

 / iv / 5:h'c9cf4df2fe6c632bf7886413',

 / countersign / 11:[

 / protected h'a1013823' / << {

 / alg / 1:-36 / ES512 /

 } >> ,

 / unprotected / {

 / kid / 4:'bilbo.baggins@hobbiton.example'

 },

 / signature / h'00929663c8789bb28177ae28467e66377da12302d7f9

594d2999afa5dfa531294f8896f2b6cdf1740014f4c7f1a358e3a6cf57f4ed6fb02f

cf8f7aa989f5dfd07f0700a3a7d8f3c604ba70fa9411bd10c2591b483e1d2c31de00

3183e434d8fba18f17a4c7e3dfa003ac1cf3d30d44d2533c4989d3ac38c38b71481c

c3430c9d65e7ddff'

]

 },

 / ciphertext / h'7adbe2709ca818fb415f1e5df66f4e1a51053ba6d65a1a0

c52a357da7a644b8070a151b0',

 / recipients / [

 [

 / protected h'a1013818' / << {

 / alg / 1:-25 / ECDH-ES + HKDF-256 /

 } >> ,

 / unprotected / {

 / ephemeral / -1:{

 / kty / 1:2,

 / crv / -1:1,

 / x / -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbf

bf054e1c7b4d91d6280',

 / y / -3:true

 },

 / kid / 4:'meriadoc.brandybuck@buckland.example'

 },

 / ciphertext / h''

]

]

]

)

¶

A.5. Examples of Encrypted Messages

A.5.1. Countersignature on Encrypted Content

This example uses the following:

CEK: AES-GCM w/ 128-bit key

Countersignature algorithm: EdDSA with Curve Ed25519

Size of binary file is 136 bytes

16(

 [

 / protected h'A10101' / << {

 / alg / 1:1 / AES-GCM 128 /

 } >>,

 / unprotected / {

 / iv / 5: h'02D1F7E6F26C43D4868D87CE',

 / countersign / 11: [

 / protected h'A10127' / << {

 / alg / 1:-8 / EdDSA with Ed25519 /

 } >>,

 / unprotected / {

 / kid / 4: '11'

 },

 / signature / h'E10439154CC75C7A3A5391491F88651E0292FD0FE0E0

2CF740547EAF6677B4A4040B8ECA16DB592881262F77B14C1A086C02268B17171CA1

6BE4B8595F8C0A08'

]

 },

 / ciphertext / h'60973A94BB2898009EE52ECFD9AB1DD25867374B162E2C0

3568B41F57C3CC16F9166250A'

]

)

A.6. Examples of MACed Messages

A.6.1. Countersignature on MAC Content

This example uses the following:

MAC algorithm: HMAC/SHA-256 with 256-bit key

Countersignature algorithm: EdDSA with Curve Ed25519

Size of binary file is 159 bytes

¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

¶

97(

 [

 / protected h'A10105' / << {

 / alg / 1:5 / HS256 /

 } >>,

 / unprotected / {

 / countersign / 11: [

 / protected h'A10127' / << {

 / alg / 1:-8 / EdDSA /

 } >>,

 / unprotected / {

 / kid / 4: '11'

 },

 / signature / h'602566F4A311DC860740D2DF54D4864555E85BC036EA

5A6CF7905B96E499C5F66B01C4997F6A20C37C37543ADEA1D705347D38A5B13594B2

9583DD741F455101'

]

 },

 / payload / 'This is the content.',

 / tag / h'2BDCC89F058216B8A208DDC6D8B54AA91F48BD63484986565105C9

AD5A6682F6',

 / recipients / [

 [

 / protected / h'',

 / unprotected / {

 / alg / 1: -6, / direct /

 / kid / 4: 'our-secret'

 },

 / ciphertext / h''

]

]

]

)

A.7. Examples of MAC0 Messages

A.7.1. Countersignature on MAC0 Content

This example uses the following:

MAC algorithm: HMAC/SHA-256 with 256-bit key

Countersignature algorithm: EdDSA with Curve Ed25519

Size of binary file is 159 bytes

¶

¶

* ¶

* ¶

¶

17(

 [

 / protected h'A10105' / << {

 / alg / 1:5 / HS256 /

 } >>,

 / unprotected / {

 / countersign / 11: [

 / protected h'A10127' / << {

 / alg / 1:-8 / EdDSA /

 } >>,

 / unprotected / {

 / kid / 4: '11'

 },

 / signature / h'968A315DF6B4F26362E11F4CFD2F2F4E76232F39657B

F1598837FF9332CDDD7581E248116549451F81EF823DA5974F885B681D3D6E38FC41

42D8F8E9E7DC8F0D'

]

 },

 / payload / 'This is the content.',

 / tag / h'A1A848D3471F9D61EE49018D244C824772F223AD4F935293F1789F

C3A08D8C58'

]

)

Acknowledgments

This document is a product of the COSE working group of the IETF.

The initial version of the specification was based to some degree on

the outputs of the JOSE and S/MIME working groups.

Jim Schaad passed on 3 October 2020. This document is primarily his

work. Russ Housley served as the document editor after Jim's

untimely death, mostly helping with the approval and publication

processes. Jim deserves all credit for the technical content.

Jim Schaad and Jonathan Hammell provided the examples in the

Appendix.

{{{ RFC EDITOR: Please remove Russ Housley as an author of this

document at publication. Jim Schaad should be listed as the sole

author. }}}

Authors' Addresses

Jim Schaad

August Cellars

¶

¶

¶

¶

¶

¶

Email: ietf@augustcellars.com

Russ Housley (editor)

Vigil Security, LLC

Email: housley@vigilsec.com

mailto:ietf@augustcellars.com
mailto:housley@vigilsec.com

	CBOR Object Signing and Encryption (COSE): Countersignatures
	Abstract
	Contributing to this document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology
	1.2. CBOR Grammar
	1.3. Document Terminology

	2. Countersignature Header Parameters
	3. Version 2 Countersignatures
	3.1. Full Countersignatures
	3.2. Abbreviated Countersignatures
	3.3. Signing and Verification Process

	4. CBOR Encoding Restrictions
	5. IANA Considerations
	5.1. CBOR Tag Assignment
	5.2. COSE Header Parameters Registry

	6. Security Considerations
	7. Implementation Status
	7.1. Author's Versions
	7.2. COSE Testing Library

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Examples
	A.1. Use of Early Code Points
	A.2. Examples of Signed Messages
	A.2.1. Countersignature

	A.3. Examples of Signed1 Messages
	A.3.1. Countersignature

	A.4. Examples of Enveloped Messages
	A.4.1. Countersignature on Encrypted Content

	A.5. Examples of Encrypted Messages
	A.5.1. Countersignature on Encrypted Content

	A.6. Examples of MACed Messages
	A.6.1. Countersignature on MAC Content

	A.7. Examples of MAC0 Messages
	A.7.1. Countersignature on MAC0 Content

	Acknowledgments
	Authors' Addresses

