
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-cose-hash-algs-latest

Published: 29 July 2020

Intended Status: Informational

Expires: 30 January 2021

Authors: J. Schaad

August Cellars

CBOR Object Signing and Encryption (COSE): Hash Algorithms

Abstract

The CBOR Object Signing and Encryption (COSE) syntax [I-D.ietf-cose-

rfc8152bis-struct] does not define any direct methods for using hash

algorithms. There are, however, circumstances where hash algorithms

are used, such as indirect signatures where the hash of one or more

contents are signed, and X.509 certificate or other object

identification by the use of a fingerprint. This document defines a

set of hash algorithms that are identified by COSE Algorithm

Identifiers.

Contributing to this document

This note is to be removed before publishing as an RFC.

The source for this draft is being maintained in GitHub. Suggested

changes should be submitted as pull requests at https://github.com/

cose-wg/X509 Editorial changes can be managed in GitHub, but any

substantial issues need to be discussed on the COSE mailing list.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 January 2021.

¶

¶

¶

¶

¶

¶

¶

https://github.com/cose-wg/X509
https://github.com/cose-wg/X509
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Terminology

2. Hash Algorithm Usage

2.1. Example CBOR hash structure

3. Hash Algorithm Identifiers

3.1. SHA-1 Hash Algorithm

3.2. SHA-2 Hash Algorithms

3.3. SHAKE Algorithms

4. IANA Considerations

4.1. COSE Algorithm Registry

5. Security Considerations

6. Normative References

7. Informative References

Author's Address

1. Introduction

The CBOR Object Signing and Encryption (COSE) syntax does not define

any direct methods for the use of hash algorithms. It also does not

define a structure syntax that is used to encode a digested object

structure along the lines of the DigestedData ASN.1 structure in

[CMS]. This omission was intentional, as a structure consisting of

just a digest identifier, the content, and a digest value does not,

by itself, provide any strong security service. Additionally, an

application is going to be better off defining this type of

structure so that it can include any additional data that needs to

be hashed, as well as methods of obtaining the data.

While the above is true, there are some cases where having some

standard hash algorithms defined for COSE with a common identifier

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

makes a great deal of sense. Two of the cases where these are going

to be used are:

Indirect signing of content, and

Object identification.

Indirect signing of content is a paradigm where the content is not

directly signed, but instead a hash of the content is computed and

that hash value, along with an identifier for the hash algorithm, is

included in the content that will be signed. Doing indirect signing

allows for a signature to be validated without first downloading all

of the content associated with the signature. Rather the signature

can be validated on all of the hash values and pointers to the

associated contents, then those associated parts can be downloaded,

the hash value of that part computed, and then compared to the hash

value in the signed content. This capability can be of even greater

importance in a constrained environment as not all of the content

signed may be needed by the device. An example of how this is used

can be found in [I-D.ietf-suit-manifest].

The use of hashes to identify objects is something that has been

very common. One of the primary things that has been identified by a

hash function in a secure message is a certificate. Two examples of

this can be found in [ESS] and the COSE equivalents in [I-D.ietf-

cose-x509].

1.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Hash Algorithm Usage

As noted in the previous section, hash functions can be used for a

variety of purposes. Some of these purposes require that a hash

function be cryptographically strong. These include direct and

indirect signatures. That is, using the hash as part of the

signature or using the hash as part of the body to be signed. Other

uses of hash functions may not require the same level of strength.

This document contains some hash functions that are not designed to

be used for cryptographic operations. An application that is using a

hash function needs to carefully evaluate exactly what hash

properties are needed and which hash functions are going to provide

them. Applications should also make sure that the ability to change

¶

* ¶

* ¶

¶

¶

¶

¶

hash functions is part of the base design, as cryptographic advances

are sure to reduce the strength of a hash function [BCP201].

A hash function is a map from one, normally large, bit string to a

second, usually smaller, bit string. As the number of possible input

values is far greater than the number of possible output values, it

is inevitable that there are going to be collisions. The trick is to

make sure that it is difficult to find two values that are going to

map to the same output value. A "Collision Attack" is one where an

attacker can find two different messages that have the same hash

value. A hash function that is susceptible to practical collision

attacks, SHOULD NOT be used for a cryptographic purpose. The

discovery of theoretical collision attacks against a given hash

function SHOULD trigger a review of the continued suitability of the

algorithm if alternatives are available and migration is viable. The

only reason why such a hash function is used is when there is

absolutely no other choice (e.g. a Hardware Security Module (HSM)

that cannot be replaced), and only after looking at the possible

security issues. Cryptographic purposes would include the creation

of signatures or the use of hashes for indirect signatures. These

functions may still be usable for non-cryptographic purposes.

An example of a non-cryptographic use of a hash is for filtering

from a collection of values to find a set of possible candidates,

the candidates can then be check to see if they can successfully be

used. A simple example of this is the classic fingerprint of a

certificate. If the fingerprint is used to verify that it is the

correct certificate, then that usage is a cryptographic one and is

subject to the warning above about collision attack. If, however,

the fingerprint is used to sort through a collection of certificates

to find those that might be used for the purpose of verifying a

signature, a simple filter capability is sufficient. In this case,

one still needs to confirm that the public key validates the

signature (and the certificate is trusted), and all certificates

that don't contain a key that validates the signature can be

discarded as false positives.

To distinguish between these two cases, a new value in the

recommended column of the COSE Algorithms registry is to be added.

"Filter Only" indicates that the only purpose of a hash function

should be to filter results and it is not intended for applications

which require a cryptographically strong algorithm.

2.1. Example CBOR hash structure

[COSE] did not provide a default structure for holding a hash value

not only because no separate hash algorithms were defined, but

because how the structure is setup is frequently application

¶

¶

¶

¶

specific. There are four fields that are often included as part of a

hash structure:

The hash algorithm identifier.

The hash value.

A pointer to the value that was hashed. This could be a pointer

to a file, an object that can be obtained from the network, or a

pointer to someplace in the message, or something very

application specific.

Additional data; this can be something as simple as a random

value (i.e. salt) to make finding hash collisions slightly harder

(as the payload handed to the application could have been

selected to have a collision), or as complicated as a set of

processing instructions that are used with the object that is

pointed to. The additional data can be dealt with in a number of

ways, prepending or appending to the content, but it is strongly

suggested that it either be a fixed known size, or the lengths of

the pieces being hashed be included. (Encoding as a CBOR array

accomplishes this requirement.)

An example of a structure which permits all of the above fields to

exist would look like the following.

COSE_Hash_V = (

 1 : int / tstr, # Algorithm identifier

 2 : bstr, # Hash value

 ? 3 : tstr, # Location of object that was hashed

 ? 4 : any # object containing other details and things

)

Below is an alternative structure that could be used in situations

where one is searching a group of objects for a matching hash value.

In this case, the location would not be needed and adding extra data

to the hash would be counterproductive. This results in a structure

that looks like this:

COSE_Hash_Find = [

 hashAlg : int / tstr,

 hashValue : bstr

]

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

3. Hash Algorithm Identifiers

3.1. SHA-1 Hash Algorithm

The SHA-1 hash algorithm [RFC3174] was designed by the United States

National Security Agency and published in 1995. Since that time a

large amount of cryptographic analysis has been applied to this

algorithm and a successful collision attack has been created

([SHA-1-collision]). The IETF formally started discouraging the use

of SHA-1 with the publishing of [RFC6194].

Despite the above, there are still times where SHA-1 needs to be

used and therefore it makes sense to assign a codepoint for the use

of this hash algorithm. Some of these situations are with historic

HSMs where only SHA-1 is implemented, other situations are where the

SHA-1 value is used for the purpose of filtering and thus the

collision resistance property is not needed.

Because of the known issues for SHA-1 and the fact that it should no

longer be used, the algorithm will be registered with the

recommendation of "Filter Only". This provides guidance about when

the algorithm is safe for use, while discouraging usage where it is

not safe.

The COSE capabilities for these algorithms is an empty array.

Name Value Description Capabilities Reference Recommended

SHA-1 TBD6 SHA-1 Hash [] [This Document] Filter Only

Table 1: SHA-1 Hash Algorithm

3.2. SHA-2 Hash Algorithms

The family of SHA-2 hash algorithms [FIPS-180-4] was designed by the

United States National Security Agency and published in 2001. Since

that time some additional algorithms have been added to the original

set to deal with length extension attacks and some performance

issues. While the SHA-3 hash algorithms have been published since

that time, the SHA-2 algorithms are still broadly used.

There are a number of different parameters for the SHA-2 hash

functions. The set of hash functions which have been chosen for

inclusion in this document are based on those different parameters

and some of the trade-offs involved.

SHA-256/64 provides a truncated hash. The length of the

truncation is designed to allow for smaller transmission size.

The trade-off is that the odds that a collision will occur

increase proportionally. Use of this hash function needs analyze

of the potential problems with having a collision occur, or must

¶

¶

¶

¶

¶

¶

*

be limited to where the function of the hash is non-

cryptographic.

The latter is the case for [I-D.ietf-cose-x509]. The hash value

is used to select possible certificates and, if there are

multiple choices remaining then, each choice can be tested by

using the public key.

SHA-256 is probably the most common hash function used currently.

SHA-256 is an efficient hash algorithm for 32-bit hardware.

SHA-384 and SHA-512 hash functions are efficient for 64-bit

hardware.

SHA-512/256 provides a hash function that runs more efficiently

on 64-bit hardware, but offers the same security levels as

SHA-256.

The COSE capabilities array for these algorithms is empty.

Name Value Description Capabilities Reference Recommended

SHA-256/64 TBD1

SHA-2 256-

bit Hash

truncated

to 64-bits

[]
[This

Document]
Filter Only

SHA-256 TBD2
SHA-2 256-

bit Hash
[]

[This

Document]
Yes

SHA-384 TBD3
SHA-2 384-

bit Hash
[]

[This

Document]
Yes

SHA-512 TBD4
SHA-2 512-

bit Hash
[]

[This

Document]
Yes

SHA-512/256 TBD5

SHA-2 512-

bit Hash

truncated

to 256-bits

[]
[This

Document]
Yes

Table 2: SHA-2 Hash Algorithms

3.3. SHAKE Algorithms

The family of SHA-3 hash algorithms [FIPS-202] was the result of a

competition run by NIST. The pair of algorithms known as SHAKE-128

and SHAKE-256 are the instances of SHA-3 that are currently being

standardized in the IETF. This is the reason for including these

algorithms in this document.

The SHA-3 hash algorithms have a significantly different structure

than the SHA-2 hash algorithms. One of the benefits of this

¶

¶

*

¶

*

¶

*

¶

¶

¶

difference is that when computing a shorter SHAKE hash value, the

value is not a prefix of the result of computing the longer hash.

Unlike the SHA-2 hash functions, no algorithm identifier is created

for shorter lengths. The length of the hash value stored is 128-bits

for SHAKE-128 and 256-bits for SHAKE-256.

The COSE capabilities array for these algorithms is empty.

Name Value Description Capabilities Reference Recommended

SHAKE128 TBD10

SHAKE-128

256-bit Hash

Value

[]
[This

Document]
Yes

SHAKE256 TBD11

SHAKE-256

512-bit Hash

Value

[]
[This

Document]
Yes

Table 3: SHAKE Hash Functions

4. IANA Considerations

The IANA actions in [I-D.ietf-cose-rfc8152bis-struct] and [I-D.ietf-

cose-rfc8152bis-algs] need to be executed before the actions in this

document. Where early allocation of codepoints has been made, these

should be preserved.

4.1. COSE Algorithm Registry

IANA is requested to register the following algorithms in the "COSE

Algorithms" registry.

The SHA-1 hash function found in Table 1.

The set of SHA-2 hash functions found in Table 2.

The set of SHAKE hash functions found in Table 3.

Many of the hash values produced are relatively long and as such the

use of a two byte algorithm identifier seems reasonable. SHA-1 is

tagged as deprecated and thus a longer algorithm identifier is

appropriate even though it is a shorter hash value.

In addition, IANA is to add the value of 'Filter Only' to the set of

legal values for the 'Recommended' column. This value is only to be

used for hash functions and indicates that it is not to be used for

purposes which require collision resistance. IANA is requested to

add this document to the reference section for this table due to

this addition.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

[RFC2119]

[RFC8174]

[I-D.ietf-cose-rfc8152bis-struct]

[FIPS-180-4]

[FIPS-202]

[RFC3174]

5. Security Considerations

Protocols need to perform a careful analysis of the properties of a

hash function that are needed and how they map onto the possible

attacks. In particular, one needs to distinguish between those uses

that need the cryptographic properties, such as collision

resistance, and properties that correspond to possible object

identification. The different attacks correspond to who or what is

being protected: is it the originator that is the attacker or a

third party? This is the difference between collision resistance and

second pre-image resistance. As a general rule, longer hash values

are "better" than short ones, but trade-offs of transmission size,

timeliness, and security all need to be included as part of this

analysis. In many cases the value being hashed is a public value

and, as such, pre-image resistance is not part of this analysis.

Algorithm agility needs to be considered a requirement for any use

of hash functions [BCP201]. As with any cryptographic function, hash

functions are under constant attack and the cryptographic strength

of hash algorithms will be reduced over time.

6. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", Work in Progress, Internet-

Draft, draft-ietf-cose-rfc8152bis-struct-11, 1 July 2020,

<https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-

struct-11>.

National Institute of Standards and Technology, "Secure

Hash Standard", FIPS PUB 180-4, August 2015.

National Institute of Standards and Technology, "SHA-3

Standard: Permutation-Based Hash and Extendable-Output

Functions", FIPS PUB 202, August 2015.

Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm

1 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September

2001, <https://www.rfc-editor.org/info/rfc3174>.

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-11
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-11
https://www.rfc-editor.org/info/rfc3174

[CMS]

[ESS]

[I-D.ietf-cose-x509]

[RFC6194]

[I-D.ietf-cose-rfc8152bis-algs]

[I-D.ietf-suit-manifest]

[BCP201]

[SHA-1-collision]

[COSE]

7. Informative References

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Hoffman, P., Ed., "Enhanced Security Services for S/

MIME", RFC 2634, DOI 10.17487/RFC2634, June 1999,

<https://www.rfc-editor.org/info/rfc2634>.

Schaad, J., "CBOR Object Signing and Encryption

(COSE): Header parameters for carrying and referencing X.

509 certificates", Work in Progress, Internet-Draft,

draft-ietf-cose-x509-06, 9 March 2020, <https://

tools.ietf.org/html/draft-ietf-cose-x509-06>.

Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security

Considerations for the SHA-0 and SHA-1 Message-Digest

Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,

<https://www.rfc-editor.org/info/rfc6194>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", Work in Progress, Internet-Draft,

draft-ietf-cose-rfc8152bis-algs-11, 1 July 2020,

<https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-

algs-11>.

Moran, B., Tschofenig, H., Birkholz, H.,

and K. Zandberg, "A Concise Binary Object Representation

(CBOR)-based Serialization Format for the Software

Updates for Internet of Things (SUIT) Manifest", Work in

Progress, Internet-Draft, draft-ietf-suit-manifest-09, 13

July 2020, <https://tools.ietf.org/html/draft-ietf-suit-

manifest-09>.

Housley, R., "Guidelines for Cryptographic Algorithm

Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, November 2015.

<https://www.rfc-editor.org/info/bcp201>

Stevens, M., Bursztein, E., Karpman, P.,

Albertini, A., and Y. Markov, "The first collision for

full SHA-1", February 2017, <https://shattered.io/static/

shattered.pdf>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc2634
https://tools.ietf.org/html/draft-ietf-cose-x509-06
https://tools.ietf.org/html/draft-ietf-cose-x509-06
https://www.rfc-editor.org/info/rfc6194
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-11
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-11
https://tools.ietf.org/html/draft-ietf-suit-manifest-09
https://tools.ietf.org/html/draft-ietf-suit-manifest-09
https://www.rfc-editor.org/info/bcp201
https://shattered.io/static/shattered.pdf
https://shattered.io/static/shattered.pdf
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152

Author's Address

Jim Schaad

August Cellars

Email: ietf@augustcellars.com

mailto:ietf@augustcellars.com

	CBOR Object Signing and Encryption (COSE): Hash Algorithms
	Abstract
	Contributing to this document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology

	2. Hash Algorithm Usage
	2.1. Example CBOR hash structure

	3. Hash Algorithm Identifiers
	3.1. SHA-1 Hash Algorithm
	3.2. SHA-2 Hash Algorithms
	3.3. SHAKE Algorithms

	4. IANA Considerations
	4.1. COSE Algorithm Registry

	5. Security Considerations
	6. Normative References
	7. Informative References
	Author's Address

