
Workgroup: COSE

Internet-Draft: draft-ietf-cose-hpke-04

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: H. Tschofenig B. Moran

Arm Limited

Use of Hybrid Public-Key Encryption (HPKE) with CBOR Object Signing and

Encryption (COSE)

Abstract

This specification defines hybrid public-key encryption (HPKE) for

use with CBOR Object Signing and Encryption (COSE). HPKE offers a

variant of public-key encryption of arbitrary-sized plaintexts for a

recipient public key.

HPKE works for any combination of an asymmetric key encapsulation

mechanism (KEM), key derivation function (KDF), and authenticated

encryption with additional data (AEAD) function. Authentication for

HPKE in COSE is provided by COSE-native security mechanisms.

This document defines the use of the HPKE base mode with COSE. Other

modes are supported by HPKE but not by this specification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. HPKE for COSE

3.1. Overview

3.1.1. Single Recipient / One Layer Structure

3.1.2. Multiple Recipients / Two Layer Structure

4. HPKE Encryption and Decryption

4.1. HPKE Encryption with SealBase

4.2. HPKE Decryption with OpenBase

4.3. AAD Parameter

4.3.1. AAD provided to HPKE for COSE_Encrypt0

4.3.2. AAD provided to HPKE for COSE_Encrypt at the Recipient

Layer

4.3.3. AAD provided to the AEAD cipher used for Content

Encryption at Layer 0 by COSE_Encrypt

4.4. Info Parameter

5. Examples

5.1. Single Recipient / One Layer Example

5.2. Multiple Recipients / Two Layer

6. Security Considerations

7. IANA Considerations

7.1. COSE Algorithms Registry

7.2. COSE Header Algorithm Parameters

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Contributors

¶

¶

https://trustee.ietf.org/license-info

Appendix B. Acknowledgements

Authors' Addresses

1. Introduction

Hybrid public-key encryption (HPKE) [RFC9180] is a scheme that

provides public key encryption of arbitrary-sized plaintexts given a

recipient's public key. HPKE utilizes a non-interactive ephemeral-

static Diffie-Hellman exchange to establish a shared secret. The

motivation for standardizing a public key encryption scheme is

explained in the introduction of [RFC9180].

The HPKE specification defines several features for use with public

key encryption and a subset of those features is applied to COSE

([RFC9052], [RFC9053]). Since COSE provides constructs for

authentication, those are not re-used from the HPKE specification.

This specification uses the "base" mode, as it is called in HPKE

specification language.

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the following abbreviations and terms: -

Content-encryption key (CEK), a term defined in CMS [RFC2630]. -

Hybrid Public Key Encryption (HPKE) is defined in [RFC9180]. - pkR

is the public key of the recipient, as defined in [RFC9180]. - skR

is the private key of the recipient, as defined in [RFC9180]. - Key

Encapsulation Mechanism (KEM), see [RFC9180]. - Key Derivation

Function (KDF), see [RFC9180]. - Authenticated Encryption with

Associated Data (AEAD), see [RFC9180]. - Additional Authenticated

Data (AAD), see [RFC9180].

3. HPKE for COSE

3.1. Overview

This specification supports two uses of HPKE in COSE, namely

HPKE in a single recipient setup. This use cases uses a one layer

COSE structure. Section 3.1.1 provides the details.

HPKE in a multiple recipient setup. This use case requires a two

layer COSE structure. Section 3.1.2 provides the details. While

it is possible to support the single recipient use case with a

two layer structure, the single layer setup is more efficient.

¶

¶

¶

¶

¶

*

¶

*

¶

HPKE in Base mode requires little information to be provided by the

sender, namely

algorithm information (KEM, KDF, and AEAD identifiers),

an encapsulated key generated by the sender, and

an identifier of the static recipient key.

In the subsections below we explain how this information is carried

inside the COSE_Encrypt0 and the COSE_Encrypt for the one layer and

the two layer structure, respectively.

In both cases a new structure is used to convey information about

the HPKE sender, namely the HPKE sender information structure

(sender_info).

When the alg value is set to 'HPKE-v1-BASE', the sender_info

structure MUST be present in the unprotected header parameter.

The CDDL grammar describing the sender_info structure is:

The fields have the following meaning:

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

 sender_info = [

 kem_id : uint, ; kem identifier

 kdf_id : uint, ; kdf identifier

 aead_id : uint, ; aead identifier

 enc : bstr, ; encapsulated key

]

¶

¶

 +---------+----------------+------------+-------------------+

 | Name | CBOR Type | Value | Description |

 | | | Registry | |

 +---------+----------------+------------+-------------------+

 | kem_id | uint | HPKE | Identifier for |

 | | | KEM IDs | the KEM |

 | | | Registry | |

 | | | | |

 | kdf_id | uint | HPKE KDF | Identifier for |

 | | | IDs | the KDF ID |

 | | | | |

 | aead_id | uint | HPKE AEAD | Identifier for |

 | | | IDs | the AEAD ID |

 | | | | |

 | enc | bstr | | Encapsulated key |

 | | | | defined by HPKE |

 +---------+----------------+------------+-------------------+

Figure 1: sender_info structure

kem_id: This parameter is used to identify the KEM. The registry for

KEM ids has been established with RFC 9180.

kdf_id: This parameter contains the KDF identifier. The registry

containing the KDF ids has been established with RFC 9180.

aead_id: This parameter contains the AEAD identifier. The registry

containing the AEAD ids has been established with RFC 9180.

enc: This parameter contains the encapsulated key, which is output

of the HPKE KEM.

3.1.1. Single Recipient / One Layer Structure

With the one layer structure the information carried inside the

COSE_recipient structure is embedded inside the COSE_Encrypt0.

HPKE is used to directly encrypt the plaintext. The resulting

ciphertext may be included in the COSE_Encrypt0 or may be detached.

If a payload is transported separately then it is called "detached

content". A nil CBOR object is placed in the location of the

ciphertext. See Section 5 of [RFC9052] for a description of detached

payloads.

The sender MUST set the alg parameter in the protected header, which

indicates the use of HPKE.

The sender MUST place the kid parameter and the sender_info

structure into the unprotected header. The kid identifies the static

recipient public key used by the sender. The recipient uses the kid

to determine the appropriate private key.

Figure 2 shows the COSE_Encrypt0 CDDL structure.

Figure 2: CDDL for HPKE-based COSE_Encrypt0 Structure

The COSE_Encrypt0 MAY be tagged or untagged.

An example is shown in Section 5.1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

COSE_Encrypt0_Tagged = #6.16(COSE_Encrypt0)

; Layer 0

COSE_Encrypt0 = [

 Headers,

 ciphertext : bstr / nil,

]

¶

¶

3.1.2. Multiple Recipients / Two Layer Structure

With the two layer structure the HPKE information is conveyed in the

COSE_recipient structure, i.e. one COSE_recipient structure per

recipient.

In this approach the following layers are involved:

Layer 0 (corresponding to the COSE_Encrypt structure) contains

the content (plaintext) encrypted with the CEK. This ciphertext

MAY be detached. If not detached, then it is included in the

COSE_Encrypt structure.

Layer 1 (corresponding to a recipient structure) contains

parameters needed for HPKE to generate a shared secret used to

encrypt the CEK. This layer conveys the encrypted CEK in the

encCEK structure. The protected header MUST contain the HPKE alg

parameter and the unprotected header MUST contain the sender_info

structure as well as the kid parameter to identify the static

recipient public key the sender has been using with HPKE.

This two-layer structure is used to encrypt content that can also be

shared with multiple parties at the expense of a single additional

encryption operation. As stated above, the specification uses a CEK

to encrypt the content at layer 0. For example, the content

encrypted at layer 0 may be a firmware image. The same encrypted

firmware image may need to be sent to many recipients; however, each

recipient uses their own private key to obtain the CEK.

The COSE_recipient structure, shown in Figure 3, is repeated for

each recipient.

¶

¶

*

¶

*

¶

¶

¶

Figure 3: CDDL for HPKE-based COSE_Encrypt Structure

The COSE_Encrypt MAY be tagged or untagged.

An example is shown in Section 5.2.

4. HPKE Encryption and Decryption

4.1. HPKE Encryption with SealBase

The SealBase(pkR, info, aad, pt) function is used to encrypt a

plaintext pt to a recipient's public key (pkR).

Two cases of plaintext need to be distinguished:

For use in COSE_Encrypt, the plaintext "pt" passed into

SealBase is the CEK. The CEK is a random byte sequence of length

appropriate for the encryption algorithm selected in layer 0. For

example, AES-128-GCM requires a 16 byte key and the CEK would

therefore be 16 bytes long.

In case of COSE_Encrypt0, the plaintext "pt" passed into SealBase

is the content to be encrypted. Hence, there is no intermediate

layer utilizing a CEK.

The "aad" and the "info" parameters are described in Section 4.3 and

Section 4.4, respectively.

COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)

/ Layer 0 /

COSE_Encrypt = [

 Headers,

 ciphertext : bstr / nil,

 recipients : + COSE_recipient

]

/ Layer 1 /

COSE_recipient = [

 protected : bstr .cbor header_map,

 unprotected : header_map,

 encCEK : bstr,

]

header_map = {

 Generic_Headers,

 * label => values,

}

¶

¶

¶

¶

*

¶

*

¶

¶

If SealBase() is successful, it will output a ciphertext "ct" and an

encapsulated key "enc".

4.2. HPKE Decryption with OpenBase

The recipient will use the OpenBase(enc, skR, info, aad, ct)

function with the "enc" and the "ct" parameters received from the

sender. The "aad" and the "info" parameters are assumed to be

constructed from the context and described in Section 4.3 and

Section 4.4, respectively.

The OpenBase function will, if successful, decrypt "ct". When

decrypted, the result will be either the CEK (when COSE_Encrypt is

used), or the content (if COSE_Encrypt0 is used). The CEK is the

symmetric key used to decrypt the ciphertext at layer 0.

4.3. AAD Parameter

HPKE requires an "aad" parameter to be provided to the SealBase and

OpenBase functions. Note that there are three types of additional

authenticated data used by this specification:

AAD provided to HPKE for COSE_Encrypt0.

AAD provided to HPKE for COSE_Encrypt at the recipient layer.

AAD provided to the AEAD cipher used for content encryption at

layer 0 by COSE_Encrypt.

We describe the three variants in the subsections below.

4.3.1. AAD provided to HPKE for COSE_Encrypt0

When COSE_Encrypt0 is used then there is no separate AEAD function

at the content encryption layer provided by COSE natively and HPKE

offers this functionality.

The "aad" parameter of provided to the SealBase and OpenBase

functions is constructed as follows (again intentionally aligned

with COSE by re-using the Enc_structure):

The protected field in the Enc_structure contains the protected

attributes from the COSE_Encrypt0 structure at layer 0, encoded in a

bstr type.

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

¶

¶

Enc_structure = [

 context : "Encrypt0",

 protected : empty_or_serialized_map,

 external_aad : bstr

]

¶

¶

The external_aad field in the Enc_structure is populated with the

API caller provided AAD information. If this field is not supplied,

it defaults to a zero-length byte string.

4.3.2. AAD provided to HPKE for COSE_Encrypt at the Recipient Layer

The AAD used at the recipient layer re-uses Enc_structure from

[RFC9052] and populates it with the following content:

The protected field in the Enc_structure contains the protected

attributes from the COSE_recipient structure at layer 1, encoded in

a bstr type.

The external_aad field in the Enc_structure is populated with the

API caller provided AAD information. In the COSE_Encrypt case this

AAD information is also input to the AAD at layer 0, if an AEAD

cipher is used at layer 0. If this field is not supplied, it

defaults to a zero-length byte string.

4.3.3. AAD provided to the AEAD cipher used for Content Encryption at

Layer 0 by COSE_Encrypt

The construction of AAD is defined in Section 5.3 of [RFC9052] (see

Enc_structure structure).

4.4. Info Parameter

The HPKE specification defines the "info" parameter as a context

information structure that is used to ensure that the derived keying

material is "bound" to the context of the transaction.

This section provides a suggestion for constructing the info

structure, when used with SealBase() and OpenBase(). HPKE leaves the

info parameter for these two functions as optional. Application

profiles of this specification MAY populate the fields of the

COSE_KDF_Context structure or MAY use a different structure as input

to the "info" parameter. If no content for the "info" parameter is

not supplied, it defaults to a zero-length byte string.

This specification re-uses the context information structure defined

in [RFC9053] as a foundation for the info structure. This payload

becomes the content of the info parameter for the HPKE functions,

when utilized. For better readability of this specification the

COSE_KDF_Context structure is repeated in Figure 4.

¶

¶

Enc_structure = [

 context : "Enc_Recipient",

 protected : empty_or_serialized_map,

 external_aad : bstr

]

¶

¶

¶

¶

¶

¶

¶

Figure 4: COSE_KDF_Context Data Structure as 'info' Parameter for HPKE

5. Examples

5.1. Single Recipient / One Layer Example

This example assumes that a sender wants to communicate an encrypted

payload to a single recipient in the most efficient way.

An example of the COSE_Encrypt0 structure using the HPKE scheme is

shown in Figure 5. Line breaks and comments have been inserted for

better readability.

It uses the following algorithm combination: - KEM: DHKEM(P-256,

HKDF-SHA256) - KDF: HKDF-SHA256 - AEAD: AES-128-GCM

 PartyInfo = (

 identity : bstr / nil,

 nonce : bstr / int / nil,

 other : bstr / nil

)

 COSE_KDF_Context = [

 AlgorithmID : int / tstr,

 PartyUInfo : [PartyInfo],

 PartyVInfo : [PartyInfo],

 SuppPubInfo : [

 keyDataLength : uint,

 protected : empty_or_serialized_map,

 ? other : bstr

],

 ? SuppPrivInfo : bstr

]

¶

¶

¶

Figure 5: COSE_Encrypt0 Example for HPKE

5.2. Multiple Recipients / Two Layer

In this example we assume that a sender wants to transmit a payload

to two recipients using the two-layer structure. Note that it is

possible to send two single-layer payloads, although it will be less

efficient.

An example of the COSE_Encrypt structure using the HPKE scheme is

shown in Figure 6. Line breaks and comments have been inserted for

better readability.

It uses the following algorithm combination:

At layer 0 AES-128-GCM is used for encryption of the detached

plaintext "This is the content.".

At the recipient structure at layer 1, DHKEM(P-256, HKDF-SHA256)

(as the KEM), with AES-128-GCM (as the AEAD) and HKDF-SHA256 (as

the KDF) is used.

The algorithm selection is based on the registry of the values

offered by the alg parameters (see Section 7).

// payload: "This is the content", aad: ""

//

16([

 h'a10120', // alg = HPKE-v1-BASE

 {

 4: h'3031', // kid

 -4: [// sender_info

 16, // kem = DHKEM(P-256, HKDF-SHA256)

 1, // kdf = HKDF-SHA256

 1, // aead = AES-128-GCM

 h'048c6f75e463a773082f3cb0d3a701348a578c67

 80aba658646682a9af7291dfc277ec93c3d58707

 818286c1097825457338dc3dcaff367e2951342e

 9db30dc0e7', // enc

],

 },

 / encrypted plaintext /

 h'ee22206308e478c279b94bb071f3a5fbbac412a6effe34195f7

 c4169d7d8e81666d8be13',

])

¶

¶

¶

*

¶

*

¶

¶

// plaintext: "This is the content.", aad: ""

96_0([

 h'a10101', // alg = AES-128-GCM (1)

 {5: h'67303696a1cc2b6a64867096'}, // iv

 h'', // detached ciphertext

 [

 [

 h'a10120', // alg = HPKE-v1-BASE (-1 #TBD)

 {

 4: h'3031', // kid

 -4: [// sender_info

 16, // kem = DHKEM(P-256, HKDF-SHA256)

 1, // kdf = HKDF-SHA256

 1, // aead = AES-128-GCM

 / enc output /

 h'0421ccd1b00dd958d77e10399c

 97530fcbb91a1dc71cb3bf41d9

 9fd39f22918505c973816ecbca

 6de507c4073d05cceff73e0d35

 f60e2373e09a9433be9e95e53c',

],

 },

 // ciphertext containing encrypted CEK

 h'bb2f1433546c55fb38d6f23f5cd95e1d72eb4

 c129b99a165cd5a28bd75859c10939b7e4d',

],

 [

 h'a10120', // alg = HPKE-v1-BASE (-1 #TBD)

 {

 4: h'313233', // kid

 -4: [// sender_info

 16, // kem = DHKEM(P-256, HKDF-SHA256)

 1, // kdf = HKDF-SHA256

 1, // aead = AES-128-GCM

 / enc output /

 h'6de507c4073d05cceff73e0d35

 f60e2373e09a9433be9e95e53c

 9fd39f22918505c973816ecbca

 6de507c4073d05cceff73e0d35

 f60e2373e09a9433be9e95e53c',

],

 },

 // ciphertext containing encrypted CEK

 h'c4169d7d8e81666d8be13bb2f1433546c55fb

 c129b99a165cd5a28bd75859c10939b7e4d',

]

],

])

Figure 6: COSE_Encrypt Example for HPKE

To offer authentication of the sender the payload in Figure 6 is

signed with a COSE_Sign1 wrapper, which is shown in Figure 7. The

payload in Figure 7 corresponds to the content shown in Figure 6.

Figure 7: COSE_Encrypt Example for HPKE

6. Security Considerations

This specification is based on HPKE and the security considerations

of HPKE [RFC9180] are therefore applicable also to this

specification.

HPKE assumes the sender is in possession of the public key of the

recipient and HPKE COSE makes the same assumptions. Hence, some form

of public key distribution mechanism is assumed to exist.

HPKE relies on a source of randomness to be available on the device.

Additionally, with the two layer structure the CEK is randomly

generated and the it MUST be ensured that the guidelines for random

number generations are followed.

The COSE_Encrypt structure MUST be authenticated using COSE

constructs like COSE_Sign, COSE_Sign1, COSE_MAC, or COSE_MAC0.

When COSE_Encrypt or COSE_Encrypt0 is used with a detached

ciphertext then the subsequently applied integrity protection via

COSE_Sign, COSE_Sign1, COSE_MAC, or COSE_MAC0 does not cover this

detached ciphertext. Implementers MUST ensure that the detached

ciphertext also experiences integrity protection. This is, for

example, the case when an AEAD cipher is used to produce the

detached ciphertext but may not be guaranteed by non-AEAD ciphers.

¶

18(

 [

 / protected / h'a10126' / {

 \ alg \ 1:-7 \ ECDSA 256 \

 } / ,

 / unprotected / {

 / kid / 4:'sender@example.com'

 },

 / payload / h'AA19...B80C',

 / signature / h'E3B8...25B8'

]

)

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

[RFC9052]

7. IANA Considerations

This document requests IANA to add new values to the 'COSE

Algorithms' and to the 'COSE Header Algorithm Parameters' registries

in the 'Standards Action With Expert Review category.

7.1. COSE Algorithms Registry

Name: HPKE-v1-BASE

Value: TBD1 (Assumed: -1)

Description: HPKE in version 1 in base mode for use with COSE

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

7.2. COSE Header Algorithm Parameters

Name: sender_info

Label: TBD2 (Assumed: -4)

Value type: sender_info

Value Registry: N/A

Description: HPKE Sender Information structure for the Base mode.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", STD 96, RFC 9052, DOI 10.17487/

RFC9052, August 2022, <https://www.rfc-editor.org/rfc/

rfc9052>.

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9052

[RFC9053]

[RFC9180]

[RFC2630]

[RFC8937]

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,

August 2022, <https://www.rfc-editor.org/rfc/rfc9053>.

Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid

Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,

February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

8.2. Informative References

Housley, R., "Cryptographic Message Syntax", RFC 2630,

DOI 10.17487/RFC2630, June 1999, <https://www.rfc-

editor.org/rfc/rfc2630>.

Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,

and C. Wood, "Randomness Improvements for Security

Protocols", RFC 8937, DOI 10.17487/RFC8937, October 2020,

<https://www.rfc-editor.org/rfc/rfc8937>.

Appendix A. Contributors

We would like thank the following individuals for their

contributions to the design of embedding the HPKE output into the

COSE structure following a long and lively mailing list discussion.

Daisuke Ajitomi

Richard Barnes

Ilari Liusvaara

Finally, we would like to thank Russ Housley for his contributions

to the draft as a co-author of initial versions.

Appendix B. Acknowledgements

We would like to thank John Mattsson, Mike Prorock, Michael

Richardson, Goeran Selander, Laurence Lundblade and Orie Steele for

their review feedback.

Authors' Addresses

Hannes Tschofenig

Email: hannes.tschofenig@gmx.net

Brendan Moran

Arm Limited

¶

* ¶

* ¶

* ¶

¶

¶

https://www.rfc-editor.org/rfc/rfc9053
https://www.rfc-editor.org/rfc/rfc9180
https://www.rfc-editor.org/rfc/rfc2630
https://www.rfc-editor.org/rfc/rfc2630
https://www.rfc-editor.org/rfc/rfc8937
mailto:hannes.tschofenig@gmx.net

Email: Brendan.Moran@arm.com

mailto:Brendan.Moran@arm.com

	Use of Hybrid Public-Key Encryption (HPKE) with CBOR Object Signing and Encryption (COSE)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. HPKE for COSE
	3.1. Overview
	3.1.1. Single Recipient / One Layer Structure
	3.1.2. Multiple Recipients / Two Layer Structure

	4. HPKE Encryption and Decryption
	4.1. HPKE Encryption with SealBase
	4.2. HPKE Decryption with OpenBase
	4.3. AAD Parameter
	4.3.1. AAD provided to HPKE for COSE_Encrypt0
	4.3.2. AAD provided to HPKE for COSE_Encrypt at the Recipient Layer
	4.3.3. AAD provided to the AEAD cipher used for Content Encryption at Layer 0 by COSE_Encrypt

	4.4. Info Parameter

	5. Examples
	5.1. Single Recipient / One Layer Example
	5.2. Multiple Recipients / Two Layer

	6. Security Considerations
	7. IANA Considerations
	7.1. COSE Algorithms Registry
	7.2. COSE Header Algorithm Parameters

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Contributors
	Appendix B. Acknowledgements
	Authors' Addresses

