
Workgroup: COSE

Internet-Draft: draft-ietf-cose-hpke-07

Published: 22 October 2023

Intended Status: Standards Track

Expires: 24 April 2024

Authors: H. Tschofenig O. Steele, Ed.

Transmute

D. Ajitomi

L. Lundblade

Security Theory LLC

Use of Hybrid Public-Key Encryption (HPKE) with CBOR Object Signing and

Encryption (COSE)

Abstract

This specification defines hybrid public-key encryption (HPKE) for

use with CBOR Object Signing and Encryption (COSE). HPKE offers a

variant of public-key encryption of arbitrary-sized plaintexts for a

recipient public key.

HPKE works for any combination of an asymmetric key encapsulation

mechanism (KEM), key derivation function (KDF), and authenticated

encryption with additional data (AEAD) function. Authentication for

HPKE in COSE is provided by COSE-native security mechanisms or by

one of the authenticated variants of HPKE.

This document defines the use of the HPKE with COSE.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 April 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

2. Conventions and Terminology

3. HPKE for COSE

3.1. Overview

3.1.1. Single Recipient / One Layer Structure

3.1.2. Multiple Recipients / Two Layer Structure

3.2. Info Parameter

4. Ciphersuite Registration

5. Examples

5.1. Single Recipient / One Layer Example

5.2. Multiple Recipients / Two Layer

5.2.1. COSE_Encrypt

5.2.2. COSE_MAC

6. Security Considerations

7. IANA Considerations

7.1. COSE Algorithms Registry

7.2. COSE Header Parameters

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Contributors

Appendix B. Acknowledgements

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

Hybrid public-key encryption (HPKE) [RFC9180] is a scheme that

provides public key encryption of arbitrary-sized plaintexts given a

recipient's public key. HPKE utilizes a non-interactive ephemeral-

static Diffie-Hellman exchange to establish a shared secret. The

motivation for standardizing a public key encryption scheme is

explained in the introduction of [RFC9180].

The HPKE specification provides a variant of public key encryption

of arbitrary-sized plaintexts for a recipient public key. It also

includes three authenticated variants, including one that

authenticates possession of a pre-shared key, one that authenticates

possession of a key encapsulation mechanism (KEM) private key, and

one that authenticates possession of both a pre-shared key and a KEM

private key.

This specification utilizes HPKE as a foundational building block

and carries the output to COSE ([RFC9052], [RFC9053]).

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the following abbreviations and terms:

Content-encryption key (CEK), a term defined in CMS [RFC2630].

Hybrid Public Key Encryption (HPKE) is defined in [RFC9180].

pkR is the public key of the recipient, as defined in [RFC9180].

skR is the private key of the recipient, as defined in [RFC9180].

Key Encapsulation Mechanism (KEM), see [RFC9180].

Key Derivation Function (KDF), see [RFC9180].

Authenticated Encryption with Associated Data (AEAD), see

[RFC9180].

Additional Authenticated Data (AAD), see [RFC9180].

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

3. HPKE for COSE

3.1. Overview

This specification supports two uses of HPKE in COSE, namely

HPKE in a single recipient setup. This use case utilizes a one

layer COSE structure. Section 3.1.1 provides the details.

HPKE in a multiple recipient setup. This use case requires a two

layer COSE structure. Section 3.1.2 provides the details. While

it is possible to support the single recipient use case with a

two layer structure, the single layer setup is more efficient.

In both cases a new COSE header parameter, called

'encapsulated_key', is used to convey the content of the enc

structure defined in the HPKE specification. "Enc" represents the

serialized public key.

For use with HPKE the 'encapsulated_key' header parameter MUST be

present in the unprotected header parameter and MUST contain the

encapsulated key, which is output of the HPKE KEM, and it is a bstr.

3.1.1. Single Recipient / One Layer Structure

With the one layer structure the information carried inside the

COSE_recipient structure is embedded inside the COSE_Encrypt0.

HPKE is used to directly encrypt the plaintext and the resulting

ciphertext is either included in the COSE_Encrypt0 or is detached.

If a payload is transported separately then it is called "detached

content". A nil CBOR object is placed in the location of the

ciphertext. See Section 5 of [RFC9052] for a description of detached

payloads.

The sender MUST set the alg parameter in the protected header, which

indicates the use of HPKE.

The sender MUST place the 'encapsulated_key' parameter into the

unprotected header. Although the use of the 'kid' parameter in

COSE_Encrypt0 is discouraged by RFC 9052, this profile allows the

use of the 'kid' parameter (or other parameters) to identify the

static recipient public key used by the sender. If the COSE_Encrypt0

contains the 'kid' then the recipient may use it to select the

appropriate private key.

HPKE defines an API and this API uses an "aad" parameter as input.

When COSE_Encrypt0 is used then there is no AEAD function executed

by COSE natively and HPKE offers this functionality.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

The "aad" parameter provided to the HPKE API is constructed as

follows (and the design has been re-used from [RFC9052]):

The protected field in the Enc_structure contains the protected

attributes from the COSE_Encrypt0 structure at layer 0, encoded in a

bstr type.

The external_aad field in the Enc_structure contains the Externally

Supplied Data described in Section 4.3 and Section 5.3 in RFC 9052.

If this field is not supplied, it defaults to a zero-length byte

string.

The HPKE APIs also use an "info" parameter as input and the details

are provided in Section 3.2.

Figure 1 shows the COSE_Encrypt0 CDDL structure.

Figure 1: CDDL for HPKE-based COSE_Encrypt0 Structure

The COSE_Encrypt0 MAY be tagged or untagged.

An example is shown in Section 5.1.

3.1.2. Multiple Recipients / Two Layer Structure

With the two layer structure the HPKE information is conveyed in the

COSE_recipient structure, i.e. one COSE_recipient structure per

recipient.

In this approach the following layers are involved:

Layer 0 (corresponding to the COSE_Encrypt structure) contains

the content (plaintext) encrypted with the CEK. This ciphertext

¶

Enc_structure = [

 context : "Encrypt0",

 protected : empty_or_serialized_map,

 external_aad : bstr

]

empty_or_serialized_map = bstr .cbor header_map / bstr .size 0

¶

¶

¶

¶

¶

COSE_Encrypt0_Tagged = #6.16(COSE_Encrypt0)

; Layer 0

COSE_Encrypt0 = [

 Headers,

 ciphertext : bstr / nil,

]

¶

¶

¶

¶

*

MAY be detached. If not detached, then it is included in the

COSE_Encrypt structure.

Layer 1 (corresponding to a recipient structure) contains

parameters needed for HPKE to generate a shared secret used to

encrypt the CEK. This layer conveys the encrypted CEK in the

encCEK structure. The protected header MUST contain the HPKE alg

parameter and the unprotected header MUST contain the

'encapsulated_key' parameter. The unprotected header MAY contain

the kid parameter to identify the static recipient public key the

sender has been using with HPKE.

This two-layer structure is used to encrypt content that can also be

shared with multiple parties at the expense of a single additional

encryption operation. As stated above, the specification uses a CEK

to encrypt the content at layer 0.

The COSE_recipient structure, shown in Figure 2, is repeated for

each recipient.

Figure 2: CDDL for HPKE-based COSE_Encrypt Structure

The COSE_Encrypt MAY be tagged or untagged.

An example is shown in Section 5.2.

¶

*

¶

¶

¶

COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)

/ Layer 0 /

COSE_Encrypt = [

 Headers,

 ciphertext : bstr / nil,

 recipients : + COSE_recipient

]

/ Layer 1 /

COSE_recipient = [

 protected : bstr .cbor header_map,

 unprotected : header_map,

 encCEK : bstr,

]

header_map = {

 Generic_Headers,

 * label => values,

}

¶

¶

3.2. Info Parameter

The HPKE specification defines the "info" parameter as a context

information structure that is used to ensure that the derived keying

material is bound to the context of the transaction.

This section provides a suggestion for constructing the info

structure. HPKE leaves the info parameter for these two functions as

optional. Application profiles of this specification MAY populate

the fields of the COSE_KDF_Context structure or MAY use a different

structure as input to the "info" parameter. If no content for the

"info" parameter is not supplied, it defaults to a zero-length byte

string.

This specification re-uses the context information structure defined

in [RFC9053] as a foundation for the info structure. This payload

becomes the content of the info parameter for the HPKE functions,

when utilized. For better readability of this specification the

COSE_KDF_Context structure is repeated in Figure 3.

Figure 3: COSE_KDF_Context Data Structure as 'info' Parameter for HPKE

4. Ciphersuite Registration

This specification registers a number of ciphersuites for use with

HPKE. A ciphersuite is thereby a combination of several algorithm

configurations:

HPKE Mode

KEM algorithm

¶

¶

¶

 PartyInfo = (

 identity : bstr / nil,

 nonce : bstr / int / nil,

 other : bstr / nil

)

 COSE_KDF_Context = [

 AlgorithmID : int / tstr,

 PartyUInfo : [PartyInfo],

 PartyVInfo : [PartyInfo],

 SuppPubInfo : [

 keyDataLength : uint,

 protected : empty_or_serialized_map,

 ? other : bstr

],

 ? SuppPrivInfo : bstr

]

¶

* ¶

* ¶

KDF algorithm

AEAD algorithm

The "KEM", "KDF", and "AEAD" values are conceptually taken from the

HPKE IANA registry [HPKE-IANA]. Hence, COSE-HPKE cannot use a

algorithm combination that is not already available with HPKE.

For better readability of the algorithm combination ciphersuites

labels are build according to the following scheme:

The "Mode" indicator may be populated with the following values from

Table 1 of [RFC9180]:

"Base" refers to "mode_base" described in Section 5.1.1 of

[RFC9180], which only enables encryption to the holder of a given

KEM private key.

"PSK" refers to "mode_psk", described in Section 5.1.2 of

[RFC9180], which authenticates using a pre-shared key.

"Auth" refers to "mode_auth", described in Section 5.1.3 of

[RFC9180], which authenticates using an asymmetric key.

"Auth_Psk" refers to "mode_auth_psk", described in Section 5.1.4

of [RFC9180], which authenticates using both a PSK and an

asymmetric key.

For a list of ciphersuite registrations, please see Section 7. The

following table summarizes the relationship between the ciphersuites

registered in this document and the values registered in the HPKE

IANA registry [HPKE-IANA].

* ¶

* ¶

¶

¶

HPKE-<Version>-<Mode>-<KEM>-<KDF>-<AEAD>¶

¶

*

¶

*

¶

*

¶

*

¶

¶

Note that the last four entries in the table refer to the compact

encoding of the public keys defined in [I-D.irtf-cfrg-dnhpke].

As the list indicates, the ciphersuite labels have been abbreviated

at least to some extend to maintain the tradeoff between readability

and length.

5. Examples

This section provides a set of examples that shows all COSE message

types (COSE_Encrypt0, COSE_Encrypt and COSE_MAC) to which the COSE-

HPKE can be applied. Each example includes the following information

that can be used to check the interoperability of COSE-HPKE

implementations:

plaintext: Original data of the encrypted payload.

external_aad: Externally supplied AAD.

skR: A recipient private key.

skE: An ephemeral sender private key paired with the

encapsulated_key.

5.1. Single Recipient / One Layer Example

This example assumes that a sender wants to communicate an encrypted

payload to a single recipient in the most efficient way.

+--+------------------+

| COSE-HPKE | HPKE |

| Cipher Suite Label | KEM | KDF | AEAD |

+--+-----+-----+------+

| HPKE-Base-P256-SHA256-AES128GCM |0x10 | 0x1 | 0x1 |

| HPKE-Base-P256-SHA256-ChaCha20Poly1305 |0x10 | 0x1 | 0x3 |

| HPKE-Base-P384-SHA384-AES256GCM |0x11 | 0x2 | 0x2 |

| HPKE-Base-P384-SHA384-ChaCha20Poly1305 |0x11 | 0x2 | 0x3 |

| HPKE-Base-P521-SHA512-AES256GCM |0x12 | 0x3 | 0x2 |

| HPKE-Base-P521-SHA512-ChaCha20Poly1305 |0x12 | 0x3 | 0x3 |

| HPKE-Base-X25519-SHA256-AES128GCM |0x20 | 0x1 | 0x1 |

| HPKE-Base-X25519-SHA256-ChaCha20Poly1305 |0x20 | 0x1 | 0x3 |

| HPKE-Base-X448-SHA512-AES256GCM |0x21 | 0x3 | 0x2 |

| HPKE-Base-X448-SHA512-ChaCha20Poly1305 |0x21 | 0x3 | 0x3 |

| HPKE-Base-X25519Kyber768-SHA256-AES256GCM |0x30 | 0x1 | 0x2 |

| HPKE-Base-X25519Kyber768-SHA256-ChaCha20Poly1305 |0x30 | 0x1 | 0x3 |

| HPKE-Base-CP256-SHA256-ChaCha20Poly1305 |0x13 | 0x1 | 0x3 |

| HPKE-Base-CP256-SHA256-AES128GCM |0x13 | 0x1 | 0x1 |

| HPKE-Base-CP521-SHA512-ChaCha20Poly1305 |0x15 | 0x3 | 0x3 |

| HPKE-Base-CP521-SHA512-AES256GCM |0x15 | 0x3 | 0x2 |

+--+-----+-----+------+

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

¶

An example of the COSE_Encrypt0 structure using the HPKE scheme is

shown in Figure 4. Line breaks and comments have been inserted for

better readability.

This example uses the following:

alg: HPKE-Base-P256-SHA256-AES128GCM

plaintext: "This is the content."

external_aad: "COSE-HPKE app"

skR:

h'57c92077664146e876760c9520d054aa93c3afb04e306705db6090308507b4d3'

skE:

h'42dd125eefc409c3b57366e721a40043fb5a58e346d51c133128a77237160218'

Figure 4: COSE_Encrypt0 Example for HPKE

5.2. Multiple Recipients / Two Layer

In this example we assume that a sender wants to transmit a payload

to two recipients using the two-layer structure. Note that it is

possible to send two single-layer payloads, although it will be less

efficient.

5.2.1. COSE_Encrypt

An example of the COSE_Encrypt structure using the HPKE scheme is

shown in Figure 5. Line breaks and comments have been inserted for

better readability.

¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

16([

 / alg = HPKE-Base-P256-SHA256-AES128GCM (Assumed: 35) /

 h'a1011823',

 {

 / kid /

 4: h'3031',

 / encapsulated_key /

 -4: h'045df24272faf43849530db6be01f42708b3c3a9

 df8e268513f0a996ed09ba7840894a3fb946cb28

 23f609c59463093d8815a7400233b75ca8ecb177

 54d241973e',

 },

 / encrypted plaintext /

 h'35aa3d98739289b83751125abe44e3b977e4b9abbf2c8cfaade

 b15f7681eef76df88f096',

])

¶

¶

This example uses the following:

Encryption alg: AES-128-GCM

plaintext: "This is the content."

detatched ciphertext:

h'cc168c4e148c52a83010a75250935a47ccb8682deebcef8fce5d60c161e849f53a2dc664'

kid:"01"

alg: HPKE-Base-P256-SHA256-AES128GCM

external_aad: "COSE-HPKE app"

skR:

h'57c92077664146e876760c9520d054aa93c3afb04e306705db6090308507b4d3'

skE:

h'97ad883f949f4cdcb1301b9446950efd4eb519e16c4a3d78304eec832692f9f6'

kid:"02"

alg: HPKE-Base-X25519-SHA256-CHACHA20POLY1305

external_aad: "COSE-HPKE app"

skR:

h'bec275a17e4d362d0819dc0695d89a73be6bf94b66ab726ae0b1afe3c43f41ce'

skE:

h'b8ed3f4df56c230e36fa6620a47f24d08856d242ea547c5521ff7bd69af8fd6f'

¶

* ¶

* ¶

*

¶

* ¶

- ¶

- ¶

-

¶

-

¶

* ¶

- ¶

- ¶

-

¶

-

¶

Figure 5: COSE_Encrypt Example for HPKE

96_0([

 / alg = AES-128-GCM (1) /

 h'a10101',

 {

 / iv /

 5: h'b3fb95dde18c6f90a9f0ae55',

 },

 / detached ciphertext /

 null,

 [

 [

 / alg = HPKE-Base-P256-SHA256-AES128GCM (Assumed: 35) /

 h'a1011823',

 {

 / kid /

 4: h'3031',

 / encapsulated_key /

 -4: h'04d97b79486fe2e7b98fb1bd43

 c4faee316ff38d28609a1cf568

 40a809298a91e601f1cc0c2ba4

 6cb67b41f4651b769cafd9df78

 e58aa7f5771291bd4f0f420ba6',

 },

 / ciphertext containing encrypted CEK /

 h'24450f54ae93375351467d17aa7a795cfede2

 c03eced1ad21fcb7e7c2fe64397',

],

 [

 / alg = HPKE-Base-X25519-SHA256-CHACHA20POLY1305 (Assumed: 42) /

 h'a101182a',

 {

 / kid /

 4: h'3032',

 / encapsulated_key /

 -4: h'd1afbdc95b0e735676f6bca34f

 be50f2822259ac09bfc3c500f1

 4a05de9b2833',

 },

 / ciphertext containing encrypted CEK /

 h'079b443ec6dfcda6a5f8748aff3875146a8ed

 40359e1279b545166385d8d9b59',

],

],

])

To offer authentication of the sender the payload in Figure 5 is

signed with a COSE_Sign1 wrapper, which is outlined in Figure 6. The

payload in Figure 6 is meant to contain the content of Figure 5.

Figure 6: COSE_Encrypt Example for HPKE

5.2.2. COSE_MAC

An example of the COSE_MAC structure using the HPKE scheme is shown

in Figure 7.

This example uses the following:

MAC alg: HMAC 256/256

payload: "This is the content."

kid:"01"

alg: HPKE-Base-P256-SHA256-AES128GCM

external_aad: "COSE-HPKE app"

skR:

h'57c92077664146e876760c9520d054aa93c3afb04e306705db6090308507b4d3'

skE:

h'e5dd9472b5807636c95be0ba2575020ba91cbb3561b52be141da89678c664307'

kid:"02"

alg: HPKE-Base-X25519-SHA256-CHACHA20POLY1305

external_aad: "COSE-HPKE app"

¶

18(

 [

 / protected / h'a10126' / {

 \ alg \ 1:-7 \ ECDSA 256 \

 } / ,

 / unprotected / {

 / kid / 4:'sender@example.com'

 },

 / payload / h'AA19...B80C',

 / signature / h'E3B8...25B8'

]

)

¶

¶

* ¶

* ¶

* ¶

- ¶

- ¶

-

¶

-

¶

* ¶

- ¶

- ¶

skR:

h'bec275a17e4d362d0819dc0695d89a73be6bf94b66ab726ae0b1afe3c43f41ce'

skE:

h'78a49d7af71b5244498e943f361aa0250184afc48b8098a68ae97ccd2cd7e56f'

-

¶

-

¶

Figure 7: COSE_MAC Example for HPKE

97_0([

 / alg = HMAC 256/256 (5) /

 h'a10105',

 {},

 / payload = 'This is the content.' /

 h'546869732069732074686520636f6e74656e742e',

 / tag /

 h'5cdcf6055fcbdb53b4001d8fb88b2a46b200ed28e1ed77e16ddf43fb3cac3a98',

 [

 [

 / alg = HPKE-Base-P256-SHA256-AES128GCM (Assumed: 35) /

 h'a1011823',

 {

 / kid = '01' /

 4: h'3031',

 / encapsulated_key /

 -4: h'043ac21632e45e1fbd733f002a

 621aa4f3d94737adc395d5a7cb

 6e9554bd1ad273aec991493786

 d72616d9759bf8526e6e20c1ed

 c41ba5739f2b2e441781aa0eb4',

 },

 / ciphertext containing encrypted MAC key /

 h'5cee2b4235a7ff695164f7a8d1e79ccf3ca3d

 e8b22f3592626020a95b2a8d3fb4d7aa7fe37

 432426ee70073a368f29d1',

],

 [

 / alg = HPKE-Base-X25519-SHA256-CHACHA20POLY1305 (Assumed: 42) /

 h'a101182a',

 {

 / kid = '02' /

 4: h'3032',

 / encapsulated_key /

 -4: h'02cffacc60def3bb3d0a1c3661

 227c9de8dc2b1d3939dd2c07d4

 49ebb0bba324',

 },

 / ciphertext containing encrypted MAC key /

 h'3f5b8b60271d5234dbea554dc1461d0239e9f

 4589f6415e8563b061dbcb37795a616111b78

 2b4c589b534309327ffadc',

],

],

])

6. Security Considerations

This specification is based on HPKE and the security considerations

of [RFC9180] are therefore applicable also to this specification.

HPKE assumes the sender is in possession of the public key of the

recipient and HPKE COSE makes the same assumptions. Hence, some form

of public key distribution mechanism is assumed to exist but outside

the scope of this document.

HPKE relies on a source of randomness to be available on the device.

Additionally, with the two layer structure the CEK is randomly

generated and it MUST be ensured that the guidelines in [RFC8937]

for random number generations are followed.

HPKE in Base mode does not offer authentication as part of the HPKE

KEM. In this case COSE constructs like COSE_Sign, COSE_Sign1,

COSE_MAC, or COSE_MAC0 can be used to add authentication. HPKE also

offers modes that offer authentication.

If COSE_Encrypt or COSE_Encrypt0 is used with a detached ciphertext

then the subsequently applied integrity protection via COSE_Sign,

COSE_Sign1, COSE_MAC, or COSE_MAC0 does not cover this detached

ciphertext. Implementers MUST ensure that the detached ciphertext

also experiences integrity protection. This is, for example, the

case when an AEAD cipher is used to produce the detached ciphertext

but may not be guaranteed by non-AEAD ciphers.

7. IANA Considerations

This document requests IANA to add new values to the 'COSE

Algorithms' and to the 'COSE Header Parameters' registries.

7.1. COSE Algorithms Registry

Name: HPKE-Base-P256-SHA256-AES128GCM

Value: TBD1 (Assumed: 35)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(P-256, HKDF-SHA256) KEM, the HKDF-SHA256 KDF and the

AES-128-GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

Name: HPKE-Base-P256-SHA256-ChaCha20Poly1305

Value: TBD2 (Assumed: 36)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(P-256, HKDF-SHA256) KEM, the HKDF-SHA256 KDF and the

ChaCha20Poly1305 AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-P384-SHA384-AES256GCM

Value: TBD3 (Assumed: 37)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(P-384, HKDF-SHA384) KEM, the HKDF-SHA384 KDF, and the

AES-256-GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-P384-SHA384-ChaCha20Poly1305

Value: TBD4 (Assumed: 38)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(P-384, HKDF-SHA384) KEM, the HKDF-SHA384 KDF, and the

ChaCha20Poly1305 AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-P521-SHA512-AES256GCM

Value: TBD5 (Assumed: 39)

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(P-521, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the

AES-256-GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-P521-SHA512-ChaCha20Poly1305

Value: TBD6 (Assumed: 40)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(P-521, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the

ChaCha20Poly1305 AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-X25519-SHA256-AES128GCM

Value: TBD7 (Assumed: 41)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(X25519, HKDF-SHA256) KEM, the HKDF-SHA256 KDF, and the

AES-128-GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-X25519-SHA256-ChaCha20Poly1305

Value: TBD8 (Assumed: 42)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(X25519, HKDF-SHA256) KEM, the HKDF-SHA256 KDF, and the

ChaCha20Poly1305 AEAD.

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-X448-SHA512-AES256GCM

Value: TBD9 (Assumed: 43)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(X448, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the

AES-256-GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-X448-SHA512-ChaCha20Poly1305

Value: TBD10 (Assumed: 44)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(X448, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the

ChaCha20Poly1305 AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-X25519Kyber768-SHA256-AES256GCM

Value: TBD11 (Assumed: 250)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the X25519Kyber768Draft00 KEM, the HKDF-SHA256 KDF, and the

AES-256-GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

Reference: [[TBD: This RFC]]

Recommended: No

Name: HPKE-Base-X25519Kyber768-SHA256-ChaCha20Poly1305

Value: TBD12 (Assumed: 251)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the X25519Kyber768Draft00 KEM, the HKDF-SHA256 KDF, and the

ChaCha20Poly1305 AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: No

Name: HPKE-Base-CP256-SHA256-ChaCha20Poly1305

Value: TBD13 (Assumed: 45)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(CP-256, HKDF-SHA256) KEM, the HKDF-SHA256 KDF and the

ChaCha20Poly1305 AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-CP521-SHA512-ChaCha20Poly1305

Value: TBD14 (Assumed: 46)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(CP-521, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the

ChaCha20Poly1305 AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

[RFC2119]

Name: HPKE-Base-CP256-SHA256-AES128GCM

Value: TBD15 (Assumed: 47)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(CP-256, HKDF-SHA256) KEM, the HKDF-SHA256 KDF and the

AES128GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

Name: HPKE-Base-CP521-SHA512-AES256GCM

Value: TBD16 (Assumed: 47)

Description: Cipher suite for COSE-HPKE in Base Mode that uses

the DHKEM(CP-521, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the

AES256GCM AEAD.

Capabilities: [kty]

Change Controller: IESG

Reference: [[TBD: This RFC]]

Recommended: Yes

7.2. COSE Header Parameters

Name: encapsulated_key

Label: TBDX (Assumed: -4)

Value type: bstr

Value Registry: N/A

Description: HPKE encapsulated key

Reference: [[This specification]]

8. References

8.1. Normative References

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

[RFC8174]

[RFC9052]

[RFC9053]

[RFC9180]

[HPKE-IANA]

[I-D.irtf-cfrg-dnhpke]

[RFC2630]

[RFC8937]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", STD 96, RFC 9052, DOI 10.17487/

RFC9052, August 2022, <https://www.rfc-editor.org/rfc/

rfc9052>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,

August 2022, <https://www.rfc-editor.org/rfc/rfc9053>.

Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid

Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,

February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

8.2. Informative References

IANA, "Hybrid Public Key Encryption (HPKE) IANA

Registry", October 2023, <https://www.iana.org/

assignments/hpke/hpke.xhtml>.

Harkins, D., "Deterministic Nonce-less Hybrid Public Key

Encryption", Work in Progress, Internet-Draft, draft-

irtf-cfrg-dnhpke-03, 19 October 2023, <https://

datatracker.ietf.org/doc/html/draft-irtf-cfrg-dnhpke-03>.

Housley, R., "Cryptographic Message Syntax", RFC 2630,

DOI 10.17487/RFC2630, June 1999, <https://www.rfc-

editor.org/rfc/rfc2630>.

Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,

and C. Wood, "Randomness Improvements for Security

Protocols", RFC 8937, DOI 10.17487/RFC8937, October 2020,

<https://www.rfc-editor.org/rfc/rfc8937>.

Appendix A. Contributors

We would like thank the following individuals for their

contributions to the design of embedding the HPKE output into the

COSE structure following a long and lively mailing list discussion:

Richard Barnes

¶

* ¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9053
https://www.rfc-editor.org/rfc/rfc9180
https://www.iana.org/assignments/hpke/hpke.xhtml
https://www.iana.org/assignments/hpke/hpke.xhtml
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-dnhpke-03
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-dnhpke-03
https://www.rfc-editor.org/rfc/rfc2630
https://www.rfc-editor.org/rfc/rfc2630
https://www.rfc-editor.org/rfc/rfc8937

Ilari Liusvaara

Finally, we would like to thank Russ Housley and Brendan Moran for

their contributions to the draft as co-authors of initial versions.

Appendix B. Acknowledgements

We would like to thank John Mattsson, Mike Prorock, Michael

Richardson, and Goeran Selander for their review feedback.

Authors' Addresses

Hannes Tschofenig

Austria

Email: hannes.tschofenig@gmx.net

Orie Steele (editor)

Transmute

United States

Email: orie@transmute.industries

Daisuke Ajitomi

Japan

Email: dajiaji@gmail.com

Laurence Lundblade

Security Theory LLC

United States

Email: lgl@securitytheory.com

* ¶

¶

¶

mailto:hannes.tschofenig@gmx.net
mailto:orie@transmute.industries
mailto:dajiaji@gmail.com
mailto:lgl@securitytheory.com

	Use of Hybrid Public-Key Encryption (HPKE) with CBOR Object Signing and Encryption (COSE)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. HPKE for COSE
	3.1. Overview
	3.1.1. Single Recipient / One Layer Structure
	3.1.2. Multiple Recipients / Two Layer Structure

	3.2. Info Parameter

	4. Ciphersuite Registration
	5. Examples
	5.1. Single Recipient / One Layer Example
	5.2. Multiple Recipients / Two Layer
	5.2.1. COSE_Encrypt
	5.2.2. COSE_MAC

	6. Security Considerations
	7. IANA Considerations
	7.1. COSE Algorithms Registry
	7.2. COSE Header Parameters

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Contributors
	Appendix B. Acknowledgements
	Authors' Addresses

