
Network Working Group J. Schaad
Internet-Draft August Cellars
Intended status: Informational July 5, 2015
Expires: January 6, 2016

CBOR Encoded Message Syntax
draft-ietf-cose-msg-00

Abstract

 Concise Binary Object Representation (CBOR) is data format designed
 for small code size and small message size. There is a need for the
 ability to have the basic security services defined for this data
 format. This document specifies how to do signatures, message
 authentication codes and encryption using this data format.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Schaad Expires January 6, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CBOR Encoded Message Syntax July 2015

Table of Contents

1. Introduction . 3
1.1. Design changes from JOSE 3
1.2. Requirements Terminology 4
1.3. CBOR Grammar . 4
1.4. CBOR Related Terminology 5

2. The COSE_MSG structure 5
3. Header Parameters . 8
3.1. COSE Headers . 9

4. Signing Structure . 12
5. Encryption object . 15
5.1. Key Management Methods 16
5.1.1. Direct Encryption 17
5.1.2. Key Wrapping . 17
5.1.3. Key Encryption 18
5.1.4. Direct Key Agreement 18
5.1.5. Key Agreement with Key Wrapping 18

5.2. Encryption Algorithm for AEAD algorithms 19
5.3. Encryption algorithm for AE algorithms 20

6. MAC objects . 20
7. Key Structure . 22
8. CBOR Encoder Restrictions 23
9. IANA Considerations . 24
9.1. CBOR Tag assignment 24
9.2. COSE Object Labels Registry 24
9.3. COSE Header Label Table 24
9.4. COSE Header Algorithm Label Table 25
9.5. COSE Algorithm Registry 26
9.6. COSE Key Map Registry 26
9.7. COSE Key Parameter Registry 27
9.8. Media Type Registration 28
9.8.1. COSE Security Message 28
9.8.2. COSE Key media type 30

10. Security Considerations 32
11. References . 32
11.1. Normative References 32
11.2. Informative References 32

Appendix A. AEAD and AE algorithms 33
Appendix B. Three Levels of Recipient Information 34
Appendix C. Examples . 36
C.1. Direct MAC . 36
C.2. Wrapped MAC . 37
C.3. Multi-recipient MAC message 38
C.4. Direct ECDH . 39
C.5. Single Signature . 40
C.6. Multiple Signers . 41

Appendix D. COSE Header Algorithm Label Table 42

Schaad Expires January 6, 2016 [Page 2]

Internet-Draft CBOR Encoded Message Syntax July 2015

Appendix E. COSE Algorithm Name Values 43
Appendix F. COSE General Values 45
Appendix G. COSE Key Map Labels 45
Appendix H. COSE Key Parameter Labels 46

 Author's Address . 48

1. Introduction

 There has been an increased focus on the small, constrained devices
 that make up the Internet of Things (IOT). One of the standards that
 has come of of this process is the Concise Binary Object
 Representation (CBOR). This standard extends the data model of the
 JavaScript Object Notation (JSON) by allowing for binary data among
 other changes. CBOR is being adopted by several of the IETF working
 groups dealing with the IOT world to do their encoding of data
 structures. CBOR was designed specifically to be both small in terms
 of messages transport and implementation size. A need exists to
 provide basic message security services for IOT and using CBOR as the
 message encoding format makes sense.

 The JOSE working group produced a set of documents
 [RFC7515][RFC7516][RFC7517][RFC7518] that defined how to perform
 encryption, signatures and message authentication (MAC) operations
 for JavaScript Object Notation (JSON) documents and then to encode
 the results using the JSON format [RFC7159]. This document does the
 same work for use with the Concise Binary Object Representation
 (CBOR) [RFC7049] document format. While there is a strong attempt to
 keep the flavor of the original JOSE documents, two considerations
 are taken into account:

 o CBOR has capabilities that are not present in JSON and should be
 used. One example of this is the fact that CBOR has a method of
 encoding binary directly without first converting it into a base64
 encoded string.

 o The author did not always agree with some of the decisions made by
 the JOSE working group. Many of these decisions have been re-
 examined, and where it seems to the author to be superior or
 simpler, replaced.

1.1. Design changes from JOSE

 o Define a top level message structure so that encrypted, signed and
 MAC-ed messages can easily identified and still have a consistent
 view.

 o Signed messages separate the concept of protected and unprotected
 attributes that are for the content and the signature.

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7049

Schaad Expires January 6, 2016 [Page 3]

Internet-Draft CBOR Encoded Message Syntax July 2015

 o Key management has been made to be more uniform. All key
 management techniques are represented as a recipient rather than
 only have some of them be so.

 o MAC messages are separated from signed messages.

 o MAC messages have the ability to do key management on the MAC
 authentication key.

 o Use binary encodings for binary data rather than base64url
 encodings.

 o Combine the authentication tag for encryption algorithms with the
 ciphertext.

 o Remove the flattened mode of encoding. Forcing the use of an
 array of recipients at all times forces the message size to be two
 bytes larger, but one gets a corresponding decrease in the
 implementation size that should compensate for this. [CREF1]

1.2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 When the words appear in lower case, their natural language meaning
 is used.

1.3. CBOR Grammar

 There currently is no standard CBOR grammar available for use by
 specifications. In this document, we use the grammar defined in the
 CBOR data definition language (CDDL)
 [I-D.greevenbosch-appsawg-cbor-cddl].

 CDDL productions that together define the grammar are interspersed in
 the document like this:

 start = COSE_MSG

 Note that, fromthe XML version of the present document, the collected
 CDDL can be extracted via the following XPath expression:

 //artwork[@type='CDDL']/text()

https://datatracker.ietf.org/doc/html/rfc2119

Schaad Expires January 6, 2016 [Page 4]

Internet-Draft CBOR Encoded Message Syntax July 2015

 NOTE: At some point we need to make some decisions about how we are
 using CDDL in this document. Since this draft has not been moving
 forward at a great rate, changing all references on it to
 informational is a good idea. On the other hand, having some type of
 syntax that can be examined by a machine to do syntax checking is a
 big win. The build system for this draft is currently using the
 latest version of CDDL to check that the syntax of the examples is
 correct. Doing this has found problems in both the syntax checker,
 the syntax and the examples.

1.4. CBOR Related Terminology

 In JSON, maps are called objects and only have one kind of map key: a
 string. In COSE, we use both strings and integers (both positive and
 negative integers) as map keys, as well as data items to identify
 specific choices. The (positive and negative) integers are used for
 compactness of encoding and easy comparison. Since the work "key" is
 mainly used in its other meaning, as a cryptographic key, we use the
 term "label" for this usage of either an integer or a string to
 identify map keys and choice data items.

 label = int / tstr

2. The COSE_MSG structure

 The COSE_MSG structure is a top level CBOR object which corresponds
 to the DataContent type in the Cryptographic Message Syntax
 (CMS)[RFC5652]. This structure allows for a top level message to be
 sent which could be any of the different security services. The
 security service is identified within the message.

 The COSE_Tagged_MSG CBOR type takes the COSE_MSG and prepends a CBOR
 tag of TBD1 to the encoding of COSE_MSG. By having both a tagged and
 untagged version of the COSE_MSG structure, it becomes easy to either
 use COSE_MSG as a top level object or embedded in another object.
 The tagged version allows for a method of placing the COSE_MSG
 structure into a choice, using a consistent tag value to determine
 that this is a COSE object.

 The existence of the COSE_MSG and COSE_Tagged_MSG CBOR data types are
 not intended to prevent protocols from using the individual security
 primitives directly. Where only a single service is required, that
 structure can be used directly.

 Each of the top-level security objects use a CBOR map as the base
 structure. Items in the map at the top level are identified by a

https://datatracker.ietf.org/doc/html/rfc5652

Schaad Expires January 6, 2016 [Page 5]

Internet-Draft CBOR Encoded Message Syntax July 2015

 label. This document defines a number of labels in the IANA "COSE
 Object Labels Registry" (defined in Section 9.2).

 The set of labels present in a security object is not restricted to
 those defined in this document. However, it is not recommended that
 additional fields be added to a structure unless this is going to be
 done in a closed environment. When new fields need to be added, it
 is recommended that a new message type be created so that processing
 of the field can be ensured. Using an older structure with a new
 field means that any security properties of the new field will not be
 enforced. Before a new field is added at the outer level, strong
 consideration needs to be given to defining a new header field and
 placing it into the protected headers. Applications should make a
 determination if non-standardized fields are going to be permitted.
 It is suggested that libraries allow for an option to fail parsing if
 non-standardized fields exist, this is especially true if they do not
 allow for access to the fields in other ways.

 A field 'msg_type' is defined to distinguish between the different
 structures when they appear as part of a COSE_MSG object. [CREF2]
 [CREF3] This field is indexed by an integer value 1, the values
 defined in this document are:

 0 - Reserved.

 1 - Signed Message.

 2 - Encrypted Message

 3 - Authenticated Message (MAC-ed message)

 Implementations MUST be prepared to find an integer under this label
 which does not correspond to the values 1 to 3. If this is found
 then the client MUST stop attempting to parse the structure and fail.
 The value of 0 is reserved and not to be used. If the value of 0 is
 found, then clients MUST fail processing the structure.
 Implementations need to recognize that the set of values might be
 extended at a later date, but they should not provide a security
 service based on guesses of what is there.

 NOTE: Is the any reason to allow for a marker of a COSE_Key structure
 and all it to be a COSE_MSG, doing so does allow for a security risk,
 but may simplify the code. [CREF4]

 The CDDL grammar that corresponds to the above is:

Schaad Expires January 6, 2016 [Page 6]

Internet-Draft CBOR Encoded Message Syntax July 2015

 COSE_MSG = COSE_Sign /
 COSE_encrypt /
 COSE_mac

 COSE_Tagged_MSG = #6.999(COSE_MSG) ; Replace 999 with TBD1

 ; msg_type values
 reserved=0
 msg_type_signed=1
 msg_type_encrypted=2
 msg_type_mac=3

 The top level of each of the COSE message structures are encoded as
 maps. We use an integer to distinguish between the different
 security message types. By searching for the integer under the label
 identified by msg_type (which is in turn an integer), one can
 determine which security message is being used and thus what syntax
 is for the rest of the elements in the map.

 +-------------+--------+--+
 | name | number | comments |
 +-------------+--------+--+
msg_type	1	Occurs only in top level messages
protected	2	Occurs in all structures
unprotected	3	Occurs in all structures
payload	4	Contains the content of the structure
signatures	5	For COSE_Sign - array of signatures
signature	6	For COSE_signature only
ciphertext	4	TODO: Should we re-use the same as payload
		or not?
recipients	9	For COSE_encrypt and COSE_mac
tag	10	For COSE_mac only
 +-------------+--------+--+

 Table 1: COSE Map Labels

 The CDDL grammar that provides the label values is:

Schaad Expires January 6, 2016 [Page 7]

Internet-Draft CBOR Encoded Message Syntax July 2015

 ; message_keys
 msg_type=1
 protected=2
 unprotected=3
 payload=4
 signatures=5
 signature=6
 ciphertext=4
 recipients=9
 tag=10

3. Header Parameters

 The structure of COSE has been designed to have two buckets of
 information that are not considered to be part of the payload itself,
 but are used for holding information about algorithms, keys, or
 evaluation hints for the processing of the layer. These two buckets
 are available for use in all of the structures in this document
 except for keys. While these buckets can be present, they may not
 all be usable in all instances. For example, while the protected
 bucket is present for recipient structures, most of the algorithms
 that are used for recipients do not provide the necessary
 functionality to provide the needed protection and thus the element
 is not used.

 Both buckets are implemented as CBOR maps. The map key is a 'label'
Section 1.4. The value portion is dependent on the definition for

 the label. Both maps use the same set of label/value pairs. The
 integer range for labels has been divided into several sections with
 a standard range, a private range, and a range that is dependent on
 the algorithm selected. The tables of labels can be found in
 Table 2.

 Two buckets are provided for each layer: [CREF5]

 protected contains attributes about the layer which are to be
 cryptographically protected. This bucket MUST NOT be used if it
 is not going to be included in a cryptographic computation.

 unprotected contains attributes about the layer which are not
 cryptographically protected.

 Both of the buckets are optional and are omitted if there are no
 items contained in the map. The CDDL fragment which describes the
 two buckets is:

Schaad Expires January 6, 2016 [Page 8]

Internet-Draft CBOR Encoded Message Syntax July 2015

 header_map = {+ label => any }

 Headers = (
 ? protected => bstr,
 ? unprotected => header_map
)

3.1. COSE Headers

 The set of header fields defined in this document are:

 alg This field is used to indicate the algorithm used for the
 security processing. This field MUST be present at each level of
 a signed, encrypted or authenticated message. This field using
 the integer '1' for the label. The value is taken from the 'COSE
 Algorithm Registry' (see Section 9.4).

 crit This field is used to ensure that applications will take
 appropriate action based on the values found. This field uses the
 integer '2' for the label. The value is an array of COSE Header
 Labels. The field is used to indicate which protected header keys
 an application which is processing a message is required to
 understand.

 Integer keys in the range of 0 to 10 SHOULD be omitted.

 Integer keys in the range -1 to -255 can be omitted as they are
 algorithm dependent. If an application can correctly process
 an algorithm, it can be assumed that it will correctly process
 all of the parameters associated with that algorithm.

 The header values indicated by 'crit' can be processed by either
 the security library code or by an application using a security
 library, the only requirement is that the field is processed.

 cty This field is used to indicate the content type of the data in
 the payload or ciphertext fields. The field uses the integer of
 '3' for the key value. The value can be either an integer or a
 string. Integers are from the XXXXX[CREF6] IANA registry table.
 Strings are from the IANA 'mime-content types' registry.
 Applications SHOULD provide this field if the content structure is
 potentially ambiguous.

 kid This field one of the ways that can be used to find the key to
 be used. This value can be matched against the 'kid' field in a
 COSE_Key structure. Applications MUST NOT assume that 'kid'
 values are unique. There may be more than one key with the same
 'kid' value, it may be required that all of the keys need to be

Schaad Expires January 6, 2016 [Page 9]

Internet-Draft CBOR Encoded Message Syntax July 2015

 checked to find the correct one. This field uses the integer
 value of '4' for the key value. The value of field is the CBOR
 'bstr' type. The internal structure of 'kid' is not defined and
 generally cannot be relied on by applications.

 This table contains a list of all of the parameters for use in
 signature and encryption message types defined by the JOSE document
 set. In the table is the data value type to be used for CBOR as well
 as the integer value that can be used as a replacement for the name
 in order to further decrease the size of the sent item.

Schaad Expires January 6, 2016 [Page 10]

Internet-Draft CBOR Encoded Message Syntax July 2015

 +----------+-------+----------+-----------+-------------------------+
 | name | label | value | registry | description |
 +----------+-------+----------+-----------+-------------------------+
alg	1	int /	COSE	Integers are taken from
		tstr	Algorithm	table Appendix E
			Registry	
crit	2	[+	COSE	integer values are from
		label]	Header	this table.
			Label	
			Registry	
cty	3	tstr /		Value is either a mime-
		int		content type or an
				integer from the mime-
				content type table
jku	*	tstr		URL to COSE key object
jwk	*	COSE_Key		contains a COSE key not
				a JWK key
kid	4	bstr		key identifier
x5c	*	bstr*		X.509 Certificate Chain
x5t	*	bstr		SHA-1 thumbprint of key
x5t#S256	*	bstr		SHA-256 thumbprint of
				key
x5u	*	tstr		URL for X.509
				certificate
zip	*	int /		Integers are taken from
		tstr		the table Appendix E
 +----------+-------+----------+-----------+-------------------------+

 Table 2: Header Keys

 OPEN ISSUES:

 1. Which of the following items do we want to have standardized in
 this document: jku, jwk, x5c, x5t, x5t#S256, x5u, zip

 2. I am currently torn on the question "Should epk and iv/nonce be
 algorithm specific or generic headers?" They are really specific
 to an algorithm and can potentially be defined in different ways

Schaad Expires January 6, 2016 [Page 11]

Internet-Draft CBOR Encoded Message Syntax July 2015

 for different algorithms. As an example, it would make sense to
 defined nonce for CCM and GCM modes that can have the leading
 zero bytes stripped, while for other algorithms this might be
 undesirable.

 3. We might want to define some additional items. What are they? A
 possible example would be a sequence number as this might be
 common. On the other hand, this is the type of things that is
 frequently used as the nonce in some places and thus should not
 be used in the same way. Other items might be challenge/response
 fields for freshness as these are likely to be common.

4. Signing Structure

 The signature structure allows for one or more signatures to be
 applied to a message payload. There are provisions for attributes
 about the content and attributes about the signature to be carried
 along with the signature itself. These attributes may be
 authenticated by the signature, or just present. Examples of
 attributes about the content would be the type of content, when the
 content was created, and who created the content. Examples of
 attributes about the signature would be the algorithm and key used to
 create the signature, when the signature was created, and counter-
 signatures.

 When more than one signature is present, the successful validation of
 one signature associated with a given signer is usually treated as a
 successful signature by that signer. However, there are some
 application environments where other rules are needed. An
 application that employs a rule other than one valid signature for
 each signer must specify those rules. Also, where simple matching of
 the signer identifier is not sufficient to determine whether the
 signatures were generated by the same signer, the application
 specification must describe how to determine which signatures were
 generated by the same signer. Support of different communities of
 recipients is the primary reason that signers choose to include more
 than one signature. For example, the COSE_Sign structure might
 include signatures generated with the RSA signature algorithm and
 with the Elliptic Curve Digital Signature Algorithm (ECDSA) signature
 algorithm. This allows recipients to verify the signature associated
 with one algorithm or the other. (The original source of this text
 is [RFC5652].) More detailed information on multiple signature
 evaluation can be found in [RFC5752].

 The CDDL grammar for a signature message is:

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5752

Schaad Expires January 6, 2016 [Page 12]

Internet-Draft CBOR Encoded Message Syntax July 2015

 COSE_Sign = {
 msg_type => msg_type_signed,
 Headers,
 ? payload => bstr,
 signatures => [+ COSE_signature]
 }

 The fields is the structure have the following semantics:

 msg_type identifies this as providing the signed security service.
 The value MUST be msg_type_signed (1).

 protected contains attributes about the payload which are to be
 protected by the signature. An example of such an attribute would
 be the content type ('cty') attribute. The content is a CBOR map
 of attributes which is encoded to a byte stream. This field MUST
 NOT contain attributes about the signature, even if those
 attributes are common across multiple signatures. The labels in
 this map are typically taken from Table 2.

 unprotected contains attributes about the payload which are not
 protected by the signature. An example of such an attribute would
 be the content type ('cty') attribute. This field MUST NOT
 contain attributes about a signature, even if the attributes are
 common across multiple signatures. The labels in this map are
 typically taken from Table 2.

 payload contains the serialized content to be signed.
 If the payload is not present in the message, the application is
 required to supply the payload separately.
 The payload is wrapped in a bstr to ensure that it is transported
 without changes, if the payload is transported separately it is
 the responsibility of the application to ensure that it will be
 transported without changes.

 signatures is an array of signature items. Each of these items uses
 the COSE_signature structure for its representation.

 We use the values in Table 1 as the labels in the COSE_Sign map.
 While other labels can be present in the map, it is not generally a
 recommended practice. The other labels can be either of integer or
 string type, use of other types SHOULD be treated as an error.

 The CDDL grammar structure for a signature is:

Schaad Expires January 6, 2016 [Page 13]

Internet-Draft CBOR Encoded Message Syntax July 2015

 COSE_signature = {
 Headers,
 signature => bstr
 }

 The fields in the structure have the following semantics:

 protected contains additional information to be authenticated by the
 signature. The field holds data about the signature operation.
 The field MUST NOT hold attributes about the payload being signed.
 The content is a CBOR map of attributes which is encoded to a byte
 stream. At least one of protected and unprotected MUST be
 present.

 unprotected contains attributes about the signature which are not
 protected by the signature. This field MUST NOT contain
 attributes about the payload being signed. At least one of
 protected and unprotected MUST be present.

 signature contains the computed signature value.

 The COSE structure used to create the byte stream to be signed uses
 the following CDDL grammar structure:

 Sig_structure = [
 body_protected: bstr,
 sign_protected: bstr,
 payload: bstr
]

 How to compute a signature:

 1. Create a Sig_structure object and populate it with the
 appropriate fields. For body_protected and sign_protected, if
 the fields are not present in their corresponding maps, an bstr
 of length zero is used.

 2. Create the value ToBeSigned by encoding the Sig_structure to a
 byte string.

 3. Call the signature creation algorithm passing in K (the key to
 sign with), alg (the algorithm to sign with) and ToBeSigned (the
 value to sign).

 4. Place the resulting signature value in the 'signature' field of
 the map.

 How to verify a signature:

Schaad Expires January 6, 2016 [Page 14]

Internet-Draft CBOR Encoded Message Syntax July 2015

 1. Create a Sig_structure object and populate it with the
 appropriate fields. For body_protected and sign_protected, if
 the fields are not present in their corresponding maps, an bstr
 of length zero is used.

 2. Create the value ToBeSigned by encoding the Sig_structure to a
 byte string.

 3. Call the signature verification algorithm passing in K (the key
 to verify with), alg (the algorithm to sign with), ToBeSigned
 (the value to sign), and sig (the signature to be verified).

 In addition to performing the signature verification, one must also
 perform the appropriate checks to ensure that the key is correctly
 paired with the signing identity and that the appropriated
 authorization is done.

5. Encryption object

 In this section we describe the structure and methods to be used when
 doing an encryption in COSE. In COSE, we use the same techniques and
 structures for encrypting both the plain text and the keys used to
 protect the text. This is different from the approach used by both
 [RFC5652] and [RFC7516] where different structures are used for the
 plain text and for the different key management techniques.

 One of the byproducts of using the same technique for encrypting and
 encoding both the content and the keys using the various key
 management techniques, is a requirement that all of the key
 management techniques use an Authenticated Encryption (AE) algorithm.
 (For the purpose of this document we use a slightly loose definition
 of AE algorithms.) When encrypting the plain text, it is normal to
 use an Authenticated Encryption with Additional Data (AEAD)
 algorithm. For key management, either AE or AEAD algorithms can be
 used. See Appendix A for more details about the different types of
 algorithms. [CREF7]

 The CDDL grammar structure for encryption is:

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7516

Schaad Expires January 6, 2016 [Page 15]

Internet-Draft CBOR Encoded Message Syntax July 2015

 COSE_encrypt = {
 msg_type=>msg_type_encrypted,
 COSE_encrypt_fields
 }

 COSE_encrypt_fields = (
 Headers,
 ? ciphertext => bstr,
 ? recipients => [+{COSE_encrypt_fields}]
)

 Description of the fields:

 msg_type identifies this as providing the encrypted security
 service. The value MUST be msg_type_encrypted (2).

 protected contains the information about the plain text or
 encryption process that is to be integrity protected. The field
 is encoded in CBOR as a 'bstr'. The contents of the protected
 field is a CBOR map of the protected data names and values. The
 map is CBOR encoded before placing it into the bstr. Only values
 associated with the current cipher text are to be placed in this
 location even if the value would apply to multiple recipient
 structures.

 unprotected contains information about the plain text that is not
 integrity protected. Only values associated with the current
 cipher text are to be placed in this location even if the value
 would apply to multiple recipient structures.

 cipherText contains the encrypted plain text. If the cipherText is
 to be transported independently of the control information about
 the encryption process (i.e. detached content) then the field is
 omitted.

 recipients contains the recipient information. It is required that
 at least one recipient MUST be present for the content encryption
 layer.

5.1. Key Management Methods

 There are a number of different key management methods that can be
 used in the COSE encryption system. In this section we will discuss
 each of the key management methods and what fields need to be
 specified to deal with each of them.

 The names of the key management methods used here are the same as are
 defined in [RFC7517]. Other specifications use different terms for

https://datatracker.ietf.org/doc/html/rfc7517

Schaad Expires January 6, 2016 [Page 16]

Internet-Draft CBOR Encoded Message Syntax July 2015

 the key management methods or do not support some of the key
 management methods.

 At the moment we do not have any key management methods that allow
 for the use of protected headers. This may be changed in the future
 if, for example, the AES-GCM Key wrap method defined in [RFC7518]
 were extended to allow for authenticated data. In that event the use
 of the 'protected' field, which is current forbidden below, would be
 permitted.

5.1.1. Direct Encryption

 In direct encryption mode, a shared secret between the sender and the
 recipient is used as the CEK. When direct encryption mode is used,
 it MUST be the only mode used on the message. It is a massive
 security leak to have both direct encryption and a different key
 management mode on the same message.

 For JOSE, direct encryption key management is the only key management
 method allowed for doing MAC-ed messages. In COSE, all of the key
 management methods can be used for MAC-ed messages.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected', 'ciphertext' and 'recipients' fields MUST be
 absent.

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the shared
 secret.

5.1.2. Key Wrapping

 In key wrapping mode, the CEK is randomly generated and that key is
 then encrypted by a shared secret between the sender and the
 recipient. All of the currently defined key wrapping algorithms for
 JOSE (and thus for COSE) are AE algorithms. Key wrapping mode is
 considered to be superior to direct encryption if the system has any
 capability for doing random key generation. This is because the
 shared key is used to wrap random data rather than data has some
 degree of organization and may in fact be repeating the same content.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected', and 'recipients' fields MUST be absent.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

https://datatracker.ietf.org/doc/html/rfc7518

Schaad Expires January 6, 2016 [Page 17]

Internet-Draft CBOR Encoded Message Syntax July 2015

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the shared
 secret.

5.1.3. Key Encryption

 Key Encryption mode is also called key transport mode in some
 standards. Key Encryption mode differs from Key Wrap mode in that it
 uses an asymmetric encryption algorithm rather than a symmetric
 encryption algorithm to protect the key. The only current Key
 Encryption mode algorithm supported is RSAES-OAEP.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected' field MUST be absent.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the
 asymmetric key.

5.1.4. Direct Key Agreement

 Direct Key Agreement derives the CEK from the shared secret computed
 by the key agreement operation.

 When direct key agreement mode is used, it SHOULD be the only mode
 used on the message. This method creates the CEK directly and that
 makes it difficult to mix with additional recipients.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected' field MUST be absent.

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the
 asymmetric key.

 o The 'unprotected' field MUST contain the 'epk' parameter.

5.1.5. Key Agreement with Key Wrapping

 Key Agreement with Key Wrapping uses a randomly generated CEK. The
 CEK is then encrypted using a Key Wrapping algorithm and a key
 derived from the shared secret computed by the key agreement
 algorithm.

Schaad Expires January 6, 2016 [Page 18]

Internet-Draft CBOR Encoded Message Syntax July 2015

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected' field MUST be absent.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter, a parameter identifying the recipient asymmetric key,
 and a parameter with the sender's asymmetric public key.

5.2. Encryption Algorithm for AEAD algorithms

 The encryption algorithm for AEAD algorithms is fairly simple.
 In order to get a consistent encoding of the data to be
 authenticated, the Enc_structure is used to have canonical form of
 the AAD.

 Enc_structure = [
 protected: bstr,
 external_aad: bstr
]

 1. Copy the protected header field from the message to be sent.

 2. If the application has supplied external additional authenticated
 data to be included in the computation, then it is placed in the
 'external_aad' field. If no data was supplied, then a zero
 length binary value is used.

 3. Encode the Enc_structure using a CBOR Canonical encoding
Section 8 to get the AAD value.

 4. Determine the encryption key. This step is dependent on the key
 management method being used: For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current level.

 Direct and Direct Key Agreement: The key is determined by the
 key and algorithm in the recipient structure. The encryption
 algorithm and size of the key to be used are inputs into the
 KDF used for the recipient. (For direct, the KDF can be
 thought of as the identity operation.)

 Other: The key is randomly generated.

Schaad Expires January 6, 2016 [Page 19]

Internet-Draft CBOR Encoded Message Syntax July 2015

 5. Call the encryption algorithm with K (the encryption key to use),
 P (the plain text) and AAD (the additional authenticated data).
 Place the returned cipher text into the 'ciphertext' field of the
 structure.

 6. For recipients of the message, recursively perform the encryption
 algorithm for that recipient using the encryption key as the
 plain text.

5.3. Encryption algorithm for AE algorithms

 1. Verify that the 'protected' field is absent.

 2. Verify that there was no external additional authenticated data
 supplied for this operation.

 3. Determine the encryption key. This step is dependent on the key
 management method being used: For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current level.

 Direct and Direct Key Agreement: The key is determined by the
 key and algorithm in the recipient structure. The encryption
 algorithm and size of the key to be used are inputs into the
 KDF used for the recipient. (For direct, the KDF can be
 thought of as the identity operation.)

 Other: The key is randomly generated.

 4. Call the encryption algorithm with K (the encryption key to use)
 and the P (the plain text). Place the returned cipher text into
 the 'ciphertext' field of the structure.

 5. For recipients of the message, recursively perform the encryption
 algorithm for that recipient using the encryption key as the
 plain text.

6. MAC objects

 In this section we describe the structure and methods to be used when
 doing MAC authentication in COSE. JOSE used a variant of the
 signature structure for doing MAC operations and it is restricted to
 using a single pre-shared secret to do the authentication. This
 document allows for the use of all of the same methods of key
 management as are allowed for encryption.

Schaad Expires January 6, 2016 [Page 20]

Internet-Draft CBOR Encoded Message Syntax July 2015

 When using MAC operations, there are two modes in which it can be
 used. The first is just a check that the content has not been
 changed since the MAC was computed. Any of the key management
 methods can be used for this purpose. The second mode is to both
 check that the content has not been changed since the MAC was
 computed, and to use key management to verify who sent it. The key
 management modes that support this are ones that either use a pre-
 shared secret, or do static-static key agreement. In both of these
 cases the entity MAC-ing the message can be validated by a key
 binding. (The binding of identity assumes that there are only two
 parties involved and you did not send the message yourself.)

 COSE_mac = {
 msg_type=>msg_type_mac,
 Headers,
 ? payload => bstr,
 tag => bstr,
 recipients => [+{COSE_encrypt_fields}]
 }

 Field descriptions:

 msg_type identifies this as providing the encrypted security
 service. The value MUST be msg_type_mac (3).

 protected contains attributes about the payload which are to be
 protected by the MAC. An example of such an attribute would be
 the content type ('cty') attribute. The content is a CBOR map of
 attributes which is encoded to a byte stream. This field MUST NOT
 contain attributes about the recipient, even if those attributes
 are common across multiple recipients. At least one of protected
 and unprotected MUST be present.

 unprotected contains attributes about the payload which are not
 protected by the MAC. An example of such an attribute would be
 the content type ('cty') attribute. This field MUST NOT contain
 attributes about a recipient, even if the attributes are common
 across multiple recipients. At least one of protected and
 unprotected MUST be present.

 payload contains the serialized content to be MAC-ed.
 If the payload is not present in the message, the application is
 required to supply the payload separately.
 The payload is wrapped in a bstr to ensure that it is transported
 without changes, if the payload is transported separately it is
 the responsibility of the application to ensure that it will be
 transported without changes.

Schaad Expires January 6, 2016 [Page 21]

Internet-Draft CBOR Encoded Message Syntax July 2015

 tag contains the MAC value.

 recipients contains the recipient information. See the description
 under COSE_Encryption for more info.

 MAC_structure = [
 protected: bstr,
 external_aad: bstr,
 payload: bstr
]

 How to compute a MAC:

 1. Create a MAC_structure and copy the protected and payload
 elements from the COSE_mac structure.

 2. If the application has supplied external authenticated data,
 encode it as a binary value and place in the MAC_structure. If
 there is no external authenticated data, then use a zero length
 'bstr'.

 3. Encode the MAC_structure using a canonical CBOR encoder. The
 resulting bytes is the value to compute the MAC on.

 4. Compute the MAC and place the result in the 'tag' field of the
 COSE_mac structure.

 5. Encrypt and encode the MAC key for each recipient of the message.

7. Key Structure

 There are only a few changes between JOSE and COSE for how keys are
 formatted. As with JOSE, COSE uses a map to contain the elements of
 a key. Those values, which in JOSE, are base64url encoded because
 they are binary values, are encoded as bstr values in COSE.

 For COSE we use the same set of fields that were defined in
 [RFC7517].

https://datatracker.ietf.org/doc/html/rfc7517

Schaad Expires January 6, 2016 [Page 22]

Internet-Draft CBOR Encoded Message Syntax July 2015

 COSE_Key = {
 kty => tstr / int,
 ? key_ops => [+ tstr / int],
 ? alg => tstr / int,
 ? kid => bstr,
 * keys => values
 }

 COSE_KeySet = [+COSE_Key]

 The element "kty" is a required element in a COSE_Key map.
 All other elements are optional and not all of the elements listed in
 [RFC7517] or [RFC7518] have been listed here even though they can all
 appear in a COSE_Key map.

 The "key_ops" element is preferred over the "use" element as the
 information provided that way is more finely detailed about the
 operations allowed. It is strongly suggested that this element be
 present for all keys.

 The same fields defined in [RFC7517] are used here with the following
 changes in rules:

 o Any item which is base64 encoded in JWK, is bstr encoded for COSE.

 o Any item which is integer encoded in JWK, is int encoded for COSE.

 o Any item which is string (but not base64) encoded in JWK, is tstr
 encoded for COSE.

 o Exceptions to this are the following fields:

 kid is always bstr encoded rather than tstr encoded. This change
 in encoded is due to the fact that frequently, values such as a
 hash of the public key is used for a kid value. Since the
 field is defined as not having a specific structure, making it
 binary rather than textual makes sense.

8. CBOR Encoder Restrictions

 There as been an attempt to limit the number of places where the
 document needs to impose restrictions on how the CBOR Encoder needs
 to work. We have managed to narrow it down to the following
 restrictions:

 o The restriction applies to the encoding the Sig_structure, the
 Enc_structure, and the MAC_structure.

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7517

Schaad Expires January 6, 2016 [Page 23]

Internet-Draft CBOR Encoded Message Syntax July 2015

 o The rules for Canonical CBOR (Section 3.9 of RFC 7049) MUST be
 used in these locations. The main rule that needs to be enforced
 is that all lengths in these structures MUST be encoded such that
 they are encoded using definite lengths and the minimum length
 encoding is used.

 o All parsers used SHOULD fail on both parsing and generation if the
 same label is used twice as a key for the same map.

9. IANA Considerations

9.1. CBOR Tag assignment

 It is requested that IANA assign a new tag from the "Concise Binary
 Object Representation (CBOR) Tags" registry. It is requested that
 the tag be assigned in the 0 to 23 value range.

 Tag Value: TBD1

 Data Item: CBOR map

 Semantics: COSE security message.

9.2. COSE Object Labels Registry

 It is requested that IANA create a new registry entitled "COSE Object
 Labels Registry". [CREF8]

 This table is initially populated by the table in Table 1.

9.3. COSE Header Label Table

 It is requested that IANA create a new registry entitled "COSE Header
 Labels".

 The columns of the registry are:

 name The name is present to make it easier to refer to and discuss
 the registration entry. The value is not used in the protocol.
 Names are to be unique in the table.

 label This is the value used for the label. The label can be either
 an integer or a string. Registration in the table is based on the
 value of the label requested. Integer values between 0 and 255
 and strings of length 1 are designated as Standards Track Document
 required. Integer values from 256 to 65535 and strings of length
 2 are designated as Specification Required. Integer values of
 greater than 65535 and strings of length greater than 2 are

https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Schaad Expires January 6, 2016 [Page 24]

Internet-Draft CBOR Encoded Message Syntax July 2015

 designated as first come first server. Integer values in the
 range -1 to -65536 are delegated to the "COSE Header Algorithm
 Label" registry. Integer values beyond -65536 are marked as
 private use.

 value This contains the CBOR type for the value portion of the
 label.

 value registry This contains a pointer to the registry used to
 contain values where the set is limited.

 description This contains a brief description of the header field.

 specification This contains a pointer to the specification defining
 the header field (where public).

 The initial contents of the registry can be found in Table 2. The
 specification column for all rows in that table should be this
 document.

 NOTE: Need to review the range assignments. It does not necessarily
 make sense as specification required uses 1 byte positive integers
 and 2 byte strings.

9.4. COSE Header Algorithm Label Table

 It is requested that IANA create a new registry entitled "COSE Header
 Algorithm Labels".

 The columns of the registry are:

 name The name is present to make it easier to refer to and discuss
 the registration entry. The value is not used in the protocol.

 algorithm The algorithm(s) that this registry entry is used for.
 This value is taken from the "COSE Algorithm Value" registry.
 Multiple algorithms can be specified in this entry. For the
 table, the algorithm, label pair MUST be unique.

 label This is the value used for the label. The label is an integer
 in the range of -1 to -65536.

 value This contains the CBOR type for the value portion of the
 label.

 value registry This contains a pointer to the registry used to
 contain values where the set is limited.

Schaad Expires January 6, 2016 [Page 25]

Internet-Draft CBOR Encoded Message Syntax July 2015

 description This contains a brief description of the header field.

 specification This contains a pointer to the specification defining
 the header field (where public).

 The initial contents of the registry can be found in Appendix D. The
 specification column for all rows in that table should be this
 document.

9.5. COSE Algorithm Registry

 It is requested that IANA create a new registry entitled "COSE
 Algorithm Registry".

 The columns of the registry are:

 value The value to be used to identify this algorithm. Algorithm
 values MUST be unique. The value can be a positive integer, a
 negative integer or a string. Integer values between 0 and 255
 and strings of length 1 are designated as Standards Track Document
 required. Integer values from 256 to 65535 and strings of length
 2 are designated as Specification Required. Integer values of
 greater than 65535 and strings of length greater than 2 are
 designated as first come first server. Integer values in the
 range -1 to -65536 are delegated to the "COSE Header Algorithm
 Label" registry. Integer values beyond -65536 are marked as
 private use.

 description A short description of the algorithm.

 specification A document where the algorithm is defined (if publicly
 available).

 The initial contents of the registry can be found in Appendix E. The
 specification column for all rows in that table should be this
 document.

9.6. COSE Key Map Registry

 It is requested that IANA create a new registry entitled "COSE Key
 Map Registry".

 The columns of the registry are:

 name This is a descriptive name that enables easier reference to the
 item. It is not used in the encoding.

Schaad Expires January 6, 2016 [Page 26]

Internet-Draft CBOR Encoded Message Syntax July 2015

 label The value to be used to identify this algorithm. Algorithm
 labels MUST be unique. The label can be a positive integer, a
 negative integer or a string. Integer values between 0 and 255
 and strings of length 1 are designated as Standards Track Document
 required. Integer values from 256 to 65535 and strings of length
 2 are designated as Specification Required. Integer values of
 greater than 65535 and strings of length greater than 2 are
 designated as first come first server. Integer values in the
 range -1 to -65536 are used for key parameters specific to a
 single algorithm delegated to the "COSE Key Parameter Label"
 registry. Integer values beyond -65536 are marked as private use.

 CBOR Type This field contains the CBOR type for the field

 registry This field denotes the registry that values come from, if
 one exists.

 description This field contains a brief description for the field

 specification This contains a pointer to the public specification
 for the field if one exists

 This registry will be initially populated by the values in
Appendix G. The specification column for all of these entries will

 be this document.

9.7. COSE Key Parameter Registry

 It is requested that IANA create a new registry "COSE Key
 Parameters".

 The columns of the table are:

 key type This field contains a descriptive string of a key type.
 This should be a value that is in the COSE General Values table
 and is placed in the 'kty' field of a COSE Key structure.

 name This is a descriptive name that enables easier reference to the
 item. It is not used in the encoding.

 label The label is to be unique for every value of key type. The
 range of values is from -256 to -1. Keys are expected to be re-
 used for different keys.

 CBOR type This field contains the CBOR type for the field

 description This field contains a brief description for the field

Schaad Expires January 6, 2016 [Page 27]

Internet-Draft CBOR Encoded Message Syntax July 2015

 specification This contains a pointer to the public specification
 for the field if one exists

 This registry will be initially populated by the values in
Appendix H. The specification column for all of these entries will

 be this document.

9.8. Media Type Registration

9.8.1. COSE Security Message

 This section registers the "application/cose" and "application/
 cose+cbor" media types in the "Media Types" registry. [CREF9] These
 media types are used to indicate that the content is a COSE_MSG.

 Type name: application

 Subtype name: cose

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

Schaad Expires January 6, 2016 [Page 28]

Internet-Draft CBOR Encoded Message Syntax July 2015

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

 Type name: application

 Subtype name: cose+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

Schaad Expires January 6, 2016 [Page 29]

Internet-Draft CBOR Encoded Message Syntax July 2015

 Provisional registration? No

9.8.2. COSE Key media type

 This section registers the "application/jwk+json" and "application/
 jwk-set+json" media typesin the "Media Types" registry. These media
 types are used to indicate, respectively, that content is a COSE_Key
 or COSE_KeySet object.

 Type name: application

 Subtype name: cose-key+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

Schaad Expires January 6, 2016 [Page 30]

Internet-Draft CBOR Encoded Message Syntax July 2015

 Provisional registration? No

 Type name: application

 Subtype name: cose-key-set+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

Schaad Expires January 6, 2016 [Page 31]

Internet-Draft CBOR Encoded Message Syntax July 2015

10. Security Considerations

 There are security considerations:

 1. Protect private keys

 2. MAC messages with more than one recipient means one cannot figure
 out who sent the message

 3. Use of direct key with other recipient structures hands the key
 to other recipients.

 4. Use of direct ECDH direct encryption is easy for people to leak
 information on if there are other recipients in the message.

 5. Considerations about protected vs unprotected header fields.

11. References

11.1. Normative References

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Vigano, C., Birkholz, H., and R. Sun, "CBOR data
 definition language: a notational convention to express
 CBOR data structures.", draft-greevenbosch-appsawg-cbor-

cddl-05 (work in progress), March 2015.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

11.2. Informative References

 [AES-GCM] Dworkin, M., "NIST Special Publication 800-38D:
 Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC.", June 2015.

 [I-D.mcgrew-aead-aes-cbc-hmac-sha2]
 McGrew, D., Foley, J., and K. Paterson, "Authenticated
 Encryption with AES-CBC and HMAC-SHA", draft-mcgrew-aead-

aes-cbc-hmac-sha2-05 (work in progress), July 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-05
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-05
https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-05
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3394

Schaad Expires January 6, 2016 [Page 32]

Internet-Draft CBOR Encoded Message Syntax July 2015

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, September 2003.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC5752] Turner, S. and J. Schaad, "Multiple Signatures in
 Cryptographic Message Syntax (CMS)", RFC 5752, January
 2010.

 [RFC5990] Randall, J., Kaliski, B., Brainard, J., and S. Turner,
 "Use of the RSA-KEM Key Transport Algorithm in the
 Cryptographic Message Syntax (CMS)", RFC 5990, September
 2010.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, May 2015.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, May 2015.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517, May 2015.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, May
 2015.

Appendix A. AEAD and AE algorithms

 The set of encryption algorithms that can be used with this
 specification is restricted to authenticated encryption (AE) and
 authenticated encryption with additional data (AEAD) algorithms.
 This means that there is a strong check that the data decrypted by
 the recipient is the same as what was encrypted by the sender.
 Encryption modes such as counter have no check on this at all. The
 CBC encryption mode had a weak check that the data is correct, given
 a random key and random data, the CBC padding check will pass one out
 of 256 times. There have been several times that a normal encryption
 mode has been combined with an integrity check to provide a content
 encryption mode that does provide the necessary authentication. AES-
 GCM [AES-GCM], AES-CCM [RFC3610], AES-CBC-HMAC

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5752
https://datatracker.ietf.org/doc/html/rfc5990
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc3610

Schaad Expires January 6, 2016 [Page 33]

Internet-Draft CBOR Encoded Message Syntax July 2015

 [I-D.mcgrew-aead-aes-cbc-hmac-sha2] are examples of these composite
 modes.

 2PKCS v1.5 RSA key transport does not qualify as an AE algorithm.
 There are only three bytes in the encoding that can be checked as
 having decrypted correctly, the rest of the content can only be
 probabilistically checked as having decrypted correctly. For this
 reason, PKCS v1.5 RSA key transport MUST NOT be used with this
 specification. RSA-OAEP was designed to have the necessary checks
 that that content correctly decrypted and does qualify as an AE
 algorithm.

 When dealing with authenticated encryption algorithms, there is
 always some type of value that needs to be checked to see if the
 authentication level has passed. This authentication value may be:

 o A separately generated tag computed by both the encrypter and
 decrypter and then compared by the decryptor. This tag value may
 be either placed at the end of the cipher text (the decision we
 made) or kept separately (the decision made by the JOSE working
 group). This is the approach followed by AES-GCM [AES-GCM] and
 AES-CCM [RFC3610].

 o A fixed value which is part of the encoded plain text. This is
 the approach followed by the AES key wrap algorithm [RFC3394].

 o A computed value is included as part of the encoded plain text.
 The computed value is then checked by the decryptor using the same
 computation path. This is the approach followed by RSAES-OAEP
 [RFC3447].

Appendix B. Three Levels of Recipient Information

 All of the currently defined Key Management methods only use two
 levels of the COSE_Encrypt structure. The first level is the message
 content and the second level is the content key encryption. However,
 if one uses a key management technique such as RSA-KEM (see

Appendix A of RSA-KEM [RFC5990], then it make sense to have three
 levels of the COSE_Encrypt structure.

 These levels would be:

 o Level 0: The content encryption level. This level contains the
 payload of the message.

 o Level 1: The encryption of the CEK by a KEK.

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc5990

Schaad Expires January 6, 2016 [Page 34]

Internet-Draft CBOR Encoded Message Syntax July 2015

 o Level 2: The encryption of a long random secret using an RSA key
 and a key derivation function to convert that secret into the KEK.

 This is an example of what a triple layer message would look like.
 The message has the following layers:

 o Level 0: Has a content encrypted with AES-GCM using a 128-bit key.

 o Level 1: Uses the AES Key wrap algorithm with a 128-bit key.

 o Level 3: Uses ECDH Ephemeral-Static direct to generate the level 1
 key.

 In effect this example is a decomposed version of using the ECDH-
 ES+A128KW algorithm.

Schaad Expires January 6, 2016 [Page 35]

Internet-Draft CBOR Encoded Message Syntax July 2015

 {
 1: 2,
 2: h'a10101',
 3: {
 -1: h'02d1f7e6f26c43d4868d87ce'
 },
 4: h'64f84d913ba60a76070a9a48f26e97e863e285295a44320878caceb076
 3a334806857c67',
 9: [
 {
 3: {
 1: -3
 },
 4: h'5a15dbf5b282ecb31a6074ee3815c252405dd7583e078188',
 9: [
 {
 3: {
 1: "ECDH-ES",
 5: "meriadoc.brandybuck@buckland.example",
 4: {
 1: 1,
 -1: 4,
 -2: h'b2add44368ea6d641f9ca9af308b4079aeb519f11e9b8
 a55a600b21233e86e68',
 -3: h'1a2cf118b9ee6895c8f415b686d4ca1cef362d4a7630a
 31ef6019c0c56d33de0'
 }
 }
 }
]
 }
]
 }

Appendix C. Examples

 The examples can be found at https://github.com/cose-wg/Examples. I
 am currently still in the process of getting the examples up there
 along with some control information for people to be able to check
 and reproduce the examples.

C.1. Direct MAC

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

https://github.com/cose-wg/Examples

Schaad Expires January 6, 2016 [Page 36]

Internet-Draft CBOR Encoded Message Syntax July 2015

 This example is uses HMAC with SHA-256 as the digest algorithm. The
 key management is uses two static ECDH keys along with HKDF to
 directly derive the key used in the HMAC operation.

 {
 1: 3,
 2: h'a10104',
 4: h'546869732069732074686520636f6e74656e742e',
 10: h'2ba937ca03d76c3dbad30cfcbaeef586f9c0f9ba616ad67e9205d3857
 6ad9930',
 9: [
 {
 3: {
 1: "ECDH-SS",
 5: "meriadoc.brandybuck@buckland.example",
 "spk": {
 "kid": "peregrin.took@tuckborough.example"
 },
 "apu": h'4d8553e7e74f3c6a3a9dd3ef286a8195cbf8a23d19558ccf
 ec7d34b824f42d92bd06bd2c7f0271f0214e141fb779ae2856abf585a58368b01
 7e7f2a9e5ce4db5'
 }
 }
]
 }

C.2. Wrapped MAC

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 This example uses AES-128-MAC truncated to 64-bits as the digest
 algorithm. It uses AES-256 Key wrap for the key management algorithm
 wrapping the 128-bit key used for the digest algorithm.

Schaad Expires January 6, 2016 [Page 37]

Internet-Draft CBOR Encoded Message Syntax July 2015

 {
 1: 3,
 2: h'a1016e4145532d3132382d4d41432d3634',
 4: h'546869732069732074686520636f6e74656e742e',
 10: h'6d1fa77b2dd9146a',
 9: [
 {
 3: {
 1: -5,
 5: "018c0ae5-4d9b-471b-bfd6-eef314bc7037"
 },
 4: h'711ab0dc2fc4585dce27effa6781c8093eba906f227b6eb0'
 }
]
 }

C.3. Multi-recipient MAC message

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 This example uses HMAC with SHA-256 for the digest algorithm. There
 are three different key management techniques applied:

 o An ephemeral static ECDH key agreement operation using AES-128 key
 wrap on the digest key.

 o Key transport using RSA-OAEP with SHA-256 for the hash and the mfg
 function operations.

 o AES 256-bit Key wrap using a pre-shared secret.

 {
 1: 3,
 2: h'a10104',
 4: h'546869732069732074686520636f6e74656e742e',
 10: h'7aaa6e74546873061f0a7de21ff0c0658d401a68da738dd8937486519
 83ce1d0',
 9: [
 {
 3: {
 1: "ECDH-ES+A128KW",
 5: h'62696c626f2e62616767696e7340686f626269746f6e2e657861
 6d706c65',
 4: {

Schaad Expires January 6, 2016 [Page 38]

Internet-Draft CBOR Encoded Message Syntax July 2015

 1: 1,
 -1: 5,
 -2: h'43b12669acac3fd27898ffba0bcd2e6c366d53bc4db71f909
 a759304acfb5e18cdc7ba0b13ff8c7636271a6924b1ac63c02688075b55ef2d61
 3574e7dc242f79c3',
 -3: h'812dd694f4ef32b11014d74010a954689c6b6e8785b333d1a
 b44f22b9d1091ae8fc8ae40b687e5cfbe7ee6f8b47918a07bb04e9f5b1a51a334
 a16bc09777434113'
 }
 },
 4: h'1b120c848c7f2f8943e402cbdbdb58efb281753af4169c70d0126c
 0d16436277160821790ef4fe3f'
 },
 {
 3: {
 1: -2,
 5: h'62696c626f2e62616767696e7340686f626269746f6e2e657861
 6d706c65'
 },
 4: h'46c4f88069b650909a891e84013614cd58a3668f88fa18f3852940
 a20b35098591d3aacf91c125a2595cda7bee75a490579f0e2f20fd6bc956623bf
 de3029c318f82c426dac3463b261c981ab18b72fe9409412e5c7f2d8f2b5abaf7
 80df6a282db033b3a863fa957408b81741878f466dcc437006ca21407181a016c
 a608ca8208bd3c5a1ddc828531e30b89a67ec6bb97b0c3c3c92036c0cb84aa0f0
 ce8c3e4a215d173bfa668f116ca9f1177505afb7629a9b0b5e096e81d37900e06
 f561a32b6bc993fc6d0cb5d4bb81b74e6ffb0958dac7227c2eb8856303d989f93
 b4a051830706a4c44e8314ec846022eab727e16ada628f12ee7978855550249cc
 b58'
 },
 {
 3: {
 1: -5,
 5: "018c0ae5-4d9b-471b-bfd6-eef314bc7037"
 },
 4: h'0b2c7cfce04e98276342d6476a7723c090dfdd15f9a518e7736549
 e998370695e6d6a83b4ae507bb'
 }
]
 }

C.4. Direct ECDH

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

Schaad Expires January 6, 2016 [Page 39]

Internet-Draft CBOR Encoded Message Syntax July 2015

 Encoded in CBOR - 216 bytes, content is 14 bytes long

 {
 1: 2,
 2: h'a10101',
 3: {
 -1: h'c9cf4df2fe6c632bf7886413'
 },
 4: h'45fce2814311024d3a479e7d3eed063850f3f0b9f3f948677e3ae9869b
 cf9ff4e1763812',
 9: [
 {
 3: {
 1: "ECDH-ES",
 5: "meriadoc.brandybuck@buckland.example",
 4: {
 1: 1,
 -1: 4,
 -2: h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf05
 4e1c7b4d91d6280',
 -3: h'f01400b089867804b8e9fc96c3932161f1934f4223069170d
 924b7e03bf822bb'
 }
 }
 }
]
 }

C.5. Single Signature

 This example has some features that are in questions but not yet
 cooperated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

Schaad Expires January 6, 2016 [Page 40]

Internet-Draft CBOR Encoded Message Syntax July 2015

 {
 1: 1,
 4: h'546869732069732074686520636f6e74656e742e',
 5: [
 {
 2: h'a20165505333383405781e62696c626f2e62616767696e7340686f
 626269746f6e2e6578616d706c65',
 6: h'7c4656acc11ffe98e2ea4babff6d177b2e5a088da2034e0096a6f8
 8cd50a36ed971a83f42244d40d97043d080f43dff7a7c0eb5bc322a3d3d18826c
 e755d82293ecc22a3919857bc60c456017ca87b7d662971687aac7315f68c9f52
 d95c24f72418b7eb07cd432875ab42658bde269534da10d8572c2d5340be660cf
 cf7f6cceaf5cd02ddfdac1cf18930199c0e8721c2d71c646516cc3da79f6d555e
 89825803ef1ecf7fb411cea24d15610f56d33af0d1a7e68a2e07e9790326f01f2
 9ad7210e317c637f7cbd16f8cd32a9959dfd419de697dfa3145aa7cd1019072f9
 5c3d041bd8d47de09abbce16117733378e1593fe2439454cd907f88aabc664d26
 298'
 }
]
 }

C.6. Multiple Signers

 This example has some features that are in questions but not yet
 cooperated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 Encoded in CBOR - 491 bytes, content is 14 bytes long

Schaad Expires January 6, 2016 [Page 41]

Internet-Draft CBOR Encoded Message Syntax July 2015

 {
 1: 1,
 4: h'546869732069732074686520636f6e74656e742e',
 5: [
 {
 2: h'a10129',
 3: {
 5: "bilbo.baggins@hobbiton.example"
 },
 6: h'93f83aaf872d9fc8c7cad30437dc8fed33a673ec5d4d8e004f16d9
 ed236f6b2ce4cc15ea48aef8c5c0c4eab8ed539a4eae27ac9d5f5e6ef7b9cfb02
 133f3f4ad7062db989fcff6ecc67c13624418224416116ff0a67d1a133d27bb79
 1a1893a03c683d84def6742059c63670c2738efc2dde8eac364b4d714c60db424
 ffbfb098c579c6538daa2a9fc5be2d829a82c148c9913a537f98ceb469b78fae2
 02531353fe740ba5ef3eb01377b01e7b27f0ffad35cdd3ef8d2c010a60331b2ac
 2924183022425a1a3a4495adb03d67a92fb420bd408cb0c81d5bac694d1568f11
 2ec8bbab834ca02b098c3b8f4975d75114bb001408252875d14bc1516f843b9fa
 bb0'
 },
 {
 3: {
 1: -9,
 5: "bilbo.baggins@hobbiton.example"
 },
 6: h'5bacf5cf8e84051f01030a688c9c5dfa867173a6038e6655374ce3
 e07de671d16dbe8cee3e965f2492d7850debf63b64a93e8fe7062ea536f3f165a
 e34d5852f5001f1a1caffc52b05aec184da5a4148e305d87d0ef68642701b05c6
 dde19669a1ffb39158a8fa4d51e95a2557b86da7a64a719a1422568dec9ec699d
 af93a58eab268'
 }
]
 }

Appendix D. COSE Header Algorithm Label Table

Schaad Expires January 6, 2016 [Page 42]

Internet-Draft CBOR Encoded Message Syntax July 2015

 +------+-------------------+-------+----------+---------------------+
 | name | algorithm | label | CBOR | description |
 | | | | type | |
 +------+-------------------+-------+----------+---------------------+
apu	ECDH	-1	bstr	
apv	ECDH	-2	bstr	
epk	ECDH	-3	COSE_Key	contains a COSE key
				not a JWK key
iv	A128GCMKW,	-1	bstr	
	A192GCMKW,			
	A256GCMKW			
iv	A128GCM, A192GCM,	-1	bstr	
	A256GCM			
p2c	PBE	-1	int	
p2s	PBE	-2	bstr	
 +------+-------------------+-------+----------+---------------------+

Appendix E. COSE Algorithm Name Values

 This table contains all of the defined algorithms for COSE.

 +--------------------+-------+--------------------------------------+
 | name | value | description |
 +--------------------+-------+--------------------------------------+
HS256	4	HMAC w/ SHA-256
HS384	5	HMAC w/ SHA-384
HS512	6	HMAC w/ SHA-512
RS256	*	RSASSA-v1.5 w/ SHA-256
RS384	*	RSASSA-v1.5 w/ SHA-384
RSA512	*	RSASSA-v1.5 w/ SHA-256
ES256	-7	ECDSA w/ SHA-256
ES384	-8	ECDSA w/ SHA-384
ES512	-9	ECDSA w/ SHA-512

Schaad Expires January 6, 2016 [Page 43]

Internet-Draft CBOR Encoded Message Syntax July 2015

PS256	-10	RSASSA-PSS w/ SHA-256
PS384	*	RSASSA-PSS w/ SHA-384
PS512	-11	RSASSA-PSS w/ SHA-512
RSA1_5	*	RSAES v1.5 Key Encryption
RSA-OAEP	-2	RSAES OAEP w/ SHA-256
A128KW	-3	AES Key Wrap w/ 128-bit key
A192KW	-4	AES Key Wrap w/ 192-bit key
A256KW	-5	AES Key Wrap w/ 256-bit key
dir	-6	Direct use of CEK
ECDH-ES	*	ECDH ES w/ Concat KDF as CEK
ECDH-ES+A128KW	*	ECDH ES w/ Concat KDF and AES Key
		wrap w/ 128 bit key
ECDH-ES+A192KW	*	ECDH ES w/ Concat KDF and AES Key
		wrap w/ 192 bit key
ECDH-ES+A256KW	*	ECDH ES w/ Concat KDF and AES Key
		wrap w/ 256 bit key
A128GCMKW	*	AES GCM Key Wrap w/ 128 bit key
A192GCMKW	*	AES GCM Key Wrap w/ 192 bit key
A256GCMKW	*	AES GCM Key Wrap w/ 256 bit key
PBES2-HS256+A128KW	*	PBES2 w/ HMAC SHA-256 and AES Key
		wrap w/ 128 bit key
PBES2-HS384+A192KW	*	PBES2 w/ HMAC SHA-384 and AES Key
		wrap w/ 192 bit key
PBES2-HS512+A256KW	*	PBES2 w/ HMAC SHA-512 and AES Key
		wrap w/ 256 bit key
A128GCM	1	AES-GCM mode w/ 128-bit key
A192GCM	2	AES-GCM mode w/ 192-bit key

Schaad Expires January 6, 2016 [Page 44]

Internet-Draft CBOR Encoded Message Syntax July 2015

 | A256GCM | 3 | AES-GCM mode w/ 256-bit key |
 +--------------------+-------+--------------------------------------+

Appendix F. COSE General Values

 +------+--------+-------------------------+
 | name | number | description |
 +------+--------+-------------------------+
 | EC | 1 | Elliptic Curve key Type |
 | | | |
 | RSA | 2 | RSA Key type |
 | | | |
 | oct | 3 | Octet Key type |
 | | | |
 | P256 | 4 | EC Curve P256 (NIST) |
 | | | |
 | P521 | 5 | EC Curve P521 (NIST) |
 +------+--------+-------------------------+

Appendix G. COSE Key Map Labels

 This table contains a list of all of the parameters defined for keys
 that were defined by the JOSE document set. In the table is the data
 value type to be used for CBOR as well as the integer value that can
 be used as a replacement for the name in order to further decrease
 the size of the sent item.

Schaad Expires January 6, 2016 [Page 45]

Internet-Draft CBOR Encoded Message Syntax July 2015

 +----------+-------+-------+-------------+--------------------------+
 | name | label | CBOR | registry | description |
 | | | type | | |
 +----------+-------+-------+-------------+--------------------------+
kty	1	tstr	COSE	Identification of the
		/ int	General	key type
			Values	
use	*	tstr		deprecated - don't use
key_ops	*	[*		
		tstr]		
alg	3	tstr	COSE	Key usage restriction to
		/ int	Algorithm	this algorithm
			Values	
kid	2	bstr		Key Identification value
				- match to kid in
				message
x5u	*	tstr		
x5c	*	bstr*		
x5t	*	bstr		
x5t#S256	*	bstr		
 +----------+-------+-------+-------------+--------------------------+

 ;key_keys
 kty=1
 key_kid=2
 key_alg=3

Appendix H. COSE Key Parameter Labels

 This table contains a list of all of the parameters that were defined
 by the JOSE document set for a specific key type. In the table is
 the data value type to be used for CBOR as well as the integer value
 that can be used as a replacement for the name in order to further
 decrease the size of the sent item. Parameters dealing with keys

Schaad Expires January 6, 2016 [Page 46]

Internet-Draft CBOR Encoded Message Syntax July 2015

 +-------+------+-------+---------+--------------------+-------------+
 | key | name | label | CBOR | registry | description |
 | type | | | type | | |
 +-------+------+-------+---------+--------------------+-------------+
EC	crv	-1	int /	Pull from general	
			tstr	value registry	
EC	x	-2	bstr		
EC	y	-3	bstr		
EC	d	-4	bstr		
RSA	e	-1	bstr		
RSA	n	-2	bstr		
RSA	d	-3	bstr		
RSA	p	-4	bstr		
RSA	q	-5	bstr		
RSA	dp	-6	bstr		
RSA	dq	-7	bstr		
RSA	qi	-8	bstr		
RSA	oth	-9	bstr		
RSA	r	-10	bstr		
RSA	t	-11	bstr		
oct	k	-1	bstr		
 +-------+------+-------+---------+--------------------+-------------+

Editorial Comments

[CREF1] JLS: Need to check this list for correctness before publishing.

[CREF2] JLS: I have moved msg_type into the individual structures.
 However, they would not be necessary in the cases where a) the
 security service is known and b) security libraries can setup to
 take individual structures. Should they be moved back to just
 appearing if used in a COSE_MSG rather than on the individual
 structure?

Schaad Expires January 6, 2016 [Page 47]

Internet-Draft CBOR Encoded Message Syntax July 2015

[CREF3] JLS: Should we create an IANA registries for the values of
 msg_type?

[CREF4] JLS: OPEN ISSUE

[CREF5] JLS: A completest version of this grammar would list the options
 available in the protected and unprotected headers. Do we want
 to head that direction?

[CREF6] JLS: Need to figure out how we are going to go about creating
 this registry -or are we going to modify the current mime-
 content table?

[CREF7] Ilari: I don't follow/understand this text

[CREF8] JLS: Finish the registration process.

[CREF9] JLS: Should we register both or just the cose+cbor one?

Author's Address

 Jim Schaad
 August Cellars

 Email: ietf@augustcellars.com

Schaad Expires January 6, 2016 [Page 48]

