
COSE Working Group J. Schaad
Internet-Draft August Cellars
Intended status: Informational B. Campbell
Expires: March 24, 2016 Ping Identity
 September 21, 2015

CBOR Encoded Message Syntax
draft-ietf-cose-msg-05

Abstract

 Concise Binary Object Representation (CBOR) is data format designed
 for small code size and small message size. There is a need for the
 ability to have the basic security services defined for this data
 format. This document specifies how to do signatures, message
 authentication codes and encryption using this data format.

Contributing to this document

 The source for this draft is being maintained in GitHub. Suggested
 changes should be submitted as pull requests at <https://github.com/

cose-wg/cose-spec>. Instructions are on that page as well.
 Editorial changes can be managed in GitHub, but any substantial
 issues need to be discussed on the COSE mailing list.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 24, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Schaad & Campbell Expires March 24, 2016 [Page 1]

https://github.com/cose-wg/cose-spec
https://github.com/cose-wg/cose-spec
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft CBOR Encoded Message Syntax September 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Design changes from JOSE 5
1.2. Requirements Terminology 5
1.3. CBOR Grammar . 6
1.4. CBOR Related Terminology 6
1.5. Document Terminology 7
1.6. Mandatory to Implement Algorithms 7

2. The COSE_MSG structure 8
3. Header Parameters . 9
3.1. Common COSE Headers Parameters 11

4. Signing Structure . 14
4.1. Externally Supplied Data 16
4.2. Signing and Verification Process 16
4.3. Computing Counter Signatures 18

5. Encryption objects . 19
5.1. Enveloped COSE structure 19
5.1.1. Recipient Algorithm Classes 20

5.2. Encrypted COSE structure 21
5.3. Encryption Algorithm for AEAD algorithms 21
5.4. Encryption algorithm for AE algorithms 22

6. MAC objects . 23
6.1. How to compute a MAC 24

7. Key Structure . 25
7.1. COSE Key Common Parameters 25

8. Signature Algorithms . 28
8.1. ECDSA . 29
8.1.1. Security Considerations 30

8.2. RSASSA-PSS . 31
8.2.1. Security Considerations 31

9. Message Authentication (MAC) Algorithms 32
9.1. Hash-based Message Authentication Codes (HMAC) 32
9.1.1. Security Considerations 33

9.2. AES Message Authentication Code (AES-CBC-MAC) 34
9.2.1. Security Considerations 34

10. Content Encryption Algorithms 35
10.1. AES GCM . 35

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Schaad & Campbell Expires March 24, 2016 [Page 2]

Internet-Draft CBOR Encoded Message Syntax September 2015

10.1.1. Security Considerations 36
10.2. AES CCM . 36
10.2.1. Security Considerations 39

10.3. ChaCha20 and Poly1305 39
10.3.1. Security Considerations 40

11. Key Derivation Functions (KDF) 40
 11.1. HMAC-based Extract-and-Expand Key Derivation Function
 (HKDF) . 41

11.2. Context Information Structure 42
12. Recipient Algorithm Classes 46
12.1. Direct Encryption 46
12.1.1. Direct Key . 47
12.1.2. Direct Key with KDF 47

12.2. Key Wrapping . 49
12.2.1. AES Key Wrapping 49

12.3. Key Encryption . 50
12.3.1. RSAES-OAEP . 50

12.4. Direct Key Agreement 51
12.4.1. ECDH . 52

12.5. Key Agreement with KDF 56
12.5.1. ECDH . 56

13. Keys . 56
13.1. Elliptic Curve Keys 57
13.1.1. Single Coordinate Curves 58
13.1.2. Double Coordinate Curves 58

13.2. RSA Keys . 60
13.3. Symmetric Keys . 61

14. CBOR Encoder Restrictions 62
15. IANA Considerations . 62
15.1. CBOR Tag assignment 62
15.2. COSE Header Parameter Registry 62
15.3. COSE Header Algorithm Label Table 63
15.4. COSE Algorithm Registry 64
15.5. COSE Key Common Parameter Registry 65
15.6. COSE Key Type Parameter Registry 65
15.7. COSE Elliptic Curve Registry 66
15.8. Media Type Registration 67
15.8.1. COSE Security Message 67
15.8.2. COSE Key media type 69

16. Security Considerations 70
17. References . 71
17.1. Normative References 71
17.2. Informative References 71

Appendix A. CDDL Grammar . 74
Appendix B. Three Levels of Recipient Information 74
Appendix C. Examples . 76
C.1. Examples of MAC messages 76
C.1.1. Shared Secret Direct MAC 76

Schaad & Campbell Expires March 24, 2016 [Page 3]

Internet-Draft CBOR Encoded Message Syntax September 2015

C.1.2. ECDH Direct MAC 77
C.1.3. Wrapped MAC . 78
C.1.4. Multi-recipient MAC message 79

C.2. Examples of Encrypted Messages 81
C.2.1. Direct ECDH . 81
C.2.2. Direct plus Key Derivation 81

C.3. Examples of Signed Message 82
C.3.1. Single Signature 82
C.3.2. Multiple Signers 83

C.4. COSE Keys . 84
C.4.1. Public Keys . 84
C.4.2. Private Keys . 86

Appendix D. Document Updates 88
D.1. Version -04 to -05 89
D.2. Version -03 to -04 89
D.3. Version -02 to -03 89
D.4. Version -02 to -03 89
D.5. Version -01 to -2 . 90
D.6. Version -00 to -01 90

 Authors' Addresses . 92

1. Introduction

 There has been an increased focus on the small, constrained devices
 that make up the Internet of Things (IOT). One of the standards that
 has come of of this process is the Concise Binary Object
 Representation (CBOR). CBOR extended the data model of the
 JavaScript Object Notation (JSON) by allowing for binary data among
 other changes. CBOR is being adopted by several of the IETF working
 groups dealing with the IOT world as their encoding of data
 structures. CBOR was designed specifically to be both small in terms
 of messages transport and implementation size as well having a schema
 free decoder. A need exists to provide basic message security
 services for IOT and using CBOR as the message encoding format makes
 sense.

 The JOSE working group produced a set of documents
 [RFC7515][RFC7516][RFC7517][RFC7518] that defined how to perform
 encryption, signatures and message authentication (MAC) operations
 for JSON documents and then to encode the results using the JSON
 format [RFC7159]. This document does the same work for use with the
 CBOR [RFC7049] document format. While there is a strong attempt to
 keep the flavor of the original JOSE documents, two considerations
 are taken into account:

 o CBOR has capabilities that are not present in JSON and should be
 used. One example of this is the fact that CBOR has a method of

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7049

Schaad & Campbell Expires March 24, 2016 [Page 4]

Internet-Draft CBOR Encoded Message Syntax September 2015

 encoding binary directly without first converting it into a base64
 encoded string.

 o COSE is not a direct copy of the JOSE specification. In the
 process of creating COSE, decisions that were made for JOSE were
 re-examined. In many cases different results were decided on as
 the criteria were not always the same as for JOSE.

1.1. Design changes from JOSE

 o Define a top level message structure so that encrypted, signed and
 MACed messages can easily identified and still have a consistent
 view.

 o Signed messages separate the concept of protected and unprotected
 parameters that are for the content and the signature.

 o Recipient processing has been made more uniform. A recipient
 structure is required for all recipients rather than only for
 some.

 o MAC messages are separated from signed messages.

 o MAC messages have the ability to do use all recipient algorithms
 on the MAC authentication key.

 o Use binary encodings for binary data rather than base64url
 encodings.

 o Combine the authentication tag for encryption algorithms with the
 ciphertext.

 o Remove the flattened mode of encoding. Forcing the use of an
 array of recipients at all times forces the message size to be two
 bytes larger, but one gets a corresponding decrease in the
 implementation size that should compensate for this. [CREF1]

1.2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 When the words appear in lower case, their natural language meaning
 is used.

https://datatracker.ietf.org/doc/html/rfc2119

Schaad & Campbell Expires March 24, 2016 [Page 5]

Internet-Draft CBOR Encoded Message Syntax September 2015

1.3. CBOR Grammar

 There currently is no standard CBOR grammar available for use by
 specifications. We therefore describe the CBOR structures in prose.
 There is a version of a CBOR grammar in the CBOR Data Definition
 Language (CDDL) [I-D.greevenbosch-appsawg-cbor-cddl]. An
 informational version of the CBOR grammar that reflects what is in
 the prose can be found in Appendix A. CDDL has not been fixed, so
 this grammar may will only work with the version of CDDL at the time
 of publishing.

 The document was developed by first working on the grammar and then
 developing the prose to go with it. An artifact of this is that the
 prose was written using the primitive type strings defined by early
 versions CDDL. In this specification the following primitive types
 are used:

 bstr - byte string (major type 2).

 int - an unsigned integer or a negative integer.

 nil - a null value (tag 7.22).

 nint - a negative integer (major type 1).

 tstr - a UTF-8 text string (major type 3).

 uint - an unsigned integer (major type 0).

 Text from here to start of next section to be removed

 NOTE: For the purposes of review, we are currently interlacing the
 CDLL grammar into the text of document. This is being done for
 simplicity of comparision of the grammar againist the prose. The
 grammar will be removed to an appendix during WGLC.

 start = COSE_MSG / COSE_Tagged_MSG / COSE_Key / COSE_KeySet

1.4. CBOR Related Terminology

 In JSON, maps are called objects and only have one kind of map key: a
 string. In COSE, we use both strings and integers (both negative and
 non-negative integers) as map keys, as well as data items to identify
 specific choices. The integers (both positive and negative) are used
 for compactness of encoding and easy comparison. (Generally, in this
 document the value zero is going to be reserved and not used.) Since
 the work "key" is mainly used in its other meaning, as a

Schaad & Campbell Expires March 24, 2016 [Page 6]

Internet-Draft CBOR Encoded Message Syntax September 2015

 cryptographic key, we use the term "label" for this usage of either
 an integer or a string to identify map keys and choose data items.

 Text from here to start of next section to be removed

 label = int / tstr
 values = any

1.5. Document Terminology

 In this document we use the following terminology: [CREF2]

 Byte is a synonym for octet.

 Key management is used as a term to describe how a key at level n is
 obtained from level n+1 in encrypted and MACed messages. The term is
 also used to discuss key life cycle management, this document does
 not discuss key life cycle operations.

1.6. Mandatory to Implement Algorithms

 One of the issues that needs to be addressed is a requirement that a
 standard specify a set of algorithms that are required to be
 implemented. [CREF3] This is done to promote interoperability as it
 provides a minimal set of algorithms that all devices can be sure
 will exist at both ends. However, we have elected not to specify a
 set of mandatory algorithms in this document.

 It is expected that COSE is going to be used in a wide variety of
 applications and on a wide variety of devices. Many of the
 constrained devices are going to be setup to used a small fixed set
 of algorithms, and this set of algorithms may not match those
 available on a device. We therefore have deferred to the application
 protocols the decision of what to specify for mandatory algorithms.

 Since the set of algorithms in an environment of constrained devices
 may depend on what the set of devices are and how long they have been
 in operation, we want to highlight that application protocols will
 need to specify some type of discovery method of algorithm
 capabilities. The discovery method may be as simple as requiring
 preconfiguration of the set of algorithms to providing a discovery
 method built into the protocol. S/MIME provided a number of
 different ways to approach the problem:

 o Advertising in the message (S/MIME capabilities) [RFC5751].

 o Advertising in the certificate (capabilities extension) [RFC4262]

https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc4262

Schaad & Campbell Expires March 24, 2016 [Page 7]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o Minimum requirements for the S/MIME which have been updated over
 time [RFC2633][RFC5751]

2. The COSE_MSG structure

 The COSE_MSG structure is a top level CBOR object that corresponds to
 the DataContent type in the Cryptographic Message Syntax (CMS)
 [RFC5652]. [CREF4] This structure allows for a top level message to
 be sent that could be any of the different security services. The
 security service is identified within the message.

 The COSE_Tagged_MSG CBOR type takes the COSE_MSG and prepends a CBOR
 tag of TBD1 to the encoding of COSE_MSG. By having both a tagged and
 untagged version of the COSE_MSG structure, it becomes easy to either
 use COSE_MSG as a top level object or embedded in another object.
 The tagged version allows for a method of placing the COSE_MSG
 structure into a choice, using a consistent tag value to determine
 that this is a COSE object.

 The existence of the COSE_MSG and COSE_Tagged_MSG CBOR data types are
 not intended to prevent protocols from using the individual security
 primitives directly. Where only a single service is required, that
 structure can be used directly.

 Each of the top-level security objects use a CBOR array as the base
 structure. For each of the top-level security objects, the first
 field is a 'msg_type'. The CBOR type for a 'msg_type' is 'int'. The
 'msg_type' is defined to distinguish between the different structures
 when they appear as part of a COSE_MSG object. [CREF5] [CREF6]
 [CREF7]

 The message types defined in this document are:

 0 - Reserved.

 1 - Signed Message.

 2 - Enveloped Message

 3 - Authenticated Message (MACed message)

 4 - Encrypted Message

 Implementations MUST be prepared to find an integer in this field
 that does not correspond to the values 1 to 3. If a message type is
 found then the client does not support the associated security
 object, the client MUST stop attempting to process the structure and
 fail. The value of 0 is reserved and not assigned to a security

https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc5652

Schaad & Campbell Expires March 24, 2016 [Page 8]

Internet-Draft CBOR Encoded Message Syntax September 2015

 object. If the value of 0 is found, then clients MUST fail
 processing the structure. Implementations need to recognize that the
 set of values might be extended at a later date, but they should not
 provide a security service based on guesses of what the security
 object might be.

 Text from here to start of next section to be removed

 COSE_MSG = COSE_Sign /
 COSE_enveloped /
 COSE_encryptData /
 COSE_mac

 COSE_Tagged_MSG = #6.999(COSE_MSG) ; Replace 999 with TBD1

 ; msg_type values
 msg_type_reserved=0
 msg_type_signed=1
 msg_type_enveloped=2
 msg_type_mac=3
 msg_type_encryptData=4

3. Header Parameters

 The structure of COSE has been designed to have two buckets of
 information that are not considered to be part of the payload itself,
 but are used for holding information about content, algorithms, keys,
 or evaluation hints for the processing of the layer. These two
 buckets are available for use in all of the structures in this
 document except for keys. While these buckets can be present, they
 may not all be usable in all instances. For example, while the
 protected bucket is defined as part of recipient structures, most of
 the algorithms that are used for recipients do not provide the
 necessary functionality to provide the needed protection and thus the
 bucket should not be used.

 Both buckets are implemented as CBOR maps. The map key is a 'label'
 (Section 1.4). The value portion is dependent on the definition for
 the label. Both maps use the same set of label/value pairs. The
 integer and string values for labels has been divided into several
 sections with a standard range, a private range, and a range that is
 dependent on the algorithm selected. The defined labels can be found
 in the 'COSE Header Parameters' IANA registry (Section 15.2).

 Two buckets are provided for each layer:

 protected contains parameters about the current layer that are to be
 cryptographically protected. This bucket MUST be empty if it is

Schaad & Campbell Expires March 24, 2016 [Page 9]

Internet-Draft CBOR Encoded Message Syntax September 2015

 not going to be included in a cryptographic computation. This
 bucket is encoded in the message as a binary object. This value
 is obtained by CBOR encoding the protected map and wrapping it in
 a bstr object. Senders SHOULD encode an empty protected map as a
 zero length binary object (it is shorter). Recipients MUST accept
 both a zero length binary value and a zero length map encoded in
 the binary value. The wrapping allows for the encoding of the
 protected map to be transported with a greater chance that it will
 not be altered in transit. (Badly behaved intermediates could
 decode and re-encode, but this will result in a failure to verify
 unless the re-encoded byte string is identical to the decoded byte
 string.) This finesses the problem of all parties needing to be
 able to do a common canonical encoding.

 unprotected contains parameters about the current layer that are not
 cryptographically protected.

 Only parameters that deal with the current layer are to be placed at
 that layer. As an example of this, the parameter 'content type'
 describes the content of the message being carried in the message.
 As such this parameter is placed only the the content layer and is
 not placed in the recipient or signature layers. In principle, one
 should be able to process any given layer without reference to any
 other layer. (The only data that should need to cross layers is the
 cryptographic key.)

 The buckets are present in all of the security objects defined in
 this document. The fields in order are the 'protected' bucket (as a
 CBOR 'bstr' type) and then the 'unprotected' bucket (as a CBOR 'map'
 type). The presence of both buckets is required. The parameters
 that go into the buckets come from the IANA "COSE Header Parameters"
 (Section 15.2). Some common parameters are defined in the next
 section, but a number of parameters are defined throughout this
 document.

 Text from here to start of next section to be removed [CREF8]

 header_map = {+ label => any }

 Headers = (
 protected : bstr, ; Contains a header_map
 unprotected : header_map
)

Schaad & Campbell Expires March 24, 2016 [Page 10]

Internet-Draft CBOR Encoded Message Syntax September 2015

3.1. Common COSE Headers Parameters

 This section defines a set of common header parameters. A summary of
 those parameters can be found in Table 1. This table should be
 consulted to determine the value of label used as well as the type of
 the value.

 The set of header parameters defined in this section are:

 alg This parameter is used to indicate the algorithm used for the
 security processing. This parameter MUST be present at each level
 of a signed, encrypted or authenticated message. The value is
 taken from the 'COSE Algorithm Registry' (see Section 15.4).

 crit This parameter is used to ensure that applications will take
 appropriate action based on the values found. The parameter is
 used to indicate which protected header labels an application that
 is processing a message is required to understand. The value is
 an array of COSE Header Labels. When present, this parameter MUST
 be placed in the protected header bucket.

 * Integer labels in the range of 0 to 10 SHOULD be omitted.

 * Integer labels in the range -1 to -255 can be omitted as they
 are algorithm dependent. If an application can correctly
 process an algorithm, it can be assumed that it will correctly
 process all of the parameters associated with that algorithm.
 (The algorithm range is -1 to -65536, it is assumed that the
 higher end will deal with more optional algorithm specific
 items.)

 The header parameter values indicated by 'crit' can be processed
 by either the security library code or by an application using a
 security library, the only requirement is that the parameter is
 processed. If the 'crit' value list includes a value for which
 the parameter is not in the protected bucket, this is a fatal
 error in processing the message.

 content type This parameter is used to indicate the content type of
 the data in the payload or ciphertext fields. Integers are from
 the 'CoAP Content-Formats' IANA registry table. Strings are from
 the IANA 'Media Types' registry. Applications SHOULD provide this
 parameter if the content structure is potentially ambiguous.

 kid This parameter one of the ways that can be used to find the key
 to be used. The value of this parameter is matched against the
 'kid' member in a COSE_Key structure. Applications MUST NOT

Schaad & Campbell Expires March 24, 2016 [Page 11]

Internet-Draft CBOR Encoded Message Syntax September 2015

 assume that 'kid' values are unique. There may be more than one
 key with the same 'kid' value, it may be required that all of the
 keys need to be checked to find the correct one. The internal
 structure of 'kid' values is not defined and generally cannot be
 relied on by applications. Key identifier values are hints about
 which key to use, they are not directly a security critical field,
 for this reason they can be placed in the unprotected headers
 bucket.

 nonce This parameter holds either a nonce or Initialization Vector
 value. The value can be used either as a counter value for a
 protocol or as an IV for an algorithm.

 counter signature This parameter holds a counter signature value.
 Counter signatures provide a method of having a second party sign
 some data, the counter signature can occur as an unprotected
 attribute in any of the following structures: COSE_Sign,
 COSE_signature, COSE_enveloped, COSE_recipient,
 COSE_encryptedData, COSE_mac. These structures all have the same
 basic structure so that a consistent calculation of the counter
 signature can be computed. Details on computing counter
 signatures are found in Section 4.3.

Schaad & Campbell Expires March 24, 2016 [Page 12]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +----------+-------+---------------+----------------+---------------+
 | name | label | value type | value registry | description |
 +----------+-------+---------------+----------------+---------------+
alg	1	int / tstr	COSE Algorithm	Integers are
			Registry	taken from
				table --POINT
				TO REGISTRY--
crit	2	[+ label]	COSE Header	integer
			Label Registry	values are
				from --
				POINT TO
				REGISTRY --
content	3	tstr / int	CoAP Content-	Value is
type			Formats or	either a
			Media Types	Media Type or
			registry	an integer
				from the CoAP
				Content
				Format
				registry
kid	4	bstr		key
				identifier
nonce	5	bstr		Nonce or Init
				ialization
				Vector (IV)
counter	6	COSE_signatur		CBOR encoded
signatur		e		signature
e				structure
zip	*	int / tstr		Integers are
				taken from
				the table
				--POINT TO
				REGISTRY--
 +----------+-------+---------------+----------------+---------------+

 Table 1: Common Header Parameters

 OPEN ISSUES:

 1. Do we want to have a zip/compression header standardized in this
 document?

Schaad & Campbell Expires March 24, 2016 [Page 13]

Internet-Draft CBOR Encoded Message Syntax September 2015

 2. I am currently torn on the question "Should epk and iv/nonce be
 algorithm specific or generic headers?" They are really specific
 to an algorithm and can potentially be defined in different ways
 for different algorithms. As an example, it would make sense to
 defined nonce for CCM and GCM modes that can have the leading
 zero bytes stripped, while for other algorithms this might be
 undesirable.

 3. We might want to define some additional items. What are they? A
 possible example would be a sequence number as this might be
 common. On the other hand, this is the type of things that is
 frequently used as the nonce in some places and thus should not
 be used in the same way. Other items might be challenge/response
 fields for freshness as these are likely to be common.

4. Signing Structure

 The signature structure allows for one or more signatures to be
 applied to a message payload. There are provisions for parameters
 about the content and parameters about the signature to be carried
 along with the signature itself. These parameters may be
 authenticated by the signature, or just present. Examples of
 parameters about the content would be the type of content, when the
 content was created, and who created the content. Examples of
 parameters about the signature would be the algorithm and key used to
 create the signature, when the signature was created, and counter-
 signatures.

 When more than one signature is present, the successful validation of
 one signature associated with a given signer is usually treated as a
 successful signature by that signer. However, there are some
 application environments where other rules are needed. An
 application that employs a rule other than one valid signature for
 each signer must specify those rules. Also, where simple matching of
 the signer identifier is not sufficient to determine whether the
 signatures were generated by the same signer, the application
 specification must describe how to determine which signatures were
 generated by the same signer. Support of different communities of
 recipients is the primary reason that signers choose to include more
 than one signature. For example, the COSE_Sign structure might
 include signatures generated with the RSA signature algorithm and
 with the Elliptic Curve Digital Signature Algorithm (ECDSA) signature
 algorithm. This allows recipients to verify the signature associated
 with one algorithm or the other. (The original source of this text
 is [RFC5652].) More detailed information on multiple signature
 evaluation can be found in [RFC5752].

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5752

Schaad & Campbell Expires March 24, 2016 [Page 14]

Internet-Draft CBOR Encoded Message Syntax September 2015

 The COSE_Sign structure is a CBOR array. The fields of the array in
 order are:

 msg_type identifies this as providing the signed security service.
 The value MUST be msg_type_signed (1).

 protected is described in Section 3.

 unprotected is described in Section 3.

 payload contains the serialized content to be signed. If the
 payload is not present in the message, the application is required
 to supply the payload separately. The payload is wrapped in a
 bstr to ensure that it is transported without changes. If the
 payload is transported separately, then a nil CBOR object is
 placed in this location and it is the responsibility of the
 application to ensure that it will be transported without changes.

 signatures is an array of signature items. Each of these items uses
 the COSE_signature structure for its representation.

 The COSE_signature structure is a CBOR array. The fields of the
 array in order are:

 protected is described in Section 3.

 unprotected is described in Section 3.

 signature contains the computed signature value. The type of the
 field is a bstr.

 Text from here to start of next section to be removed

 COSE_Sign = [
 msg_type: msg_type_signed,
 Headers,
 payload : bstr / nil,
 signatures : [+ COSE_signature]
]

 COSE_signature = [
 Headers,
 signature : bstr
]

Schaad & Campbell Expires March 24, 2016 [Page 15]

Internet-Draft CBOR Encoded Message Syntax September 2015

4.1. Externally Supplied Data

 One of the features that we supply in the COSE document is the
 ability for applications to provide additional data to be
 authenticated as part of the security, but that is not carried as
 part of the COSE object. The primary reason for supporting this can
 be seen by looking at the CoAP message struture [RFC7252] where the
 facility exists for options to be carried before the payload. An
 example of data that can be placed in this location would be
 transaction ids and nonces to check for replay protection. If the
 data is in the options section, then it is available for routers to
 help in performing the replay detection and prevention. However, it
 may also be desired to protect these values so that they cannot be
 modified in transit. This is the purpose of the externally supplied
 data field.

 This document describes the process for using a byte array of
 externally supplied authenticated data, however the method of
 constructing the byte array is a function of the application.
 Applications which use this feature need to define how the externally
 supplied authenticated data is to be constructed. Such a
 construction needs to take into account the following issues:

 o If multiple items are included, care needs to be taken that data
 cannot bleed between the items. This is usually addressed by
 making fields fixed width and/or encoding the length of the field.
 Using options from CoAP as an example, these fields use a TLV
 structure so they can be concatenated without any problems.

 o If multiple items are included, a defined order for the items
 needs to be defined. Using options from CoAP as an example, an
 application could state that the fields are to be ordered by the
 option number.

4.2. Signing and Verification Process

 In order to create a signature, a consistent byte stream is needed in
 order to process. This document uses a CBOR array to construct the
 byte stream to be processed. The fields of the array in order are:

 1. The body protected attributes. This is a bstr type containing
 the protected attributes of the body.

 2. The signature protected attributes. This is a bstr type
 containing the protected attributes of the signature.

https://datatracker.ietf.org/doc/html/rfc7252

Schaad & Campbell Expires March 24, 2016 [Page 16]

Internet-Draft CBOR Encoded Message Syntax September 2015

 3. The external protected attributes. This is a bstr type
 containing the protected attributes external to the
 COSE_Signature structure.

 4. The payload to be signed. The payload is encoded in a bstr. The
 payload is placed here independent of how it is transported.

 How to compute a signature:

 1. Create a CBOR array and populate it with the appropriate fields.
 For body_protected and sign_protected, if the fields are not
 present in their corresponding maps, an bstr of length zero is
 used.

 2. If the application has supplied external additional authenticated
 data to be included in the computation, then it is placed in the
 third field. If no data was supplied, then a zero length binary
 value is used.

 3. Create the value ToBeSigned by encoding the Sig_structure to a
 byte string.

 4. Call the signature creation algorithm passing in K (the key to
 sign with), alg (the algorithm to sign with) and ToBeSigned (the
 value to sign).

 5. Place the resulting signature value in the 'signature' field of
 the map.

 How to verify a signature:

 1. Create a Sig_structure object and populate it with the
 appropriate fields. For body_protected and sign_protected, if
 the fields are not present in their corresponding maps, an bstr
 of length zero is used.

 2. If the application has supplied external additional authenticated
 data to be included in the computation, then it is placed in the
 third field. If no data was supplied, then a zero length binary
 value is used.

 3. Create the value ToBeSigned by encoding the Sig_structure to a
 byte string.

 4. Call the signature verification algorithm passing in K (the key
 to verify with), alg (the algorithm to sign with), ToBeSigned
 (the value to sign), and sig (the signature to be verified).

Schaad & Campbell Expires March 24, 2016 [Page 17]

Internet-Draft CBOR Encoded Message Syntax September 2015

 In addition to performing the signature verification, one must also
 perform the appropriate checks to ensure that the key is correctly
 paired with the signing identity and that the appropriate
 authorization is done.

 Text from here to start of next section to be removed

 The COSE structure used to create the byte stream to be signed uses
 the following CDDL grammar structure:

 Sig_structure = [
 body_protected: bstr,
 sign_protected: bstr,
 external_aad: bstr,
 payload: bstr
]

4.3. Computing Counter Signatures

 Counter signatures provide a method of having a different signature
 occur on some piece of content. This is normally used to provide a
 signature on a signature allowing for a proof that a signature
 existed at a given time. In this document we allow for counter
 signatures to exist in a greater number of environments. A counter
 signature can exist, for example, on a COSE_encyptedData object and
 allow for a signature to be present on the encrypted content of a
 message.

 The creation and validation of counter signatures over the different
 items relies on the fact that the structure all of our objects have
 the same structure. The first element may be a message type, this is
 followed by a set of protected attributes, a set of unprotected
 attributes and a body in that order. This means that the
 Sig_structure can be used for in a uniform manner to get the byte
 stream for processing a signature. If the counter signature is going
 to be computed over a COSE_encryptedData structure, the
 body_protected and payload items can be mapped into the Sig_structure
 in the same manner as from the COSE_Sign structure.

 While one can create a counter signature for a COSE_Sign structure,
 there is not much of a point to doing so. It is equivalent to create
 a new COSE_signature structure and placing it in the signatures
 array. It is strongly suggested that it not be done, but it is not
 banned.

Schaad & Campbell Expires March 24, 2016 [Page 18]

Internet-Draft CBOR Encoded Message Syntax September 2015

5. Encryption objects

 COSE supports two different encryption structures. OOSE_enveloped is
 used when the key needs to be explicilty identified. This structure
 supports the use of recipient structures to allow for random content
 encryption keys to be used.. COSE_encrypted is used when the a
 recipient structure is not needed because the key to be used is known
 implicitly.

5.1. Enveloped COSE structure

 The enveloped structure allows for one or more recipients of a
 message. There are provisions for parameters about the content and
 parameters about the recipient information to be carried in the
 message. The parameters associated with the content can be
 authenticated by the content encryption algorithm. The parameters
 associated with the recipient can be authenticated by the recipient
 algorithm (when the algorithm supports it). Examples of parameters
 about the content are the type of the content, when the content was
 created, and the content encryption algorithm. Examples of
 parameters about the recipient are the recipients key identifier, the
 recipient encryption algorithm.

 In COSE, the same techniques and structures for encrypting both the
 plain text and the keys used to protect the text. This is different
 from the approach used by both [RFC5652] and [RFC7516] where
 different structures are used for the content layer and for the
 recipient layer.

 The COSE_encrypt structure is a CBOR array. The fields of the array
 in order are:

 msg_type identifies this as providing the encrypted security
 service. The value MUST be msg_type_encrypted (2).

 protected is described in Section 3.

 unprotected is described in Section 3.

 ciphertext contains the encrypted plain text encoded as a bstr. If
 the ciphertext is to be transported independently of the control
 information about the encryption process (i.e. detached content)
 then the field is encoded as a null object.

 recipients contains an array of recipient information structures.
 The type for the recipient information structure is a
 COSE_recipient.

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7516

Schaad & Campbell Expires March 24, 2016 [Page 19]

Internet-Draft CBOR Encoded Message Syntax September 2015

 The COSE_recipient structure is a CBOR array. The fields of the
 array in order are:

 protected is described in Section 3.

 unprotected is described in Section 3.

 ciphertext contains the encrypted key encoded as a bstr. If there
 is not an encrypted key, then this field is encoded as a nil type.

 recipients contains an array of recipient information structures.
 The type for the recipient information structure is a
 COSE_recipient. If there are no recipient information structures,
 this element is absent.

 Text from here to start of next section to be removed

 COSE_enveloped = [
 msg_type: msg_type_enveloped,
 COSE_encrypt_fields
 recipients: [+COSE_recipient]
]

 COSE_encrypt_fields = (
 Headers,
 ciphertext: bstr / nil,
)

 COSE_recipient = [
 COSE_encrypt_fields
 ? recipients: [+COSE_recipient]
]

5.1.1. Recipient Algorithm Classes

 A typical encrypted message consists of an encrypted content and an
 encrypted CEK for one or more recipients. The content-encryption key
 is encrypted for each recipient, using a key specific to that
 recipient. The details of this encryption depends on which class the
 recipient algorithm falls into. Specific details on each of the
 classes can be found in Section 12. A short summary of the six
 recipient algorithm classes is:

 none: The CEK is the same as as the identified previously
 distributed symmetric key or derived from a previously distributed
 secret.

Schaad & Campbell Expires March 24, 2016 [Page 20]

Internet-Draft CBOR Encoded Message Syntax September 2015

 symmetric key-encryption keys: The CEK is encrypted using a
 previously distributed symmetric key-encryption key.

 key agreement: the recipient's public key and a sender's private key
 are used to generate a pairwise secret, a KDF is applied to derive
 a key, and then the CEK is either the derived key or encrypted by
 the derived key.

 key transport: the CEK is encrypted in the recipient's public key

 passwords: the CEK is encrypted in a key-encryption key that is
 derived from a password.

5.2. Encrypted COSE structure

 The encrypted structure does not have the ability to specify
 recipients of the message. The structure assumes that the recipient
 of the object will already know the identity of the key to be used in
 order to decrypt the message. If a key needs to be identified to the
 recipient, the enveloped structure is used.

 The CDDL grammar structure for encrypted data is:

 COSE_encryptData = [
 msg_type: msg_type_encryptData,
 COSE_encrypt_fields
]

 The COSE_encryptedData structure is a CBOR array. The fields of the
 array in order are:

 msg_type identifies this as providing the encrypted data security
 service. This value MUST be mg_type_encrypted (4).

 protected is described in Section 3.

 unprotected is described in Section 3.

 ciphertext contains the encrypted plain text. If the ciphertext is
 to be transported independently of the control information about
 the encryption process (i.e. detached content) then the field is
 encoded as a null object.

5.3. Encryption Algorithm for AEAD algorithms

 The encryption algorithm for AEAD algorithms is fairly simple. In
 order to get a consistent encoding of the data to be authenticated,
 the Enc_structure is used to have canonical form of the AAD.

Schaad & Campbell Expires March 24, 2016 [Page 21]

Internet-Draft CBOR Encoded Message Syntax September 2015

 1. Copy the protected header field from the message to be sent.

 2. If the application has supplied external additional authenticated
 data to be included in the computation, then it is placed in the
 'external_aad' field. If no data was supplied, then a zero
 length binary value is used. (See Section 4.1 for application
 guidance on constructing this field.)

 3. Encode the Enc_structure using a CBOR Canonical encoding
Section 14 to get the AAD value.

 4. Determine the encryption key. This step is dependent on the
 class of recipient algorithm being used. For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current level.

 Direct and Direct Key Agreement: The key is determined by the
 key and algorithm in the recipient structure. The encryption
 algorithm and size of the key to be used are inputs into the
 KDF used for the recipient. (For direct, the KDF can be
 thought of as the identity operation.)

 Other: The key is randomly generated.

 5. Call the encryption algorithm with K (the encryption key to use),
 P (the plain text) and AAD (the additional authenticated data).
 Place the returned cipher text into the 'ciphertext' field of the
 structure.

 6. For recipients of the message, recursively perform the encryption
 algorithm for that recipient using the encryption key as the
 plain text.

 Text from here to start of next section to be removed

 Enc_structure = [
 protected: bstr,
 external_aad: bstr
]

5.4. Encryption algorithm for AE algorithms

 1. Verify that the 'protected' field is absent.

 2. Verify that there was no external additional authenticated data
 supplied for this operation.

Schaad & Campbell Expires March 24, 2016 [Page 22]

Internet-Draft CBOR Encoded Message Syntax September 2015

 3. Determine the encryption key. This step is dependent on the
 class of recipient algorithm being used. For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current level.

 Direct and Direct Key Agreement: The key is determined by the
 key and algorithm in the recipient structure. The encryption
 algorithm and size of the key to be used are inputs into the
 KDF used for the recipient. (For direct, the KDF can be
 thought of as the identity operation.)

 Other: The key is randomly generated.

 4. Call the encryption algorithm with K (the encryption key to use)
 and the P (the plain text). Place the returned cipher text into
 the 'ciphertext' field of the structure.

 5. For recipients of the message, recursively perform the encryption
 algorithm for that recipient using the encryption key as the
 plain text.

6. MAC objects

 In this section we describe the structure and methods to be used when
 doing MAC authentication in COSE. This document allows for the use
 of all of the same classes of recipient algorithms as are allowed for
 encryption.

 When using MAC operations, there are two modes in which it can be
 used. The first is just a check that the content has not been
 changed since the MAC was computed. Any class of recipient algorithm
 can be used for this purpose. The second mode is to both check that
 the content has not been changed since the MAC was computed, and to
 use recipient algorithm to verify who sent it. The classes of
 recipient algorithms that support this are those that use a pre-
 shared secret or do static-static key agreement (without the key wrap
 step). In both of these cases the entity MACing the message can be
 validated by a key binding. (The binding of identity assumes that
 there are only two parties involved and you did not send the message
 yourself.)

 The COSE_encrypt structure is a CBOR array. The fields of the array
 in order are:

 msg_type identifies this as providing the encrypted security
 service. The value MUST be msg_type_mac (3).

Schaad & Campbell Expires March 24, 2016 [Page 23]

Internet-Draft CBOR Encoded Message Syntax September 2015

 protected is described in Section 3.

 unprotected is described in Section 3.

 payload contains the serialized content to be MACed. If the payload
 is not present in the message, the application is required to
 supply the payload separately. The payload is wrapped in a bstr
 to ensure that it is transported without changes. If the payload
 is transported separately, then a null CBOR object is placed in
 this location and it is the responsibility of the application to
 ensure that it will be transported without changes.

 tag contains the MAC value.

 recipients contains the recipient information. See the description
 under COSE_Encryption for more info.

 Text from here to start of next section to be removed

 COSE_mac = [
 msg_type: msg_type_mac,
 Headers,
 payload: bstr / nil,
 tag: bstr,
 recipients: [+COSE_recipient]
]

6.1. How to compute a MAC

 How to compute a MAC:

 1. Create a MAC_structure and copy the protected and payload fields
 from the COSE_mac structure.

 2. If the application has supplied external authenticated data,
 encode it as a binary value and place in the MAC_structure. If
 there is no external authenticated data, then use a zero length
 'bstr'. (See Section 4.1 for application guidance on
 constructing this field.)

 3. Encode the MAC_structure using a canonical CBOR encoder. The
 resulting bytes is the value to compute the MAC on.

 4. Compute the MAC and place the result in the 'tag' field of the
 COSE_mac structure.

 5. Encrypt and encode the MAC key for each recipient of the message.

Schaad & Campbell Expires March 24, 2016 [Page 24]

Internet-Draft CBOR Encoded Message Syntax September 2015

 Text from here to start of next section to be removed

 MAC_structure = [
 protected: bstr,
 external_aad: bstr,
 payload: bstr
]

7. Key Structure

 A COSE Key structure is built on a CBOR map object. The set of
 common parameters that can appear in a COSE Key can be found in the
 IANA registry 'COSE Key Common Parameter Registry' (Section 15.5).
 Additional parameters defined for specific key types can be found in
 the IANA registry 'COSE Key Type Parameters' (Section 15.6).

 A COSE Key Set uses a CBOR array object as it's underlying type. The
 values of the array elements are COSE Keys. A Key Set MUST have at
 least one element in the array. [CREF9]

 The element "kty" is a required element in a COSE_Key map.

 Text from here to start of next section to be removed

 The CDDL grammar describing a COSE_Key and COSE_KeySet is: [CREF10]

 COSE_Key = {
 key_kty => tstr / int,
 ? key_ops => [+ (tstr / int)],
 ? key_alg => tstr / int,
 ? key_kid => bstr,
 * label => values
 }

 COSE_KeySet = [+COSE_Key]

7.1. COSE Key Common Parameters

 This document defines a set of common parameters for a COSE Key
 object. Table 2 provides a summary of the parameters defined in this
 section. There are also a set of parameters that are defined for a
 specific key type. Key type specific parameters can be found in

Section 13.

Schaad & Campbell Expires March 24, 2016 [Page 25]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +---------+-------+-------------+-------------+---------------------+
 | name | label | CBOR type | registry | description |
 +---------+-------+-------------+-------------+---------------------+
kty	1	tstr / int	COSE	Identification of
			General	the key type
			Values	
key_ops	4	[*		Restrict set of
		(tstr/int)]		permissible
				operations
alg	3	tstr / int	COSE	Key usage
			Algorithm	restriction to this
			Values	algorithm
kid	2	bstr		Key Identification
				value - match to
				kid in message
use	*	tstr		deprecated - don't
				use
 +---------+-------+-------------+-------------+---------------------+

 Table 2: Key Map Labels

 kty: This parameter is used to identify the family of keys for this
 structure, and thus the set of key type specific parameters to be
 found. The set of values can be found in Table 20. This
 parameter MUST be present in a key object. Implementations MUST
 verify that the key type is appropriate for the algorithm being
 processed. The key type MUST be included as part of a trust
 decision process.

 alg: This parameter is used to restrict the algorithms that are to
 be used with this key. If this parameter is present in the key
 structure, the application MUST verify that this algorithm matches
 the algorithm for which the key is being used. If the algorthms
 do not match, then this key object MUST NOT be used to perform the
 cryptographic operation. Note that the same key can be in a
 different key structure with a different or no algorithm
 specified, however this is considered to be a poor security
 practice.

 kid: This parameter is used to give an identifier for a key. The
 identifier is not structured and can be anything from a user
 provided string to a value computed on the public portion of the
 key. This field is intended for matching against a 'kid'

Schaad & Campbell Expires March 24, 2016 [Page 26]

Internet-Draft CBOR Encoded Message Syntax September 2015

 parameter in a message in order to filter down the set of keys
 that need to be checked.

 key_ops: This parameter is defined to restrict the set of operations
 that a key is to be used for. The value of the field is an array
 of values from Table 3.

 +---------+-------+---+
 | name | value | description |
 +---------+-------+---+
sign	1	The key is used to create signatures. Requires
		private key fields.
verify	2	The key is used for verification of signatures.
encrypt	3	The key is used for key transport encryption.
decrypt	4	The key is used for key transport decryption.
		Requires private key fields.
wrap	5	The key is used for key wrapping.
key		
unwrap	6	The key is used for key unwrapping. Requires
key		private key fields.
key	7	The key is used for key agreement.
agree		
 +---------+-------+---+

 Table 3: Key Operation Values

 Text from here to start of next section to be removed

 The following provides a CDDL fragment which duplicates the
 assignment labels from Table 2 and Table 3.

Schaad & Campbell Expires March 24, 2016 [Page 27]

Internet-Draft CBOR Encoded Message Syntax September 2015

 ;key_labels
 key_kty=1
 key_kid=2
 key_alg=3
 key_ops=4

 ;key_ops values
 key_ops_sign=1
 key_ops_verify=2
 key_ops_encrypt=3
 key_ops_decrypt=4
 key_ops_wrap=5
 key_ops_unwrap=6
 key_ops_agree=7

8. Signature Algorithms

 There are two basic signature algorithm structures that can be used.
 The first is the common signature with appendix. In this structure,
 the message content is processed and a signature is produced, the
 signature is called the appendix. This is the message structure used
 by our common algorithms such as ECDSA and RSASSA-PSS. (In fact the
 SSA in RSASSA-PSS stands for Signature Scheme with Appendix.) The
 basic structure becomes:

 signature = Sign(message content, key)

 valid = Verification(message content, key, signature)

 The second is a signature with message recovery. (An example of such
 an algorithm is [PVSig].) In this structure, the message content is
 processed, but part of is included in the signature. Moving bytes of
 the message content into the signature allows for an effectively
 smaller signature, the signature size is still potentially large, but
 the message content is shrunk. This has implications for systems
 implementing these algoritms and for applications that use them. The
 first is that the message content is not fully available until after
 a signature has been validated. Until that point the part of the
 message contained inside of the signature is unrecoverable. The
 second is that the security analysis of the strength of the signature
 is very much based on the structure of the message content. Messages
 which are highly predictable require additional randomness to be
 supplied as part of the signature process, in the worst case it
 becomes the same as doing a signature with appendix. Thirdly, in the
 event that multple signatures are applied to a message, all of the

Schaad & Campbell Expires March 24, 2016 [Page 28]

Internet-Draft CBOR Encoded Message Syntax September 2015

 signature algorithms are going to be required to consume the same
 number of bytes of message content.

 signature, message sent = Sign(message content, key)

 valid, message content = Verification(message sent, key, signature)

 At this time, only signatures with appendixes are defined for use
 with COSE, however considerable interest has been expressed in using
 a signature with message recovery algorithm due to the effective size
 reduction that is possible. Implementations will need to keep this
 in mind for later possible integration.

8.1. ECDSA

 ECDSA [DSS] defines a signature algorithm using ECC.

 The ECDSA signature algorithm is parameterized with a hash function
 (h). In the event that the length of the hash function output is
 greater than group of the key, the left most bytes of the hash output
 are used.

 The algorithms defined in this document can be found in Table 4.

 +-------+-------+---------+------------------+
 | name | value | hash | description |
 +-------+-------+---------+------------------+
 | ES256 | -7 | SHA-256 | ECDSA w/ SHA-256 |
 | | | | |
 | ES384 | -8 | SHA-384 | ECDSA w/ SHA-384 |
 | | | | |
 | ES512 | -9 | SHA-512 | ECDSA w/ SHA-512 |
 +-------+-------+---------+------------------+

 Table 4: ECDSA Algorithm Values

 This document defines ECDSA to work only with the curves P-256, P-384
 and P-521. This document requires that the curves be encoded using
 the 'EC2' key type. Implementations need to check that the key type
 and curve are correct when creating and verifying a signature. Other
 documents can defined it to work with other curves and points in the
 future.

 In order to promote interoperability, it is suggested that SHA-256 be
 used only with curve P-256, SHA-384 be used only with curve P-384 and

Schaad & Campbell Expires March 24, 2016 [Page 29]

Internet-Draft CBOR Encoded Message Syntax September 2015

 SHA-512 be used with curve P-521. This is aligned with the
 recommendation in Section 4 of [RFC5480].

 The signature algorithm results in a pair of integers (R, S). These
 integers will be of the same order as length of the key used for the
 signature process. The signature is encoded by converting the
 integers into byte strings of the same length as the key size. The
 length is rounded up to the nearest byte and is left padded with zero
 bits to get to the correct length. The two integers are then
 concatenated together to form a byte string that is the resulting
 signature.

 Using the function defined in [RFC3447] the signature is:
 Signature = I2OSP(R, n) | I2OSP(S, n)
 where n = ceiling(key_length / 8)

8.1.1. Security Considerations

 The security strength of the signature is no greater than the minimum
 of the security strength associated with the bit length of the key
 and the security strength of the hash function.

 System which have poor random number generation can leak their keys
 by signing two different messages with the same value of 'k'.
 [RFC6979] provides a method to deal with this problem by making 'k'
 be deterministic based on the message content rather than randomly
 generated. Applications which specify ECDSA should evaluate the
 ability to get good random number generation and require this when it
 is not possible. Note: Use of this technique a good idea even when
 good random number generation exists. Doing so both reduces the
 possiblity of having the same value of 'k' in two signature
 operations, but allows for reproducable signature values which helps
 testing.

 There are two substitution that can theoretically be mounted against
 the ECDSA signature algorithm.

 o Changing the curve used to validate the signature: If one changes
 the curve used to validate the signature, then potentially one
 could have a two messages with the same signature each computed
 under a different curve. The only requirement on the new curve is
 that it's order be the same as the old one and it be acceptable to
 the client. An example would be to change from using the curve
 secp256r1 (aka P-256) to using secp256k1. (Both are 256 bit
 curves.) We current do not have any way to deal with this version
 of the attack except to restrict the overall set of curves that
 can be used.

https://datatracker.ietf.org/doc/html/rfc5480#section-4
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc6979

Schaad & Campbell Expires March 24, 2016 [Page 30]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o Change the hash function used to validate the signature: If one
 has either two different hash functions of the same length, or one
 can truncate a hash function down, then one could potentially find
 collisions between the hash functions rather than within a single
 hash function. (For example, truncating SHA-512 to 256 bits might
 collide with a SHA-256 bit hash value.) This attack can be
 mitigated by including the signature algorithm identifier in the
 data to be signed.

8.2. RSASSA-PSS

 The RSASSA-PSS signature algorithm is defined in [RFC3447].

 The RSASSA-PSS signature algorithm is parametized with a hash
 function (h), a mask generation function (mgf) and a salt length
 (sLen). For this specification, the mask generation function is
 fixed to be MGF1 as defined in [RFC3447]. It has been recommended
 that the same hash function be used for hashing the data as well as
 in the mask generation function, for this specification we following
 this recommendation. The salt length is the same length as the hash
 function output.

 Implementations need to check that the key type is 'RSA' when
 creating or verifying a signature.

 The algorithms defined in this document can be found in Table 5.

 +-------+-------+---------+-------------+-----------------------+
 | name | value | hash | salt length | description |
 +-------+-------+---------+-------------+-----------------------+
 | PS256 | -26 | SHA-256 | 32 | RSASSA-PSS w/ SHA-256 |
 | | | | | |
 | PS384 | -27 | SHA-384 | 48 | RSASSA-PSS w/ SHA-384 |
 | | | | | |
 | PS512 | -28 | SHA-512 | 64 | RSASSA-PSS w/ SHA-512 |
 +-------+-------+---------+-------------+-----------------------+

 Table 5: RSASSA-PSS Algorithm Values

8.2.1. Security Considerations

 In addition to needing to worry about keys that are too small to
 provide the required security, there are issues with keys that are
 too large. Denial of service attacks have been mounted with overly
 large keys. This has the potential to consume resources with
 potentially bad keys. There are two reasonable ways to address this
 attack. First, a key should not be used for a cryptographic
 operation until it has been matched back to an authorized user. This

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Schaad & Campbell Expires March 24, 2016 [Page 31]

Internet-Draft CBOR Encoded Message Syntax September 2015

 approach means that no cryptography would be done except for
 authorized users. Second, applications can impose maximum as well as
 minimum length requirements on keys. This limits the resources
 consumed even if the matching is not performed until the cryptography
 has been done.

 There is a theoretical hash substitution attack that can be mounted
 against RSASSA-PSS. However, the requirement that the same hash
 function be used consistently for all operations is an effective
 mitigation against it. Unlike ECDSA, hash functions are not
 truncated so that the full hash value is always signed. The internal
 padding structure of RSASSA-PSS means that one needs to have multiple
 collisions between the two hash functions in order to be successful
 in producing a forgery based on changing the hash function. This is
 highly unlikely.

9. Message Authentication (MAC) Algorithms

 Message Authentication Codes (MACs) provide data authentication and
 integrity protection. They provide either no or very limited data
 origination. (One cannot, for example, be used to prove the identity
 of the sender to a third party.)

 MACs are designed in the same basic structure as signature with
 appendix algorithms. The message content is processed and an
 authentication code is produced, the authentication code is
 frequently called a tag. The basic structure becomes:

 tag = MAC_Create(message content, key)

 valid = MAC_Verify(message content, key, tag)

 MAC algorithms can be based on either a block cipher algorithm (i.e.
 AES-MAC) or a hash algorithm (i.e. HMAC). This document defines a
 MAC algorithm for each of these two constructions.

9.1. Hash-based Message Authentication Codes (HMAC)

 The Hash-base Message Authentication Code algorithm (HMAC)
 [RFC2104][RFC4231] was designed to deal with length extension
 attacks. The algorithm was also designed to allow for new hash
 algorithms to be directly plugged in without changes to the hash
 function. The HMAC design process has been vindicated as, while the
 security of hash algorithms such as MD5 has decreased over time, the
 security of HMAC combined with MD5 has not yet been shown to be
 compromised [RFC6151].

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc6151

Schaad & Campbell Expires March 24, 2016 [Page 32]

Internet-Draft CBOR Encoded Message Syntax September 2015

 The HMAC algorithm is parameterized by an inner and outer padding, a
 hash function (h) and an authentication tag value length. For this
 specification, the inner and outer padding are fixed to the values
 set in [RFC2104]. The length of the authentication tag corresponds
 to the difficulty of producing a forgery. For use in constrained
 environments, we define a set of HMAC algorithms that are truncated.
 There are currently no known issues when truncating, however the
 security strength of the message tag is correspondingly reduced in
 strength. When truncating, the left most tag length bits are kept
 and transmitted.

 The algorithm defined in this document can be found in Table 6.

 +-----------+-------+---------+--------+----------------------------+
 | name | value | Hash | Length | description |
 +-----------+-------+---------+--------+----------------------------+
HMAC	*	SHA-256	64	HMAC w/ SHA-256 truncated
256/64				to 64 bits
HMAC	4	SHA-256	256	HMAC w/ SHA-256
256/256				
HMAC	5	SHA-384	384	HMAC w/ SHA-384
384/384				
HMAC	6	SHA-512	512	HMAC w/ SHA-512
512/512				
 +-----------+-------+---------+--------+----------------------------+

 Table 6: HMAC Algorithm Values

 Some recipient algorithms carry the key while others derive a key
 from secret data. For those algorithms which carry the key (i.e.
 RSA-OAEP and AES-KeyWrap), the size of the HMAC key SHOULD be the
 same size as the underlying hash function. For those algorithms
 which derive the key, the derived key MUST be the same size as the
 underlying hash function.

 If the key obtained from a key structure, the key type MUST be
 'Symmetric'. Implementations creating and validating MAC values MUST
 validate that the key type, key length and algorithm are correct and
 appropriate for the entities involved.

9.1.1. Security Considerations

 HMAC has proved to be resistant even when used with weakening hash
 algorithms. The current best method appears to be a brute force

https://datatracker.ietf.org/doc/html/rfc2104

Schaad & Campbell Expires March 24, 2016 [Page 33]

Internet-Draft CBOR Encoded Message Syntax September 2015

 attack on the key. This means that key size is going to be directly
 related to the security of an HMAC operation.

9.2. AES Message Authentication Code (AES-CBC-MAC)

 AES-CBC-MAC is defined in [MAC].

 AES-CBC-MAC is parameterized by the key length, the authentication
 tag length and the IV used. For all of these algorithms, the IV is
 fixed to all zeros. We provide an array of algorithms for various
 key lengths and tag lengths. The algorithms defined in this document
 are found in Table 7.

 +-------------+-------+----------+----------+-----------------------+
 | name | value | key | tag | description |
 | | | length | length | |
 +-------------+-------+----------+----------+-----------------------+
AES-MAC	*	128	64	AES-MAC 128 bit key,
128/64				64-bit tag
AES-MAC	*	256	64	AES-MAC 256 bit key,
256/64				64-bit tag
AES-MAC	*	128	128	AES-MAC 128 bit key,
128/128				128-bit tag
AES-MAC	*	256	128	AES-MAC 256 bit key,
256/128				128-bit tag
 +-------------+-------+----------+----------+-----------------------+

 Table 7: AES-MAC Algorithm Values

 Keys may be obtained either from a key structure or from a recipient
 structure. If the key obtained from a key structure, the key type
 MUST be 'Symmetric'. Implementations creating and validating MAC
 values MUST validate that the key type, key length and algorithm are
 correct and appropriate for the entities involved.

9.2.1. Security Considerations

 A number of attacks exist against CBC-MAC that need to be considered.

 o A single key must only be used for messages of a fixed and known
 length. If this is not the case, an attacker will be able to
 generated a message with a valid tag given two message, tag pairs.
 This can be addressed by using different keys for different length
 messages. (CMAC mode also addresses this issue.)

Schaad & Campbell Expires March 24, 2016 [Page 34]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o If the same key is used for both encryption and authentication
 operations, using CBC modes an attacker can produce messages with
 a valid authentication code.

 o If the IV can be modified, then messages can be forged. This is
 addressed by fixing the IV to all zeros.

10. Content Encryption Algorithms

 Content Encryption Algorithms provide data confidentialty for
 potentially large blocks of data using a symmetric key. They provide
 either no or very limited data origination. (One cannot, for
 example, be used to prove the identity of the sender to a third
 party.) The ability to provide data origination is linked to how the
 symmetric key is obtained.

 We restrict the set of legal content encryption algorithms to those
 which support authentication both of the content and additional data.
 The encryption process will generate some type of authentication
 value, but that value may be either explicit or implicit in terms of
 the algorithm definition. For simplicity sake, the authentication
 code will normally be defined as being appended to the cipher text
 stream. The basic structure becomes:

 ciphertext = Encrypt(message content, key, additional data)

 valid, message content = Decrypt(cipher text, key, additional data)

 Most AEAD algorithms are logically defined as returning the message
 content only if the decryption is valid. Many but not all
 implementations will follow this convention. The message content
 MUST NOT be used if the decryption does not validate.

10.1. AES GCM

 The GCM mode is is a generic authenticated encryption block cipher
 mode defined in [AES-GCM]. The GCM mode is combined with the AES
 block encryption algorithm to define a an AEAD cipher.

 The GCM mode is parameterized with by the size of the authentication
 tag. The size of the authentication tag is limited to a small set of
 values. For this document however, the size of the authentication
 tag is fixed at 128-bits.

 The set of algorithms defined in this document are in Table 8.

Schaad & Campbell Expires March 24, 2016 [Page 35]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +---------+-------+-----------------------------+
 | name | value | description |
 +---------+-------+-----------------------------+
 | A128GCM | 1 | AES-GCM mode w/ 128-bit key |
 | | | |
 | A192GCM | 2 | AES-GCM mode w/ 192-bit key |
 | | | |
 | A256GCM | 3 | AES-GCM mode w/ 256-bit key |
 +---------+-------+-----------------------------+

 Table 8: Algorithm Value for AES-GCM

 Keys may be obtained either from a key structure or from a recipient
 structure. If the key obtained from a key structure, the key type
 MUST be 'Symmetric'. Implementations creating and validating MAC
 values MUST validate that the key type, key length and algorithm are
 correct and appropriate for the entities involved.

10.1.1. Security Considerations

 When using AES-CCM the following restrictions MUST be enforced:

 o The key and nonce pair MUST be unique for every message encrypted.

 o The total amount of data encrypted MUST NOT exceed 2^39 - 256 bits
 . An explicit check is required only in environments where it is
 expected that it might be exceeded.

10.2. AES CCM

 Counter with CBC-MAC (CCM) is a generic authentication encryption
 block cipher mode defined in [RFC3610]. The CCM mode is combined
 with the AES block encryption algorithm to define a commonly used
 content encryption algorithm used in constrainted devices.

 The CCM mode has two parameter choices. The first choice is M, the
 size of the authentication field. The choice of the value for M
 involves a trade-off between message expansion and the probably that
 an attacker can undetecably modify a message. The second choice is
 L, the size of the length field. This value requires a trade-off
 between the maximum message size and the size of the Nonce.

 It is unfortunate that the specification for CCM specified L and M as
 a count of bytes rather than a count of bits. This leads to possible
 misunderstandings where AES-CCM-8 is frequently used to refer to a
 version of CCM mode where the size of the authentication is 64-bits
 and not 8-bits. These values have traditionally been specified as
 bit counts rather than byte counts. This document will follow the

https://datatracker.ietf.org/doc/html/rfc3610

Schaad & Campbell Expires March 24, 2016 [Page 36]

Internet-Draft CBOR Encoded Message Syntax September 2015

 tradition of using bit counts so that it is easier to compare the
 different algorithms presented in this document.

 We define a matrix of algorithms in this document over the values of
 L and M. Constrained devices are usually operating in situations
 where they use short messages and want to avoid doing recipient
 specific cryptographic operations. This favors smaller values of M
 and larger values of L. Less constrained devices do will want to be
 able to user larger messages and are more willing to generate new
 keys for every operation. This favors larger values of M and smaller
 values of L. (The use of a large nonce means that random generation
 of both the key and the nonce will decrease the chances of repeating
 the pair on two different messages.)

 The following values are used for L:

 16-bits (2) limits messages to 2^16 bytes (64Kbyte) in length. This
 sufficently long for messages in the constrainted world. The
 nonce length is 13 bytes allowing for 2^(13*8) possible values of
 the nonce without repeating.

 64-bits (8) limits messages to 2^64 byes in length. The nonce
 length is 7 bytes allowing for 2^56 possible values of the nonce
 without repeating.

 The following values are used for M:

 64-bits (8) produces a 64-bit authentication tag. This implies that
 there is a 1 in 2^64 chance that an modified message will
 authenticate.

 128-bits (16) produces a 128-bit authentication tag. This implies
 that there is a 1 in 2^128 chance that an modified message will
 authenticate.

Schaad & Campbell Expires March 24, 2016 [Page 37]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +--------------------+-------+----+-----+-----+---------------------+
 | name | value | L | M | k | description |
 +--------------------+-------+----+-----+-----+---------------------+
AES-CCM-16-64-128	10	16	64	128	AES-CCM mode
					128-bit key, 64-bit
					tag, 13-byte nonce
AES-CCM-16-64-256	11	16	64	256	AES-CCM mode
					256-bit key, 64-bit
					tag, 13-byte nonce
AES-CCM-64-64-128	30	64	64	128	AES-CCM mode
					128-bit key, 64-bit
					tag, 7-byte nonce
AES-CCM-64-64-256	31	64	64	256	AES-CCM mode
					256-bit key, 64-bit
					tag, 7-byte nonce
AES-CCM-16-128-128	12	16	128	128	AES-CCM mode
					128-bit key,
					128-bit tag,
					13-byte nonce
AES-CCM-16-128-256	13	16	128	256	AES-CCM mode
					256-bit key,
					128-bit tag,
					13-byte nonce
AES-CCM-64-128-128	32	64	128	128	AES-CCM mode
					128-bit key,
					128-bit tag, 7-byte
					nonce
AES-CCM-64-128-256	33	64	128	256	AES-CCM mode
					256-bit key,
					128-bit tag, 7-byte
					nonce
 +--------------------+-------+----+-----+-----+---------------------+

 Table 9: Algorithm Values for AES-CCM

 Keys may be obtained either from a key structure or from a recipient
 structure. If the key obtained from a key structure, the key type
 MUST be 'Symmetric'. Implementations creating and validating MAC
 values MUST validate that the key type, key length and algorithm are
 correct and appropriate for the entities involved.

Schaad & Campbell Expires March 24, 2016 [Page 38]

Internet-Draft CBOR Encoded Message Syntax September 2015

10.2.1. Security Considerations

 When using AES-CCM the following restrictions MUST be enforced:

 o The key and nonce pair MUST be unique for every message encrypted.

 o The total number of times the AES block cipher is used MUST NOT
 exceed 2^61 operations. This limitation is the sum of times the
 block cipher is used in computing the MAC value and in performing
 stream encryption operations. An explicit check is required only
 in environments where it is expected that it might be exceeded.

 [RFC3610] additionally calls out one other consideration of note. It
 is possible to do a pre-computation attack against the algorithm in
 cases where the portions encryption content is highly predictable.
 This reduces the security of the key size by half. Ways to deal with
 this attack include adding a random portion to the nonce value and/or
 increasing the key size used. Using a portion of the nonce for a
 random value will decrease the number of messages that a single key
 can be used for. Increasing the key size may require more resources
 in the constrained device. See sections 5 and 10 of [RFC3610] for
 more information.

10.3. ChaCha20 and Poly1305

 ChaCha20 and Poly1305 combined together is a new AEAD mode that is
 defined in [RFC7539]. This is a new algorithm defined to be a cipher
 which is not AES and thus would not suffer from any future weaknesses
 found in AES. These cryptographic functions are designed to be fast
 in software only implementations.

 The ChaCha20/Poly1305 AEAD construction defined in [RFC7539] has no
 parameterization. It takes a 256-bit key and an a 96-bit nonce as
 well as the plain text and additional data as inputs and produces the
 cipher text as an option. We define one algorithm identifier for
 this algorithm in Table 10.

 +-------------------+-------+----------------------------------+
 | name | value | description |
 +-------------------+-------+----------------------------------+
 | ChaCha20/Poly1305 | 11 | ChaCha20/Poly1305 w/ 256-bit key |
 +-------------------+-------+----------------------------------+

 Table 10: Algorithm Value for AES-GCM

 Keys may be obtained either from a key structure or from a recipient
 structure. If the key obtained from a key structure, the key type
 MUST be 'Symmetric'. Implementations creating and validating MAC

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc7539
https://datatracker.ietf.org/doc/html/rfc7539

Schaad & Campbell Expires March 24, 2016 [Page 39]

Internet-Draft CBOR Encoded Message Syntax September 2015

 values MUST validate that the key type, key length and algorithm are
 correct and appropriate for the entities involved.

10.3.1. Security Considerations

 The pair of key, nonce MUST be unique for every invocation of the
 algorithm. Nonce counters are considered to be an acceptable way of
 ensuring that they are unique.

11. Key Derivation Functions (KDF)

 Key Derivation Functions (KDFs) are used to take some secret value
 and generate a different one. The original secret values come in
 three basic flavors:

 o Secrets which are uniformly random: This is the type of secret
 which is created by a good random number generator.

 o Secrets which are not uniformly random: This is type of secret
 which is created by operations like key agreement.

 o Secrets which are not random: This is the type of secret that
 people generate for things like passwords.

 General KDF functions work well with the first type of secret, can do
 reasonable well with the second type of secret and generally do
 poorly with the last type of secret. None of the KDF functions in
 this section are designed to deal with the type of secrets that are
 used for passwords. Functions like PBSE2 [RFC2898] need to be used
 for that type of secret.

 Many functions are going to handle the first two type of secrets
 differently. The KDF function defined in Section 11.1 can use
 different underlying constructions if the secret is uniformly random
 than if the secret is not uniformly random. This is reflected in the
 set of algorithms defined for HKDF.

 When using KDF functions, one component that is generally included is
 context information. Context information is used to allow for
 different keying information to be derived from the same secret. The
 use of context based keying material is considered to be a good
 security practice. This document defines a single context structure
 and a single KDF function.

https://datatracker.ietf.org/doc/html/rfc2898

Schaad & Campbell Expires March 24, 2016 [Page 40]

Internet-Draft CBOR Encoded Message Syntax September 2015

11.1. HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

 The HKDF key derivation algorithm is defined in [RFC5869].

 The HKDF algorithm is defined to take a number of inputs These inputs
 are:

 secret - a shared value that is secret. Secrets may be either
 previously shared or derived from operations like a DH key
 agreement.

 salt - an optional public value that is used to change the
 generation process. If specified, the salt is carried using the
 'salt' algorithm parameter. While [RFC5869] suggests that the
 length of the salt be the same as the length of the underlying
 hash value, any amount of salt will improve the security as
 different key values will be generated. A parameter to carry the
 salt is defined in Table 12. This parameter is protected by being
 included in the key computation and does not need to be separately
 authenticated.

 length - the number of bytes of output that need to be generated.

 context information - Information that describes the context in
 which the resulting value will be used. Making this information
 specific to the context that the material is going to be used
 ensures that the resulting material will always be unique. The
 context structure used is encoded into the algorithm identifier.

 hash function - The underlying hash function to be used in the
 HKDF algorithm. The hash function is encoded into the HKDF
 algorithm selection.

 HKDF is defined to use HMAC as the underlying PRF. However, it is
 possible to use other functions in the same construct to provide a
 different KDF function that may be more appropriate in the
 constrained world. Specifically, one can use AES-CBC-MAC as the PRF
 for the expand step, but not for the extract step. When using a good
 random shared secret of the correct length, the extract step can be
 skipped. The extract cannot be skipped if the secret is not
 uniformly random, for example if it is the result of a ECDH key
 agreement step.

 The algorithms defined in this document are found in Table 11

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Schaad & Campbell Expires March 24, 2016 [Page 41]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +-------------+-------------+----------+----------------------------+
 | name | hash | Skip | context |
 | | | extract | |
 +-------------+-------------+----------+----------------------------+
HKDF	SHA-256	no	XXX
SHA-256			
HKDF	SHA-512	no	XXX
SHA-512			
HKDF AES-	AES-CBC-128	yes	HKDF using AES-MAC as the
MAC-128			PRF w/ 128-bit key
HKDF AES-	AES-CBC-128	yes	HKDF using AES-MAC as the
MAC-256			PRF w/ 256-bit key
 +-------------+-------------+----------+----------------------------+

 Table 11: HKDF algorithms

 +------+-------+------+-------------+
 | name | label | type | description |
 +------+-------+------+-------------+
 | salt | -20 | bstr | Random salt |
 +------+-------+------+-------------+

 Table 12: HKDF Algorithm Parameters

11.2. Context Information Structure

 The context information structure is used to ensure that the derived
 keying material is "bound" to the context of the transaction. The
 context information structure used here is based on that defined in
 [SP800-56A]. By using CBOR for the encoding of the context
 information structure, we automatically get the same type of type and
 length separation of fields that is obtained by the use of ASN.1.
 This means that there is no need to encode the lengths for the base
 elements as it is done by the JOSE encoding. [CREF11]

 The context information structure refers to PartyU and PartyV as the
 two parties which are doing the key derivation. Unless the
 application protocol defines differently, we assign PartyU to the
 entity that is creating the message and PartyV to the entity that is
 receiving the message. By doing this association, different keys
 will be derived for each direction as the context information is
 different in each direction.

 Application protocols are free to define the roles differently. For
 example, they could assign the PartyU role to the entity that

Schaad & Campbell Expires March 24, 2016 [Page 42]

Internet-Draft CBOR Encoded Message Syntax September 2015

 initiates the connection and allow directly sending multiple messages
 over the connection in both directions without changing the role
 information.

 The use of a transaction identifier, either in one of the
 supplemental fields or as the salt if one is using HKDF, ensures that
 a unique key is generated for each set of transactions. Combining
 nonce fields with the transaction identifier provides a method so
 that a different key is used for each message in each direction.

 The context structure is built from information that is known to both
 entities. Some of the information is known only to the two entities,
 some is implied based on the application and some is explicitly
 transported as part of the message. The information that can be
 carried in the message, parameters have been defined and can be found
 in Table 13. These parameters are designed to be placed in the
 unprotected bucket of the recipient structure. (They do not need to
 be in the protected bucket since they already are included in the
 cryptographic computation by virtue of being included in the context
 structure.)

 We encode the context specific information using a CBOR array type.
 The fields in the array are:

 AlgorithmID This field indicates the algorithm for which the key
 material will be used. This field is required to be present and
 is a copy of the algorithm identifier in the message. The field
 exists in the context information so that if the same environment
 is used for different algorithms, then completely different keys
 will be generated each of those algorithms. (This practice means
 if algorithm A is broken and thus can is easier to find, the key
 derived for algorithm B will not be the same as the key for
 algorithm B.)

 PartyUInfo This field holds information about party U. The
 PartyUInfo is encoded as a CBOR struture. The elements of
 PartyUInfo are encoded in the order presented, however if the
 element does not exist no element is placed in the array. The
 elements of the PartyUInfo array are:

 identity This contains the identity information for party U. The
 identities can be assigned in one of two manners. Firstly, a
 protocol can assign identities based on roles. For example,
 the roles of "client" and "server" may be assigned to different
 entities in the protocol. Each entity would then use the
 correct label for the data they they send or receive. The
 second way is for a protocol to assign identities is to use a
 name based on a naming system (i.e. DNS, X.509 names).

Schaad & Campbell Expires March 24, 2016 [Page 43]

Internet-Draft CBOR Encoded Message Syntax September 2015

 We define an algorithm parameter 'PartyU identity' that can be
 used to carry identity information in the message. However,
 identity information is often known as part of the protocol and
 can thus be inferred rather than made explicit. If identity
 information is carried in the message, applications SHOULD have
 a way of validating the supplied identity information. The
 identity information does not need to be specified and can be
 left as absent.
 The identity value supplied will be integrity checked as part
 of the key derivation process. If the identity string is
 wrong, then the wrong key will be created.

 nonce This contains a one time nonce value. The nonce can either
 be implicit from the protocol or carried as a value in the
 unprotected headers.
 We define an algorithm parameter 'PartyU nonce' that can be
 used to carry this value in the message However, the nonce
 value could be determined by the application and the value
 determined from elsewhere.
 This item is optional and can be absent.

 other This contains other information that is defined by the
 protocol.
 This item is optional and can be absent.

 PartyVInfo M00TODO: Copy down from PartyUInfo when that text is
 ready.

 SuppPubInfo This field contains public information that is mutually
 known to both parties.

 keyDataLength This is set to the number of bits of the desired
 output value. (This practice means if algorithm A can use two
 different key lengths, the key derived for longer key size will
 not contain the key for shorter key size as a prefix.)

 protected This field contains the protected parameter field.

 other The field other is for free form data defined by the
 application. An example is that an application could defined
 two different strings to be placed here to generate different
 keys for a data stream vs a control stream. This field is
 optional and will only be present if the application defines a
 structure for this information. Applications that define this
 SHOULD use CBOR to encode the data so that types and lengths
 are correctly include.

Schaad & Campbell Expires March 24, 2016 [Page 44]

Internet-Draft CBOR Encoded Message Syntax September 2015

 SuppPrivInfo This field contains private information that is
 mutually known information. An example of this information would
 be a pre-existing shared secret. The field is optional and will
 only be present if the application defines a structure for this
 information. Applications that define this SHOULD use CBOR to
 encode the data so that types and lengths are correctly include.

 +---------------+-------+-----------+-------------------------------+
 | name | label | type | description |
 +---------------+-------+-----------+-------------------------------+
PartyU	-21	bstr	Party U identity Information
identity			
PartyU nonce	-22	bstr /	Party U provided nonce
		int	
PartyU other	-23	bstr	Party U other provided
			information
PartyV	-24	bstr	Party V identity Information
identity			
PartyV nonce	-25	bstr /	Party V provided nonce
		int	
PartyV other	-26	bstr	Party V other provided
			information
 +---------------+-------+-----------+-------------------------------+

 Table 13: Context Algorithm Parameters

 Text from here to start of next section to be removed

Schaad & Campbell Expires March 24, 2016 [Page 45]

Internet-Draft CBOR Encoded Message Syntax September 2015

 COSE_KDF_Context = [
 AlgorithmID : int / tstr,
 PartyUInfo : [
 ? nonce : bstr / int,
 ? identity : bstr,
 ? other : bstr
],
 PartyVInfo : [
 ? nonce : bstr,
 ? identity : bstr / tstr,
 ? other : bstr
],
 SuppPubInfo : [
 keyDataLength : uint,
 protected : bstr,
 ? other : bstr
],
 ? SuppPrivInfo : bstr
]

12. Recipient Algorithm Classes

 Recipient algorithms can be defined into a number of different
 classes. COSE has the ability to support many classes of recipient
 algorithms. In this section, a number of classes are listed and then
 a set of algorithms are specified for each of the classes. The names
 of the recipient algorithm classes used here are the same as are
 defined in [RFC7517]. Other specifications use different terms for
 the recipient algorithm classes or do not support some of our
 recipient algorithm classes.

12.1. Direct Encryption

 The direct encryption class algorithms share a secret between the
 sender and the recipient that is used either directly or after
 manipulation as the content key. When direct encryption mode is
 used, it MUST be the only mode used on the message.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected' field MUST be a zero length item if it is not used
 in the computation of the content key.

 o The 'alg' parameter MUST be present.

 o A parameter identifying the shared secret SHOULD be present.

 o The 'ciphertext' field MUST be a zero length item.

https://datatracker.ietf.org/doc/html/rfc7517

Schaad & Campbell Expires March 24, 2016 [Page 46]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o The 'recipients' field MUST be absent.

12.1.1. Direct Key

 This recipient algorithm is the simplest, the supplied key is
 directly used as the key for the next layer down in the message.
 There are no algorithm parameters defined for this algorithm. The
 algorithm identifier value is assigned in Table 14.

 When this algorithm is used, the protected field MUST be zero length.
 The key type MUST be 'Symmetric'.

 +--------+-------+-------------------+
 | name | value | description |
 +--------+-------+-------------------+
 | direct | -6 | Direct use of CEK |
 +--------+-------+-------------------+

 Table 14: Direct Key

12.1.1.1. Security Considerations

 This recipient algorithm has several potential problems that need to
 be considered:

 o These keys need to have some method to be regularly updated over
 time. All of the content encryption algorithms specified in this
 document have limits on how many times a key can be used without
 significant loss of security.

 o These keys need to be dedicated to a single algorithm. There have
 been a number of attacks developed over time when a single key is
 used for multiple different algorithms. One example of this is
 the use of a single key both for CBC encryption mode and CBC-MAC
 authentication mode.

 o Breaking one message means all messages are broken. If an
 adversary succeeds in determining the key for a single message,
 then the key for all messages is also determined.

12.1.2. Direct Key with KDF

 These recipient algorithms take a common shared secret between the
 two parties and applies the HKDF function (Section 11.1) using the
 context structure defined in Section 11.2 to transform the shared
 secret into the necessary key. Either the 'salt' parameter of HKDF
 or the partyU 'nonce' parameter of the context structure MUST be
 present. This parameter can be generated either randomly or

Schaad & Campbell Expires March 24, 2016 [Page 47]

Internet-Draft CBOR Encoded Message Syntax September 2015

 deterministically, the requirement is that it be a unique value for
 the key pair in question.

 If the salt/nonce value is generated randomly, then it is suggested
 that the length of the random value be the same length as the hash
 function underlying HKDF. While there is no way to guarantee that it
 will be unique, there is a high probability that it will be unique.
 If the salt/nonce value is generated deterministically, it can be
 guaranteed to be unique and thus there is no length requirement.

 A new IV must be used if the same key is used in more than one
 message. The IV can be modified in a predictable manner, a random
 manner or an unpredictable manner. One unpredictable manner that can
 be used is to use the HKDF function to generate the IV. If HKDF is
 used for generating the IV, the algorithm identifier is set to "IV-
 GENERATION".

 When these algorithms are used, the key type MUST be 'symmetric'.

 The set of algorithms defined in this document can be found in
 Table 15.

 +---------------------+-------+-------------+-----------------------+
 | name | value | KDF | description |
 +---------------------+-------+-------------+-----------------------+
direct+HKDF-SHA-256	*	HKDF	Shared secret w/ HKDF
		SHA-256	and SHA-256
direct+HKDF-SHA-512	*	HKDF	Shared secret w/ HKDF
		SHA-512	and SHA-512
direct+HKDF-AES-128	*	HKDF AES-	Shared secret w/ AES-
		MAC-128	MAC 128-bit key
direct+HKDF-AES-256	*	HKDF AES-	Shared secret w/ AES-
		MAC-256	MAC 256-bit key
 +---------------------+-------+-------------+-----------------------+

 Table 15: Direct Key

12.1.2.1. Security Considerations

 The shared secret need to have some method to be regularly updated
 over time. The shared secret is forming the basis of trust, although
 not used directly it should still be subject to scheduled rotation.

Schaad & Campbell Expires March 24, 2016 [Page 48]

Internet-Draft CBOR Encoded Message Syntax September 2015

12.2. Key Wrapping

 In key wrapping mode, the CEK is randomly generated and that key is
 then encrypted by a shared secret between the sender and the
 recipient. All of the currently defined key wrapping algorithms for
 JOSE (and thus for COSE) are AE algorithms. Key wrapping mode is
 considered to be superior to direct encryption if the system has any
 capability for doing random key generation. This is because the
 shared key is used to wrap random data rather than data has some
 degree of organization and may in fact be repeating the same content.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected' field MUST be absent if the key wrap algorithm is
 an AE algorithm.

 o The 'recipients' field is normally absent, but can be used.
 Applications MUST deal with a recipients field present, not being
 able to decrypt that recipient is an acceptable way of dealing
 with it. Failing to process the message is not an acceptable way
 of dealing with it.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the shared
 secret.

12.2.1. AES Key Wrapping

 The AES Key Wrapping algorithm is defined in [RFC3394]. This
 algorithm uses an AES key to wrap a value that is a multiple of
 64-bits, as such it can be used to wrap a key for any of the content
 encryption algorithms defined in this document. The algorithm
 requires a single fixed parameter, the initial value. This is fixed
 to the value specified in Section 2.2.3.1 of [RFC3394]. There are no
 public parameters that vary on a per invocation basis.

 Keys may be obtained either from a key structure or from a recipient
 structure. If the key obtained from a key structure, the key type
 MUST be 'Symmetric'. Implementations creating and validating MAC
 values MUST validate that the key type, key length and algorithm are
 correct and appropriate for the entities involved.

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.3.1

Schaad & Campbell Expires March 24, 2016 [Page 49]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +--------+-------+----------+-----------------------------+
 | name | value | key size | description |
 +--------+-------+----------+-----------------------------+
 | A128KW | -3 | 128 | AES Key Wrap w/ 128-bit key |
 | | | | |
 | A192KW | -4 | 192 | AES Key Wrap w/ 192-bit key |
 | | | | |
 | A256KW | -5 | 256 | AES Key Wrap w/ 256-bit key |
 +--------+-------+----------+-----------------------------+

 Table 16: AES Key Wrap Algorithm Values

12.2.1.1. Security Considerations for AES-KW

 The shared secret need to have some method to be regularly updated
 over time. The shared secret is forming the basis of trust, although
 not used directly it should still be subject to scheduled rotation.

12.3. Key Encryption

 Key Encryption mode is also called key transport mode in some
 standards. Key Encryption mode differs from Key Wrap mode in that it
 uses an asymmetric encryption algorithm rather than a symmetric
 encryption algorithm to protect the key. This document defines one
 Key Encryption mode algorithm.

 When using a key encryption algorithm, the COSE_encrypt structure for
 the recipient is organized as follows:

 o The 'protected' field MUST be absent.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the
 asymmetric key.

12.3.1. RSAES-OAEP

 RSAES-OAEP is an asymmetric key encryption algorithm. The defintion
 of RSAEA-OAEP can be find in Section 7.1 of [RFC3447]. The algorithm
 is parameterized using a masking generation function (mgf), a hash
 function (h) and encoding parameters (P). For the algorithm
 identifiers defined in this section:

 o mgf is always set to MFG1 from [RFC3447] and uses the same hash
 function as h.

https://datatracker.ietf.org/doc/html/rfc3447#section-7.1
https://datatracker.ietf.org/doc/html/rfc3447

Schaad & Campbell Expires March 24, 2016 [Page 50]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o P is always set to the empty octet string.

 Table 17 summarizes the rest of the values.

 +----------------------+-------+---------+-----------------------+
 | name | value | hash | description |
 +----------------------+-------+---------+-----------------------+
 | RSAES-OAEP w/SHA-256 | -25 | SHA-256 | RSAES OAEP w/ SHA-256 |
 | | | | |
 | RSAES-OAEP w/SHA-512 | -26 | SHA-512 | RSAES OAEP w/ SHA-512 |
 +----------------------+-------+---------+-----------------------+

 Table 17: RSAES-OAEP Algorithm Values

 The key type MUST be 'RSA'.

12.3.1.1. Security Considerations for RSAES-OAEP

 A key size of 2048 bits or larger MUST be used with these algorithms.
 This key size corresponds roughly to the same strength as provided by
 a 128-bit symmetric encryption algorithm.

 It is highly recommended that checks on the key length be done before
 starting a decryption operation. One potential denial of service
 operation is to provide encrypted objects using either abnormally
 long or oddly sized RSA modulus values. Implementations SHOULD be
 able to encrypt and decrypt with modulus between 2048 and 16K bits in
 length. Applications can impose additional restrictions on the
 length of the modulus.

12.4. Direct Key Agreement

 The 'direct key agreement' class of recipient algorithms uses a key
 agreement method to create a shared secret. A KDF is then applied to
 the shared secret to derive a key to be used in protecting the data.
 This key is normally used as a CEK or MAC key, but could be used for
 other purposes if more than two layers are in use (see Appendix B).

 The most commonly used key agreement algorithm used is Diffie-
 Hellman, but other variants exist. Since COSE is designed for a
 store and forward environment rather than an on-line environment,
 many of the DH variants cannot be used as the receiver of the message
 cannot provide any key material. One side-effect of this is that
 perfect forward security is not achievable, a static key will always
 be used for the receiver of the COSE message.

 Two variants of DH that are easily supported are:

Schaad & Campbell Expires March 24, 2016 [Page 51]

Internet-Draft CBOR Encoded Message Syntax September 2015

 - Ephemeral-Static DH: where the sender of the message creates a
 one time DH key and uses a static key for the recipient. The use
 of the ephemeral sender key means that no additional random input
 is needed as this is randomly generated for each message.

 Static-Static DH: where a static key is used for both the sender
 and the recipient. The use of static keys allows for recipient to
 get a weak version of data origination for the message. When
 static-static key agreement is used, then some piece of unique
 data is require to ensure that a different key is created for each
 message

 In this specification, both variants are specified. This has been
 done to provide the weak data origination option for use with MAC
 operations.

 When direct key agreement mode is used, there MUST be only one
 recipient in the message. This method creates the key directly and
 that makes it difficult to mix with additional recipients. If
 multiple recipients are needed, then the version with key wrap needs
 to be used.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected' field MUST be absent.

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the
 recipient's asymmetric key.

 o The 'unprotected' field MUST contain the 'epk' parameter.

12.4.1. ECDH

 The basic mathematics for Elliptic Curve Diffie-Hellman can be found
 in [RFC6090]. Two new curves have been defined in
 [I-D.irtf-cfrg-curves].

 ECDH is parameterized by the following:

 o Curve Type/Curve: The curve selected controls not only the size of
 the shared secret, but the mathematics for computing the shared
 secret. The curve selected also controls how a point in the curve
 is represented and what happens for the identity points on the
 curve. In this specification we allow for a number of different
 curves to be used. The curves are defined in Table 21.

https://datatracker.ietf.org/doc/html/rfc6090

Schaad & Campbell Expires March 24, 2016 [Page 52]

Internet-Draft CBOR Encoded Message Syntax September 2015

 Since the only the math is changed by changing the curve, the
 curve is not fixed for any of the algorithm identifiers we define,
 instead it is defined by the points used.

 o Ephemeral-static or static-static: The key agreement process may
 be done using either a static or an ephemeral key at the senders
 side. When using ephemeral keys, the sender MUST generate a new
 ephemeral key for every key agreement operation. The ephemeral
 key is placed in in the 'ephemeral key' parameter and MUST be
 present for all algorithm identifiers which use ephemeral keys.
 When using static keys, the sender MUST either generate a new
 random value placed in either in the KDF parameters or the context
 structure. For the KDF functions used, this means either in the
 'salt' parameter for HKDF (Table 12) or in in the 'PartyU nonce'
 parameter for the context struture (Table 13) MUST be present.
 (Both may be present if desired.) The value in the parameter MUST
 be unique for the key pair being used. It is acceptable to use a
 global counter which is incremented for every static-static
 operation and use the resulting value. When using static keys,
 the static key needs to be identified to the recipient. The
 static key can be identified either by providing the key ('static
 key') or by providing a key identifier for the static key ('static
 key id'). Both of these parameters are defined in Table 19

 o Key derivation algorithm: The result of an ECDH key agreement
 process does not provide a uniformly random secret, as such it
 needs to be run through a KDF in order to produce a usable key.
 Processing the secret through a KDF also allows for the
 introduction of both context material, how the key is going to be
 used, and one time material in the even to of a static-static key
 agreement.

 o Key Wrap algorithm: The key wrap algorithm can be 'none' if the
 result of the KDF is going to be used as the key directly. This
 option, along with static-static, should be used if knowledge
 about the sender is desired. If 'none' is used then the content
 layer encryption algorithm size is value fed to the context
 structure. Support is also provided for any of the key wrap
 algorithms defined in section Section 12.2.1. If one of these
 options is used, the input key size to the key wrap algorithm is
 the value fed into the context structure as the key size.

 The set of algorithms direct ECDH defined in this document are found
 in Table 18.

 +-------------+------+-------+----------------+--------+------------+
 | name | valu | KDF | Ephemeral- | Key | descriptio |
 | | e | | Static | Wrap | n |

Schaad & Campbell Expires March 24, 2016 [Page 53]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +-------------+------+-------+----------------+--------+------------+
ECDH-ES +	50	HKDF	yes	none	ECDH ES w/
HKDF-256		- SHA			HKDF -
		-256			generate
					key
					directly
ECDH-ES +	51	HKDF	yes	none	ECDH ES w/
HKDF-512		- SHA			HKDF -
		-256			generate
					key
					directly
ECDH-SS +	52	HKDF	no	none	ECDH ES w/
HKDF-256		- SHA			HKDF -
		-256			generate
					key
					directly
ECDH-SS +	53	HKDF	no	none	ECDH ES w/
HKDF-512		- SHA			HKDF -
		-256			generate
					key
					directly
ECDH-	54	HKDF	yes	A128KW	ECDH ES w/
ES+A128KW		- SHA			Concat KDF
		-256			and AES
					Key wrap
					w/ 128 bit
					key
ECDH-	55	HKDF	yes	A192KW	ECDH ES w/
ES+A192KW		- SHA			Concat KDF
		-256			and AES
					Key wrap
					w/ 192 bit
					key
ECDH-	56	HKDF	yes	A256KW	ECDH ES w/
ES+A256KW		- SHA			Concat KDF
		-256			and AES
					Key wrap
					w/ 256 bit
					key
ECDH-	57	HKDF	no	A128KW	ECDH SS w/
SS+A128KW		- SHA			Concat KDF

Schaad & Campbell Expires March 24, 2016 [Page 54]

Internet-Draft CBOR Encoded Message Syntax September 2015

		-256			and AES
					Key wrap
					w/ 128 bit
					key
ECDH-	58	HKDF	no	A192KW	ECDH SS w/
SS+A192KW		- SHA			Concat KDF
		-256			and AES
					Key wrap
					w/ 192 bit
					key
ECDH-	59	HKDF	no	A256KW	ECDH SS w/
SS+A256KW		- SHA			Concat KDF
		-256			and AES
					Key wrap
					w/ 256 bit
					key
 +-------------+------+-------+----------------+--------+------------+

 Table 18: ECDH Algorithm Values

 +-----------+-------+----------+-----------+------------------------+
 | name | label | type | algorithm | description |
 +-----------+-------+----------+-----------+------------------------+
ephemeral	-1	COSE_Key	ECDH-ES	Ephemeral Public key
key				for the sender
static	-2	COSE_Key	ECDH-ES	Static Public key for
key				the sender
static	-3	bstr	ECDH-SS	Static Public key
key id				identifier for the
				sender
 +-----------+-------+----------+-----------+------------------------+

 Table 19: ECDH Algorithm Parameters

 This document defines these algorithms to be used with the curves
 P-256, P-384, P-521, X25519 and X448. Implementations MUST verify
 that the key type and curve are correct, different curves are
 restricted to different key types. Implementations MUST verify that
 the curve and algorithm are appropriate for the entities involved.

Schaad & Campbell Expires March 24, 2016 [Page 55]

Internet-Draft CBOR Encoded Message Syntax September 2015

12.5. Key Agreement with KDF

 Key Agreement with Key Wrapping uses a randomly generated CEK. The
 CEK is then encrypted using a Key Wrapping algorithm and a key
 derived from the shared secret computed by the key agreement
 algorithm.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected' field is fed into the KDF context structure.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o The 'alg' parameter MUST be present in the layer.

 o A parameter identifying the recipient's key SHOULD be present. A
 parameter identifying the senders key SHOULD be present.

12.5.1. ECDH

 These algorithms are defined in Table 18.

13. Keys

 The COSE_Key object defines a way to hold a single key object, it is
 still required that the members of individual key types be defined.
 This section of the document is where we define an initial set of
 members for specific key types.

 For each of the key types, we define both public and private members.
 The public members are what is transmitted to others for their usage.
 We define private members mainly for the purpose of archival of keys
 by individuals. However, there are some circumstances where private
 keys may be distributed by various entities in a protocol. Examples
 include: Entities which have poor random number generation.
 Centralized key creation for multi-cast type operations. Protocols
 where a shared secret is used as a bearer token for authorization
 purposes.

 Key types are identified by the 'kty' member of the COSE_Key object.
 In this document we define four values for the member.

Schaad & Campbell Expires March 24, 2016 [Page 56]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +-----------+-------+--+
 | name | value | description |
 +-----------+-------+--+
 | EC1 | 1 | Elliptic Curve Keys w/ X Coordinate only |
 | | | |
 | EC2 | 2 | Elliptic Curve Keys w/ X,Y Coordinate pair |
 | | | |
 | RSA | 3 | RSA Keys |
 | | | |
 | Symmetric | 4 | Symmetric Keys |
 | | | |
 | Reserved | 0 | This value is reserved |
 +-----------+-------+--+

 Table 20: Key Type Values

13.1. Elliptic Curve Keys

 Two different key structures are being defined for Elliptic Curve
 keys. One version uses both an x and a y coordinate, potentially
 with point compression. This is the traditional EC point
 representation that is used in [RFC5480]. The other version uses
 only the x coordinate as the y coordinate is either to be recomputed
 or not needed for the key agreement operation. An example of this is
 Curve25519 [I-D.irtf-cfrg-curves]. [CREF12]

 +------------+----------+-------+-----------------------------------+
 | name | key type | value | description |
 +------------+----------+-------+-----------------------------------+
P-256	EC2	1	NIST P-256 also known as
			secp256r1
P-384	EC2	2	NIST P-384 also known as
			secp384r1
P-521	EC2	3	NIST P-521 also known as
			secp521r1
Curve25519	EC1	1	Curve 25519
Curve448	EC1	2	Curve 448
 +------------+----------+-------+-----------------------------------+

 Table 21: EC Curves

https://datatracker.ietf.org/doc/html/rfc5480

Schaad & Campbell Expires March 24, 2016 [Page 57]

Internet-Draft CBOR Encoded Message Syntax September 2015

13.1.1. Single Coordinate Curves

 One class of Elliptic Curve mathematics allows for a point to be
 completely defined using the curve and the x coordinate of the point
 on the curve. The two curves that are initially setup to use is
 point format are Curve 25519 and Curve 448 which are defined in
 [I-D.irtf-cfrg-curves].

 For EC keys with only the x coordinates, the 'kty' member is set to 1
 (EC1). The key parameters defined in this section are summarized in
 Table 22. The members that are defined for this key type are:

 crv contains an identifier of the curve to be used with the key.
 [CREF13] The curves defined in this document for this key type can
 be found in Table 21. Other curves may be registered in the
 future and private curves can be used as well.

 x contains the x coordinate for the EC point. The octet string
 represents a little-endian encoding of x.

 d contains the private key.

 For public keys, it is REQUIRED that 'crv' and 'x' be present in the
 structure. For private keys, it is REQUIRED that 'crv' and 'd' be
 present in the structure. For private keys, it is RECOMMENDED that
 'x' also be present, but it can be recomputed from the required
 elements and omitting it saves on space.

 +------+-------+-------+--------+-----------------------------------+
 | name | key | value | type | description |
 | | type | | | |
 +------+-------+-------+--------+-----------------------------------+
crv	1	-1	int /	EC Curve identifier - Taken from
			tstr	the COSE General Registry
x	1	-2	bstr	X Coordinate
d	1	-4	bstr	Private key
 +------+-------+-------+--------+-----------------------------------+

 Table 22: EC Key Parameters

13.1.2. Double Coordinate Curves

 The traditional way of sending EC curves has been to send either both
 the x and y coordinates, or the x coordinate and a sign bit for the y
 coordinate. The latter encoding has not been recommend in the IETF
 due to potential IPR issues with Certicom. However, for operations

Schaad & Campbell Expires March 24, 2016 [Page 58]

Internet-Draft CBOR Encoded Message Syntax September 2015

 in constrained environments, the ability to shrink a message by not
 sending the y coordinate is potentially useful.

 For EC keys with both coordinates, the 'kty' member is set to 2
 (EC2). The key parameters defined in this section are summarized in
 Table 23. The members that are defined for this key type are:

 crv contains an identifier of the curve to be used with the key.
 The curves defined in this document for this key type can be found
 in Table 21. Other curves may be registered in the future and
 private curves can be used as well.

 x contains the x coordinate for the EC point. The integer is
 converted to an octet string as defined in [SEC1]. Zero octets
 MUST NOT be removed from the front of the octet string. [CREF14]

 y contains either the sign bit or the value of y coordinate for the
 EC point. For the value, the integer is converted to an octet
 string as defined in [SEC1]. Zero octets MUST NOT be removed from
 the front of the octet string. For the sign bit, the value is
 true if the value of y is positive.

 d contains the private key.

 For public keys, it is REQUIRED that 'crv', 'x' and 'y' be present in
 the structure. For private keys, it is REQUIRED that 'crv' and 'd'
 be present in the structure. For private keys, it is RECOMMENDED
 that 'x' and 'y' also be present, but they can be recomputed from the
 required elements and omitting them saves on space.

 +------+-------+-------+---------+----------------------------------+
 | name | key | value | type | description |
 | | type | | | |
 +------+-------+-------+---------+----------------------------------+
crv	2	-1	int /	EC Curve identifier - Taken from
			tstr	the COSE General Registry
x	2	-2	bstr	X Coordinate
y	2	-3	bstr /	Y Coordinate
			bool	
d	2	-4	bstr	Private key
 +------+-------+-------+---------+----------------------------------+

 Table 23: EC Key Parameters

Schaad & Campbell Expires March 24, 2016 [Page 59]

Internet-Draft CBOR Encoded Message Syntax September 2015

13.2. RSA Keys

 This document defines a key structure for both the public and private
 halves of RSA keys. Together, an RSA public key and an RSA private
 key form an RSA key pair. [CREF15]

 The document also provides support for the so-called "multi-prime"
 RSA where the modulus may have more than two prime factors. The
 benefit of multi-prime RSA is lower computational cost for the
 decryption and signature primitives. For a discussion on how multi-
 prime affects the security of RSA crypto-systems, the reader is
 referred to [MultiPrimeRSA].

 This document follows the naming convention of [RFC3447] for the
 naming of the fields of an RSA public or private key. The table
 Table 24 provides a summary of the label values and the types
 associated with each of those labels. The requirements for fields
 for RSA keys are as follows:

 o For all keys, 'kty' MUST be present and MUST have a value of 3.

 o For public keys, the fields 'n' and 'e' MUST be present. All
 other fields defined in Table 24 MUST be absent.

 o For private keys with two primes, the fields 'other', 'r_i', 'd_i'
 and 't_i' MUST be absent, all other fields MUST be present.

 o For private keys with more than two primes, all fields MUST be
 present. For the third to nth primes, each of the primes is
 represented as a map containing the fields 'r_i', 'd_i' and 't_i'.
 The field 'other' is an array of those maps.

https://datatracker.ietf.org/doc/html/rfc3447

Schaad & Campbell Expires March 24, 2016 [Page 60]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +-------+----------+-------+-------+--------------------------------+
 | name | key type | value | type | description |
 +-------+----------+-------+-------+--------------------------------+
n	3	-1	bstr	Modulus Parameter
e	3	-2	int	Exponent Parameter
d	3	-3	bstr	Private Exponent Parameter
p	3	-4	bstr	First Prime Factor
q	3	-5	bstr	Second Prime Factor
dP	3	-6	bstr	First Factor CRT Exponent
dQ	3	-7	bstr	Second Factor CRT Exponent
qInv	3	-8	bstr	First CRT Coefficient
other	3	-9	array	Other Primes Info
r_i	3	-10	bstr	i-th factor, Prime Factor
d_i	3	-11	bstr	i-th factor, Factor CRT
				Exponent
t_i	3	-12	bstr	i-th factor, Factor CRT
				Coefficient
 +-------+----------+-------+-------+--------------------------------+

 Table 24: RSA Key Parameters

13.3. Symmetric Keys

 Occasionally it is required that a symmetric key be transported
 between entities. This key structure allows for that to happen.

 For symmetric keys, the 'kty' member is set to 3 (Symmetric). The
 member that is defined for this key type is:

 k contains the value of the key.

 This key structure contains only private key information, care must
 be taken that it is never transmitted accidentally. For public keys,
 there are no required fields. For private keys, it is REQUIRED that
 'k' be present in the structure.

Schaad & Campbell Expires March 24, 2016 [Page 61]

Internet-Draft CBOR Encoded Message Syntax September 2015

 +------+----------+-------+------+-------------+
 | name | key type | value | type | description |
 +------+----------+-------+------+-------------+
 | k | 4 | -1 | bstr | Key Value |
 +------+----------+-------+------+-------------+

 Table 25: Symmetric Key Parameters

14. CBOR Encoder Restrictions

 There as been an attempt to limit the number of places where the
 document needs to impose restrictions on how the CBOR Encoder needs
 to work. We have managed to narrow it down to the following
 restrictions:

 o The restriction applies to the encoding the Sig_structure, the
 Enc_structure, and the MAC_structure.

 o The rules for Canonical CBOR (Section 3.9 of RFC 7049) MUST be
 used in these locations. The main rule that needs to be enforced
 is that all lengths in these structures MUST be encoded such that
 they are encoded using definite lengths and the minimum length
 encoding is used.

 o All parsers used SHOULD fail on both parsing and generation if the
 same label is used twice as a key for the same map.

15. IANA Considerations

15.1. CBOR Tag assignment

 It is requested that IANA assign a new tag from the "Concise Binary
 Object Representation (CBOR) Tags" registry. It is requested that
 the tag be assigned in the 0 to 23 value range.

 Tag Value: TBD1

 Data Item: COSE_Msg

 Semantics: COSE security message.

15.2. COSE Header Parameter Registry

 It is requested that IANA create a new registry entitled "COSE Header
 Parameters".

 The columns of the registry are:

https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Schaad & Campbell Expires March 24, 2016 [Page 62]

Internet-Draft CBOR Encoded Message Syntax September 2015

 name The name is present to make it easier to refer to and discuss
 the registration entry. The value is not used in the protocol.
 Names are to be unique in the table.

 label This is the value used for the label. The label can be either
 an integer or a string. Registration in the table is based on the
 value of the label requested. Integer values between 1 and 255
 and strings of length 1 are designated as Standards Track Document
 required. Integer values from 256 to 65535 and strings of length
 2 are designated as Specification Required. Integer values of
 greater than 65535 and strings of length greater than 2 are
 designated as first come first server. Integer values in the
 range -1 to -65536 are delegated to the "COSE Header Algorithm
 Label" registry. Integer values beyond -65536 are marked as
 private use.

 value This contains the CBOR type for the value portion of the
 label.

 value registry This contains a pointer to the registry used to
 contain values where the set is limited.

 description This contains a brief description of the header field.

 specification This contains a pointer to the specification defining
 the header field (where public).

 The initial contents of the registry can be found in Table 1. The
 specification column for all rows in that table should be this
 document.

 Additionally, the label of 0 is to be marked as 'Reserved'.

15.3. COSE Header Algorithm Label Table

 It is requested that IANA create a new registry entitled "COSE Header
 Algorithm Labels".

 The columns of the registry are:

 name The name is present to make it easier to refer to and discuss
 the registration entry. The value is not used in the protocol.

 algorithm The algorithm(s) that this registry entry is used for.
 This value is taken from the "COSE Algorithm Value" registry.
 Multiple algorithms can be specified in this entry. For the
 table, the algorithm, label pair MUST be unique.

Schaad & Campbell Expires March 24, 2016 [Page 63]

Internet-Draft CBOR Encoded Message Syntax September 2015

 label This is the value used for the label. The label is an integer
 in the range of -1 to -65536.

 value This contains the CBOR type for the value portion of the
 label.

 value registry This contains a pointer to the registry used to
 contain values where the set is limited.

 description This contains a brief description of the header field.

 specification This contains a pointer to the specification defining
 the header field (where public).

 The initial contents of the registry can be found in: Table 12,
 Table 13, Table 19. The specification column for all rows in that
 table should be this document.

15.4. COSE Algorithm Registry

 It is requested that IANA create a new registry entitled "COSE
 Algorithm Registry".

 The columns of the registry are:

 value The value to be used to identify this algorithm. Algorithm
 values MUST be unique. The value can be a positive integer, a
 negative integer or a string. Integer values between 0 and 255
 and strings of length 1 are designated as Standards Track Document
 required. Integer values from 256 to 65535 and strings of length
 2 are designated as Specification Required. Integer values of
 greater than 65535 and strings of length greater than 2 are
 designated as first come first server. Integer values in the
 range -1 to -65536 are delegated to the "COSE Header Algorithm
 Label" registry. Integer values beyond -65536 are marked as
 private use.

 description A short description of the algorithm.

 specification A document where the algorithm is defined (if publicly
 available).

 The initial contents of the registry can be found in the following:
 Table 9, Table 8, Table 10, Table 4, Table 5, Table 6, Table 7,
 Table 14, Table 15, Table 16, Table 17, Table 18. The specification
 column for all rows in that table should be this document.

Schaad & Campbell Expires March 24, 2016 [Page 64]

Internet-Draft CBOR Encoded Message Syntax September 2015

15.5. COSE Key Common Parameter Registry

 It is requested that IANA create a new registry entitled "COSE Key
 Common Parameter" Registry.

 The columns of the registry are:

 name This is a descriptive name that enables easier reference to the
 item. It is not used in the encoding.

 label The value to be used to identify this algorithm. Key map
 labels MUST be unique. The label can be a positive integer, a
 negative integer or a string. Integer values between 0 and 255
 and strings of length 1 are designated as Standards Track Document
 required. Integer values from 256 to 65535 and strings of length
 2 are designated as Specification Required. Integer values of
 greater than 65535 and strings of length greater than 2 are
 designated as first come first server. Integer values in the
 range -1 to -65536 are used for key parameters specific to a
 single algorithm delegated to the "COSE Key Parameter Label"
 registry. Integer values beyond -65536 are marked as private use.

 CBOR Type This field contains the CBOR type for the field

 registry This field denotes the registry that values come from, if
 one exists.

 description This field contains a brief description for the field

 specification This contains a pointer to the public specification
 for the field if one exists

 This registry will be initially populated by the values in
Section 7.1. The specification column for all of these entries will

 be this document.

15.6. COSE Key Type Parameter Registry

 It is requested that IANA create a new registry "COSE Key Type
 Parameters".

 The columns of the table are:

 key type This field contains a descriptive string of a key type.
 This should be a value that is in the COSE General Values table
 and is placed in the 'kty' field of a COSE Key structure.

Schaad & Campbell Expires March 24, 2016 [Page 65]

Internet-Draft CBOR Encoded Message Syntax September 2015

 name This is a descriptive name that enables easier reference to the
 item. It is not used in the encoding.

 label The label is to be unique for every value of key type. The
 range of values is from -256 to -1. Labels are expected to be
 reused for different keys.

 CBOR type This field contains the CBOR type for the field

 description This field contains a brief description for the field

 specification This contains a pointer to the public specification
 for the field if one exists

 This registry will be initially populated by the values in Table 22,
 Table 23, Table 24, and Table 25. The specification column for all
 of these entries will be this document.

15.7. COSE Elliptic Curve Registry

 It is requested that IANA create a new registry "COSE Elliptic Curve
 Parameters".

 The columns of the table are:

 name This is a descriptive name that enables easier reference to the
 item. It is not used in the encoding.

 value This is the value used to identify the curve. These values
 MUST be unique. The integer values from -256 to 255 are
 designated as Standards Track Document Required. The the integer
 values from 256 to 65535 and -65536 to -257 are designated as
 Specification Required. Integer values over 65535 are designated
 as first come first serve. Integer values less than -65536 are
 marked as private use.

 key type This designates the key type(s) that can be used with this
 curve.

 description This field contains a brief description of the curve.

 specification This contains a pointer to the public specification
 for the curve if one exists.

 This registry will be initially populated by the values in Table 20.
 The specification column for all of these entries will be this
 document.

Schaad & Campbell Expires March 24, 2016 [Page 66]

Internet-Draft CBOR Encoded Message Syntax September 2015

15.8. Media Type Registration

15.8.1. COSE Security Message

 This section registers the "application/cose" and "application/
 cose+cbor" media types in the "Media Types" registry. [CREF16] These
 media types are used to indicate that the content is a COSE_MSG.

 Type name: application

 Subtype name: cose

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

Schaad & Campbell Expires March 24, 2016 [Page 67]

Internet-Draft CBOR Encoded Message Syntax September 2015

 Provisional registration? No

 Type name: application

 Subtype name: cose+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

Schaad & Campbell Expires March 24, 2016 [Page 68]

Internet-Draft CBOR Encoded Message Syntax September 2015

15.8.2. COSE Key media type

 This section registers the "application/cose+json" and "application/
 cose-set+json" media types in the "Media Types" registry. These
 media types are used to indicate, respectively, that content is a
 COSE_Key or COSE_KeySet object.

 Type name: application

 Subtype name: cose-key+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

Schaad & Campbell Expires March 24, 2016 [Page 69]

Internet-Draft CBOR Encoded Message Syntax September 2015

 Type name: application

 Subtype name: cose-key-set+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of RFC TBD.

 Interoperability considerations: N/A

 Published specification: RFC TBD

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

16. Security Considerations

 There are security considerations:

 1. Protect private keys

Schaad & Campbell Expires March 24, 2016 [Page 70]

Internet-Draft CBOR Encoded Message Syntax September 2015

 2. MAC messages with more than one recipient means one cannot figure
 out who sent the message

 3. Use of direct key with other recipient structures hands the key
 to other recipients.

 4. Use of direct ECDH direct encryption is easy for people to leak
 information on if there are other recipients in the message.

 5. Considerations about protected vs unprotected header fields.

 6. Need to verify that: 1) the kty field of the key matches the key
 and algorithm being used. 2) that the kty field needs to be
 included in the trust decision as well as the other key fields.
 3) that the algorithm be included in the trust decision.

17. References

17.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

17.2. Informative References

 [AES-GCM] Dworkin, M., "NIST Special Publication 800-38D:
 Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC.", Nov 2007.

 [DSS] U.S. National Institute of Standards and Technology,
 "Digital Signature Standard (DSS)", July 2013.

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Vigano, C., Birkholz, H., and R. Sun, "CBOR data
 definition language: a notational convention to express
 CBOR data structures.", draft-greevenbosch-appsawg-cbor-

cddl-05 (work in progress), March 2015.

 [I-D.irtf-cfrg-curves]
 Langley, A. and R. Salz, "Elliptic Curves for Security",

draft-irtf-cfrg-curves-02 (work in progress), March 2015.

 [MAC] NiST, N., "FIPS PUB 113: Computer Data Authentication",
 May 1985.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-curves-02

Schaad & Campbell Expires March 24, 2016 [Page 71]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [MultiPrimeRSA]
 Hinek, M. and D. Cheriton, "On the Security of Multi-prime
 RSA", June 2006.

 [PVSig] Brown, D. and D. Johnson, "Formal Security Proofs for a
 Signature Scheme with Partial Message Recover", February
 2000.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2633] Ramsdell, B., "S/MIME Version 3 Message Specification",
RFC 2633, June 1999.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, DOI 10.17487/

RFC2898, September 2000,
 <http://www.rfc-editor.org/info/rfc2898>.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, September 2003.

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512", RFC

4231, December 2005.

 [RFC4262] Santesson, S., "X.509 Certificate Extension for Secure/
 Multipurpose Internet Mail Extensions (S/MIME)
 Capabilities", RFC 4262, December 2005.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2898
http://www.rfc-editor.org/info/rfc2898
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc4231
https://datatracker.ietf.org/doc/html/rfc4231
https://datatracker.ietf.org/doc/html/rfc4262
https://datatracker.ietf.org/doc/html/rfc5480
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5751

Schaad & Campbell Expires March 24, 2016 [Page 72]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [RFC5752] Turner, S. and J. Schaad, "Multiple Signatures in
 Cryptographic Message Syntax (CMS)", RFC 5752, January
 2010.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

 [RFC5990] Randall, J., Kaliski, B., Brainard, J., and S. Turner,
 "Use of the RSA-KEM Key Transport Algorithm in the
 Cryptographic Message Syntax (CMS)", RFC 5990, September
 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, March 2011.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <http://www.rfc-editor.org/info/rfc6979>.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, May 2015.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, May 2015.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517, May 2015.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, May
 2015.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <http://www.rfc-editor.org/info/rfc7539>.

https://datatracker.ietf.org/doc/html/rfc5752
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5990
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc6979
http://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7539
http://www.rfc-editor.org/info/rfc7539

Schaad & Campbell Expires March 24, 2016 [Page 73]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [SEC1] Standards for Efficient Cryptography Group, "SEC 1:
 Elliptic Curve Cryptography", May 2009.

 [SP800-56A]
 Barker, E., Chen, L., Roginsky, A., and M. Smid, "NIST
 Special Publication 800-56A: Recommendation for Pair-Wise
 Key Establishment Schemes Using Discrete Logarithm
 Cryptography", May 2013.

Appendix A. CDDL Grammar

 For people who prefer using a formal language to describe the syntax
 of the CBOR, in this section a CDDL grammar is given that corresponds
 to [I-D.greevenbosch-appsawg-cbor-cddl]. This grammar is
 informational, in the event of differences between this grammar and
 the prose, the prose is considered to be authorative.

 The collected CDDL can be extracted from the XML version of this
 document via the following XPath expression below. (Depending on the
 XPath evaluator one is using, it may be necessary to deal with >
 as an entity.)

 //artwork[@type='CDDL']/text()

Appendix B. Three Levels of Recipient Information

 All of the currently defined recipient algorithms classes only use
 two levels of the COSE_Encrypt structure. The first level is the
 message content and the second level is the content key encryption.
 However, if one uses a recipient algorithm such as RSA-KEM (see

Appendix A of RSA-KEM [RFC5990], then it make sense to have three
 levels of the COSE_Encrypt structure.

 These levels would be:

 o Level 0: The content encryption level. This level contains the
 payload of the message.

 o Level 1: The encryption of the CEK by a KEK.

 o Level 2: The encryption of a long random secret using an RSA key
 and a key derivation function to convert that secret into the KEK.

 This is an example of what a triple layer message would look like.
 The message has the following layers:

 o Level 0: Has a content encrypted with AES-GCM using a 128-bit key.

https://datatracker.ietf.org/doc/html/rfc5990

Schaad & Campbell Expires March 24, 2016 [Page 74]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o Level 1: Uses the AES Key wrap algorithm with a 128-bit key.

 o Level 2: Uses ECDH Ephemeral-Static direct to generate the level 1
 key.

 In effect this example is a decomposed version of using the ECDH-
 ES+A128KW algorithm.

 Size of binary file is 214 bytes

 [
 2,
 h'a10101',
 {
 5: h'02d1f7e6f26c43d4868d87ce'
 },
 h'64f84d913ba60a76070a9a48f26e97e863e285295a44320878caceb0763a3
 34806857c67',
 [
 [
 h'',
 {
 1: -3
 },
 h'5a15dbf5b282ecb31a6074ee3815c252405dd7583e078188',
 [
 [
 h'',
 {
 1: 50,
 4: h'6d65726961646f632e6272616e64796275636b406275636b
 6c616e642e6578616d706c65',
 -1: {
 1: 2,
 -1: 1,
 -2: h'b2add44368ea6d641f9ca9af308b4079aeb519f11e9b8
 a55a600b21233e86e68',
 -3: h'1a2cf118b9ee6895c8f415b686d4ca1cef362d4a7630a
 31ef6019c0c56d33de0'
 }
 },
 h''
]
]
]
]
]

Schaad & Campbell Expires March 24, 2016 [Page 75]

Internet-Draft CBOR Encoded Message Syntax September 2015

Appendix C. Examples

 The examples can be found at https://github.com/cose-wg/Examples.
 The file names in each section correspond the the same file names in
 the repository. I am currently still in the process of getting the
 examples up there along with some control information for people to
 be able to check and reproduce the examples.

 Examples may have some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, the examples are presented using the
 CBOR's diagnostic notation rather than a binary dump. A ruby based
 tool exists to convert between a number of formats. This tool can be
 installed with the command line:

 gem install cbor-diag

 The diagnostic notation can be converted into binary files using the
 following command line:

 diag2cbor < inputfile > outputfile

 The examples can be extracted from the XML version of this docuent
 via an XPath expression as all of the artwork is tagged with the
 attribute type='CBORdiag'.

C.1. Examples of MAC messages

C.1.1. Shared Secret Direct MAC

 This example users the following:

 o MAC: AES-CMAC, 256-bit key, trucated to 64 bits

 o Recipient class: direct shared secret

 o File name: Mac-04

 Size of binary file is 71 bytes

https://github.com/cose-wg/Examples

Schaad & Campbell Expires March 24, 2016 [Page 76]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [
 3,
 h'a1016f4145532d434d41432d3235362f3634',
 {
 },
 h'546869732069732074686520636f6e74656e742e',
 h'd9afa663dd740848',
 [
 [
 h'',
 {
 1: -6,
 4: h'6f75722d736563726574'
 },
 h''
]
]
]

C.1.2. ECDH Direct MAC

 This example uses the following:

 o MAC: HMAC w/SHA-256, 256-bit key

 o Recipient class: ECDH key agreement, two static keys, HKDF w/
 context structure

 Size of binary file is 215 bytes

Schaad & Campbell Expires March 24, 2016 [Page 77]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [
 3,
 h'a10104',
 {
 },
 h'546869732069732074686520636f6e74656e742e',
 h'2ba937ca03d76c3dbad30cfcbaeef586f9c0f9ba616ad67e9205d38576ad9
 930',
 [
 [
 h'',
 {
 1: 52,
 4: h'6d65726961646f632e6272616e64796275636b406275636b6c61
 6e642e6578616d706c65',
 -3: h'706572656772696e2e746f6f6b407475636b626f726f7567682
 e6578616d706c65',
 "apu": h'4d8553e7e74f3c6a3a9dd3ef286a8195cbf8a23d19558ccf
 ec7d34b824f42d92bd06bd2c7f0271f0214e141fb779ae2856abf585a58368b01
 7e7f2a9e5ce4db5'
 },
 h''
]
]
]

C.1.3. Wrapped MAC

 This example uses the following:

 o MAC: AES-MAC, 128-bit key, truncated to 64 bits

 o Recipient class: AES keywrap w/ a pre-shared 256-bit key

 Size of binary file is 122 bytes

Schaad & Campbell Expires March 24, 2016 [Page 78]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [
 3,
 h'a1016e4145532d3132382d4d41432d3634',
 {
 },
 h'546869732069732074686520636f6e74656e742e',
 h'6d1fa77b2dd9146a',
 [
 [
 h'',
 {
 1: -5,
 4: h'30313863306165352d346439622d343731622d626664362d6565
 66333134626337303337'
 },
 h'711ab0dc2fc4585dce27effa6781c8093eba906f227b6eb0'
]
]
]

C.1.4. Multi-recipient MAC message

 This example uses the following:

 o MAC: HMAC w/ SHA-256, 128-bit key

 o Recipient class: Uses three different methods

 1. ECDH Ephemeral-Static, Curve P-521, AES-Key Wrap w/ 128-bit
 key

 2. RSA-OAEP w/ SHA-256

 3. AES-Key Wrap w/ 256-bit key

 Size of binary file is 670 bytes

 [
 3,
 h'a10104',
 {
 },
 h'546869732069732074686520636f6e74656e742e',
 h'7aaa6e74546873061f0a7de21ff0c0658d401a68da738dd893748651983ce
 1d0',
 [
 [
 h'',

Schaad & Campbell Expires March 24, 2016 [Page 79]

Internet-Draft CBOR Encoded Message Syntax September 2015

 {
 1: 55,
 4: h'62696c626f2e62616767696e7340686f626269746f6e2e657861
 6d706c65',
 -1: {
 1: 2,
 -1: 3,
 -2: h'43b12669acac3fd27898ffba0bcd2e6c366d53bc4db71f909
 a759304acfb5e18cdc7ba0b13ff8c7636271a6924b1ac63c02688075b55ef2d61
 3574e7dc242f79c3',
 -3: h'812dd694f4ef32b11014d74010a954689c6b6e8785b333d1a
 b44f22b9d1091ae8fc8ae40b687e5cfbe7ee6f8b47918a07bb04e9f5b1a51a334
 a16bc09777434113'
 }
 },
 h'f20ad9c96134f3c6be4f75e7101c0ecc5efa071ff20a87fd1ac285109
 41ee0376573e2b384b56b99'
],
 [
 h'',
 {
 1: -26,
 4: h'62696c626f2e62616767696e7340686f626269746f6e2e657861
 6d706c65'
 },
 h'46c4f88069b650909a891e84013614cd58a3668f88fa18f3852940a20
 b35098591d3aacf91c125a2595cda7bee75a490579f0e2f20fd6bc956623bfde3
 029c318f82c426dac3463b261c981ab18b72fe9409412e5c7f2d8f2b5abaf780d
 f6a282db033b3a863fa957408b81741878f466dcc437006ca21407181a016ca60
 8ca8208bd3c5a1ddc828531e30b89a67ec6bb97b0c3c3c92036c0cb84aa0f0ce8
 c3e4a215d173bfa668f116ca9f1177505afb7629a9b0b5e096e81d37900e06f56
 1a32b6bc993fc6d0cb5d4bb81b74e6ffb0958dac7227c2eb8856303d989f93b4a
 051830706a4c44e8314ec846022eab727e16ada628f12ee7978855550249ccb58
 '
],
 [
 h'',
 {
 1: -5,
 4: h'30313863306165352d346439622d343731622d626664362d6565
 66333134626337303337'
 },
 h'0b2c7cfce04e98276342d6476a7723c090dfdd15f9a518e7736549e99
 8370695e6d6a83b4ae507bb'
]
]
]

Schaad & Campbell Expires March 24, 2016 [Page 80]

Internet-Draft CBOR Encoded Message Syntax September 2015

C.2. Examples of Encrypted Messages

C.2.1. Direct ECDH

 This example uses the following:

 o CEK: AES-GCM w/ 128-bit key

 o Recipient class: ECDH Ephemeral-Static, Curve P-256

 Size of binary file is 182 bytes

 [
 2,
 h'a10101',
 {
 5: h'c9cf4df2fe6c632bf7886413'
 },
 h'45fce2814311024d3a479e7d3eed063850f3f0b9f3f948677e3ae9869bcf9
 ff4e1763812',
 [
 [
 h'',
 {
 1: 50,
 4: h'6d65726961646f632e6272616e64796275636b406275636b6c61
 6e642e6578616d706c65',
 -1: {
 1: 2,
 -1: 1,
 -2: h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf05
 4e1c7b4d91d6280',
 -3: h'f01400b089867804b8e9fc96c3932161f1934f4223069170d
 924b7e03bf822bb'
 }
 },
 h''
]
]
]

C.2.2. Direct plus Key Derivation

 This example uses the following:

 o CEK: AES-CCM w/128-bit key, trucate the tag to 64-bits

Schaad & Campbell Expires March 24, 2016 [Page 81]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o Recipient class: Use HKDF on a shared secret with the following
 implicit fields as part of the context.

 * APU identity: "lighting-client"

 * APV identity: "lighting-server"

 * Supplimentary Public Other: "Encryption Example 02"

 Size of binary file is 95 bytes

 [
 2,
 h'a1010a',
 {
 5: h'89f52f65a1c580933b5261a7'
 },
 h'7b9dcfa42c4e1d3182c402dc18ef8b5637de4fb62cf1dd156ea6e6e0',
 [
 [
 h'',
 {
 1: "dir+kdf",
 4: h'6f75722d736563726574',
 -20: h'61616262636364646565666667676868'
 },
 h''
]
]
]

C.3. Examples of Signed Message

C.3.1. Single Signature

 This example uses the following:

 o Signature Algorithm: RSA-PSS w/ SHA-384, MGF-1

 Size of binary file is 330 bytes

Schaad & Campbell Expires March 24, 2016 [Page 82]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [
 1,
 h'',
 {
 },
 h'546869732069732074686520636f6e74656e742e',
 [
 [
 h'a20165505333383404581e62696c626f2e62616767696e7340686f626
 269746f6e2e6578616d706c65',
 {
 },
 h'6d9d88a90ef4d6d7c0079fb11a33c855e2274c773f358df43b68f7873
 eeda210692a61d70cd6a24ba0e3d82e359384be09faafea496bb0ed16f02091c4
 8c02f33574edab5b3e334bae68d19580021327cc131fbee38eb0b28289dbce118
 3f9067891b17fe752674b80437da02e9928ab7a155fef707b11d2bd38a71f224f
 53170480116d96cc3f7266487b268679a13cdedffa93252a550371acc19971369
 b58039056b308cc4e158bebe7c55db7874442d4321fd27f17dbb820ef19f43dcc
 16cd50ccdd1b7dfd7cdde239a9245af41d949cdbbf1337ca254af20eeb167a62d
 a5a51c83899c6f6e7c7e01dc3db21a250092a69fc635b74a2e54f5c98cb955d83
 '
]
]
]

C.3.2. Multiple Signers

 This example uses the following:

 o Signature Algorithm: RSA-PSS w/ SHA-256, MGF-1

 o Signature Algorithm: ECDSA w/ SHA-512, Curve P-521

 Size of binary file is 496 bytes

Schaad & Campbell Expires March 24, 2016 [Page 83]

Internet-Draft CBOR Encoded Message Syntax September 2015

 [
 1,
 h'',
 {
 },
 h'546869732069732074686520636f6e74656e742e',
 [
 [
 h'a1013819',
 {
 4: h'62696c626f2e62616767696e7340686f626269746f6e2e657861
 6d706c65'
 },
 h'0ee972d931c7ab906e4bb71b80da0cc99c104fa53ebbf1f2cf7b668b9
 3d766d3d2da28299f074675bb0db3cd0792ba83050c23c96795d58f9c7d68f66a
 bbb8f35af8a0b5df369517b6db85e2cb62d852b666bc135c9022e46b538f78c26
 adc2668963e74a019de718254385bb9cb137926ad6a88d1ff70043f85e555fb57
 84107ce6e9de7c89c4fbadf8eca363a35f415f7a23523a8331b1aa2dfbac59a06
 3e4357bde8e53fe34195d59bcda37d2c604804fffe60362e81476436aaa677129
 f34b26639fc41b8e758e5edf273079c61b30130f0f83c57aa6856347e2556f718
 eaf79a1fee1397a4f0b16b1b34db946eaaff10c793e5d1e681cb21c4fd20c5fdf
 '
],
 [
 h'',
 {
 1: -9,
 4: h'62696c626f2e62616767696e7340686f626269746f6e2e657861
 6d706c65'
 },
 h'0118eaa7d62778b5a9525a583f06b115d80cd246bc930f0c2850588ee
 c85186b427026e096a076bfab738215f354be59f57643a7f6b2c92535cf3c37ee
 2746a908ab1dcc673a63f327d9eff852b874f7a98b6638c7054fdeeaa3dce6542
 4a21bd5dc728acedda7fcae6df6fc3298ff51ac911603a0f26d066935dccb85ea
 eb0ae6d0e6'
]
]
]

C.4. COSE Keys

C.4.1. Public Keys

 This is an example of a COSE Key set. This example includes the
 public keys for all of the previous examples.

 In order the keys are:

Schaad & Campbell Expires March 24, 2016 [Page 84]

Internet-Draft CBOR Encoded Message Syntax September 2015

 o An EC key with a kid of "meriadoc.brandybuck@buckland.example"

 o An EC key with a kid of "peregrin.took@tuckborough.example"

 o An EC key with a kid of "bilbo.baggins@hobbiton.example"

 o An RSA key with a kid of "bilbo.baggins@hobbiton.example"

 Size of binary file is 703 bytes

 [
 {
 -1: 1,
 -2: h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de4
 39c08551d',
 -3: h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eec
 d0084d19c',
 1: 2,
 2: h'6d65726961646f632e6272616e64796275636b406275636b6c616e64
 2e6578616d706c65'
 },
 {
 -1: 1,
 -2: h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b
 4d91d6280',
 -3: h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e
 03bf822bb',
 1: 2,
 2: h'706572656772696e2e746f6f6b407475636b626f726f7567682e6578
 616d706c65'
 },
 {
 -1: 3,
 -2: h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737b
 f5de7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620
 085e5c8f42ad',
 -3: h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e
 247e60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f
 3fe1ea1d9475',
 1: 2,
 2: h'62696c626f2e62616767696e7340686f626269746f6e2e6578616d70
 6c65'
 },
 {
 -2: h'9f810fb4038273d02591e4073f31d2b6001b82cedb4d92f050165d4
 7cfcab8a3c41cb778ac7553793f8ef975768d1a2374d8712564c3bcd77b9ea434
 544899407cff0099920a931a24c4414852ab29bdb0a95c0653f36c60e60bf90b6
 258dda56f37047ba5c2d1d029af9c9d40bac7aa41c78a0dd1068add699e808fea

Schaad & Campbell Expires March 24, 2016 [Page 85]

Internet-Draft CBOR Encoded Message Syntax September 2015

 011ea1441d8a4f7bb4e97be39f55f1ddd44e9c4ba335159703d4d34b603e65147
 a4f23d6d3c0996c75edee846a82d190ae10783c961cf0387aed2106d2d0555b6f
 d937fad5535387e0ff72ffbe78941402b0b822ea2a74b6058c1dabf9b34a76cb6
 3b87faa2c6847b8e2837fff91186e6b1c14911cf989a89092a81ce601ddacd3f9
 cf',
 -1: h'010001',
 1: 3,
 2: h'62696c626f2e62616767696e7340686f626269746f6e2e6578616d70
 6c65'
 }
]

C.4.2. Private Keys

 This is an example of a COSE Key set. This example includes the
 private keys for all of the previous examples.

 In order the keys are:

 o An EC key with a kid of "meriadoc.brandybuck@buckland.example"

 o A shared-secret key with a kid of "our-secret"

 o An EC key with a kid of "peregrin.took@tuckborough.example"

 o A shared-secret key with a kid of "018c0ae5-4d9b-471b-
 bfd6-eef314bc7037"

 o An EC key with a kid of "bilbo.baggins@hobbiton.example"

 o An RSA key with a kid of "bilbo.baggins@hobbiton.example"

 Size of binary file is 1884 bytes

 [
 {
 1: 2,
 2: h'6d65726961646f632e6272616e64796275636b406275636b6c616e64
 2e6578616d706c65',
 -1: 1,
 -2: h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de4
 39c08551d',
 -3: h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eec
 d0084d19c',
 -4: h'aff907c99f9ad3aae6c4cdf21122bce2bd68b5283e6907154ad9118
 40fa208cf'
 },
 {

Schaad & Campbell Expires March 24, 2016 [Page 86]

Internet-Draft CBOR Encoded Message Syntax September 2015

 1: 4,
 2: h'6f75722d736563726574',
 -1: h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dce
 a6c427188'
 },
 {
 1: 2,
 -1: 1,
 2: h'706572656772696e2e746f6f6b407475636b626f726f7567682e6578
 616d706c65',
 -2: h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b
 4d91d6280',
 -3: h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e
 03bf822bb',
 -4: h'02d1f7e6f26c43d4868d87ceb2353161740aacf1f7163647984b522
 a848df1c3'
 },
 {
 1: 4,
 2: h'30313863306165352d346439622d343731622d626664362d65656633
 3134626337303337',
 -1: h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dce
 a6c427188'
 },
 {
 1: 2,
 2: h'62696c626f2e62616767696e7340686f626269746f6e2e6578616d70
 6c65',
 -1: 3,
 -2: h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737b
 f5de7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620
 085e5c8f42ad',
 -3: h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e
 247e60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f
 3fe1ea1d9475',
 -4: h'00085138ddabf5ca975f5860f91a08e91d6d5f9a76ad4018766a476
 680b55cd339e8ab6c72b5facdb2a2a50ac25bd086647dd3e2e6e99e84ca2c3609
 fdf177feb26d'
 },
 {
 1: 3,
 2: h'62696c626f2e62616767696e7340686f626269746f6e2e6578616d70
 6c65',
 -2: h'9f810fb4038273d02591e4073f31d2b6001b82cedb4d92f050165d4
 7cfcab8a3c41cb778ac7553793f8ef975768d1a2374d8712564c3bcd77b9ea434
 544899407cff0099920a931a24c4414852ab29bdb0a95c0653f36c60e60bf90b6
 258dda56f37047ba5c2d1d029af9c9d40bac7aa41c78a0dd1068add699e808fea
 011ea1441d8a4f7bb4e97be39f55f1ddd44e9c4ba335159703d4d34b603e65147

Schaad & Campbell Expires March 24, 2016 [Page 87]

Internet-Draft CBOR Encoded Message Syntax September 2015

 a4f23d6d3c0996c75edee846a82d190ae10783c961cf0387aed2106d2d0555b6f
 d937fad5535387e0ff72ffbe78941402b0b822ea2a74b6058c1dabf9b34a76cb6
 3b87faa2c6847b8e2837fff91186e6b1c14911cf989a89092a81ce601ddacd3f9
 cf',
 -1: h'010001',
 -3: h'6d6502f41f84151228f24a467e1d19bb218fbcc34abd858db41fe29
 221fd936d1e4fe3b5abf23bf1e8999295f15d0d144c4b362ec3514bef2e25bbd0
 f80d62ae4c0c48c90ad49dd74c681dae10a4bbd81195d63bb0d03f00a64687e43
 aeb5ff8dab20d2d109ef16fa7677e2e8bfa8e7e42e72bd4160c3aa9688b00f9b3
 3059648316ed8c5016309074cc1332d81aa39ed389e8a9eab5844c414c704e05d
 90c5e2b85854ab5054ea5f83a84896c6a83cdac5edda1f8b3274f7d38e8039826
 8462a33ef9b525107c60ac8564c19cfe6e0e3775f242a1cafd3b9617d225dacf7
 4ce4f972976d61b057f82ff9870aea056aeee076c3df1cfc718d539c3a906b433
 c1',
 -4: h'dd297183f0f04d725c6fad3de51a17ca0402019e519c0bd9967a35c
 a11ed9d47b1fdfa7b019ffd9d168eec75fff9215f1907aeb5aa364c38c3016538
 56ea64f2bc3d251d00cd9d0dd9fbee2009abfd60ac986a5e36a4277afd53ec8c8
 4b2787c50cb7e9f909a7e1922933844b2b9a7747e8bc4eaef44996c3e9e99bfc6
 d4ab49',
 -5: h'b8a136761f9c4dfe84445e24e1efe3cbbf067cf61421a532a12489b
 81ce9dc2b9b937382aacea0ad3f1b47f72ed039b5319c169ad76a0f223de47ad4
 7aadcc3f5e6f30c38df251d3799bb69662afc2a5bb6a757953384cd6267bcf8c8
 c92e530156a01bf263cf7c117bd10fe85da91c47952a80675f76cc1de9545274b
 3ba457',
 -6: h'07c3d5bd792f26b8f62fe19843bbf7cbdafa2b0e60f526a15c1c2c5
 94ce9d7d4d596023e615f39ab53486f5af142d0fe22c5d7477f936a77afb913d1
 b7938139d88c190a7ca5bb76ea096361f294fc4f719fe4542c7cf4f9e77d13d81
 72ca0f85469e0a73f8f7d0feadbda64e71587a09a74d3d41fd47bc2862c515f9f
 5e8629',
 -7: h'08b0e60c676e87295cf68eebf38ac45159fba7343a3c5f3763e8816
 71e4d4fe4e99ce64a175a44ac031578acc5125e350e51c7aaa04b48cd16d6c385
 6f04f16166439bab08ea88398936f0406202de09c929b8bfee4fef260187c07c6
 03da5f63e7bcffb3c84903111b9ffabcb873f675d42abd02a0b6c9e2fa91d293d
 5c605f',
 -8: h'dcf8aabd740dd33c0c784fac06f6608b6f3d5cff57090177556a8fc
 cc2a7220429eff4ee828ebe35904a090b0c7f71da1060634d526cfe370af3e4d1
 5ef68a7beed931a423f157c175892cb1bbb434a0c386327e1ad8ac79a0d55aded
 d707d1c7f0c601541e9421ec5a02ae3149ea1e99129305eb19ae8ece2a3293f3f
 1a688e'
 }
]

Appendix D. Document Updates

Schaad & Campbell Expires March 24, 2016 [Page 88]

Internet-Draft CBOR Encoded Message Syntax September 2015

D.1. Version -04 to -05

 o Removed the jku, x5c, x5t, x5t#S256, x5u, and jwk headers.

 o Add enveloped data vs encrypted data structures.

 o Add counter signature parameter.

D.2. Version -03 to -04

 o Change top level from map to array.

 o Eliminate the term "key managment" from the document.

 o Point to content registries for the 'content type' attribute

 o Push protected field into the KDF functions for recipients.

 o Remove password based recipient information.

 o Create EC Curve Registry.

D.3. Version -02 to -03

 o Make a pass over all of the algorithm text.

 o Alter the CDDL so that Keys and KeySets are top level items and
 the key examples validate.

 o Add sample key structures.

 o Expand text on dealing with Externally Supplied Data.

 o Update the examples to match some of the renumbering of fields.

D.4. Version -02 to -03

 o Add a set of straw man proposals for algorithms. It is possible/
 expected that this text will be moved to a new document.

 o Add a set of straw man proposals for key structures. It is
 possible/expected that this text will be moved to a new document.

 o Provide guidance on use of externally supplied authenticated data.

 o Add external authenticated data to signing structure.

Schaad & Campbell Expires March 24, 2016 [Page 89]

Internet-Draft CBOR Encoded Message Syntax September 2015

D.5. Version -01 to -2

 o Add first pass of algorithm information

 o Add direct key derivation example.

D.6. Version -00 to -01

 o Add note on where the document is being maintained and
 contributing notes.

 o Put in proposal on MTI algorithms.

 o Changed to use labels rather than keys when talking about what
 indexes a map.

 o Moved nonce/IV to be a common header item.

 o Expand section to discuss the common set of labels used in
 COSE_Key maps.

 o Start marking element 0 in registries as reserved.

 o Update examples.

Editorial Comments

[CREF1] JLS: Need to check this list for correctness before publishing.

[CREF2] JLS: I have not gone through the document to determine what
 needs to be here yet. We mostly want to grab terms which are
 used in unusual ways or are not generally understood.

[CREF3] JLS: It would be possible to extend this section to talk about
 those decisions which an application needs to think about rather
 than just talking about MTI algoithms.

[CREF4] Hannes: I would remove references to CMS and S/MIME since they
 are most likely only helpful to a very small audience.

[CREF5] JLS: I have moved msg_type into the individual structures.
 However, they would not be necessary in the cases where a) the
 security service is known and b) security libraries can setup to
 take individual structures. Should they be moved back to just
 appearing if used in a COSE_MSG rather than on the individual
 structure? This would make things shorter if one was using just
 a signed message because the msg_type field can be omitted as
 well as the COSE_Tagged_MSG tag field. One the other hand, it

Schaad & Campbell Expires March 24, 2016 [Page 90]

Internet-Draft CBOR Encoded Message Syntax September 2015

 will complicated the code if one is doing general purpose
 library type things.

[CREF6] JLS: Should we create an IANA registries for the values of
 msg_type?

[CREF7] CB: I would like to make msg_type go away

[CREF8] JLS: A completest version of this grammar would list the options
 available in the protected and unprotected headers. Do we want
 to head that direction?

[CREF9] JLS: Is there a reason to assign a CBOR tag to identify keys
 and/or key sets?

[CREF10] JLS: We can really simplify the grammar for COSE_Key to be just
 the kty (the one required field) and the generic item. The
 reason to do this is that it makes things simpler. The reason
 not to do this says that we really need to add a lot more items
 so that a grammar check can be done that is more tightly
 enforced.

[CREF11] Ilari: Look to see if we need to be clearer about how the
 fields defined in the table are transported and thus why they
 have labels.

[CREF12] Ilari: Check to see what the curves are renamed to during final
 publishing. It appears to be X25519 now.

[CREF13] JLS: Do we create a registry for curves? Is is the same
 registry for both EC1 and EC2?

[CREF14] JLS: Should we use the bignum encoding for x, y and d instead
 of bstr?

[CREF15] JLS: Looking at the CBOR specification, the bstr that we are
 looking in our table below should most likely be specified as
 big numbers rather than as binary strings. This means that we
 would use the tag 6.2 instead. From my reading of the
 specification, there is no difference in the encoded size of
 the resulting output. The specification of bignum does
 explicitly allow for integers encoded with leading zeros.

[CREF16] JLS: Should we register both or just the cose+cbor one?

Schaad & Campbell Expires March 24, 2016 [Page 91]

Internet-Draft CBOR Encoded Message Syntax September 2015

Authors' Addresses

 Jim Schaad
 August Cellars

 Email: ietf@augustcellars.com

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

Schaad & Campbell Expires March 24, 2016 [Page 92]

