
COSE Working Group J. Schaad
Internet-Draft August Cellars
Obsoletes8152 (if approved) August 18, 2019
Intended status: Standards Track
Expires: February 19, 2020

CBOR Object Signing and Encryption (COSE): Initial Algorithms
draft-ietf-cose-rfc8152bis-algs-04

Abstract

 Concise Binary Object Representation (CBOR) is a data format designed
 for small code size and small message size. There is a need for the
 ability to have basic security services defined for this data format.
 This document defines the CBOR Object Signing and Encryption (COSE)
 protocol. This specification describes how to create and process
 signatures, message authentication codes, and encryption using CBOR
 for serialization. COSE additionally describes how to represent
 cryptographic keys using CBOR.

 In this specification the conventions for the use of a number of
 cryptographic algorithms with COSE. The details of the structure of
 COSE are defined in [I-D.ietf-cose-rfc8152bis-struct].

 This document along with [I-D.ietf-cose-rfc8152bis-struct] obsoletes
RFC8152.

Contributing to this document

 This note is to be removed before publishing as an RFC.

 The source for this draft is being maintained in GitHub. Suggested
 changes should be submitted as pull requests at https://github.com/

cose-wg/cose-rfc8152bis. Instructions are on that page as well.
 Editorial changes can be managed in GitHub, but any substantial
 issues need to be discussed on the COSE mailing list.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Schaad Expires February 19, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8152
https://github.com/cose-wg/cose-rfc8152bis
https://github.com/cose-wg/cose-rfc8152bis
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft COSE Algorithms August 2019

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 19, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Terminology 4
1.2. Changes from RFC8152 4
1.3. Document Terminology 4
1.4. CBOR Grammar . 4
1.5. Examples . 4

2. Signature Algorithms . 5
2.1. ECDSA . 5
2.1.1. Security Considerations 6

 2.2. Edwards-Curve Digital Signature Algorithms
 (EdDSAs) . 7

2.2.1. Security Considerations 8
3. Message Authentication Code (MAC) Algorithms 8
3.1. Hash-Based Message Authentication Codes (HMACs) 9
3.1.1. Security Considerations 10

3.2. AES Message Authentication Code (AES-CBC-MAC) 10
3.2.1. Security Considerations 11

4. Content Encryption Algorithms 12
4.1. AES GCM . 12
4.1.1. Security Considerations 13

4.2. AES CCM . 13
4.2.1. Security Considerations 16

4.3. ChaCha20 and Poly1305 16
4.3.1. Security Considerations 17

5. Key Derivation Functions (KDFs) 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc8152

Schaad Expires February 19, 2020 [Page 2]

Internet-Draft COSE Algorithms August 2019

 5.1. HMAC-Based Extract-and-Expand Key Derivation Function
 (HKDF) . 18

5.2. Context Information Structure 20
6. Content Key Distribution Methods 25
6.1. Direct Encryption . 25
6.1.1. Direct Key . 25
6.1.2. Direct Key with KDF 26

6.2. AES Key Wrap . 28
6.2.1. Security Considerations for AES-KW 29

6.3. Direct ECDH . 29
6.3.1. Security Considerations 32

6.4. ECDH with Key Wrap 32
7. Key Object Parameters . 34
7.1. Elliptic Curve Keys 35
7.1.1. Double Coordinate Curves 35

7.2. Octet Key Pair . 37
7.3. Symmetric Keys . 37

8. CBOR Encoding Restrictions 38
9. IANA Considerations . 38
10. Security Considerations 39
11. References . 40
11.1. Normative References 40
11.2. Informative References 42

 Acknowledgments . 44
 Author's Address . 44

1. Introduction

 There has been an increased focus on small, constrained devices that
 make up the Internet of Things (IoT). One of the standards that has
 come out of this process is "Concise Binary Object Representation
 (CBOR)" [RFC7049]. CBOR extended the data model of the JavaScript
 Object Notation (JSON) [RFC8259] by allowing for binary data, among
 other changes. CBOR is being adopted by several of the IETF working
 groups dealing with the IoT world as their encoding of data
 structures. CBOR was designed specifically to be both small in terms
 of messages transport and implementation size and be a schema-free
 decoder. A need exists to provide message security services for IoT,
 and using CBOR as the message-encoding format makes sense.

 The core COSE specification consists of two documents.
 [I-D.ietf-cose-rfc8152bis-struct] contains the serialization
 structures and the procedures for using the different cryptographic
 algorithms. This document provides for an initial set of algorithms
 that are then use with those structures. Additional algorithms
 beyond what are in this document are defined elsewhere.

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8259

Schaad Expires February 19, 2020 [Page 3]

Internet-Draft COSE Algorithms August 2019

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Changes from RFC8152

 * Extract the sections dealing with specific algorithms into this
 document. The sections dealing with structure and general
 processing rules are placed in [I-D.ietf-cose-rfc8152bis-struct].

1.3. Document Terminology

 In this document, we use the following terminology:

 Byte is a synonym for octet.

 Constrained Application Protocol (CoAP) is a specialized web transfer
 protocol for use in constrained systems. It is defined in [RFC7252].

 Authenticated Encryption (AE) [RFC5116] algorithms are those
 encryption algorithms that provide an authentication check of the
 plain text contents as part of the encryption service.

 Authenticated Encryption with Associated Data (AEAD) [RFC5116]
 algorithms provide the same content authentication service as AE
 algorithms, but they additionally provide for authentication of non-
 encrypted data as well.

1.4. CBOR Grammar

 At the time that [RFC8152] was initially published, the CBOR Data
 Definition Language (CDDL) [RFC8610] had not yet been published.
 This document uses a variant of CDDL which is described in
 [I-D.ietf-cose-rfc8152bis-struct]

1.5. Examples

 A GitHub project has been created at <https://github.com/cose-wg/
Examples> that contains a set of testing examples as well. Each

 example is found in a JSON file that contains the inputs used to
 create the example, some of the intermediate values that can be used
 in debugging the example and the output of the example presented in
 both a hex and a CBOR diagnostic notation format. Some of the
 examples at the site are designed failure testing cases; these are

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8610
https://github.com/cose-wg/Examples
https://github.com/cose-wg/Examples

Schaad Expires February 19, 2020 [Page 4]

Internet-Draft COSE Algorithms August 2019

 clearly marked as such in the JSON file. If errors in the examples
 in this document are found, the examples on GitHub will be updated,
 and a note to that effect will be placed in the JSON file.

2. Signature Algorithms

 Section 9.1 of [I-D.ietf-cose-rfc8152bis-struct]
 [I-D.ietf-cose-rfc8152bis-struct] contains a generic description of
 signature algorithms. The document defines signature algorithm
 identifiers for two signature algorithms.

2.1. ECDSA

 ECDSA [DSS] defines a signature algorithm using ECC. Implementations
 SHOULD use a deterministic version of ECDSA such as the one defined
 in [RFC6979]. The use of a deterministic signature algorithm allows
 for systems to avoid relying on random number generators in order to
 avoid generating the same value of 'k' (the per-message random
 value). Biased generation of the value 'k' can be attacked, and
 collisions of this value leads to leaked keys. It additionally
 allows for doing deterministic tests for the signature algorithm.
 The use of deterministic ECDSA does not lessen the need to have good
 random number generation when creating the private key.

 The ECDSA signature algorithm is parameterized with a hash function
 (h). In the event that the length of the hash function output is
 greater than the group of the key, the leftmost bytes of the hash
 output are used.

 The algorithms defined in this document can be found in Table 1.

 +-------+-------+---------+------------------+
 | Name | Value | Hash | Description |
 +=======+=======+=========+==================+
 | ES256 | -7 | SHA-256 | ECDSA w/ SHA-256 |
 +-------+-------+---------+------------------+
 | ES384 | -35 | SHA-384 | ECDSA w/ SHA-384 |
 +-------+-------+---------+------------------+
 | ES512 | -36 | SHA-512 | ECDSA w/ SHA-512 |
 +-------+-------+---------+------------------+

 Table 1: ECDSA Algorithm Values

 This document defines ECDSA to work only with the curves P-256,
 P-384, and P-521. This document requires that the curves be encoded
 using the 'EC2' (2 coordinate elliptic curve) key type.
 Implementations need to check that the key type and curve are correct

https://datatracker.ietf.org/doc/html/rfc6979

Schaad Expires February 19, 2020 [Page 5]

Internet-Draft COSE Algorithms August 2019

 when creating and verifying a signature. Other documents can define
 it to work with other curves and points in the future.

 In order to promote interoperability, it is suggested that SHA-256 be
 used only with curve P-256, SHA-384 be used only with curve P-384,
 and SHA-512 be used with curve P-521. This is aligned with the
 recommendation in Section 4 of [RFC5480].

 The signature algorithm results in a pair of integers (R, S). These
 integers will be the same length as the length of the key used for
 the signature process. The signature is encoded by converting the
 integers into bit strings of the same length as the key size. The
 length is rounded up to the nearest byte and is left padded with zero
 bits to get to the correct length. The two integers are then
 concatenated together to form a byte string that is the resulting
 signature.

 Using the function defined in [RFC8017], the signature is:

 Signature = I2OSP(R, n) | I2OSP(S, n)

 where n = ceiling(key_length / 8)

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'EC2'.

 * If the 'alg' field is present, it MUST match the ECDSA signature
 algorithm being used.

 * If the 'key_ops' field is present, it MUST include 'sign' when
 creating an ECDSA signature.

 * If the 'key_ops' field is present, it MUST include 'verify' when
 verifying an ECDSA signature.

2.1.1. Security Considerations

 The security strength of the signature is no greater than the minimum
 of the security strength associated with the bit length of the key
 and the security strength of the hash function.

 Note: Use of a deterministic signature technique is a good idea even
 when good random number generation exists. Doing so both reduces the
 possibility of having the same value of 'k' in two signature
 operations and allows for reproducible signature values, which helps
 testing.

https://datatracker.ietf.org/doc/html/rfc5480#section-4
https://datatracker.ietf.org/doc/html/rfc8017

Schaad Expires February 19, 2020 [Page 6]

Internet-Draft COSE Algorithms August 2019

 There are two substitution attacks that can theoretically be mounted
 against the ECDSA signature algorithm.

 * Changing the curve used to validate the signature: If one changes
 the curve used to validate the signature, then potentially one
 could have two messages with the same signature, each computed
 under a different curve. The only requirement on the new curve is
 that its order be the same as the old one and it be acceptable to
 the client. An example would be to change from using the curve
 secp256r1 (aka P-256) to using secp256k1. (Both are 256-bit
 curves.) We currently do not have any way to deal with this
 version of the attack except to restrict the overall set of curves
 that can be used.

 * Change the hash function used to validate the signature: If one
 either has two different hash functions of the same length or can
 truncate a hash function down, then one could potentially find
 collisions between the hash functions rather than within a single
 hash function (for example, truncating SHA-512 to 256 bits might
 collide with a SHA-256 bit hash value). As the hash algorithm is
 part of the signature algorithm identifier, this attack is
 mitigated by including a signature algorithm identifier in the
 protected header.

2.2. Edwards-Curve Digital Signature Algorithms (EdDSAs)

 [RFC8032] describes the elliptic curve signature scheme Edwards-curve
 Digital Signature Algorithm (EdDSA). In that document, the signature
 algorithm is instantiated using parameters for edwards25519 and
 edwards448 curves. The document additionally describes two variants
 of the EdDSA algorithm: Pure EdDSA, where no hash function is applied
 to the content before signing, and HashEdDSA, where a hash function
 is applied to the content before signing and the result of that hash
 function is signed. For EdDSA, the content to be signed (either the
 message or the pre-hash value) is processed twice inside of the
 signature algorithm. For use with COSE, only the pure EdDSA version
 is used. This is because it is not expected that extremely large
 contents are going to be needed and, based on the arrangement of the
 message structure, the entire message is going to need to be held in
 memory in order to create or verify a signature. This means that
 there does not appear to be a need to be able to do block updates of
 the hash, followed by eliminating the message from memory.
 Applications can provide the same features by defining the content of
 the message as a hash value and transporting the COSE object (with
 the hash value) and the content as separate items.

 The algorithms defined in this document can be found in Table 2. A

Schaad Expires February 19, 2020 [Page 7]

Internet-Draft COSE Algorithms August 2019

 single signature algorithm is defined, which can be used for multiple
 curves.

 +-------+-------+-------------+
 | Name | Value | Description |
 +=======+=======+=============+
 | EdDSA | -8 | EdDSA |
 +-------+-------+-------------+

 Table 2: EdDSA Algorithm Values

 [RFC8032] describes the method of encoding the signature value.

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'OKP' (Octet Key
 Pair).

 * The 'crv' field MUST be present, and it MUST be a curve defined
 for this signature algorithm.

 * If the 'alg' field is present, it MUST match 'EdDSA'.

 * If the 'key_ops' field is present, it MUST include 'sign' when
 creating an EdDSA signature.

 * If the 'key_ops' field is present, it MUST include 'verify' when
 verifying an EdDSA signature.

2.2.1. Security Considerations

 How public values are computed is not the same when looking at EdDSA
 and Elliptic Curve Diffie-Hellman (ECDH); for this reason, they
 should not be used with the other algorithm.

 If batch signature verification is performed, a well-seeded
 cryptographic random number generator is REQUIRED. Signing and non-
 batch signature verification are deterministic operations and do not
 need random numbers of any kind.

3. Message Authentication Code (MAC) Algorithms

 Section 9.2 of [I-D.ietf-cose-rfc8152bis-struct]
 [I-D.ietf-cose-rfc8152bis-struct] contains a generic description of
 MAC algorithms. This section defines the conventions for two MAC
 algorithms.

Schaad Expires February 19, 2020 [Page 8]

Internet-Draft COSE Algorithms August 2019

3.1. Hash-Based Message Authentication Codes (HMACs)

 HMAC [RFC2104] [RFC4231] was designed to deal with length extension
 attacks. The algorithm was also designed to allow for new hash
 algorithms to be directly plugged in without changes to the hash
 function. The HMAC design process has been shown as solid since,
 while the security of hash algorithms such as MD5 has decreased over
 time; the security of HMAC combined with MD5 has not yet been shown
 to be compromised [RFC6151].

 The HMAC algorithm is parameterized by an inner and outer padding, a
 hash function (h), and an authentication tag value length. For this
 specification, the inner and outer padding are fixed to the values
 set in [RFC2104]. The length of the authentication tag corresponds
 to the difficulty of producing a forgery. For use in constrained
 environments, we define one HMAC algorithms that is truncated. There
 are currently no known issues with truncation; however, the security
 strength of the message tag is correspondingly reduced in strength.
 When truncating, the leftmost tag length bits are kept and
 transmitted.

 The algorithms defined in this document can be found in Table 3.

 +-------------+-------+---------+------------+----------------------+
 | Name | Value | Hash | Tag Length | Description |
 +=============+=======+=========+============+======================+
 | HMAC | 4 | SHA-256 | 64 | HMAC w/ SHA-256 |
 | 256/64 | | | | truncated to 64 bits |
 +-------------+-------+---------+------------+----------------------+
 | HMAC | 5 | SHA-256 | 256 | HMAC w/ SHA-256 |
 | 256/256 | | | | |
 +-------------+-------+---------+------------+----------------------+
 | HMAC | 6 | SHA-384 | 384 | HMAC w/ SHA-384 |
 | 384/384 | | | | |
 +-------------+-------+---------+------------+----------------------+
 | HMAC | 7 | SHA-512 | 512 | HMAC w/ SHA-512 |
 | 512/512 | | | | |
 +-------------+-------+---------+------------+----------------------+

 Table 3: HMAC Algorithm Values

 Some recipient algorithms carry the key while others derive a key
 from secret data. For those algorithms that carry the key (such as
 AES Key Wrap), the size of the HMAC key SHOULD be the same size as
 the underlying hash function. For those algorithms that derive the
 key (such as ECDH), the derived key MUST be the same size as the
 underlying hash function.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4231
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc2104

Schaad Expires February 19, 2020 [Page 9]

Internet-Draft COSE Algorithms August 2019

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 * If the 'alg' field is present, it MUST match the HMAC algorithm
 being used.

 * If the 'key_ops' field is present, it MUST include 'MAC create'
 when creating an HMAC authentication tag.

 * If the 'key_ops' field is present, it MUST include 'MAC verify'
 when verifying an HMAC authentication tag.

 Implementations creating and validating MAC values MUST validate that
 the key type, key length, and algorithm are correct and appropriate
 for the entities involved.

3.1.1. Security Considerations

 HMAC has proved to be resistant to attack even when used with
 weakened hash algorithms. The current best known attack is to brute
 force the key. This means that key size is going to be directly
 related to the security of an HMAC operation.

3.2. AES Message Authentication Code (AES-CBC-MAC)

 AES-CBC-MAC is defined in [MAC]. (Note that this is not the same
 algorithm as AES Cipher-Based Message Authentication Code (AES-CMAC)
 [RFC4493].)

 AES-CBC-MAC is parameterized by the key length, the authentication
 tag length, and the IV used. For all of these algorithms, the IV is
 fixed to all zeros. We provide an array of algorithms for various
 key lengths and tag lengths. The algorithms defined in this document
 are found in Table 4.

https://datatracker.ietf.org/doc/html/rfc4493

Schaad Expires February 19, 2020 [Page 10]

Internet-Draft COSE Algorithms August 2019

 +---------+-------+------------+------------+------------------+
 | Name | Value | Key Length | Tag Length | Description |
 +=========+=======+============+============+==================+
 | AES-MAC | 14 | 128 | 64 | AES-MAC 128-bit |
 | 128/64 | | | | key, 64-bit tag |
 +---------+-------+------------+------------+------------------+
 | AES-MAC | 15 | 256 | 64 | AES-MAC 256-bit |
 | 256/64 | | | | key, 64-bit tag |
 +---------+-------+------------+------------+------------------+
 | AES-MAC | 25 | 128 | 128 | AES-MAC 128-bit |
 | 128/128 | | | | key, 128-bit tag |
 +---------+-------+------------+------------+------------------+
 | AES-MAC | 26 | 256 | 128 | AES-MAC 256-bit |
 | 256/128 | | | | key, 128-bit tag |
 +---------+-------+------------+------------+------------------+

 Table 4: AES-MAC Algorithm Values

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations creating and validating MAC values MUST
 validate that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 * If the 'alg' field is present, it MUST match the AES-MAC algorithm
 being used.

 * If the 'key_ops' field is present, it MUST include 'MAC create'
 when creating an AES-MAC authentication tag.

 * If the 'key_ops' field is present, it MUST include 'MAC verify'
 when verifying an AES-MAC authentication tag.

3.2.1. Security Considerations

 A number of attacks exist against Cipher Block Chaining Message
 Authentication Code (CBC-MAC) that need to be considered.

 * A single key must only be used for messages of a fixed or known
 length. If this is not the case, an attacker will be able to
 generate a message with a valid tag given two message and tag
 pairs. This can be addressed by using different keys for messages
 of different lengths. The current structure mitigates this

Schaad Expires February 19, 2020 [Page 11]

Internet-Draft COSE Algorithms August 2019

 problem, as a specific encoding structure that includes lengths is
 built and signed. (CMAC also addresses this issue.)

 * Cipher Block Chaining (CBC) mode, if the same key is used for both
 encryption and authentication operations, an attacker can produce
 messages with a valid authentication code.

 * If the IV can be modified, then messages can be forged. This is
 addressed by fixing the IV to all zeros.

4. Content Encryption Algorithms

 Section 9.3 of [I-D.ietf-cose-rfc8152bis-struct]
 [I-D.ietf-cose-rfc8152bis-struct] contains a generic description of
 Content Encryption algorithms. This document defines the identifier
 and usages for three content encryption algorithms.

4.1. AES GCM

 The Galois/Counter Mode (GCM) mode is a generic authenticated
 encryption block cipher mode defined in [AES-GCM]. The GCM mode is
 combined with the AES block encryption algorithm to define an AEAD
 cipher.

 The GCM mode is parameterized by the size of the authentication tag
 and the size of the nonce. This document fixes the size of the nonce
 at 96 bits. The size of the authentication tag is limited to a small
 set of values. For this document however, the size of the
 authentication tag is fixed at 128 bits.

 The set of algorithms defined in this document are in Table 5.

 +---------+-------+--+
 | Name | Value | Description |
 +=========+=======+==+
 | A128GCM | 1 | AES-GCM mode w/ 128-bit key, 128-bit tag |
 +---------+-------+--+
 | A192GCM | 2 | AES-GCM mode w/ 192-bit key, 128-bit tag |
 +---------+-------+--+
 | A256GCM | 3 | AES-GCM mode w/ 256-bit key, 128-bit tag |
 +---------+-------+--+

 Table 5: Algorithm Value for AES-GCM

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate
 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

Schaad Expires February 19, 2020 [Page 12]

Internet-Draft COSE Algorithms August 2019

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 * If the 'alg' field is present, it MUST match the AES-GCM algorithm
 being used.

 * If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 * If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

4.1.1. Security Considerations

 When using AES-GCM, the following restrictions MUST be enforced:

 * The key and nonce pair MUST be unique for every message encrypted.

 * The total amount of data encrypted for a single key MUST NOT
 exceed 2^39 - 256 bits. An explicit check is required only in
 environments where it is expected that it might be exceeded.

 Consideration was given to supporting smaller tag values; the
 constrained community would desire tag sizes in the 64-bit range.
 Doing so drastically changes both the maximum messages size
 (generally not an issue) and the number of times that a key can be
 used. Given that Counter with CBC-MAC (CCM) is the usual mode for
 constrained environments, restricted modes are not supported.

4.2. AES CCM

 CCM is a generic authentication encryption block cipher mode defined
 in [RFC3610]. The CCM mode is combined with the AES block encryption
 algorithm to define a commonly used content encryption algorithm used
 in constrained devices.

 The CCM mode has two parameter choices. The first choice is M, the
 size of the authentication field. The choice of the value for M
 involves a trade-off between message growth (from the tag) and the
 probability that an attacker can undetectably modify a message. The
 second choice is L, the size of the length field. This value
 requires a trade-off between the maximum message size and the size of
 the Nonce.

 It is unfortunate that the specification for CCM specified L and M as
 a count of bytes rather than a count of bits. This leads to possible

https://datatracker.ietf.org/doc/html/rfc3610

Schaad Expires February 19, 2020 [Page 13]

Internet-Draft COSE Algorithms August 2019

 misunderstandings where AES-CCM-8 is frequently used to refer to a
 version of CCM mode where the size of the authentication is 64 bits
 and not 8 bits. These values have traditionally been specified as
 bit counts rather than byte counts. This document will follow the
 convention of using bit counts so that it is easier to compare the
 different algorithms presented in this document.

 We define a matrix of algorithms in this document over the values of
 L and M. Constrained devices are usually operating in situations
 where they use short messages and want to avoid doing recipient-
 specific cryptographic operations. This favors smaller values of
 both L and M. Less-constrained devices will want to be able to use
 larger messages and are more willing to generate new keys for every
 operation. This favors larger values of L and M.

 The following values are used for L:

 16 bits (2): This limits messages to 2^16 bytes (64 KiB) in length.
 This is sufficiently long for messages in the
 constrained world. The nonce length is 13 bytes
 allowing for 2^104 possible values of the nonce without
 repeating.

 64 bits (8): This limits messages to 2^64 bytes in length. The
 nonce length is 7 bytes allowing for 2^56 possible
 values of the nonce without repeating.

 The following values are used for M:

 64 bits (8): This produces a 64-bit authentication tag. This
 implies that there is a 1 in 2^64 chance that a
 modified message will authenticate.

 128 bits (16): This produces a 128-bit authentication tag. This
 implies that there is a 1 in 2^128 chance that a
 modified message will authenticate.

Schaad Expires February 19, 2020 [Page 14]

Internet-Draft COSE Algorithms August 2019

 +--------------------+-------+----+-----+-----+---------------------+
 | Name | Value | L | M | k | Description |
 +====================+=======+====+=====+=====+=====================+
AES-CCM-16-64-128	10	16	64	128	AES-CCM mode
					128-bit key,
					64-bit tag,
					13-byte nonce
+--------------------+-------+----+-----+-----+---------------------+					
AES-CCM-16-64-256	11	16	64	256	AES-CCM mode
					256-bit key,
					64-bit tag,
					13-byte nonce
+--------------------+-------+----+-----+-----+---------------------+					
AES-CCM-64-64-128	12	64	64	128	AES-CCM mode
					128-bit key,
					64-bit tag,
					7-byte nonce
+--------------------+-------+----+-----+-----+---------------------+					
AES-CCM-64-64-256	13	64	64	256	AES-CCM mode
					256-bit key,
					64-bit tag,
					7-byte nonce
+--------------------+-------+----+-----+-----+---------------------+					
AES-CCM-16-128-128	30	16	128	128	AES-CCM mode
					128-bit key,
					128-bit tag,
					13-byte nonce
+--------------------+-------+----+-----+-----+---------------------+					
AES-CCM-16-128-256	31	16	128	256	AES-CCM mode
					256-bit key,
					128-bit tag,
					13-byte nonce
+--------------------+-------+----+-----+-----+---------------------+					
AES-CCM-64-128-128	32	64	128	128	AES-CCM mode
					128-bit key,
					128-bit tag,
					7-byte nonce
+--------------------+-------+----+-----+-----+---------------------+					
AES-CCM-64-128-256	33	64	128	256	AES-CCM mode
					256-bit key,
					128-bit tag,
					7-byte nonce
 +--------------------+-------+----+-----+-----+---------------------+

 Table 6: Algorithm Values for AES-CCM

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate

Schaad Expires February 19, 2020 [Page 15]

Internet-Draft COSE Algorithms August 2019

 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 * If the 'alg' field is present, it MUST match the AES-CCM algorithm
 being used.

 * If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 * If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

4.2.1. Security Considerations

 When using AES-CCM, the following restrictions MUST be enforced:

 * The key and nonce pair MUST be unique for every message encrypted.
 Note that the value of L influences the number of unique nonces.

 * The total number of times the AES block cipher is used MUST NOT
 exceed 2^61 operations. This limitation is the sum of times the
 block cipher is used in computing the MAC value and in performing
 stream encryption operations. An explicit check is required only
 in environments where it is expected that it might be exceeded.

 [RFC3610] additionally calls out one other consideration of note. It
 is possible to do a pre-computation attack against the algorithm in
 cases where portions of the plaintext are highly predictable. This
 reduces the security of the key size by half. Ways to deal with this
 attack include adding a random portion to the nonce value and/or
 increasing the key size used. Using a portion of the nonce for a
 random value will decrease the number of messages that a single key
 can be used for. Increasing the key size may require more resources
 in the constrained device. See Sections 5 and 10 of [RFC3610] for
 more information.

4.3. ChaCha20 and Poly1305

 ChaCha20 and Poly1305 combined together is an AEAD mode that is
 defined in [RFC8439]. This is an algorithm defined to be a cipher
 that is not AES and thus would not suffer from any future weaknesses
 found in AES. These cryptographic functions are designed to be fast
 in software-only implementations.

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc8439

Schaad Expires February 19, 2020 [Page 16]

Internet-Draft COSE Algorithms August 2019

 The ChaCha20/Poly1305 AEAD construction defined in [RFC8439] has no
 parameterization. It takes a 256-bit key and a 96-bit nonce, as well
 as the plaintext and additional data as inputs and produces the
 ciphertext as an option. We define one algorithm identifier for this
 algorithm in Table 7.

 +-------------------+-------+--------------------------+
 | Name | Value | Description |
 +===================+=======+==========================+
 | ChaCha20/Poly1305 | 24 | ChaCha20/Poly1305 w/ |
 | | | 256-bit key, 128-bit tag |
 +-------------------+-------+--------------------------+

 Table 7: Algorithm Value for AES-GCM

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate
 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 * If the 'alg' field is present, it MUST match the ChaCha20/Poly1305
 algorithm being used.

 * If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 * If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

4.3.1. Security Considerations

 The key and nounce values MUST be a unique pair for every invocation
 of the algorithm. Nonce counters are considered to be an acceptable
 way of ensuring that they are unique.

https://datatracker.ietf.org/doc/html/rfc8439

Schaad Expires February 19, 2020 [Page 17]

Internet-Draft COSE Algorithms August 2019

5. Key Derivation Functions (KDFs)

 Section 9.4 of [I-D.ietf-cose-rfc8152bis-struct]
 [I-D.ietf-cose-rfc8152bis-struct] contains a generic description of
 Key Derivation Functions. This document defines a single context
 structure and a single KDF. These elements are used for all of the
 recipient algorithms defined in this document that require a KDF
 process. These algorithms are defined in Sections 6.1.2, 6.3, and
 6.4.

5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

 The HKDF key derivation algorithm is defined in [RFC5869].

 The HKDF algorithm takes these inputs:

 secret -- a shared value that is secret. Secrets may be either
 previously shared or derived from operations like a Diffie-Hellman
 (DH) key agreement.

 salt -- an optional value that is used to change the generation
 process. The salt value can be either public or private. If the
 salt is public and carried in the message, then the 'salt'
 algorithm header parameter defined in Table 9 is used. While
 [RFC5869] suggests that the length of the salt be the same as the
 length of the underlying hash value, any amount of salt will
 improve the security as different key values will be generated.
 This parameter is protected by being included in the key
 computation and does not need to be separately authenticated. The
 salt value does not need to be unique for every message sent.

 length -- the number of bytes of output that need to be generated.

 context information -- Information that describes the context in
 which the resulting value will be used. Making this information
 specific to the context in which the material is going to be used
 ensures that the resulting material will always be tied to that
 usage. The context structure defined in Section 5.2 is used by
 the KDFs in this document.

 PRF -- The underlying pseudorandom function to be used in the HKDF
 algorithm. The PRF is encoded into the HKDF algorithm selection.

 HKDF is defined to use HMAC as the underlying PRF. However, it is
 possible to use other functions in the same construct to provide a
 different KDF that is more appropriate in the constrained world.
 Specifically, one can use AES-CBC-MAC as the PRF for the expand step,
 but not for the extract step. When using a good random shared secret

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Schaad Expires February 19, 2020 [Page 18]

Internet-Draft COSE Algorithms August 2019

 of the correct length, the extract step can be skipped. For the AES
 algorithm versions, the extract step is always skipped.

 The extract step cannot be skipped if the secret is not uniformly
 random, for example, if it is the result of an ECDH key agreement
 step. This implies that the AES HKDF version cannot be used with
 ECDH. If the extract step is skipped, the 'salt' value is not used
 as part of the HKDF functionality.

 The algorithms defined in this document are found in Table 8.

 +--------------+-------------------+------------------------+
 | Name | PRF | Description |
 +==============+===================+========================+
 | HKDF SHA-256 | HMAC with SHA-256 | HKDF using HMAC |
 | | | SHA-256 as the PRF |
 +--------------+-------------------+------------------------+
 | HKDF SHA-512 | HMAC with SHA-512 | HKDF using HMAC |
 | | | SHA-512 as the PRF |
 +--------------+-------------------+------------------------+
 | HKDF AES- | AES-CBC-MAC-128 | HKDF using AES-MAC as |
 | MAC-128 | | the PRF w/ 128-bit key |
 +--------------+-------------------+------------------------+
 | HKDF AES- | AES-CBC-MAC-256 | HKDF using AES-MAC as |
 | MAC-256 | | the PRF w/ 256-bit key |
 +--------------+-------------------+------------------------+

 Table 8: HKDF Algorithms

 +------+-------+------+----------------------------+-------------+
 | Name | Label | Type | Algorithm | Description |
 +======+=======+======+============================+=============+
 | salt | -20 | bstr | direct+HKDF-SHA-256, | Random salt |
 | | | | direct+HKDF-SHA-512, | |
 | | | | direct+HKDF-AES-128, | |
 | | | | direct+HKDF-AES-256, ECDH- | |
 | | | | ES+HKDF-256, ECDH-ES+HKDF- | |
 | | | | 512, ECDH- SS+HKDF-256, | |
 | | | | ECDH-SS+HKDF-512, ECDH- | |
 | | | | ES+A128KW, ECDH-ES+A192KW, | |
 | | | | ECDH-ES+A256KW, ECDH- | |
 | | | | SS+A128KW, ECDH-SS+A192KW, | |
 | | | | ECDH-SS+A256KW | |
 +------+-------+------+----------------------------+-------------+

 Table 9: HKDF Algorithm Parameters

Schaad Expires February 19, 2020 [Page 19]

Internet-Draft COSE Algorithms August 2019

5.2. Context Information Structure

 The context information structure is used to ensure that the derived
 keying material is "bound" to the context of the transaction. The
 context information structure used here is based on that defined in
 [SP800-56A]. By using CBOR for the encoding of the context
 information structure, we automatically get the same type and length
 separation of fields that is obtained by the use of ASN.1. This
 means that there is no need to encode the lengths for the base
 elements, as it is done by the encoding used in JOSE (Section 4.6.2
 of [RFC7518]).

 The context information structure refers to PartyU and PartyV as the
 two parties that are doing the key derivation. Unless the
 application protocol defines differently, we assign PartyU to the
 entity that is creating the message and PartyV to the entity that is
 receiving the message. By doing this association, different keys
 will be derived for each direction as the context information is
 different in each direction.

 The context structure is built from information that is known to both
 entities. This information can be obtained from a variety of
 sources:

 * Fields can be defined by the application. This is commonly used
 to assign fixed names to parties, but it can be used for other
 items such as nonces.

 * Fields can be defined by usage of the output. Examples of this
 are the algorithm and key size that are being generated.

 * Fields can be defined by parameters from the message. We define a
 set of parameters in Table 10 that can be used to carry the values
 associated with the context structure. Examples of this are
 identities and nonce values. These parameters are designed to be
 placed in the unprotected bucket of the recipient structure; they
 do not need to be in the protected bucket since they already are
 included in the cryptographic computation by virtue of being
 included in the context structure.

 +----------+-------+------+---------------------------+-------------+
 | Name | Label | Type | Algorithm | Description |
 +==========+=======+======+===========================+=============+
PartyU	-21	bstr	direct+HKDF-SHA-256,	Party U
identity			direct+HKDF-SHA-512,	identity
			direct+HKDF-AES-128,	information
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256,	

https://datatracker.ietf.org/doc/html/rfc7518#section-4.6.2
https://datatracker.ietf.org/doc/html/rfc7518#section-4.6.2

Schaad Expires February 19, 2020 [Page 20]

Internet-Draft COSE Algorithms August 2019

			ECDH-ES+HKDF-512,	
			ECDH- SS+HKDF-256,	
			ECDH-SS+HKDF-512,	
			ECDH-ES+A128KW,	
			ECDH-ES+A192KW,	
			ECDH-ES+A256KW,	
			ECDH-SS+A128KW,	
			ECDH-SS+A192KW,	
			ECDH-SS+A256KW	
+----------+-------+------+---------------------------+-------------+				
PartyU	-22	bstr	direct+HKDF-SHA-256,	Party U
nonce		/	direct+HKDF-SHA-512,	provided
		int	direct+HKDF-AES-128,	nonce
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256,	
			ECDH-ES+HKDF-512,	
			ECDH- SS+HKDF-256,	
			ECDH-SS+HKDF-512,	
			ECDH-ES+A128KW,	
			ECDH-ES+A192KW,	
			ECDH-ES+A256KW,	
			ECDH-SS+A128KW,	
			ECDH-SS+A192KW,	
			ECDH-SS+A256KW	
+----------+-------+------+---------------------------+-------------+				
PartyU	-23	bstr	direct+HKDF-SHA-256,	Party U
other			direct+HKDF-SHA-512,	other
			direct+HKDF-AES-128,	provided
			direct+HKDF-AES-256,	information
			ECDH-ES+HKDF-256,	
			ECDH-ES+HKDF-512,	
			ECDH- SS+HKDF-256,	
			ECDH-SS+HKDF-512,	
			ECDH-ES+A128KW,	
			ECDH-ES+A192KW,	
			ECDH-ES+A256KW,	
			ECDH-SS+A128KW,	
			ECDH-SS+A192KW,	
			ECDH-SS+A256KW	
+----------+-------+------+---------------------------+-------------+				
PartyV	-24	bstr	direct+HKDF-SHA-256,	Party V
identity			direct+HKDF-SHA-512,	identity
			direct+HKDF-AES-128,	information
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256,	
			ECDH-ES+HKDF-512,	
			ECDH- SS+HKDF-256,	
			ECDH-SS+HKDF-512,	

Schaad Expires February 19, 2020 [Page 21]

Internet-Draft COSE Algorithms August 2019

			ECDH-ES+A128KW,	
			ECDH-ES+A192KW,	
			ECDH-ES+A256KW,	
			ECDH-SS+A128KW,	
			ECDH-SS+A192KW,	
			ECDH-SS+A256KW	
+----------+-------+------+---------------------------+-------------+				
PartyV	-25	bstr	direct+HKDF-SHA-256,	Party V
nonce		/	direct+HKDF-SHA-512,	provided
		int	direct+HKDF-AES-128,	nonce
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256,	
			ECDH-ES+HKDF-512,	
			ECDH- SS+HKDF-256,	
			ECDH-SS+HKDF-512,	
			ECDH-ES+A128KW,	
			ECDH-ES+A192KW,	
			ECDH-ES+A256KW,	
			ECDH-SS+A128KW,	
			ECDH-SS+A192KW,	
			ECDH-SS+A256KW	
+----------+-------+------+---------------------------+-------------+				
PartyV	-26	bstr	direct+HKDF-SHA-256,	Party V
other			direct+HKDF-SHA-512,	other
			direct+HKDF-AES-128,	provided
			direct+HKDF-AES-256,	information
			ECDH-ES+HKDF-256,	
			ECDH-ES+HKDF-512,	
			ECDH- SS+HKDF-256,	
			ECDH-SS+HKDF-512,	
			ECDH-ES+A128KW,	
			ECDH-ES+A192KW,	
			ECDH-ES+A256KW,	
			ECDH-SS+A128KW,	
			ECDH-SS+A192KW,	
			ECDH-SS+A256KW	
 +----------+-------+------+---------------------------+-------------+

 Table 10: Context Algorithm Parameters

 We define a CBOR object to hold the context information. This object
 is referred to as COSE_KDF_Context. The object is based on a CBOR
 array type. The fields in the array are:

 AlgorithmID: This field indicates the algorithm for which the key
 material will be used. This normally is either a key
 wrap algorithm identifier or a content encryption
 algorithm identifier. The values are from the "COSE

Schaad Expires February 19, 2020 [Page 22]

Internet-Draft COSE Algorithms August 2019

 Algorithms" registry. This field is required to be
 present. The field exists in the context information
 so that if the same environment is used for different
 algorithms, then completely different keys will be
 generated for each of those algorithms. This practice
 means if algorithm A is broken and thus is easier to
 find, the key derived for algorithm B will not be the
 same as the key derived for algorithm A.

 PartyUInfo: This field holds information about party U. The
 PartyUInfo is encoded as a CBOR array. The elements
 of PartyUInfo are encoded in the order presented. The
 elements of the PartyUInfo array are:

 identity: This contains the identity information for
 party U. The identities can be assigned in
 one of two manners. First, a protocol can
 assign identities based on roles. For
 example, the roles of "client" and "server"
 may be assigned to different entities in
 the protocol. Each entity would then use
 the correct label for the data they send or
 receive. The second way for a protocol to
 assign identities is to use a name based on
 a naming system (i.e., DNS, X.509 names).

 We define an algorithm parameter 'PartyU
 identity' that can be used to carry
 identity information in the message.
 However, identity information is often
 known as part of the protocol and can thus
 be inferred rather than made explicit. If
 identity information is carried in the
 message, applications SHOULD have a way of
 validating the supplied identity
 information. The identity information does
 not need to be specified and is set to nil
 in that case.

 nonce: This contains a nonce value. The nonce can
 either be implicit from the protocol or be
 carried as a value in the unprotected
 headers.

 We define an algorithm parameter 'PartyU
 nonce' that can be used to carry this value
 in the message; however, the nonce value
 could be determined by the application and

Schaad Expires February 19, 2020 [Page 23]

Internet-Draft COSE Algorithms August 2019

 the value determined from elsewhere.

 This option does not need to be specified
 and is set to nil in that case.

 other: This contains other information that is
 defined by the protocol. This option does
 not need to be specified and is set to nil
 in that case.

 PartyVInfo: This field holds information about party V. The
 content of the structure is the same as for the
 PartyUInfo but for party V.

 SuppPubInfo: This field contains public information that is
 mutually known to both parties.

 keyDataLength: This is set to the number of bits of
 the desired output value. This
 practice means if algorithm A can use
 two different key lengths, the key
 derived for longer key size will not
 contain the key for shorter key size
 as a prefix.

 protected: This field contains the protected
 parameter field. If there are no
 elements in the protected field, then
 use a zero-length bstr.

 other: This field is for free form data
 defined by the application. An
 example is that an application could
 define two different strings to be
 placed here to generate different keys
 for a data stream versus a control
 stream. This field is optional and
 will only be present if the
 application defines a structure for
 this information. Applications that
 define this SHOULD use CBOR to encode
 the data so that types and lengths are
 correctly included.

 SuppPrivInfo: This field contains private information that is
 mutually known private information. An example of
 this information would be a preexisting shared secret.
 (This could, for example, be used in combination with

Schaad Expires February 19, 2020 [Page 24]

Internet-Draft COSE Algorithms August 2019

 an ECDH key agreement to provide a secondary proof of
 identity.) The field is optional and will only be
 present if the application defines a structure for
 this information. Applications that define this
 SHOULD use CBOR to encode the data so that types and
 lengths are correctly included.

 The following CDDL fragment corresponds to the text above.

 PartyInfo = (
 identity : bstr / nil,
 nonce : bstr / int / nil,
 other : bstr / nil
)

 COSE_KDF_Context = [
 AlgorithmID : int / tstr,
 PartyUInfo : [PartyInfo],
 PartyVInfo : [PartyInfo],
 SuppPubInfo : [
 keyDataLength : uint,
 protected : empty_or_serialized_map,
 ? other : bstr
],
 ? SuppPrivInfo : bstr
]

6. Content Key Distribution Methods

 Section 9.5 of [I-D.ietf-cose-rfc8152bis-struct]
 [I-D.ietf-cose-rfc8152bis-struct] contains a generic description of
 content key distribution methods. This document defines the
 identifiers and usage for a number of content key distribution
 methods.

6.1. Direct Encryption

 Direct encryption algorithm is defined in Section 9.5.1 of
 [I-D.ietf-cose-rfc8152bis-struct] [I-D.ietf-cose-rfc8152bis-struct].
 Information about how to fill in the COSE_Recipient structure are
 detailed there.

6.1.1. Direct Key

 This recipient algorithm is the simplest; the identified key is
 directly used as the key for the next layer down in the message.
 There are no algorithm parameters defined for this algorithm. The
 algorithm identifier value is assigned in Table 11.

Schaad Expires February 19, 2020 [Page 25]

Internet-Draft COSE Algorithms August 2019

 When this algorithm is used, the protected field MUST be zero length.
 The key type MUST be 'Symmetric'.

 +--------+-------+-------------------+
 | Name | Value | Description |
 +========+=======+===================+
 | direct | -6 | Direct use of CEK |
 +--------+-------+-------------------+

 Table 11: Direct Key

6.1.1.1. Security Considerations

 This recipient algorithm has several potential problems that need to
 be considered:

 * These keys need to have some method to be regularly updated over
 time. All of the content encryption algorithms specified in this
 document have limits on how many times a key can be used without
 significant loss of security.

 * These keys need to be dedicated to a single algorithm. There have
 been a number of attacks developed over time when a single key is
 used for multiple different algorithms. One example of this is
 the use of a single key for both the CBC encryption mode and the
 CBC-MAC authentication mode.

 * Breaking one message means all messages are broken. If an
 adversary succeeds in determining the key for a single message,
 then the key for all messages is also determined.

6.1.2. Direct Key with KDF

 These recipient algorithms take a common shared secret between the
 two parties and applies the HKDF function (Section 5.1), using the
 context structure defined in Section 5.2 to transform the shared
 secret into the CEK. The 'protected' field can be of non-zero
 length. Either the 'salt' parameter of HKDF or the 'PartyU nonce'
 parameter of the context structure MUST be present. The salt/nonce
 parameter can be generated either randomly or deterministically. The
 requirement is that it be a unique value for the shared secret in
 question.

 If the salt/nonce value is generated randomly, then it is suggested
 that the length of the random value be the same length as the hash
 function underlying HKDF. While there is no way to guarantee that it
 will be unique, there is a high probability that it will be unique.

Schaad Expires February 19, 2020 [Page 26]

Internet-Draft COSE Algorithms August 2019

 If the salt/nonce value is generated deterministically, it can be
 guaranteed to be unique, and thus there is no length requirement.

 A new IV must be used for each message if the same key is used. The
 IV can be modified in a predictable manner, a random manner, or an
 unpredictable manner (i.e., encrypting a counter).

 The IV used for a key can also be generated from the same HKDF
 functionality as the key is generated. If HKDF is used for
 generating the IV, the algorithm identifier is set to "IV-
 GENERATION".

 When these algorithms are used, the key type MUST be 'symmetric'.

 The set of algorithms defined in this document can be found in
 Table 12.

 +---------------------+-------+--------------+---------------------+
 | Name | Value | KDF | Description |
 +=====================+=======+==============+=====================+
 | direct+HKDF-SHA-256 | -10 | HKDF SHA-256 | Shared secret w/ |
 | | | | HKDF and SHA-256 |
 +---------------------+-------+--------------+---------------------+
 | direct+HKDF-SHA-512 | -11 | HKDF SHA-512 | Shared secret w/ |
 | | | | HKDF and SHA-512 |
 +---------------------+-------+--------------+---------------------+
 | direct+HKDF-AES-128 | -12 | HKDF AES- | Shared secret w/ |
 | | | MAC-128 | AES-MAC 128-bit key |
 +---------------------+-------+--------------+---------------------+
 | direct+HKDF-AES-256 | -13 | HKDF AES- | Shared secret w/ |
 | | | MAC-256 | AES-MAC 256-bit key |
 +---------------------+-------+--------------+---------------------+

 Table 12: Direct Key with KDF

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 * If the 'alg' field is present, it MUST match the algorithm being
 used.

 * If the 'key_ops' field is present, it MUST include 'deriveKey' or
 'deriveBits'.

Schaad Expires February 19, 2020 [Page 27]

Internet-Draft COSE Algorithms August 2019

6.1.2.1. Security Considerations

 The shared secret needs to have some method to be regularly updated
 over time. The shared secret forms the basis of trust. Although not
 used directly, it should still be subject to scheduled rotation.

 While these methods do not provide for perfect forward secrecy, as
 the same shared secret is used for all of the keys generated, if the
 key for any single message is discovered, only the message (or series
 of messages) using that derived key are compromised. A new key
 derivation step will generate a new key that requires the same amount
 of work to get the key.

6.2. AES Key Wrap

 The AES Key Wrap algorithm is defined in [RFC3394]. This algorithm
 uses an AES key to wrap a value that is a multiple of 64 bits. As
 such, it can be used to wrap a key for any of the content encryption
 algorithms defined in this document. The algorithm requires a single
 fixed parameter, the initial value. This is fixed to the value
 specified in Section 2.2.3.1 of [RFC3394]. There are no public
 parameters that vary on a per-invocation basis. The protected header
 field MUST be empty.

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate
 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 * If the 'alg' field is present, it MUST match the AES Key Wrap
 algorithm being used.

 * If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 * If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.3.1

Schaad Expires February 19, 2020 [Page 28]

Internet-Draft COSE Algorithms August 2019

 +--------+-------+----------+-----------------------------+
 | Name | Value | Key Size | Description |
 +========+=======+==========+=============================+
 | A128KW | -3 | 128 | AES Key Wrap w/ 128-bit key |
 +--------+-------+----------+-----------------------------+
 | A192KW | -4 | 192 | AES Key Wrap w/ 192-bit key |
 +--------+-------+----------+-----------------------------+
 | A256KW | -5 | 256 | AES Key Wrap w/ 256-bit key |
 +--------+-------+----------+-----------------------------+

 Table 13: AES Key Wrap Algorithm Values

6.2.1. Security Considerations for AES-KW

 The shared secret needs to have some method to be regularly updated
 over time. The shared secret is the basis of trust.

6.3. Direct ECDH

 The mathematics for ECDH can be found in [RFC6090]. In this
 document, the algorithm is extended to be used with the two curves
 defined in [RFC7748].

 ECDH is parameterized by the following:

 * Curve Type/Curve: The curve selected controls not only the size of
 the shared secret, but the mathematics for computing the shared
 secret. The curve selected also controls how a point in the curve
 is represented and what happens for the identity points on the
 curve. In this specification, we allow for a number of different
 curves to be used. A set of curves are defined in Table 18.

 The math used to obtain the computed secret is based on the curve
 selected and not on the ECDH algorithm. For this reason, a new
 algorithm does not need to be defined for each of the curves.

 * Computed Secret to Shared Secret: Once the computed secret is
 known, the resulting value needs to be converted to a byte string
 to run the KDF. The x-coordinate is used for all of the curves
 defined in this document. For curves X25519 and X448, the
 resulting value is used directly as it is a byte string of a known
 length. For the P-256, P-384, and P-521 curves, the x-coordinate
 is run through the I2OSP function defined in [RFC8017], using the
 same computation for n as is defined in Section 2.1.

 * Ephemeral-Static or Static-Static: The key agreement process may
 be done using either a static or an ephemeral key for the sender's
 side. When using ephemeral keys, the sender MUST generate a new

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc8017

Schaad Expires February 19, 2020 [Page 29]

Internet-Draft COSE Algorithms August 2019

 ephemeral key for every key agreement operation. The ephemeral
 key is placed in the 'ephemeral key' parameter and MUST be present
 for all algorithm identifiers that use ephemeral keys. When using
 static keys, the sender MUST either generate a new random value or
 create a unique value. For the KDFs used, this means either the
 'salt' parameter for HKDF (Table 9) or the 'PartyU nonce'
 parameter for the context structure (Table 10) MUST be present
 (both can be present if desired). The value in the parameter MUST
 be unique for the pair of keys being used. It is acceptable to
 use a global counter that is incremented for every static-static
 operation and use the resulting value. When using static keys,
 the static key should be identified to the recipient. The static
 key can be identified either by providing the key ('static key')
 or by providing a key identifier for the static key ('static key
 id'). Both of these parameters are defined in Table 15.

 * Key Derivation Algorithm: The result of an ECDH key agreement
 process does not provide a uniformly random secret. As such, it
 needs to be run through a KDF in order to produce a usable key.
 Processing the secret through a KDF also allows for the
 introduction of context material: how the key is going to be used
 and one-time material for static-static key agreement. All of the
 algorithms defined in this document use one of the HKDF algorithms
 defined in Section 5.1 with the context structure defined in

Section 5.2.

 * Key Wrap Algorithm: No key wrap algorithm is used. This is
 represented in Table 14 as 'none'. The key size for the context
 structure is the content layer encryption algorithm size.

 COSE does not have an Ephemeral-Ephemeral version defined. The
 reason for this is that COSE is not an an online protocol by itself
 and thus does not have a method to establish ephemeral secrets on
 both sides. The expectation is that a protocol would establish the
 secrets for both sides, and then they would be used as static-static
 for the purposes of COSE, or that the protocol would generate a
 shared secret and a direct encryption would be used.

 The set of direct ECDH algorithms defined in this document are found
 in Table 14.

Schaad Expires February 19, 2020 [Page 30]

Internet-Draft COSE Algorithms August 2019

 +-----------+-------+---------+------------+------+-----------------+
 | Name | Value | KDF | Ephemeral- | Key | Description |
 | | | | Static | Wrap | |
 +===========+=======+=========+============+======+=================+
ECDH-ES	-25	HKDF -	yes	none	ECDH ES w/ HKDF
+		SHA-256			- generate key
HKDF-256					directly
+-----------+-------+---------+------------+------+-----------------+					
ECDH-ES	-26	HKDF -	yes	none	ECDH ES w/ HKDF
+		SHA-512			- generate key
HKDF-512					directly
+-----------+-------+---------+------------+------+-----------------+					
ECDH-SS	-27	HKDF -	no	none	ECDH SS w/ HKDF
+		SHA-256			- generate key
HKDF-256					directly
+-----------+-------+---------+------------+------+-----------------+					
ECDH-SS	-28	HKDF -	no	none	ECDH SS w/ HKDF
+		SHA-512			- generate key
HKDF-512					directly
 +-----------+-------+---------+------------+------+-----------------+

 Table 14: ECDH Algorithm Values

 +-----------+-------+----------+-------------------+-------------+
 | Name | Label | Type | Algorithm | Description |
 +===========+=======+==========+===================+=============+
 | ephemeral | -1 | COSE_Key | ECDH-ES+HKDF-256, | Ephemeral |
 | key | | | ECDH-ES+HKDF-512, | public key |
 | | | | ECDH-ES+A128KW, | for the |
 | | | | ECDH- ES+A192KW, | sender |
 | | | | ECDH-ES+A256KW | |
 +-----------+-------+----------+-------------------+-------------+
 | static | -2 | COSE_Key | ECDH-SS+HKDF-256, | Static |
 | key | | | ECDH-SS+HKDF-512, | public key |
 | | | | ECDH-SS+A128KW, | for the |
 | | | | ECDH- SS+A192KW, | sender |
 | | | | ECDH-SS+A256KW | |
 +-----------+-------+----------+-------------------+-------------+
 | static | -3 | bstr | ECDH-SS+HKDF-256, | Static |
 | key id | | | ECDH-SS+HKDF-512, | public key |
 | | | | ECDH-SS+A128KW, | identifier |
 | | | | ECDH- SS+A192KW, | for the |
 | | | | ECDH-SS+A256KW | sender |
 +-----------+-------+----------+-------------------+-------------+

 Table 15: ECDH Algorithm Parameters

Schaad Expires February 19, 2020 [Page 31]

Internet-Draft COSE Algorithms August 2019

 This document defines these algorithms to be used with the curves
 P-256, P-384, P-521, X25519, and X448. Implementations MUST verify
 that the key type and curve are correct. Different curves are
 restricted to different key types. Implementations MUST verify that
 the curve and algorithm are appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

 * If the 'alg' field is present, it MUST match the key agreement
 algorithm being used.

 * If the 'key_ops' field is present, it MUST include 'derive key' or
 'derive bits' for the private key.

 * If the 'key_ops' field is present, it MUST be empty for the public
 key.

6.3.1. Security Considerations

 There is a method of checking that points provided from external
 entities are valid. For the 'EC2' key format, this can be done by
 checking that the x and y values form a point on the curve. For the
 'OKP' format, there is no simple way to do point validation.

 Consideration was given to requiring that the public keys of both
 entities be provided as part of the key derivation process (as
 recommended in Section 6.1 of [RFC7748]). This was not done as COSE
 is used in a store and forward format rather than in online key
 exchange. In order for this to be a problem, either the receiver
 public key has to be chosen maliciously or the sender has to be
 malicious. In either case, all security evaporates anyway.

 A proof of possession of the private key associated with the public
 key is recommended when a key is moved from untrusted to trusted
 (either by the end user or by the entity that is responsible for
 making trust statements on keys).

6.4. ECDH with Key Wrap

 These algorithms are defined in Table 16.

 ECDH with Key Agreement is parameterized by the same parameters as
 for ECDH; see Section 6.3, with the following modifications:

https://datatracker.ietf.org/doc/html/rfc7748#section-6.1

Schaad Expires February 19, 2020 [Page 32]

Internet-Draft COSE Algorithms August 2019

 * Key Wrap Algorithm: Any of the key wrap algorithms defined in
Section 6.2 are supported. The size of the key used for the key

 wrap algorithm is fed into the KDF. The set of identifiers are
 found in Table 16.

 +---------+-------+---------+------------+--------+----------------+
 | Name | Value | KDF | Ephemeral- | Key | Description |
 | | | | Static | Wrap | |
 +=========+=======+=========+============+========+================+
ECDH-ES	-29	HKDF -	yes	A128KW	ECDH ES w/
+		SHA-256			Concat KDF and
A128KW					AES Key Wrap
					w/ 128-bit key
+---------+-------+---------+------------+--------+----------------+					
ECDH-ES	-30	HKDF -	yes	A192KW	ECDH ES w/
+		SHA-256			Concat KDF and
A192KW					AES Key Wrap
					w/ 192-bit key
+---------+-------+---------+------------+--------+----------------+					
ECDH-ES	-31	HKDF -	yes	A256KW	ECDH ES w/
+		SHA-256			Concat KDF and
A256KW					AES Key Wrap
					w/ 256-bit key
+---------+-------+---------+------------+--------+----------------+					
ECDH-SS	-32	HKDF -	no	A128KW	ECDH SS w/
+		SHA-256			Concat KDF and
A128KW					AES Key Wrap
					w/ 128-bit key
+---------+-------+---------+------------+--------+----------------+					
ECDH-SS	-33	HKDF -	no	A192KW	ECDH SS w/
+		SHA-256			Concat KDF and
A192KW					AES Key Wrap
					w/ 192-bit key
+---------+-------+---------+------------+--------+----------------+					
ECDH-SS	-34	HKDF -	no	A256KW	ECDH SS w/
+		SHA-256			Concat KDF and
A256KW					AES Key Wrap
					w/ 256-bit key
 +---------+-------+---------+------------+--------+----------------+

 Table 16: ECDH Algorithm Values with Key Wrap

 When using a COSE key for this algorithm, the following checks are
 made:

 * The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

Schaad Expires February 19, 2020 [Page 33]

Internet-Draft COSE Algorithms August 2019

 * If the 'alg' field is present, it MUST match the key agreement
 algorithm being used.

 * If the 'key_ops' field is present, it MUST include 'derive key' or
 'derive bits' for the private key.

 * If the 'key_ops' field is present, it MUST be empty for the public
 key.

7. Key Object Parameters

 The COSE_Key object defines a way to hold a single key object. It is
 still required that the members of individual key types be defined.
 This section of the document is where we define an initial set of
 members for specific key types.

 For each of the key types, we define both public and private members.
 The public members are what is transmitted to others for their usage.
 Private members allow for the archival of keys by individuals.
 However, there are some circumstances in which private keys may be
 distributed to entities in a protocol. Examples include: entities
 that have poor random number generation, centralized key creation for
 multi-cast type operations, and protocols in which a shared secret is
 used as a bearer token for authorization purposes.

 Key types are identified by the 'kty' member of the COSE_Key object.
 In this document, we define four values for the member:

 +-----------+-------+--------------------------+
 | Name | Value | Description |
 +===========+=======+==========================+
 | OKP | 1 | Octet Key Pair |
 +-----------+-------+--------------------------+
 | EC2 | 2 | Elliptic Curve Keys w/ |
 | | | x- and y-coordinate pair |
 +-----------+-------+--------------------------+
 | Symmetric | 4 | Symmetric Keys |
 +-----------+-------+--------------------------+
 | Reserved | 0 | This value is reserved |
 +-----------+-------+--------------------------+

 Table 17: Key Type Values

Schaad Expires February 19, 2020 [Page 34]

Internet-Draft COSE Algorithms August 2019

7.1. Elliptic Curve Keys

 Two different key structures are defined for elliptic curve keys.
 One version uses both an x-coordinate and a y-coordinate, potentially
 with point compression ('EC2'). This is the traditional EC point
 representation that is used in [RFC5480]. The other version uses
 only the x-coordinate as the y-coordinate is either to be recomputed
 or not needed for the key agreement operation ('OKP').

 Applications MUST check that the curve and the key type are
 consistent and reject a key if they are not.

 +---------+-------+----------+------------------------------------+
 | Name | Value | Key Type | Description |
 +=========+=======+==========+====================================+
 | P-256 | 1 | EC2 | NIST P-256 also known as secp256r1 |
 +---------+-------+----------+------------------------------------+
 | P-384 | 2 | EC2 | NIST P-384 also known as secp384r1 |
 +---------+-------+----------+------------------------------------+
 | P-521 | 3 | EC2 | NIST P-521 also known as secp521r1 |
 +---------+-------+----------+------------------------------------+
 | X25519 | 4 | OKP | X25519 for use w/ ECDH only |
 +---------+-------+----------+------------------------------------+
 | X448 | 5 | OKP | X448 for use w/ ECDH only |
 +---------+-------+----------+------------------------------------+
 | Ed25519 | 6 | OKP | Ed25519 for use w/ EdDSA only |
 +---------+-------+----------+------------------------------------+
 | Ed448 | 7 | OKP | Ed448 for use w/ EdDSA only |
 +---------+-------+----------+------------------------------------+

 Table 18: Elliptic Curves

7.1.1. Double Coordinate Curves

 The traditional way of sending ECs has been to send either both the
 x-coordinate and y-coordinate or the x-coordinate and a sign bit for
 the y-coordinate. The latter encoding has not been recommended in
 the IETF due to potential IPR issues. However, for operations in
 constrained environments, the ability to shrink a message by not
 sending the y-coordinate is potentially useful.

 For EC keys with both coordinates, the 'kty' member is set to 2
 (EC2). The key parameters defined in this section are summarized in
 Table 19. The members that are defined for this key type are:

 crv: This contains an identifier of the curve to be used with the
 key. The curves defined in this document for this key type can

https://datatracker.ietf.org/doc/html/rfc5480

Schaad Expires February 19, 2020 [Page 35]

Internet-Draft COSE Algorithms August 2019

 be found in Table 18. Other curves may be registered in the
 future, and private curves can be used as well.

 x: This contains the x-coordinate for the EC point. The integer is
 converted to an octet string as defined in [SEC1]. Leading zero
 octets MUST be preserved.

 y: This contains either the sign bit or the value of the
 y-coordinate for the EC point. When encoding the value y, the
 integer is converted to an octet string (as defined in [SEC1])
 and encoded as a CBOR bstr. Leading zero octets MUST be
 preserved. The compressed point encoding is also supported.
 Compute the sign bit as laid out in the Elliptic-Curve-Point-to-
 Octet-String Conversion function of [SEC1]. If the sign bit is
 zero, then encode y as a CBOR false value; otherwise, encode y
 as a CBOR true value. The encoding of the infinity point is not
 supported.

 d: This contains the private key.

 For public keys, it is REQUIRED that 'crv', 'x', and 'y' be present
 in the structure. For private keys, it is REQUIRED that 'crv' and
 'd' be present in the structure. For private keys, it is RECOMMENDED
 that 'x' and 'y' also be present, but they can be recomputed from the
 required elements and omitting them saves on space.

 +------+------+-------+--------+---------------------------------+
 | Key | Name | Label | CBOR | Description |
 | Type | | | Type | |
 +======+======+=======+========+=================================+
 | 2 | crv | -1 | int / | EC identifier - Taken from the |
 | | | | tstr | "COSE Elliptic Curves" registry |
 +------+------+-------+--------+---------------------------------+
 | 2 | x | -2 | bstr | x-coordinate |
 +------+------+-------+--------+---------------------------------+
 | 2 | y | -3 | bstr / | y-coordinate |
 | | | | bool | |
 +------+------+-------+--------+---------------------------------+
 | 2 | d | -4 | bstr | Private key |
 +------+------+-------+--------+---------------------------------+

 Table 19: EC Key Parameters

Schaad Expires February 19, 2020 [Page 36]

Internet-Draft COSE Algorithms August 2019

7.2. Octet Key Pair

 A new key type is defined for Octet Key Pairs (OKP). Do not assume
 that keys using this type are elliptic curves. This key type could
 be used for other curve types (for example, mathematics based on
 hyper-elliptic surfaces).

 The key parameters defined in this section are summarized in
 Table 20. The members that are defined for this key type are:

 crv: This contains an identifier of the curve to be used with the
 key. The curves defined in this document for this key type can
 be found in Table 18. Other curves may be registered in the
 future and private curves can be used as well.

 x: This contains the x-coordinate for the EC point. The octet
 string represents a little-endian encoding of x.

 d: This contains the private key.

 For public keys, it is REQUIRED that 'crv' and 'x' be present in the
 structure. For private keys, it is REQUIRED that 'crv' and 'd' be
 present in the structure. For private keys, it is RECOMMENDED that
 'x' also be present, but it can be recomputed from the required
 elements and omitting it saves on space.

 +------+----------+-------+-------+---------------------------------+
 | Name | Key | Label | Type | Description |
 | | Type | | | |
 +======+==========+=======+=======+=================================+
 | crv | 1 | -1 | int / | EC identifier - Taken from the |
 | | | | tstr | "COSE Elliptic Curves" registry |
 +------+----------+-------+-------+---------------------------------+
 | x | 1 | -2 | bstr | x-coordinate |
 +------+----------+-------+-------+---------------------------------+
 | d | 1 | -4 | bstr | Private key |
 +------+----------+-------+-------+---------------------------------+

 Table 20: Octet Key Pair Parameters

7.3. Symmetric Keys

 Occasionally it is required that a symmetric key be transported
 between entities. This key structure allows for that to happen.

 For symmetric keys, the 'kty' member is set to 4 ('Symmetric'). The
 member that is defined for this key type is:

Schaad Expires February 19, 2020 [Page 37]

Internet-Draft COSE Algorithms August 2019

 k: This contains the value of the key.

 This key structure does not have a form that contains only public
 members. As it is expected that this key structure is going to be
 transmitted, care must be taken that it is never transmitted
 accidentally or insecurely. For symmetric keys, it is REQUIRED that
 'k' be present in the structure.

 +------+----------+-------+------+-------------+
 | Name | Key Type | Label | Type | Description |
 +======+==========+=======+======+=============+
 | k | 4 | -1 | bstr | Key Value |
 +------+----------+-------+------+-------------+

 Table 21: Symmetric Key Parameters

8. CBOR Encoding Restrictions

 There has been an attempt to limit the number of places where the
 document needs to impose restrictions on how the CBOR Encoder needs
 to work. We have managed to narrow it down to the following
 restrictions:

 * The restriction applies to the encoding of the COSE_KDF_Context.

 * Encoding MUST be done using definite lengths and the length of the
 MUST be the minimum possible length. This means that the integer
 1 is encoded as "0x01" and not "0x1801".

 * Applications MUST NOT generate messages with the same label used
 twice as a key in a single map. Applications MUST NOT parse and
 process messages with the same label used twice as a key in a
 single map. Applications can enforce the parse and process
 requirement by using parsers that will fail the parse step or by
 using parsers that will pass all keys to the application, and the
 application can perform the check for duplicate keys.

9. IANA Considerations

 There are no IANA actions. The required actions are in
 [I-D.ietf-cose-rfc8152bis-struct].

Schaad Expires February 19, 2020 [Page 38]

Internet-Draft COSE Algorithms August 2019

10. Security Considerations

 There are a number of security considerations that need to be taken
 into account by implementers of this specification. The security
 considerations that are specific to an individual algorithm are
 placed next to the description of the algorithm. While some
 considerations have been highlighted here, additional considerations
 may be found in the documents listed in the references.

 Implementations need to protect the private key material for any
 individuals. There are some cases in this document that need to be
 highlighted on this issue.

 * Using the same key for two different algorithms can leak
 information about the key. It is therefore recommended that keys
 be restricted to a single algorithm.

 * Use of 'direct' as a recipient algorithm combined with a second
 recipient algorithm exposes the direct key to the second
 recipient.

 * Several of the algorithms in this document have limits on the
 number of times that a key can be used without leaking information
 about the key.

 The use of ECDH and direct plus KDF (with no key wrap) will not
 directly lead to the private key being leaked; the one way function
 of the KDF will prevent that. There is, however, a different issue
 that needs to be addressed. Having two recipients requires that the
 CEK be shared between two recipients. The second recipient therefore
 has a CEK that was derived from material that can be used for the
 weak proof of origin. The second recipient could create a message
 using the same CEK and send it to the first recipient; the first
 recipient would, for either static-static ECDH or direct plus KDF,
 make an assumption that the CEK could be used for proof of origin
 even though it is from the wrong entity. If the key wrap step is
 added, then no proof of origin is implied and this is not an issue.

 Although it has been mentioned before, the use of a single key for
 multiple algorithms has been demonstrated in some cases to leak
 information about a key, provide the opportunity for attackers to
 forge integrity tags, or gain information about encrypted content.
 Binding a key to a single algorithm prevents these problems. Key
 creators and key consumers are strongly encouraged not only to create
 new keys for each different algorithm, but to include that selection
 of algorithm in any distribution of key material and strictly enforce
 the matching of algorithms in the key structure to algorithms in the
 message structure. In addition to checking that algorithms are

Schaad Expires February 19, 2020 [Page 39]

Internet-Draft COSE Algorithms August 2019

 correct, the key form needs to be checked as well. Do not use an
 'EC2' key where an 'OKP' key is expected.

 Before using a key for transmission, or before acting on information
 received, a trust decision on a key needs to be made. Is the data or
 action something that the entity associated with the key has a right
 to see or a right to request? A number of factors are associated
 with this trust decision. Some of the ones that are highlighted here
 are:

 * What are the permissions associated with the key owner?

 * Is the cryptographic algorithm acceptable in the current context?

 * Have the restrictions associated with the key, such as algorithm
 or freshness, been checked and are they correct?

 * Is the request something that is reasonable, given the current
 state of the application?

 * Have any security considerations that are part of the message been
 enforced (as specified by the application or 'crit' parameter)?

 There are a large number of algorithms presented in this document
 that use nonce values. For all of the nonces defined in this
 document, there is some type of restriction on the nonce being a
 unique value either for a key or for some other conditions. In all
 of these cases, there is no known requirement on the nonce being both
 unique and unpredictable; under these circumstances, it's reasonable
 to use a counter for creation of the nonce. In cases where one wants
 the pattern of the nonce to be unpredictable as well as unique, one
 can use a key created for that purpose and encrypt the counter to
 produce the nonce value.

 One area that has been starting to get exposure is doing traffic
 analysis of encrypted messages based on the length of the message.
 This specification does not provide for a uniform method of providing
 padding as part of the message structure. An observer can
 distinguish between two different strings (for example, 'YES' and
 'NO') based on the length for all of the content encryption
 algorithms that are defined in this document. This means that it is
 up to the applications to document how content padding is to be done
 in order to prevent or discourage such analysis. (For example, the
 strings could be defined as 'YES' and 'NO '.)

11. References

11.1. Normative References

Schaad Expires February 19, 2020 [Page 40]

Internet-Draft COSE Algorithms August 2019

 [AES-GCM] National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC",
 DOI 10.6028/NIST.SP.800-38D, NIST Special
 Publication 800-38D, November 2007,
 <https://csrc.nist.gov/publications/nistpubs/800-38D/SP-

800-38D.pdf>.

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", DOI 10.6028/NIST.FIPS.186-4,
 FIPS PUB 186-4, July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.186-4.pdf>.

 [I-D.ietf-cose-rfc8152bis-struct]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", draft-ietf-cose-rfc8152bis-

struct-05 (work in progress), August 18, 2019,
 <https://www.ietf.org/archive/id/draft-ietf-cose-

rfc8152bis-struct-05>.

 [MAC] National Institute of Standards and Technology, "Computer
 Data Authentication", FIPS PUB 113, May 1985,
 <http://csrc.nist.gov/publications/fips/fips113/

fips113.html>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002, <https://www.rfc-editor.org/info/rfc3394>.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September
 2003, <https://www.rfc-editor.org/info/rfc3610>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-struct-05
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-struct-05
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-05
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-05
http://csrc.nist.gov/publications/fips/fips113/fips113.html
http://csrc.nist.gov/publications/fips/fips113/fips113.html
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://datatracker.ietf.org/doc/html/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869

Schaad Expires February 19, 2020 [Page 41]

Internet-Draft COSE Algorithms August 2019

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090,
 DOI 10.17487/RFC6090, February 2011,
 <https://www.rfc-editor.org/info/rfc6090>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8439] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
 <https://www.rfc-editor.org/info/rfc8439>.

 [SEC1] Certicom Research, "SEC 1: Elliptic Curve Cryptography",
 May 2009, <http://www.secg.org/sec1-v2.pdf>.

11.2. Informative References

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",

RFC 4231, DOI 10.17487/RFC4231, December 2005,
 <https://www.rfc-editor.org/info/rfc4231>.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

https://datatracker.ietf.org/doc/html/rfc6090
https://www.rfc-editor.org/info/rfc6090
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8439
https://www.rfc-editor.org/info/rfc8439
http://www.secg.org/sec1-v2.pdf
https://datatracker.ietf.org/doc/html/rfc4231
https://www.rfc-editor.org/info/rfc4231
https://datatracker.ietf.org/doc/html/rfc4493
https://www.rfc-editor.org/info/rfc4493
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116

Schaad Expires February 19, 2020 [Page 42]

Internet-Draft COSE Algorithms August 2019

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
 <https://www.rfc-editor.org/info/rfc5480>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [SP800-56A]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography",
 DOI 10.6028/NIST.SP.800-56Ar2, NIST Special Publication
 800-56A, Revision 2, May 2013,
 <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-56Ar2.pdf>.

https://datatracker.ietf.org/doc/html/rfc5480
https://www.rfc-editor.org/info/rfc5480
https://datatracker.ietf.org/doc/html/rfc6151
https://www.rfc-editor.org/info/rfc6151
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

Schaad Expires February 19, 2020 [Page 43]

Internet-Draft COSE Algorithms August 2019

Acknowledgments

 This document is a product of the COSE working group of the IETF.

 The following individuals are to blame for getting me started on this
 project in the first place: Richard Barnes, Matt Miller, and Martin
 Thomson.

 The initial version of the specification was based to some degree on
 the outputs of the JOSE and S/MIME working groups.

 The following individuals provided input into the final form of the
 document: Carsten Bormann, John Bradley, Brain Campbell, Michael B.
 Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and Goran
 Selander.

Author's Address

 Jim Schaad
 August Cellars

 Email: ietf@augustcellars.com

Schaad Expires February 19, 2020 [Page 44]

