
Workgroup: COSE Working Group

Internet-Draft:

draft-ietf-cose-rfc8152bis-algs-09

Obsoletes: 8152 (if approved)

Published: 2 June 2020

Intended Status: Standards Track

Expires: 4 December 2020

Authors: J. Schaad

August Cellars

CBOR Object Signing and Encryption (COSE): Initial Algorithms

Abstract

Concise Binary Object Representation (CBOR) is a data format

designed for small code size and small message size. There is a need

for the ability to have basic security services defined for this

data format. This document defines the CBOR Object Signing and

Encryption (COSE) protocol. This specification describes how to

create and process signatures, message authentication codes, and

encryption using CBOR for serialization. COSE additionally describes

how to represent cryptographic keys using CBOR.

In this specification the conventions for the use of a number of

cryptographic algorithms with COSE. The details of the structure of

COSE are defined in [I-D.ietf-cose-rfc8152bis-struct].

This document along with [I-D.ietf-cose-rfc8152bis-struct] obsoletes

RFC8152.

Contributing to this document

This note is to be removed before publishing as an RFC.

The source for this draft is being maintained in GitHub. Suggested

changes should be submitted as pull requests at https://github.com/

cose-wg/cose-rfc8152bis. Instructions are on that page as well.

Editorial changes can be managed in GitHub, but any substantial

issues need to be discussed on the COSE mailing list.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8152
https://github.com/cose-wg/cose-rfc8152bis
https://github.com/cose-wg/cose-rfc8152bis
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 December 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Terminology

1.2. Changes from RFC8152

1.3. Document Terminology

1.4. CBOR Grammar

1.5. Examples

2. Signature Algorithms

2.1. ECDSA

2.1.1. Security Considerations

2.2. Edwards-Curve Digital Signature Algorithms (EdDSAs)

2.2.1. Security Considerations

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3. Message Authentication Code (MAC) Algorithms

3.1. Hash-Based Message Authentication Codes (HMACs)

3.1.1. Security Considerations

3.2. AES Message Authentication Code (AES-CBC-MAC)

3.2.1. Security Considerations

4. Content Encryption Algorithms

4.1. AES GCM

4.1.1. Security Considerations

4.2. AES CCM

4.2.1. Security Considerations

4.3. ChaCha20 and Poly1305

4.3.1. Security Considerations

5. Key Derivation Functions (KDFs)

5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

5.2. Context Information Structure

6. Content Key Distribution Methods

6.1. Direct Encryption

6.1.1. Direct Key

6.1.2. Direct Key with KDF

6.2. AES Key Wrap

6.2.1. Security Considerations for AES-KW

6.3. Direct ECDH

6.3.1. Security Considerations

6.4. ECDH with Key Wrap

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7. Key Object Parameters

7.1. Elliptic Curve Keys

7.1.1. Double Coordinate Curves

7.2. Octet Key Pair

7.3. Symmetric Keys

8. COSE Capabilities

8.1. Assignments for Existing Key Types

8.2. Assignments for Existing Algorithms

8.3. Examples

9. CBOR Encoding Restrictions

10. IANA Considerations

10.1. Changes to "COSE Key Types" registry.

10.2. Changes to "COSE Algorithms" registry

10.3. Changes to the "COSE Key Type Parameters" registry

11. Security Considerations

12. References

12.1. Normative References

12.2. Informative References

Acknowledgments

Author's Address

1. Introduction

There has been an increased focus on small, constrained devices that

make up the Internet of Things (IoT). One of the standards that has

come out of this process is "Concise Binary Object Representation

(CBOR)" [RFC7049]. CBOR extended the data model of the JavaScript

Object Notation (JSON) [RFC8259] by allowing for binary data, among

other changes. CBOR is being adopted by several of the IETF working

groups dealing with the IoT world as their encoding of data

structures. CBOR was designed specifically to be both small in terms

of messages transport and implementation size and be a schema-free

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

decoder. A need exists to provide message security services for IoT,

and using CBOR as the message-encoding format makes sense.

The core COSE specification consists of two documents. [I-D.ietf-

cose-rfc8152bis-struct] contains the serialization structures and

the procedures for using the different cryptographic algorithms.

This document provides an initial set of algorithms for use with

those structures. Additional algorithms beyond what are in this

document are defined elsewhere.

1.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Changes from RFC8152

Extract the sections dealing with specific algorithms into this

document. The sections dealing with structure and general

processing rules are placed in [I-D.ietf-cose-rfc8152bis-struct].

Text clarifications and changes in terminology.

1.3. Document Terminology

In this document, we use the following terminology:

Byte is a synonym for octet.

Constrained Application Protocol (CoAP) is a specialized web

transfer protocol for use in constrained systems. It is defined in

[RFC7252].

Authenticated Encryption (AE) [RFC5116] algorithms are those

encryption algorithms that provide an authentication check of the

plain text contents as part of the encryption service.

Authenticated Encryption with Associated Data (AEAD) [RFC5116]

algorithms provide the same content authentication service as AE

algorithms, but they additionally provide for authentication of non-

encrypted data as well.

The term 'byte string' is used for sequences of bytes, while the

term 'text string' is used for sequences of characters.

¶

¶

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

The tables for algorithms contain the following columns:

A name for use in documents for the algorithms.

The value used on the wire for the algorithm. One place this is

used is the algorithm header parameter of a message.

A short description so that the algorithm can be easily

identified when scanning the IANA registry.

Additional columns may be present in the table depending on the

algorithms.

1.4. CBOR Grammar

At the time that [RFC8152] was initially published, the CBOR Data

Definition Language (CDDL) [RFC8610] had not yet been published.

This document uses a variant of CDDL which is described in [I-

D.ietf-cose-rfc8152bis-struct]

1.5. Examples

A GitHub project has been created at <https://github.com/cose-wg/

Examples> that contains a set of testing examples as well. Each

example is found in a JSON file that contains the inputs used to

create the example, some of the intermediate values that can be used

for debugging, and the output of the example. The results are

encoded using both hexadecimal and CBOR diagnostic notation format.

Some of the examples are designed to test failure case; these are

clearly marked as such in the JSON file. If errors in the examples

in this document are found, the examples on GitHub will be updated,

and a note to that effect will be placed in the JSON file.

2. Signature Algorithms

Part Section 9.1 of [I-D.ietf-cose-rfc8152bis-struct] contains a

generic description of signature algorithms. The document defines

signature algorithm identifiers for two signature algorithms.

2.1. ECDSA

ECDSA [DSS] defines a signature algorithm using ECC. Implementations

SHOULD use a deterministic version of ECDSA such as the one defined

in [RFC6979]. The use of a deterministic signature algorithm allows

for systems to avoid relying on random number generators in order to

avoid generating the same value of 'k' (the per-message random

value). Biased generation of the value 'k' can be attacked, and

collisions of this value leads to leaked keys. It additionally

allows for doing deterministic tests for the signature algorithm.

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09#appendix-Section%209.1

The use of deterministic ECDSA does not lessen the need to have good

random number generation when creating the private key.

The ECDSA signature algorithm is parameterized with a hash function

(h). In the event that the length of the hash function output is

greater than the group of the key, the leftmost bytes of the hash

output are used.

The algorithms defined in this document can be found in Table 1.

Name Value Hash Description

ES256 -7 SHA-256 ECDSA w/ SHA-256

ES384 -35 SHA-384 ECDSA w/ SHA-384

ES512 -36 SHA-512 ECDSA w/ SHA-512

Table 1: ECDSA Algorithm Values

This document defines ECDSA to work only with the curves P-256,

P-384, and P-521. This document requires that the curves be encoded

using the 'EC2' (2 coordinate elliptic curve) key type.

Implementations need to check that the key type and curve are

correct when creating and verifying a signature. Other documents can

define it to work with other curves and points in the future.

In order to promote interoperability, it is suggested that SHA-256

be used only with curve P-256, SHA-384 be used only with curve

P-384, and SHA-512 be used with curve P-521. This is aligned with

the recommendation in Section 4 of [RFC5480].

The signature algorithm results in a pair of integers (R, S). These

integers will be the same length as the length of the key used for

the signature process. The signature is encoded by converting the

integers into byte strings of the same length as the key size. The

length is rounded up to the nearest byte and is left padded with

zero bits to get to the correct length. The two integers are then

concatenated together to form a byte string that is the resulting

signature.

Using the function defined in [RFC8017], the signature is:

Signature = I2OSP(R, n) | I2OSP(S, n)

where n = ceiling(key_length / 8)

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'EC2'.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

If the 'alg' field is present, it MUST match the ECDSA signature

algorithm being used.

If the 'key_ops' field is present, it MUST include 'sign' when

creating an ECDSA signature.

If the 'key_ops' field is present, it MUST include 'verify' when

verifying an ECDSA signature.

2.1.1. Security Considerations

The security strength of the signature is no greater than the

minimum of the security strength associated with the bit length of

the key and the security strength of the hash function.

Note: Use of a deterministic signature technique is a good idea even

when good random number generation exists. Doing so both reduces the

possibility of having the same value of 'k' in two signature

operations and allows for reproducible signature values, which helps

testing.

There are two substitution attacks that can theoretically be mounted

against the ECDSA signature algorithm.

Changing the curve used to validate the signature: If one changes

the curve used to validate the signature, then potentially one

could have two messages with the same signature, each computed

under a different curve. The only requirement on the new curve is

that its order be the same as the old one and it be acceptable to

the client. An example would be to change from using the curve

secp256r1 (aka P-256) to using secp256k1. (Both are 256-bit

curves.) We currently do not have any way to deal with this

version of the attack except to restrict the overall set of

curves that can be used.

Change the hash function used to validate the signature: If one

either has two different hash functions of the same length or can

truncate a hash function down, then one could potentially find

collisions between the hash functions rather than within a single

hash function (for example, truncating SHA-512 to 256 bits might

collide with a SHA-256 bit hash value). As the hash algorithm is

part of the signature algorithm identifier, this attack is

mitigated by including a signature algorithm identifier in the

protected header bucket.

2.2. Edwards-Curve Digital Signature Algorithms (EdDSAs)

[RFC8032] describes the elliptic curve signature scheme Edwards-

curve Digital Signature Algorithm (EdDSA). In that document, the

signature algorithm is instantiated using parameters for

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

edwards25519 and edwards448 curves. The document additionally

describes two variants of the EdDSA algorithm: Pure EdDSA, where no

hash function is applied to the content before signing, and

HashEdDSA, where a hash function is applied to the content before

signing and the result of that hash function is signed. For EdDSA,

the content to be signed (either the message or the pre-hash value)

is processed twice inside of the signature algorithm. For use with

COSE, only the pure EdDSA version is used. This is because it is not

expected that extremely large contents are going to be needed and,

based on the arrangement of the message structure, the entire

message is going to need to be held in memory in order to create or

verify a signature. This means that there does not appear to be a

need to be able to do block updates of the hash, followed by

eliminating the message from memory. Applications can provide the

same features by defining the content of the message as a hash value

and transporting the COSE object (with the hash value) and the

content as separate items.

The algorithms defined in this document can be found in Table 2. A

single signature algorithm is defined, which can be used for

multiple curves.

Name Value Description

EdDSA -8 EdDSA

Table 2: EdDSA Algorithm

Values

[RFC8032] describes the method of encoding the signature value.

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'OKP' (Octet Key

Pair).

The 'crv' field MUST be present, and it MUST be a curve defined

for this signature algorithm.

If the 'alg' field is present, it MUST match 'EdDSA'.

If the 'key_ops' field is present, it MUST include 'sign' when

creating an EdDSA signature.

If the 'key_ops' field is present, it MUST include 'verify' when

verifying an EdDSA signature.

¶

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

*

¶

2.2.1. Security Considerations

How public values are computed is not the same when looking at EdDSA

and Elliptic Curve Diffie-Hellman (ECDH); for this reason, they

should not be used with the other algorithm.

If batch signature verification is performed, a well-seeded

cryptographic random number generator is REQUIRED. Signing and non-

batch signature verification are deterministic operations and do not

need random numbers of any kind.

3. Message Authentication Code (MAC) Algorithms

Part Section 9.2 of [I-D.ietf-cose-rfc8152bis-struct] contains a

generic description of MAC algorithms. This section defines the

conventions for two MAC algorithms.

3.1. Hash-Based Message Authentication Codes (HMACs)

HMAC [RFC2104] [RFC4231] was designed to deal with length extension

attacks. The algorithm was also designed to allow for new hash

algorithms to be directly plugged in without changes to the hash

function. The HMAC design process has been shown as solid since,

while the security of hash algorithms such as MD5 has decreased over

time; the security of HMAC combined with MD5 has not yet been shown

to be compromised [RFC6151].

The HMAC algorithm is parameterized by an inner and outer padding, a

hash function (h), and an authentication tag value length. For this

specification, the inner and outer padding are fixed to the values

set in [RFC2104]. The length of the authentication tag corresponds

to the difficulty of producing a forgery. For use in constrained

environments, we define one HMAC algorithm that is truncated. There

are currently no known issues with truncation; however, the security

strength of the message tag is correspondingly reduced in strength.

When truncating, the leftmost tag length bits are kept and

transmitted.

The algorithms defined in this document can be found in Table 3.

Name Value Hash
Tag

Length
Description

HMAC

256/64
4 SHA-256 64

HMAC w/ SHA-256 truncated to

64 bits

HMAC

256/256
5 SHA-256 256 HMAC w/ SHA-256

HMAC

384/384
6 SHA-384 384 HMAC w/ SHA-384

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09#appendix-Section%209.2

Name Value Hash
Tag

Length
Description

HMAC

512/512
7 SHA-512 512 HMAC w/ SHA-512

Table 3: HMAC Algorithm Values

Some recipient algorithms transport the key, while others derive a

key from secret data. For those algorithms that transport the key

(such as AES Key Wrap), the size of the HMAC key SHOULD be the same

size as the underlying hash function. For those algorithms that

derive the key (such as ECDH), the derived key MUST be the same size

as the underlying hash function.

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the HMAC algorithm

being used.

If the 'key_ops' field is present, it MUST include 'MAC create'

when creating an HMAC authentication tag.

If the 'key_ops' field is present, it MUST include 'MAC verify'

when verifying an HMAC authentication tag.

Implementations creating and validating MAC values MUST validate

that the key type, key length, and algorithm are correct and

appropriate for the entities involved.

3.1.1. Security Considerations

HMAC has proved to be resistant to attack even when used with

weakened hash algorithms. The current best known attack is to brute

force the key. This means that key size is going to be directly

related to the security of an HMAC operation.

3.2. AES Message Authentication Code (AES-CBC-MAC)

AES-CBC-MAC is defined in [MAC]. (Note that this is not the same

algorithm as AES Cipher-Based Message Authentication Code (AES-CMAC)

[RFC4493].)

AES-CBC-MAC is parameterized by the key length, the authentication

tag length, and the IV used. For all of these algorithms, the IV is

fixed to all zeros. We provide an array of algorithms for various

key lengths and tag lengths. The algorithms defined in this document

are found in Table 4.

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

Name Value
Key

Length

Tag

Length
Description

AES-MAC

128/64
14 128 64

AES-MAC 128-bit key, 64-

bit tag

AES-MAC

256/64
15 256 64

AES-MAC 256-bit key, 64-

bit tag

AES-MAC

128/128
25 128 128

AES-MAC 128-bit key, 128-

bit tag

AES-MAC

256/128
26 256 128

AES-MAC 256-bit key, 128-

bit tag

Table 4: AES-MAC Algorithm Values

Keys may be obtained either from a key structure or from a recipient

structure. Implementations creating and validating MAC values MUST

validate that the key type, key length, and algorithm are correct

and appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the AES-MAC

algorithm being used.

If the 'key_ops' field is present, it MUST include 'MAC create'

when creating an AES-MAC authentication tag.

If the 'key_ops' field is present, it MUST include 'MAC verify'

when verifying an AES-MAC authentication tag.

3.2.1. Security Considerations

A number of attacks exist against Cipher Block Chaining Message

Authentication Code (CBC-MAC) that need to be considered.

A single key must only be used for messages of a fixed or known

length. If this is not the case, an attacker will be able to

generate a message with a valid tag given two message and tag

pairs. This can be addressed by using different keys for messages

of different lengths. The current structure mitigates this

problem, as a specific encoding structure that includes lengths

is built and signed. (CMAC also addresses this issue.)

Cipher Block Chaining (CBC) mode, if the same key is used for

both encryption and authentication operations, an attacker can

produce messages with a valid authentication code.

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

If the IV can be modified, then messages can be forged. This is

addressed by fixing the IV to all zeros.

4. Content Encryption Algorithms

Part Section 9.3 of [I-D.ietf-cose-rfc8152bis-struct] contains a

generic description of Content Encryption algorithms. This document

defines the identifier and usages for three content encryption

algorithms.

4.1. AES GCM

The Galois/Counter Mode (GCM) mode is a generic authenticated

encryption block cipher mode defined in [AES-GCM]. The GCM mode is

combined with the AES block encryption algorithm to define an AEAD

cipher.

The GCM mode is parameterized by the size of the authentication tag

and the size of the nonce. This document fixes the size of the nonce

at 96 bits. The size of the authentication tag is limited to a small

set of values. For this document however, the size of the

authentication tag is fixed at 128 bits.

The set of algorithms defined in this document are in Table 5.

Name Value Description

A128GCM 1 AES-GCM mode w/ 128-bit key, 128-bit tag

A192GCM 2 AES-GCM mode w/ 192-bit key, 128-bit tag

A256GCM 3 AES-GCM mode w/ 256-bit key, 128-bit tag

Table 5: Algorithm Value for AES-GCM

Keys may be obtained either from a key structure or from a recipient

structure. Implementations encrypting and decrypting MUST validate

that the key type, key length, and algorithm are correct and

appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the AES-GCM

algorithm being used.

If the 'key_ops' field is present, it MUST include 'encrypt' or

'wrap key' when encrypting.

If the 'key_ops' field is present, it MUST include 'decrypt' or

'unwrap key' when decrypting.

*

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09#appendix-Section%209.3

4.1.1. Security Considerations

When using AES-GCM, the following restrictions MUST be enforced:

The key and nonce pair MUST be unique for every message

encrypted.

The total amount of data encrypted for a single key MUST NOT

exceed 2^39 - 256 bits. An explicit check is required only in

environments where it is expected that it might be exceeded.

Consideration was given to supporting smaller tag values; the

constrained community would desire tag sizes in the 64-bit range.

Doing so drastically changes both the maximum messages size

(generally not an issue) and the number of times that a key can be

used. Given that Counter with CBC-MAC (CCM) is the usual mode for

constrained environments, restricted modes are not supported.

4.2. AES CCM

CCM is a generic authentication encryption block cipher mode defined

in [RFC3610]. The CCM mode is combined with the AES block encryption

algorithm to define a commonly used content encryption algorithm

used in constrained devices.

The CCM mode has two parameter choices. The first choice is M, the

size of the authentication field. The choice of the value for M

involves a trade-off between message growth (from the tag) and the

probability that an attacker can undetectably modify a message. The

second choice is L, the size of the length field. This value

requires a trade-off between the maximum message size and the size

of the Nonce.

It is unfortunate that the specification for CCM specified L and M

as a count of bytes rather than a count of bits. This leads to

possible misunderstandings where AES-CCM-8 is frequently used to

refer to a version of CCM mode where the size of the authentication

is 64 bits and not 8 bits. These values have traditionally been

specified as bit counts rather than byte counts. This document will

follow the convention of using bit counts so that it is easier to

compare the different algorithms presented in this document.

We define a matrix of algorithms in this document over the values of

L and M. Constrained devices are usually operating in situations

where they use short messages and want to avoid doing recipient-

specific cryptographic operations. This favors smaller values of

both L and M. Less-constrained devices will want to be able to use

larger messages and are more willing to generate new keys for every

operation. This favors larger values of L and M.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

16 bits (2):

64 bits (8):

64 bits (8):

128 bits (16):

The following values are used for L:

This limits messages to 2^16 bytes (64 KiB) in length.

This is sufficiently long for messages in the constrained world.

The nonce length is 13 bytes allowing for 2^104 possible values

of the nonce without repeating.

This limits messages to 2^64 bytes in length. The

nonce length is 7 bytes allowing for 2^56 possible values of the

nonce without repeating.

The following values are used for M:

This produces a 64-bit authentication tag. This

implies that there is a 1 in 2^64 chance that a modified message

will authenticate.

This produces a 128-bit authentication tag. This

implies that there is a 1 in 2^128 chance that a modified message

will authenticate.

Name Value L M
Key

Length
Description

AES-

CCM-16-64-128
10 16 64 128

AES-CCM mode 128-bit key,

64-bit tag, 13-byte nonce

AES-

CCM-16-64-256
11 16 64 256

AES-CCM mode 256-bit key,

64-bit tag, 13-byte nonce

AES-

CCM-64-64-128
12 64 64 128

AES-CCM mode 128-bit key,

64-bit tag, 7-byte nonce

AES-

CCM-64-64-256
13 64 64 256

AES-CCM mode 256-bit key,

64-bit tag, 7-byte nonce

AES-

CCM-16-128-128
30 16 128 128

AES-CCM mode 128-bit key,

128-bit tag, 13-byte nonce

AES-

CCM-16-128-256
31 16 128 256

AES-CCM mode 256-bit key,

128-bit tag, 13-byte nonce

AES-

CCM-64-128-128
32 64 128 128

AES-CCM mode 128-bit key,

128-bit tag, 7-byte nonce

AES-

CCM-64-128-256
33 64 128 256

AES-CCM mode 256-bit key,

128-bit tag, 7-byte nonce

Table 6: Algorithm Values for AES-CCM

Keys may be obtained either from a key structure or from a recipient

structure. Implementations encrypting and decrypting MUST validate

that the key type, key length, and algorithm are correct and

appropriate for the entities involved.

¶

¶

¶

¶

¶

¶

¶

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the AES-CCM

algorithm being used.

If the 'key_ops' field is present, it MUST include 'encrypt' or

'wrap key' when encrypting.

If the 'key_ops' field is present, it MUST include 'decrypt' or

'unwrap key' when decrypting.

4.2.1. Security Considerations

When using AES-CCM, the following restrictions MUST be enforced:

The key and nonce pair MUST be unique for every message

encrypted. Note that the value of L influences the number of

unique nonces.

The total number of times the AES block cipher is used MUST NOT

exceed 2^61 operations. This limitation is the sum of times the

block cipher is used in computing the MAC value and in performing

stream encryption operations. An explicit check is required only

in environments where it is expected that it might be exceeded.

[RFC3610] additionally calls out one other consideration of note. It

is possible to do a pre-computation attack against the algorithm in

cases where portions of the plaintext are highly predictable. This

reduces the security of the key size by half. Ways to deal with this

attack include adding a random portion to the nonce value and/or

increasing the key size used. Using a portion of the nonce for a

random value will decrease the number of messages that a single key

can be used for. Increasing the key size may require more resources

in the constrained device. See Sections 5 and 10 of [RFC3610] for

more information.

4.3. ChaCha20 and Poly1305

ChaCha20 and Poly1305 combined together is an AEAD mode that is

defined in [RFC8439]. This is an algorithm defined to be a cipher

that is not AES and thus would not suffer from any future weaknesses

found in AES. These cryptographic functions are designed to be fast

in software-only implementations.

The ChaCha20/Poly1305 AEAD construction defined in [RFC8439] has no

parameterization. It takes a 256-bit key and a 96-bit nonce, as well

as the plaintext and additional data as inputs and produces the

¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

ciphertext as an option. We define one algorithm identifier for this

algorithm in Table 7.

Name Value Description

ChaCha20/

Poly1305
24

ChaCha20/Poly1305 w/ 256-bit key, 128-bit

tag

Table 7: Algorithm Value for AES-GCM

Keys may be obtained either from a key structure or from a recipient

structure. Implementations encrypting and decrypting MUST validate

that the key type, key length, and algorithm are correct and

appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the ChaCha20/

Poly1305 algorithm being used.

If the 'key_ops' field is present, it MUST include 'encrypt' or

'wrap key' when encrypting.

If the 'key_ops' field is present, it MUST include 'decrypt' or

'unwrap key' when decrypting.

4.3.1. Security Considerations

The key and nonce values MUST be a unique pair for every invocation

of the algorithm. Nonce counters are considered to be an acceptable

way of ensuring that they are unique.

5. Key Derivation Functions (KDFs)

Part Section 9.4 of [I-D.ietf-cose-rfc8152bis-struct] contains a

generic description of Key Derivation Functions. This document

defines a single context structure and a single KDF. These elements

are used for all of the recipient algorithms defined in this

document that require a KDF process. These algorithms are defined in

Sections 6.1.2, 6.3, and 6.4.

5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

The HKDF key derivation algorithm is defined in [RFC5869].

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09#appendix-Section%209.4

The HKDF algorithm takes these inputs:

secret -- a shared value that is secret. Secrets may be either

previously shared or derived from operations like a Diffie-

Hellman (DH) key agreement.

salt -- an optional value that is used to change the generation

process. The salt value can be either public or private. If the

salt is public and carried in the message, then the 'salt'

algorithm header parameter defined in Table 9 is used. While

[RFC5869] suggests that the length of the salt be the same as the

length of the underlying hash value, any positive salt length

will improve the security as different key values will be

generated. This parameter is protected by being included in the

key computation and does not need to be separately authenticated.

The salt value does not need to be unique for every message sent.

length -- the number of bytes of output that need to be

generated.

context information -- Information that describes the context in

which the resulting value will be used. Making this information

specific to the context in which the material is going to be used

ensures that the resulting material will always be tied to that

usage. The context structure defined in Section 5.2 is used by

the KDFs in this document.

PRF -- The underlying pseudorandom function to be used in the

HKDF algorithm. The PRF is encoded into the HKDF algorithm

selection.

HKDF is defined to use HMAC as the underlying PRF. However, it is

possible to use other functions in the same construct to provide a

different KDF that is more appropriate in the constrained world.

Specifically, one can use AES-CBC-MAC as the PRF for the expand

step, but not for the extract step. When using a good random shared

secret of the correct length, the extract step can be skipped. For

the AES algorithm versions, the extract step is always skipped.

The extract step cannot be skipped if the secret is not uniformly

random, for example, if it is the result of an ECDH key agreement

step. This implies that the AES HKDF version cannot be used with

ECDH. If the extract step is skipped, the 'salt' value is not used

as part of the HKDF functionality.

The algorithms defined in this document are found in Table 8.

Name PRF Description

HKDF SHA-256 HKDF using HMAC SHA-256 as the PRF

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name PRF Description

HMAC with

SHA-256

HKDF SHA-512
HMAC with

SHA-512
HKDF using HMAC SHA-512 as the PRF

HKDF AES-

MAC-128

AES-CBC-

MAC-128

HKDF using AES-MAC as the PRF w/

128-bit key

HKDF AES-

MAC-256

AES-CBC-

MAC-256

HKDF using AES-MAC as the PRF w/

256-bit key

Table 8: HKDF Algorithms

Name Label Type Algorithm Description

salt -20 bstr

direct+HKDF-SHA-256, direct+HKDF-

SHA-512, direct+HKDF-AES-128,

direct+HKDF-AES-256, ECDH-

ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-

ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-SS+A256KW

Random salt

Table 9: HKDF Algorithm Parameters

5.2. Context Information Structure

The context information structure is used to ensure that the derived

keying material is "bound" to the context of the transaction. The

context information structure used here is based on that defined in

[SP800-56A]. By using CBOR for the encoding of the context

information structure, we automatically get the same type and length

separation of fields that is obtained by the use of ASN.1. This

means that there is no need to encode the lengths for the base

elements, as it is done by the encoding used in JOSE (Section 4.6.2

of [RFC7518]).

The context information structure refers to PartyU and PartyV as the

two parties that are doing the key derivation. Unless the

application protocol defines differently, we assign PartyU to the

entity that is creating the message and PartyV to the entity that is

receiving the message. By doing this association, different keys

will be derived for each direction as the context information is

different in each direction.

The context structure is built from information that is known to

both entities. This information can be obtained from a variety of

sources:

Fields can be defined by the application. This is commonly used

to assign fixed names to parties, but it can be used for other

items such as nonces.

¶

¶

¶

*

¶

Fields can be defined by usage of the output. Examples of this

are the algorithm and key size that are being generated.

Fields can be defined by parameters from the message. We define a

set of header parameters in Table 10 that can be used to carry

the values associated with the context structure. Examples of

this are identities and nonce values. These header parameters are

designed to be placed in the unprotected bucket of the recipient

structure; they do not need to be in the protected bucket since

they already are included in the cryptographic computation by

virtue of being included in the context structure.

Name Label Type Algorithm Description

PartyU

identity
-21 bstr

direct+HKDF-SHA-256,

direct+HKDF-SHA-512,

direct+HKDF-AES-128,

direct+HKDF-AES-256, ECDH-

ES+HKDF-256, ECDH-

ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-ES+A128KW,

ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW,

ECDH-SS+A192KW, ECDH-

SS+A256KW

Party U

identity

information

PartyU

nonce
-22

bstr /

int

direct+HKDF-SHA-256,

direct+HKDF-SHA-512,

direct+HKDF-AES-128,

direct+HKDF-AES-256, ECDH-

ES+HKDF-256, ECDH-

ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-ES+A128KW,

ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW,

ECDH-SS+A192KW, ECDH-

SS+A256KW

Party U

provided

nonce

PartyU

other
-23 bstr

direct+HKDF-SHA-256,

direct+HKDF-SHA-512,

direct+HKDF-AES-128,

direct+HKDF-AES-256, ECDH-

ES+HKDF-256, ECDH-

ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-ES+A128KW,

ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW,

Party U

other

provided

information

*

¶

*

¶

AlgorithmID:

Name Label Type Algorithm Description

ECDH-SS+A192KW, ECDH-

SS+A256KW

PartyV

identity
-24 bstr

direct+HKDF-SHA-256,

direct+HKDF-SHA-512,

direct+HKDF-AES-128,

direct+HKDF-AES-256, ECDH-

ES+HKDF-256, ECDH-

ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-ES+A128KW,

ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW,

ECDH-SS+A192KW, ECDH-

SS+A256KW

Party V

identity

information

PartyV

nonce
-25

bstr /

int

direct+HKDF-SHA-256,

direct+HKDF-SHA-512,

direct+HKDF-AES-128,

direct+HKDF-AES-256, ECDH-

ES+HKDF-256, ECDH-

ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-ES+A128KW,

ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW,

ECDH-SS+A192KW, ECDH-

SS+A256KW

Party V

provided

nonce

PartyV

other
-26 bstr

direct+HKDF-SHA-256,

direct+HKDF-SHA-512,

direct+HKDF-AES-128,

direct+HKDF-AES-256, ECDH-

ES+HKDF-256, ECDH-

ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-ES+A128KW,

ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW,

ECDH-SS+A192KW, ECDH-

SS+A256KW

Party V

other

provided

information

Table 10: Context Algorithm Parameters

We define a CBOR object to hold the context information. This object

is referred to as COSE_KDF_Context. The object is based on a CBOR

array type. The fields in the array are:

This field indicates the algorithm for which the key

material will be used. This normally is either a key wrap

algorithm identifier or a content encryption algorithm

identifier. The values are from the "COSE Algorithms" registry.

¶

PartyUInfo:

identity:

nonce:

other:

PartyVInfo:

This field is required to be present. The field exists in the

context information so that a different key is generated for each

algorithm even of all of the other context information is the

same. In practice, this means if algorithm A is broken and thus

finding the key is relatively easy, the key derived for algorithm

B will not be the same as the key derived for algorithm A.

This field holds information about party U. The

PartyUInfo is encoded as a CBOR array. The elements of PartyUInfo

are encoded in the order presented below. The elements of the

PartyUInfo array are:

This contains the identity information for party U.

The identities can be assigned in one of two manners. First, a

protocol can assign identities based on roles. For example,

the roles of "client" and "server" may be assigned to

different entities in the protocol. Each entity would then use

the correct label for the data they send or receive. The

second way for a protocol to assign identities is to use a

name based on a naming system (i.e., DNS, X.509 names).

We define an algorithm parameter 'PartyU identity' that can be

used to carry identity information in the message. However,

identity information is often known as part of the protocol

and can thus be inferred rather than made explicit. If

identity information is carried in the message, applications

SHOULD have a way of validating the supplied identity

information. The identity information does not need to be

specified and is set to nil in that case.

This contains a nonce value. The nonce can either be

implicit from the protocol or be carried as a value in the

unprotected header bucket.

We define an algorithm parameter 'PartyU nonce' that can be

used to carry this value in the message; however, the nonce

value could be determined by the application and the value

determined from elsewhere.

This option does not need to be specified and is set to nil in

that case.

This contains other information that is defined by the

protocol. This option does not need to be specified and is set

to nil in that case.

This field holds information about party V. The content

of the structure is the same as for the PartyUInfo but for party

V.

¶

¶

¶

¶

¶

¶

¶

¶

¶

SuppPubInfo:

keyDataLength:

protected:

other:

SuppPrivInfo:

This field contains public information that is

mutually known to both parties.

This is set to the number of bits of the desired

output value. This practice means if algorithm A can use two

different key lengths, the key derived for longer key size

will not contain the key for shorter key size as a prefix.

This field contains the protected parameter field. If

there are no elements in the protected field, then use a zero-

length bstr.

This field is for free form data defined by the

application. An example is that an application could define

two different byte strings to be placed here to generate

different keys for a data stream versus a control stream. This

field is optional and will only be present if the application

defines a structure for this information. Applications that

define this SHOULD use CBOR to encode the data so that types

and lengths are correctly included.

This field contains private information that is

mutually known private information. An example of this

information would be a preexisting shared secret. (This could,

for example, be used in combination with an ECDH key agreement to

provide a secondary proof of identity.) The field is optional and

will only be present if the application defines a structure for

this information. Applications that define this SHOULD use CBOR

to encode the data so that types and lengths are correctly

included.

The following CDDL fragment corresponds to the text above.

¶

¶

¶

¶

¶

¶

6. Content Key Distribution Methods

Part Section 9.5 of [I-D.ietf-cose-rfc8152bis-struct] contains a

generic description of content key distribution methods. This

document defines the identifiers and usage for a number of content

key distribution methods.

6.1. Direct Encryption

Direct encryption algorithm is defined in Part Section 9.5.1 of [I-

D.ietf-cose-rfc8152bis-struct]. Information about how to fill in the

COSE_Recipient structure are detailed there.

6.1.1. Direct Key

This recipient algorithm is the simplest; the identified key is

directly used as the key for the next layer down in the message.

There are no algorithm parameters defined for this algorithm. The

algorithm identifier value is assigned in Table 11.

When this algorithm is used, the protected field MUST be zero

length. The key type MUST be 'Symmetric'.

Name Value Description

direct -6 Direct use of CEK

Table 11: Direct Key

PartyInfo = (

 identity : bstr / nil,

 nonce : bstr / int / nil,

 other : bstr / nil

)

COSE_KDF_Context = [

 AlgorithmID : int / tstr,

 PartyUInfo : [PartyInfo],

 PartyVInfo : [PartyInfo],

 SuppPubInfo : [

 keyDataLength : uint,

 protected : empty_or_serialized_map,

 ? other : bstr

],

 ? SuppPrivInfo : bstr

]

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09#appendix-Section%209.5
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09#appendix-Section%209.5.1

6.1.1.1. Security Considerations

This recipient algorithm has several potential problems that need to

be considered:

These keys need to have some method to be regularly updated over

time. All of the content encryption algorithms specified in this

document have limits on how many times a key can be used without

significant loss of security.

These keys need to be dedicated to a single algorithm. There have

been a number of attacks developed over time when a single key is

used for multiple different algorithms. One example of this is

the use of a single key for both the CBC encryption mode and the

CBC-MAC authentication mode.

Breaking one message means all messages are broken. If an

adversary succeeds in determining the key for a single message,

then the key for all messages is also determined.

6.1.2. Direct Key with KDF

These recipient algorithms take a common shared secret between the

two parties and applies the HKDF function (Section 5.1), using the

context structure defined in Section 5.2 to transform the shared

secret into the CEK. The 'protected' field can be of non-zero

length. Either the 'salt' parameter of HKDF or the 'PartyU nonce'

parameter of the context structure MUST be present. The salt/nonce

parameter can be generated either randomly or deterministically. The

requirement is that it be a unique value for the shared secret in

question.

If the salt/nonce value is generated randomly, then it is suggested

that the length of the random value be the same length as the hash

function underlying HKDF. While there is no way to guarantee that it

will be unique, there is a high probability that it will be unique.

If the salt/nonce value is generated deterministically, it can be

guaranteed to be unique, and thus there is no length requirement.

A new IV must be used for each message if the same key is used. The

IV can be modified in a predictable manner, a random manner, or an

unpredictable manner (i.e., encrypting a counter).

The IV used for a key can also be generated from the same HKDF

functionality as the key is generated. If HKDF is used for

generating the IV, the algorithm identifier is set to "IV-

GENERATION".

The set of algorithms defined in this document can be found in Table

12.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Name Value KDF Description

direct+HKDF-

SHA-256
-10 HKDF SHA-256

Shared secret w/ HKDF and

SHA-256

direct+HKDF-

SHA-512
-11 HKDF SHA-512

Shared secret w/ HKDF and

SHA-512

direct+HKDF-

AES-128
-12

HKDF AES-

MAC-128

Shared secret w/ AES-MAC

128-bit key

direct+HKDF-

AES-256
-13

HKDF AES-

MAC-256

Shared secret w/ AES-MAC

256-bit key

Table 12: Direct Key with KDF

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the algorithm being

used.

If the 'key_ops' field is present, it MUST include 'deriveKey' or

'deriveBits'.

6.1.2.1. Security Considerations

The shared secret needs to have some method to be regularly updated

over time. The shared secret forms the basis of trust. Although not

used directly, it should still be subject to scheduled rotation.

While these methods do not provide for perfect forward secrecy, as

the same shared secret is used for all of the keys generated, if the

key for any single message is discovered, only the message (or

series of messages) using that derived key are compromised. A new

key derivation step will generate a new key that requires the same

amount of work to get the key.

6.2. AES Key Wrap

The AES Key Wrap algorithm is defined in [RFC3394]. This algorithm

uses an AES key to wrap a value that is a multiple of 64 bits. As

such, it can be used to wrap a key for any of the content encryption

algorithms defined in this document. The algorithm requires a single

fixed parameter, the initial value. This is fixed to the value

specified in Section 2.2.3.1 of [RFC3394]. There are no public key

parameters that vary on a per-invocation basis. The protected header

bucket MUST be empty.

Keys may be obtained either from a key structure or from a recipient

structure. Implementations encrypting and decrypting MUST validate

¶

* ¶

*

¶

*

¶

¶

¶

¶

that the key type, key length, and algorithm are correct and

appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the AES Key Wrap

algorithm being used.

If the 'key_ops' field is present, it MUST include 'encrypt' or

'wrap key' when encrypting.

If the 'key_ops' field is present, it MUST include 'decrypt' or

'unwrap key' when decrypting.

Name Value Key Size Description

A128KW -3 128 AES Key Wrap w/ 128-bit key

A192KW -4 192 AES Key Wrap w/ 192-bit key

A256KW -5 256 AES Key Wrap w/ 256-bit key

Table 13: AES Key Wrap Algorithm Values

6.2.1. Security Considerations for AES-KW

The shared secret needs to have some method to be regularly updated

over time. The shared secret is the basis of trust.

6.3. Direct ECDH

The mathematics for ECDH can be found in [RFC6090]. In this

document, the algorithm is extended to be used with the two curves

defined in [RFC7748].

ECDH is parameterized by the following:

Curve Type/Curve: The curve selected controls not only the size

of the shared secret, but the mathematics for computing the

shared secret. The curve selected also controls how a point in

the curve is represented and what happens for the identity points

on the curve. In this specification, we allow for a number of

different curves to be used. A set of curves are defined in Table

18.

The math used to obtain the computed secret is based on the curve

selected and not on the ECDH algorithm. For this reason, a new

algorithm does not need to be defined for each of the curves.

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

¶

Computed Secret to Shared Secret: Once the computed secret is

known, the resulting value needs to be converted to a byte string

to run the KDF. The x-coordinate is used for all of the curves

defined in this document. For curves X25519 and X448, the

resulting value is used directly as it is a byte string of a

known length. For the P-256, P-384, and P-521 curves, the x-

coordinate is run through the I2OSP function defined in

[RFC8017], using the same computation for n as is defined in

Section 2.1.

Ephemeral-Static or Static-Static: The key agreement process may

be done using either a static or an ephemeral key for the

sender's side. When using ephemeral keys, the sender MUST

generate a new ephemeral key for every key agreement operation.

The ephemeral key is placed in the 'ephemeral key' parameter and

MUST be present for all algorithm identifiers that use ephemeral

keys. When using static keys, the sender MUST either generate a

new random value or create a unique value. For the KDFs used,

this means either the 'salt' parameter for HKDF (Table 9) or the

'PartyU nonce' parameter for the context structure (Table 10)

MUST be present (both can be present if desired). The value in

the parameter MUST be unique for the pair of keys being used. It

is acceptable to use a global counter that is incremented for

every static-static operation and use the resulting value. When

using static keys, the static key should be identified to the

recipient. The static key can be identified either by providing

the key ('static key') or by providing a key identifier for the

static key ('static key id'). Both of these header parameters are

defined in Table 15.

Key Derivation Algorithm: The result of an ECDH key agreement

process does not provide a uniformly random secret. As such, it

needs to be run through a KDF in order to produce a usable key.

Processing the secret through a KDF also allows for the

introduction of context material: how the key is going to be used

and one-time material for static-static key agreement. All of the

algorithms defined in this document use one of the HKDF

algorithms defined in Section 5.1 with the context structure

defined in Section 5.2.

Key Wrap Algorithm: No key wrap algorithm is used. This is

represented in Table 14 as 'none'. The key size for the context

structure is the content layer encryption algorithm size.

COSE does not have an Ephemeral-Ephemeral version defined. The

reason for this is that COSE is not an online protocol by itself and

thus does not have a method to establish ephemeral secrets on both

sides. The expectation is that a protocol would establish the

secrets for both sides, and then they would be used as static-static

*

¶

*

¶

*

¶

*

¶

for the purposes of COSE, or that the protocol would generate a

shared secret and a direct encryption would be used.

The set of direct ECDH algorithms defined in this document are found

in Table 14.

Name Value KDF
Ephemeral-

Static

Key

Wrap
Description

ECDH-ES +

HKDF-256
-25

HKDF -

SHA-256
yes none

ECDH ES w/ HKDF -

generate key

directly

ECDH-ES +

HKDF-512
-26

HKDF -

SHA-512
yes none

ECDH ES w/ HKDF -

generate key

directly

ECDH-SS +

HKDF-256
-27

HKDF -

SHA-256
no none

ECDH SS w/ HKDF -

generate key

directly

ECDH-SS +

HKDF-512
-28

HKDF -

SHA-512
no none

ECDH SS w/ HKDF -

generate key

directly

Table 14: ECDH Algorithm Values

Name Label Type Algorithm Description

ephemeral

key
-1 COSE_Key

ECDH-ES+HKDF-256,

ECDH-ES+HKDF-512,

ECDH-ES+A128KW, ECDH-

ES+A192KW, ECDH-

ES+A256KW

Ephemeral

public key for

the sender

static

key
-2 COSE_Key

ECDH-SS+HKDF-256,

ECDH-SS+HKDF-512,

ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-

SS+A256KW

Static public

key for the

sender

static

key id
-3 bstr

ECDH-SS+HKDF-256,

ECDH-SS+HKDF-512,

ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-

SS+A256KW

Static public

key identifier

for the sender

Table 15: ECDH Algorithm Parameters

This document defines these algorithms to be used with the curves

P-256, P-384, P-521, X25519, and X448. Implementations MUST verify

that the key type and curve are correct. Different curves are

restricted to different key types. Implementations MUST verify that

the curve and algorithm are appropriate for the entities involved.

¶

¶

¶

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

If the 'alg' field is present, it MUST match the key agreement

algorithm being used.

If the 'key_ops' field is present, it MUST include 'derive key'

or 'derive bits' for the private key.

If the 'key_ops' field is present, it MUST be empty for the

public key.

6.3.1. Security Considerations

There is a method of checking that points provided from external

entities are valid. For the 'EC2' key format, this can be done by

checking that the x and y values form a point on the curve. For the

'OKP' format, there is no simple way to do point validation.

Consideration was given to requiring that the public keys of both

entities be provided as part of the key derivation process (as

recommended in Section 6.4 of [RFC7748]). This was not done as COSE

is used in a store and forward format rather than in online key

exchange. In order for this to be a problem, either the receiver

public key has to be chosen maliciously or the sender has to be

malicious. In either case, all security evaporates anyway.

A proof of possession of the private key associated with the public

key is recommended when a key is moved from untrusted to trusted

(either by the end user or by the entity that is responsible for

making trust statements on keys).

6.4. ECDH with Key Wrap

These algorithms are defined in Table 16.

ECDH with Key Agreement is parameterized by the same header

parameters as for ECDH; see Section 6.3, with the following

modifications:

Key Wrap Algorithm: Any of the key wrap algorithms defined in

Section 6.2 are supported. The size of the key used for the key

wrap algorithm is fed into the KDF. The set of identifiers are

found in Table 16.

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc7748#section-6.4

Name Value KDF
Ephemeral-

Static

Key

Wrap
Description

ECDH-ES

+ A128KW
-29

HKDF -

SHA-256
yes A128KW

ECDH ES w/ Concat

KDF and AES Key

Wrap w/ 128-bit key

ECDH-ES

+ A192KW
-30

HKDF -

SHA-256
yes A192KW

ECDH ES w/ Concat

KDF and AES Key

Wrap w/ 192-bit key

ECDH-ES

+ A256KW
-31

HKDF -

SHA-256
yes A256KW

ECDH ES w/ Concat

KDF and AES Key

Wrap w/ 256-bit key

ECDH-SS

+ A128KW
-32

HKDF -

SHA-256
no A128KW

ECDH SS w/ Concat

KDF and AES Key

Wrap w/ 128-bit key

ECDH-SS

+ A192KW
-33

HKDF -

SHA-256
no A192KW

ECDH SS w/ Concat

KDF and AES Key

Wrap w/ 192-bit key

ECDH-SS

+ A256KW
-34

HKDF -

SHA-256
no A256KW

ECDH SS w/ Concat

KDF and AES Key

Wrap w/ 256-bit key

Table 16: ECDH Algorithm Values with Key Wrap

When using a COSE key for this algorithm, the following checks are

made:

The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

If the 'alg' field is present, it MUST match the key agreement

algorithm being used.

If the 'key_ops' field is present, it MUST include 'derive key'

or 'derive bits' for the private key.

If the 'key_ops' field is present, it MUST be empty for the

public key.

7. Key Object Parameters

The COSE_Key object defines a way to hold a single key object. It is

still required that the members of individual key types be defined.

This section of the document is where we define an initial set of

members for specific key types.

For each of the key types, we define both public and private

members. The public members are what is transmitted to others for

their usage. Private members allow for the archival of keys by

individuals. However, there are some circumstances in which private

keys may be distributed to entities in a protocol. Examples include:

entities that have poor random number generation, centralized key

¶

* ¶

*

¶

*

¶

*

¶

¶

creation for multi-cast type operations, and protocols in which a

shared secret is used as a bearer token for authorization purposes.

Key types are identified by the 'kty' member of the COSE_Key object.

In this document, we define four values for the member:

Name Value Description

OKP 1 Octet Key Pair

EC2 2 Elliptic Curve Keys w/ x- and y-coordinate pair

Symmetric 4 Symmetric Keys

Reserved 0 This value is reserved

Table 17: Key Type Values

7.1. Elliptic Curve Keys

Two different key structures are defined for elliptic curve keys.

One version uses both an x-coordinate and a y-coordinate,

potentially with point compression ('EC2'). This is the traditional

EC point representation that is used in [RFC5480]. The other version

uses only the x-coordinate as the y-coordinate is either to be

recomputed or not needed for the key agreement operation ('OKP').

Applications MUST check that the curve and the key type are

consistent and reject a key if they are not.

Name Value Key Type Description

P-256 1 EC2 NIST P-256 also known as secp256r1

P-384 2 EC2 NIST P-384 also known as secp384r1

P-521 3 EC2 NIST P-521 also known as secp521r1

X25519 4 OKP X25519 for use w/ ECDH only

X448 5 OKP X448 for use w/ ECDH only

Ed25519 6 OKP Ed25519 for use w/ EdDSA only

Ed448 7 OKP Ed448 for use w/ EdDSA only

Table 18: Elliptic Curves

7.1.1. Double Coordinate Curves

The traditional way of sending ECs has been to send either both the

x-coordinate and y-coordinate or the x-coordinate and a sign bit for

the y-coordinate. The latter encoding has not been recommended in

the IETF due to potential IPR issues. However, for operations in

constrained environments, the ability to shrink a message by not

sending the y-coordinate is potentially useful.

For EC keys with both coordinates, the 'kty' member is set to 2

(EC2). The key parameters defined in this section are summarized in

Table 19. The members that are defined for this key type are:

¶

¶

¶

¶

¶

¶

crv:

x:

y:

d:

This contains an identifier of the curve to be used with the

key. The curves defined in this document for this key type can be

found in Table 18. Other curves may be registered in the future,

and private curves can be used as well.

This contains the x-coordinate for the EC point. The integer is

converted to a byte string as defined in [SEC1]. Leading zero

octets MUST be preserved.

This contains either the sign bit or the value of the y-

coordinate for the EC point. When encoding the value y, the

integer is converted to an byte string (as defined in [SEC1]) and

encoded as a CBOR bstr. Leading zero octets MUST be preserved.

The compressed point encoding is also supported. Compute the sign

bit as laid out in the Elliptic-Curve-Point-to-Octet-String

Conversion function of [SEC1]. If the sign bit is zero, then

encode y as a CBOR false value; otherwise, encode y as a CBOR

true value. The encoding of the infinity point is not supported.

This contains the private key.

For public keys, it is REQUIRED that 'crv', 'x', and 'y' be present

in the structure. For private keys, it is REQUIRED that 'crv' and

'd' be present in the structure. For private keys, it is RECOMMENDED

that 'x' and 'y' also be present, but they can be recomputed from

the required elements and omitting them saves on space.

Key

Type
Name Label

CBOR

Type
Description

2 crv -1
int /

tstr

EC identifier - Taken from the "COSE

Elliptic Curves" registry

2 x -2 bstr x-coordinate

2 y -3
bstr /

bool
y-coordinate

2 d -4 bstr Private key

Table 19: EC Key Parameters

7.2. Octet Key Pair

A new key type is defined for Octet Key Pairs (OKP). Do not assume

that keys using this type are elliptic curves. This key type could

be used for other curve types (for example, mathematics based on

hyper-elliptic surfaces).

The key parameters defined in this section are summarized in Table

20. The members that are defined for this key type are:

¶

¶

¶

¶

¶

¶

¶

crv:

x:

d:

k:

This contains an identifier of the curve to be used with the

key. The curves defined in this document for this key type can be

found in Table 18. Other curves may be registered in the future

and private curves can be used as well.

This contains the public key. The byte string contains the

public key as defined by the algorithm. (For X25591, internally

it is a little-endian integer.)

This contains the private key.

For public keys, it is REQUIRED that 'crv' and 'x' be present in the

structure. For private keys, it is REQUIRED that 'crv' and 'd' be

present in the structure. For private keys, it is RECOMMENDED that

'x' also be present, but it can be recomputed from the required

elements and omitting it saves on space.

Name
Key

Type
Label Type Description

crv 1 -1
int /

tstr

EC identifier - Taken from the "COSE

Elliptic Curves" registry

x 1 -2 bstr Public Key

d 1 -4 bstr Private key

Table 20: Octet Key Pair Parameters

7.3. Symmetric Keys

Occasionally it is required that a symmetric key be transported

between entities. This key structure allows for that to happen.

For symmetric keys, the 'kty' member is set to 4 ('Symmetric'). The

member that is defined for this key type is:

This contains the value of the key.

This key structure does not have a form that contains only public

members. As it is expected that this key structure is going to be

transmitted, care must be taken that it is never transmitted

accidentally or insecurely. For symmetric keys, it is REQUIRED that

'k' be present in the structure.

Name Key Type Label Type Description

k 4 -1 bstr Key Value

Table 21: Symmetric Key Parameters

¶

¶

¶

¶

¶

¶

¶

¶

8. COSE Capabilities

There are some situations that have been identified where

identification of capabilities of an algorithm need to be specified.

One example of this is in [I-D.ietf-core-oscore-groupcomm] where the

capabilities of the counter signature algorithm are mixed into the

traffic key derivation process. This has a counterpart in the S/MIME

specifications where SMIMECapabilities is defined in Section 2.5.2

of [RFC8551]. The concept is being pulled forward and defined now

for COSE.

The algorithm identifier is not part of the capabilities data as it

should already be part of message structure. There is a presumption

in the way that this is laid out is that the algorithm identifier

itself is not needed to be a part of this as it is specified in a

different location.

Two different types of capabilities are defined: capabilities for

algorithms and capabilities for key structures. Once defined by

registration with IANA, the list of capabilities is immutable. If it

is later found that a new capability is needed for a key type or an

algorithm, it will require that a new code point be assigned to deal

with that. As a general rule, the capabilities are going to map to

algorithm-specific header parameters or key parameters, but they do

not need to do so. An example of this is the HSS-LMS key

capabilities defined below where the hash algorithm used is

included.

The capability structure is an array of values, the order being

dependent on the specific algorithm or key. For an algorithm, the

first element should always be a key type value, but the items that

are specific to a key should not be included in the algorithm

capabilities. This means that if one wishes to enumerate all of the

capabilities for a device which implements ECDH, it requires

multiple pairs of capability structures (algorithm, key) to deal

with the different key types and curves that are supported. For a

key, the first element should also be a key type value. While this

means that this value will be duplicated if both an algorithm and

key capability are used, the key type is needed in order to

understand the rest of the values.

8.1. Assignments for Existing Key Types

There are a number of pre-existing key types, the following deals

with creating the capability definition for those structures:

OKP, EC2: The list of capabilities is:

The key type value. (1 for OKP or 2 for EC2.)

¶

¶

¶

¶

¶

* ¶

- ¶

https://rfc-editor.org/rfc/rfc8551#section-2.5.2

One curve for that key type from the "COSE Elliptic Curve"

registry.

RSA: The list of capabilities is:

The key type value (3).

Symmetric: The list of capabilities is:

The key type value (4).

HSS-LMS: The list of capabilities is:

The key type value (5),

Algorithm identifier for the underlying hash function from the

"COSE Algorithms" registry.

8.2. Assignments for Existing Algorithms

For the current set of algorithms in the registry, those in this

document as well as those in [RFC8230] and [I-D.ietf-cose-hash-sig],

the capabilities list is an array with one element, the key type

(from the "COSE Key Types" Registry). It is expected future

registered algorithms could have zero, one, or multiple elements.

8.3. Examples

In this section a trio of examples is provided. In all three cases

it it encodes the algorithm capabilities followed by the key

capabilities. For simplicity's sake, a CBOR sequence [I-D.ietf-cbor-

sequence] is used for the two arrays.

-

¶

* ¶

- ¶

* ¶

- ¶

* ¶

- ¶

-

¶

¶

¶

ECDSA with SHA-512 and a P-256 curve:

0x8102820201 / [2],[2, 1] /

ECDH-ES + A256KW with a P-256 curve:

0x8102820201 / [2],[2, 1] /

ECDH-ES + A256KW with an X25519 curve:

0x8101820104 / [1],[1, 4] /

¶

9. CBOR Encoding Restrictions

This document limits the restrictions it imposes on how the CBOR

Encoder needs to work. We have managed to narrow it down to the

following restrictions:

The restriction applies to the encoding of the COSE_KDF_Context.

Encoding MUST be done using definite lengths and the length of

the MUST be the minimum possible length. This means that the

integer 1 is encoded as "0x01" and not "0x1801".

Applications MUST NOT generate messages with the same label used

twice as a key in a single map. Applications MUST NOT parse and

process messages with the same label used twice as a key in a

single map. Applications can enforce the parse and process

requirement by using parsers that will fail the parse step or by

using parsers that will pass all keys to the application, and the

application can perform the check for duplicate keys.

10. IANA Considerations

10.1. Changes to "COSE Key Types" registry.

IANA is requested to create a new column in the "COSE Key Types"

registry. The new column is to be labeled "Capabilities". The new

column is to be populated according the entries in Table 22.

Value Name Capabilities

1 OKP [kty(1), crv]

2 EC2 [kty(2), crv]

3 RSA [kty(3)]

4 Symmetric [kty(4)]

5 HSS-LMS [kty(5), hash algorithm]

Table 22: Key Type Capabilities

10.2. Changes to "COSE Algorithms" registry

IANA is requested to create a new column in the "COSE Algorithms"

registry. The new column is to be labeled "Capabilities". The new

column is populated with "[kty]" for all current, non-provisional,

registrations. It is expected that the documents which define those

algorithms will be expanded to include this registration, if this is

not done then the DE should be consulted before final registration

for this document is done.

IANA is requested to update the reference column in the "COSE

Algorithms" registry to include [[This Document]] as a reference for

¶

* ¶

*

¶

*

¶

¶

¶

all rows where it is not already present. Note to IANA: There is an

action in [I-D.ietf-cose-rfc8152bis-struct] which also modifies data

in the reference column. That action should be applied first.

IANA is rquested to add a new row to the "COSE Algorithms" registry.

Name Value Description Reference Recommended

IV

Generation

IV-

GENERATION

Reserved for doing

IV generation for

symmetric

algorithms.

[[THIS

DOCUMENT]]
No

Table 23

The capabilities column for this registration is to be empty.

10.3. Changes to the "COSE Key Type Parameters" registry

IANA is requested to modify the description to "Public Key" for the

line with "Key Type" of 2 and the "Name" of "x". See Table 20 which

has been modified with this change.

IANA is requested to update the references in the table from RFC8152

to [[This Document]].

11. Security Considerations

There are a number of security considerations that need to be taken

into account by implementers of this specification. The security

considerations that are specific to an individual algorithm are

placed next to the description of the algorithm. While some

considerations have been highlighted here, additional considerations

may be found in the documents listed in the references.

Implementations need to protect the private key material for any

individuals. There are some cases in this document that need to be

highlighted on this issue.

Using the same key for two different algorithms can leak

information about the key. It is therefore recommended that keys

be restricted to a single algorithm.

Use of 'direct' as a recipient algorithm combined with a second

recipient algorithm exposes the direct key to the second

recipient.

Several of the algorithms in this document have limits on the

number of times that a key can be used without leaking

information about the key.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

The use of ECDH and direct plus KDF (with no key wrap) will not

directly lead to the private key being leaked; the one way function

of the KDF will prevent that. There is, however, a different issue

that needs to be addressed. Having two recipients requires that the

CEK be shared between two recipients. The second recipient therefore

has a CEK that was derived from material that can be used for the

weak proof of origin. The second recipient could create a message

using the same CEK and send it to the first recipient; the first

recipient would, for either static-static ECDH or direct plus KDF,

make an assumption that the CEK could be used for proof of origin

even though it is from the wrong entity. If the key wrap step is

added, then no proof of origin is implied and this is not an issue.

Although it has been mentioned before, the use of a single key for

multiple algorithms has been demonstrated in some cases to leak

information about a key, provide the opportunity for attackers to

forge integrity tags, or gain information about encrypted content.

Binding a key to a single algorithm prevents these problems. Key

creators and key consumers are strongly encouraged not only to

create new keys for each different algorithm, but to include that

selection of algorithm in any distribution of key material and

strictly enforce the matching of algorithms in the key structure to

algorithms in the message structure. In addition to checking that

algorithms are correct, the key form needs to be checked as well. Do

not use an 'EC2' key where an 'OKP' key is expected.

Before using a key for transmission, or before acting on information

received, a trust decision on a key needs to be made. Is the data or

action something that the entity associated with the key has a right

to see or a right to request? A number of factors are associated

with this trust decision. Some of the ones that are highlighted here

are:

What are the permissions associated with the key owner?

Is the cryptographic algorithm acceptable in the current context?

Have the restrictions associated with the key, such as algorithm

or freshness, been checked and are they correct?

Is the request something that is reasonable, given the current

state of the application?

Have any security considerations that are part of the message

been enforced (as specified by the application or 'crit'

parameter)?

There are a large number of algorithms presented in this document

that use nonce values. For all of the nonces defined in this

document, there is some type of restriction on the nonce being a

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

[I-D.ietf-cose-rfc8152bis-struct]

[RFC2104]

[RFC2119]

[RFC3394]

unique value either for a key or for some other conditions. In all

of these cases, there is no known requirement on the nonce being

both unique and unpredictable; under these circumstances, it's

reasonable to use a counter for creation of the nonce. In cases

where one wants the pattern of the nonce to be unpredictable as well

as unique, one can use a key created for that purpose and encrypt

the counter to produce the nonce value.

One area that has been starting to get exposure is doing traffic

analysis of encrypted messages based on the length of the message.

This specification does not provide for a uniform method of

providing padding as part of the message structure. An observer can

distinguish between two different messages (for example, 'YES' and

'NO') based on the length for all of the content encryption

algorithms that are defined in this document. This means that it is

up to the applications to document how content padding is to be done

in order to prevent or discourage such analysis. (For example, the

text strings could be defined as 'YES' and 'NO '.)

12. References

12.1. Normative References

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", Work in Progress, Internet-

Draft, draft-ietf-cose-rfc8152bis-struct-09, 14 May 2020,

<https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-

struct-09>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Schaad, J. and R. Housley, "Advanced Encryption Standard

(AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-09
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC3610]

[RFC5869]

[RFC6090]

[RFC6979]

[RFC7049]

[RFC8439]

[RFC7748]

[RFC8174]

[AES-GCM]

[DSS]

RFC3394, September 2002, <https://www.rfc-editor.org/

info/rfc3394>.

Whiting, D., Housley, R., and N. Ferguson, "Counter with

CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September

2003, <https://www.rfc-editor.org/info/rfc3610>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

McGrew, D., Igoe, K., and M. Salter, "Fundamental

Elliptic Curve Cryptography Algorithms", RFC 6090, DOI

10.17487/RFC6090, February 2011, <https://www.rfc-

editor.org/info/rfc6090>.

Pornin, T., "Deterministic Usage of the Digital Signature

Algorithm (DSA) and Elliptic Curve Digital Signature

Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979,

August 2013, <https://www.rfc-editor.org/info/rfc6979>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF

Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,

<https://www.rfc-editor.org/info/rfc8439>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

National Institute of Standards and Technology,

"Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC", DOI 10.6028/NIST.SP.

800-38D, NIST Special Publication 800-38D, November 2007,

<https://csrc.nist.gov/publications/nistpubs/800-38D/

SP-800-38D.pdf>.

National Institute of Standards and Technology, "Digital

Signature Standard (DSS)", DOI 10.6028/NIST.FIPS.186-4,

FIPS PUB 186-4, July 2013, <http://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.186-4.pdf>.

https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6090
https://www.rfc-editor.org/info/rfc6090
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc8439
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8174
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[MAC]

[SEC1]

[RFC8032]

[RFC8610]

[RFC4231]

[RFC4493]

[RFC5116]

[RFC5480]

[RFC6151]

[RFC8259]

National Institute of Standards and Technology, "Computer

Data Authentication", FIPS PUB 113, May 1985, <http://

csrc.nist.gov/publications/fips/fips113/fips113.html>.

Certicom Research, "SEC 1: Elliptic Curve Cryptography",

May 2009, <http://www.secg.org/sec1-v2.pdf>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

12.2. Informative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Nystrom, M., "Identifiers and Test Vectors for HMAC-

SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",

RFC 4231, DOI 10.17487/RFC4231, December 2005, <https://

www.rfc-editor.org/info/rfc4231>.

Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The

AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June

2006, <https://www.rfc-editor.org/info/rfc4493>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/info/

rfc5116>.

Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,

"Elliptic Curve Cryptography Subject Public Key

Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,

<https://www.rfc-editor.org/info/rfc5480>.

Turner, S. and L. Chen, "Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011, <https://

www.rfc-editor.org/info/rfc6151>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

http://csrc.nist.gov/publications/fips/fips113/fips113.html
http://csrc.nist.gov/publications/fips/fips113/fips113.html
http://www.secg.org/sec1-v2.pdf
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc4231
https://www.rfc-editor.org/info/rfc4231
https://www.rfc-editor.org/info/rfc4493
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

[RFC7252]

[RFC7518]

[RFC8017]

[RFC8152]

[RFC8551]

[RFC8230]

[I-D.ietf-core-oscore-groupcomm]

[I-D.ietf-cose-hash-sig]

[I-D.ietf-cbor-sequence]

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Jones, M., "Using RSA Algorithms with CBOR Object Signing

and Encryption (COSE) Messages", RFC 8230, DOI 10.17487/

RFC8230, September 2017, <https://www.rfc-editor.org/

info/rfc8230>.

Tiloca, M., Selander, G., Palombini, F., and J. Park,

"Group OSCORE - Secure Group Communication for CoAP",

Work in Progress, Internet-Draft, draft-ietf-core-oscore-

groupcomm-08, 6 April 2020, <https://tools.ietf.org/html/

draft-ietf-core-oscore-groupcomm-08>.

Housley, R., "Use of the HSS/LMS Hash-based

Signature Algorithm with CBOR Object Signing and

Encryption (COSE)", Work in Progress, Internet-Draft,

draft-ietf-cose-hash-sig-09, 11 December 2019, <https://

tools.ietf.org/html/draft-ietf-cose-hash-sig-09>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", Work in Progress, Internet-Draft, draft-ietf-

https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8230
https://www.rfc-editor.org/info/rfc8230
https://tools.ietf.org/html/draft-ietf-core-oscore-groupcomm-08
https://tools.ietf.org/html/draft-ietf-core-oscore-groupcomm-08
https://tools.ietf.org/html/draft-ietf-cose-hash-sig-09
https://tools.ietf.org/html/draft-ietf-cose-hash-sig-09

[SP800-56A]

cbor-sequence-02, 25 September 2019, <https://

tools.ietf.org/html/draft-ietf-cbor-sequence-02>.

Barker, E., Chen, L., Roginsky, A., and M. Smid,

"Recommendation for Pair-Wise Key Establishment Schemes

Using Discrete Logarithm Cryptography", DOI 10.6028/

NIST.SP.800-56Ar2, NIST Special Publication 800-56A,

Revision 2, May 2013, <http://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-56Ar2.pdf>.

Acknowledgments

This document is a product of the COSE working group of the IETF.

The following individuals are to blame for getting me started on

this project in the first place: Richard Barnes, Matt Miller, and

Martin Thomson.

The initial version of the specification was based to some degree on

the outputs of the JOSE and S/MIME working groups.

The following individuals provided input into the final form of the

document: Carsten Bormann, John Bradley, Brain Campbell, Michael B.

Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and Goran

Selander.

Author's Address

Jim Schaad

August Cellars

Email: ietf@augustcellars.com

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cbor-sequence-02
https://tools.ietf.org/html/draft-ietf-cbor-sequence-02
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
mailto:ietf@augustcellars.com

	CBOR Object Signing and Encryption (COSE): Initial Algorithms
	Abstract
	Contributing to this document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology
	1.2. Changes from RFC8152
	1.3. Document Terminology
	1.4. CBOR Grammar
	1.5. Examples

	2. Signature Algorithms
	2.1. ECDSA
	2.1.1. Security Considerations

	2.2. Edwards-Curve Digital Signature Algorithms (EdDSAs)
	2.2.1. Security Considerations

	3. Message Authentication Code (MAC) Algorithms
	3.1. Hash-Based Message Authentication Codes (HMACs)
	3.1.1. Security Considerations

	3.2. AES Message Authentication Code (AES-CBC-MAC)
	3.2.1. Security Considerations

	4. Content Encryption Algorithms
	4.1. AES GCM
	4.1.1. Security Considerations

	4.2. AES CCM
	4.2.1. Security Considerations

	4.3. ChaCha20 and Poly1305
	4.3.1. Security Considerations

	5. Key Derivation Functions (KDFs)
	5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)
	5.2. Context Information Structure

	6. Content Key Distribution Methods
	6.1. Direct Encryption
	6.1.1. Direct Key
	6.1.1.1. Security Considerations

	6.1.2. Direct Key with KDF
	6.1.2.1. Security Considerations

	6.2. AES Key Wrap
	6.2.1. Security Considerations for AES-KW

	6.3. Direct ECDH
	6.3.1. Security Considerations

	6.4. ECDH with Key Wrap

	7. Key Object Parameters
	7.1. Elliptic Curve Keys
	7.1.1. Double Coordinate Curves

	7.2. Octet Key Pair
	7.3. Symmetric Keys

	8. COSE Capabilities
	8.1. Assignments for Existing Key Types
	8.2. Assignments for Existing Algorithms
	8.3. Examples

	9. CBOR Encoding Restrictions
	10. IANA Considerations
	10.1. Changes to "COSE Key Types" registry.
	10.2. Changes to "COSE Algorithms" registry
	10.3. Changes to the "COSE Key Type Parameters" registry

	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Acknowledgments
	Author's Address

