
COSE Working Group J. Schaad
Internet-Draft August Cellars
Obsoletes: 8152 (if approved) January 21, 2019
Intended status: Standards Track
Expires: July 25, 2019

CBOR Object Signing and Encryption (COSE) - Structures and Process
draft-ietf-cose-rfc8152bis-struct-00

Abstract

 Concise Binary Object Representation (CBOR) is a data format designed
 for small code size and small message size. There is a need for the
 ability to have basic security services defined for this data format.
 This document defines the CBOR Object Signing and Encryption (COSE)
 protocol. This specification describes how to create and process
 signatures, message authentication codes, and encryption using CBOR
 for serialization. This specification additionally describes how to
 represent cryptographic keys using CBOR.

 This document along with [I-D.schaad-cose-rfc8152bis-algs] obsoletes
RFC8152.

Contributing to this document

 The source for this draft is being maintained in GitHub. Suggested
 changes should be submitted as pull requests at <https://github.com/

cose-wg/cose-rfc8152bis>. Instructions are on that page as well.
 Editorial changes can be managed in GitHub, but any substantial
 issues need to be discussed on the COSE mailing list.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2019.

Schaad Expires July 25, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://github.com/cose-wg/cose-rfc8152bis
https://github.com/cose-wg/cose-rfc8152bis
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft COSE Structure January 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Design Changes from JOSE 5
1.2. Requirements Terminology 6
1.3. CBOR Grammar . 6
1.4. CBOR-Related Terminology 7
1.5. Document Terminology 8

2. Basic COSE Structure . 8
3. Header Parameters . 10
3.1. Common COSE Headers Parameters 12

4. Signing Objects . 16
4.1. Signing with One or More Signers 16
4.2. Signing with One Signer 18
4.3. Externally Supplied Data 19
4.4. Signing and Verification Process 20
4.5. Computing Counter Signatures 21

5. Encryption Objects . 22
5.1. Enveloped COSE Structure 22
5.1.1. Content Key Distribution Methods 24

5.2. Single Recipient Encrypted 24
5.3. How to Encrypt and Decrypt for AEAD Algorithms 25
5.4. How to Encrypt and Decrypt for AE Algorithms 27

6. MAC Objects . 29
6.1. MACed Message with Recipients 29
6.2. MACed Messages with Implicit Key 30
6.3. How to Compute and Verify a MAC 31

7. Key Objects . 32
7.1. COSE Key Common Parameters 33

8. Signature Algorithms . 36
9. Message Authentication Code (MAC) Algorithms 37
10. Content Encryption Algorithms 38
11. Key Derivation Functions (KDFs) 38

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Schaad Expires July 25, 2019 [Page 2]

Internet-Draft COSE Structure January 2019

12. Content Key Distribution Methods 39
12.1. Direct Encryption 39
12.2. Key Wrap . 40
12.3. Key Transport . 40
12.4. Direct Key Agreement 41
12.5. Key Agreement with Key Wrap 42

13. CBOR Encoder Restrictions 42
14. Application Profiling Considerations 43
15. IANA Considerations . 44
15.1. CBOR Tag Assignment 44
15.2. COSE Header Parameters Registry 44
15.3. COSE Header Algorithm Parameters Registry 44
15.4. COSE Key Common Parameters Registry 45
15.5. Media Type Registrations 45
15.5.1. COSE Security Message 45
15.5.2. COSE Key Media Type 46

15.6. CoAP Content-Formats Registry 48
15.7. Expert Review Instructions 48

16. Security Considerations 49
17. References . 51
17.1. Normative References 51
17.2. Informative References 52

Appendix A. Guidelines for External Data Authentication of
 Algorithms . 55

A.1. Algorithm Identification 55
A.2. Counter Signature without Headers 58

Appendix B. Two Layers of Recipient Information 59
Appendix C. Examples . 60
C.1. Examples of Signed Messages 61
C.1.1. Single Signature 61
C.1.2. Multiple Signers 62
C.1.3. Counter Signature 63
C.1.4. Signature with Criticality 64

C.2. Single Signer Examples 65
C.2.1. Single ECDSA Signature 65

C.3. Examples of Enveloped Messages 66
C.3.1. Direct ECDH . 66
C.3.2. Direct Plus Key Derivation 67
C.3.3. Counter Signature on Encrypted Content 68
C.3.4. Encrypted Content with External Data 70

C.4. Examples of Encrypted Messages 70
C.4.1. Simple Encrypted Message 70
C.4.2. Encrypted Message with a Partial IV 71

C.5. Examples of MACed Messages 71
C.5.1. Shared Secret Direct MAC 71
C.5.2. ECDH Direct MAC 72
C.5.3. Wrapped MAC . 73
C.5.4. Multi-Recipient MACed Message 74

Schaad Expires July 25, 2019 [Page 3]

Internet-Draft COSE Structure January 2019

C.6. Examples of MAC0 Messages 75
C.6.1. Shared Secret Direct MAC 75

C.7. COSE Keys . 76
C.7.1. Public Keys . 76
C.7.2. Private Keys . 77

 Acknowledgments . 79
 Author's Address . 80

1. Introduction

 There has been an increased focus on small, constrained devices that
 make up the Internet of Things (IoT). One of the standards that has
 come out of this process is "Concise Binary Object Representation
 (CBOR)" [RFC7049]. CBOR extended the data model of the JavaScript
 Object Notation (JSON) [RFC8259] by allowing for binary data, among
 other changes. CBOR has been adopted by several of the IETF working
 groups dealing with the IoT world as their encoding of data
 structures. CBOR was designed specifically to be both small in terms
 of messages transport and implementation size and be a schema-free
 decoder. A need exists to provide message security services for IoT,
 and using CBOR as the message-encoding format makes sense.

 The JOSE working group produced a set of documents [RFC7515]
 [RFC7516] [RFC7517] [RFC7518] using JSON that specified how to
 process encryption, signatures, and Message Authentication Code (MAC)
 operations and how to encode keys using JSON. This document along
 with [I-D.schaad-cose-rfc8152bis-algs] defines the CBOR Object
 Signing and Encryption (COSE) standard, which does the same thing for
 the CBOR encoding format. While there is a strong attempt to keep
 the flavor of the original JSON Object Signing and Encryption (JOSE)
 documents, two considerations are taken into account:

 o CBOR has capabilities that are not present in JSON and are
 appropriate to use. One example of this is the fact that CBOR has
 a method of encoding binary directly without first converting it
 into a base64-encoded string.

 o COSE is not a direct copy of the JOSE specification. In the
 process of creating COSE, decisions that were made for JOSE were
 re-examined. In many cases, different results were decided on as
 the criteria were not always the same.

 This document contains:

 o The description of the structure for the CBOR objects which are
 transmitted over the wire. Two objects are defined for
 encryption, signing and message authentication. One object is

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518

Schaad Expires July 25, 2019 [Page 4]

Internet-Draft COSE Structure January 2019

 defined for transporting keys and one for transporting groups of
 keys.

 o The procedures used to compute build the inputs to the
 cryptographic functions required for each of the structures.

 o A starting set of attributes that apply to the different security
 objects.

 This document does not contain the rules and procedures for using
 specific cryptographic algorithms. Details on specific algorithms
 can be found in [I-D.schaad-cose-rfc8152bis-algs] and [RFC8230].
 Details for additional algorithms are expected to be defined in
 future documents.

 One feature that is present in CMS [RFC5652] that is not present in
 this standard is a digest structure. This omission is deliberate.
 It is better for the structure to be defined in each document as
 different protocols will want to include a different set of fields as
 part of the structure. While an algorithm identifier and the digesst
 value are going to be common to all applications, the two values may
 not always be adjacent as the algorithm could be defined once with
 multiple values. Applications may additionally want to defined
 additional data fields as part of the stucture. A common structure
 is going to include a URI or other pointer to where the data that is
 being hashed is kept, allowing this to be application specific.

1.1. Design Changes from JOSE

 o Define a single top message structure so that encrypted, signed,
 and MACed messages can easily be identified and still have a
 consistent view.

 o Signed messages distinguish between the protected and unprotected
 parameters that relate to the content from those that relate to
 the signature.

 o MACed messages are separated from signed messages.

 o MACed messages have the ability to use the same set of recipient
 algorithms as enveloped messages for obtaining the MAC
 authentication key.

 o Use binary encodings for binary data rather than base64url
 encodings.

 o Combine the authentication tag for encryption algorithms with the
 ciphertext.

https://datatracker.ietf.org/doc/html/rfc8230
https://datatracker.ietf.org/doc/html/rfc5652

Schaad Expires July 25, 2019 [Page 5]

Internet-Draft COSE Structure January 2019

 o The set of cryptographic algorithms has been expanded in some
 directions and trimmed in others.

1.2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. CBOR Grammar

 There was not a standard CBOR grammar available when COSE was
 originally written. For that reason the CBOR structures defined here
 are described in prose. Since that time CBOR Data Definition
 Language (CDDL) [I-D.ietf-cbor-cddl] has been published as an RFC.
 The CBOR grammar presented in this document is compatible with CDDL.

 The document was developed by first working on the grammar and then
 developing the prose to go with it. An artifact of this is that the
 prose was written using the primitive type strings defined by CBOR
 Data Definition Language (CDDL) [I-D.ietf-cbor-cddl]. In this
 specification, the following primitive types are used:

 any -- non-specific value that permits all CBOR values to be
 placed here.

 bool -- a boolean value (true: major type 7, value 21; false:
 major type 7, value 20).

 bstr -- byte string (major type 2).

 int -- an unsigned integer or a negative integer.

 nil -- a null value (major type 7, value 22).

 nint -- a negative integer (major type 1).

 tstr -- a UTF-8 text string (major type 3).

 uint -- an unsigned integer (major type 0).

 Two syntaxes from CDDL appear in this document as shorthand. These
 are:

 FOO / BAR -- indicates that either FOO or BAR can appear here.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Schaad Expires July 25, 2019 [Page 6]

Internet-Draft COSE Structure January 2019

 [+ FOO] -- indicates that the type FOO appears one or more times
 in an array.

 As well as the prose description, a version of a CBOR grammar is
 presented in CDDL. The CDDL grammar is informational; the prose
 description is normative.

 The collected CDDL can be extracted from the XML version of this
 document via the following XPath expression below. (Depending on the
 XPath evaluator one is using, it may be necessary to deal with >
 as an entity.)

 //artwork[@type='CDDL']/text()

 CDDL expects the initial non-terminal symbol to be the first symbol
 in the file. For this reason, the first fragment of CDDL is
 presented here.

 start = COSE_Messages / COSE_Key / COSE_KeySet / Internal_Types

 ; This is defined to make the tool quieter:
 Internal_Types = Sig_structure / Enc_structure / MAC_structure /
 COSE_KDF_Context

 The non-terminal Internal_Types is defined for dealing with the
 automated validation tools used during the writing of this document.
 It references those non-terminals that are used for security
 computations but are not emitted for transport.

1.4. CBOR-Related Terminology

 In JSON, maps are called objects and only have one kind of map key: a
 string. In COSE, we use strings, negative integers, and unsigned
 integers as map keys. The integers are used for compactness of
 encoding and easy comparison. The inclusion of strings allows for an
 additional range of short encoded values to be used as well. Since
 the word "key" is mainly used in its other meaning, as a
 cryptographic key, we use the term "label" for this usage as a map
 key.

 The presence of a label in a COSE map that is not a string or an
 integer is an error. Applications can either fail processing or
 process messages by ignoring incorrect labels; however, they MUST NOT
 create messages with incorrect labels.

 A CDDL grammar fragment defines the non-terminal 'label', as in the
 previous paragraph, and 'values', which permits any value to be used.

Schaad Expires July 25, 2019 [Page 7]

Internet-Draft COSE Structure January 2019

 label = int / tstr
 values = any

1.5. Document Terminology

 In this document, we use the following terminology:

 Byte is a synonym for octet.

 Constrained Application Protocol (CoAP) is a specialized web transfer
 protocol for use in constrained systems. It is defined in [RFC7252].

 Authenticated Encryption (AE) [RFC5116] algorithms are those
 encryption algorithms that provide an authentication check of the
 contents algorithm with the encryption service.

 Authenticated Encryption with Authenticated Data (AEAD) [RFC5116]
 algorithms provide the same content authentication service as AE
 algorithms, but they additionally provide for authentication of non-
 encrypted data as well.

2. Basic COSE Structure

 The COSE object structure is designed so that there can be a large
 amount of common code when parsing and processing the different types
 of security messages. All of the message structures are built on the
 CBOR array type. The first three elements of the array always
 contain the same information:

 1. The set of protected header parameters wrapped in a bstr.

 2. The set of unprotected header parameters as a map.

 3. The content of the message. The content is either the plaintext
 or the ciphertext as appropriate. The content may be detached
 (i.e. transported separately from the COSE structure), but the
 location is still used. The content is wrapped in a bstr when
 present and is a nil value when detached.

 Elements after this point are dependent on the specific message type.

 COSE messages are built using the concept of layers to separate
 different types of cryptographic concepts. As an example of how this
 works, consider the COSE_Encrypt message (Section 5.1). This message
 type is broken into two layers: the content layer and the recipient
 layer. In the content layer, the plaintext is encrypted and
 information about the encrypted message is placed. In the recipient
 layer, the content encryption key (CEK) is encrypted and information

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116

Schaad Expires July 25, 2019 [Page 8]

Internet-Draft COSE Structure January 2019

 about how it is encrypted for each recipient is placed. A single
 layer version of the encryption message COSE_Encrypt0 (Section 5.2)
 is provided for cases where the CEK is pre-shared.

 Identification of which type of message has been presented is done by
 the following methods:

 1. The specific message type is known from the context. This may be
 defined by a marker in the containing structure or by
 restrictions specified by the application protocol.

 2. The message type is identified by a CBOR tag. Messages with a
 CBOR tag are known in this specification as tagged messages,
 while those without the CBOR tag are known as untagged messages.
 This document defines a CBOR tag for each of the message
 structures. These tags can be found in Table 1.

 3. When a COSE object is carried in a media type of 'application/
 cose', the optional parameter 'cose-type' can be used to identify
 the embedded object. The parameter is OPTIONAL if the tagged
 version of the structure is used. The parameter is REQUIRED if
 the untagged version of the structure is used. The value to use
 with the parameter for each of the structures can be found in
 Table 1.

 4. When a COSE object is carried as a CoAP payload, the CoAP
 Content-Format Option can be used to identify the message
 content. The CoAP Content-Format values can be found in Table 2.
 The CBOR tag for the message structure is not required as each
 security message is uniquely identified.

 +-------+---------------+---------------+---------------------------+
 | CBOR | cose-type | Data Item | Semantics |
 | Tag | | | |
 +-------+---------------+---------------+---------------------------+
98	cose-sign	COSE_Sign	COSE Signed Data Object
18	cose-sign1	COSE_Sign1	COSE Single Signer Data
			Object
96	cose-encrypt	COSE_Encrypt	COSE Encrypted Data
			Object
16	cose-encrypt0	COSE_Encrypt0	COSE Single Recipient
			Encrypted Data Object
97	cose-mac	COSE_Mac	COSE MACed Data Object
17	cose-mac0	COSE_Mac0	COSE Mac w/o Recipients
			Object
 +-------+---------------+---------------+---------------------------+

 Table 1: COSE Message Identification

Schaad Expires July 25, 2019 [Page 9]

Internet-Draft COSE Structure January 2019

 +--------------------------------------+----------+-----+-----------+
 | Media Type | Encoding | ID | Reference |
 +--------------------------------------+----------+-----+-----------+
application/cose; cose-type="cose-		98	[RFC8152]
sign"			
application/cose; cose-type="cose-		18	[RFC8152]
sign1"			
application/cose; cose-type="cose-		96	[RFC8152]
encrypt"			
application/cose; cose-type="cose-		16	[RFC8152]
encrypt0"			
application/cose; cose-type="cose-		97	[RFC8152]
mac"			
application/cose; cose-type="cose-		17	[RFC8152]
mac0"			
application/cose-key		101	[RFC8152]
application/cose-key-set		102	[RFC8152]
 +--------------------------------------+----------+-----+-----------+

 Table 2: CoAP Content-Formats for COSE

 The following CDDL fragment identifies all of the top messages
 defined in this document. Separate non-terminals are defined for the
 tagged and the untagged versions of the messages.

 COSE_Messages = COSE_Untagged_Message / COSE_Tagged_Message

 COSE_Untagged_Message = COSE_Sign / COSE_Sign1 /
 COSE_Encrypt / COSE_Encrypt0 /
 COSE_Mac / COSE_Mac0

 COSE_Tagged_Message = COSE_Sign_Tagged / COSE_Sign1_Tagged /
 COSE_Encrypt_Tagged / COSE_Encrypt0_Tagged /
 COSE_Mac_Tagged / COSE_Mac0_Tagged

3. Header Parameters

 The structure of COSE has been designed to have two buckets of
 information that are not considered to be part of the payload itself,
 but are used for holding information about content, algorithms, keys,
 or evaluation hints for the processing of the layer. These two
 buckets are available for use in all of the structures except for
 keys. While these buckets are present, they may not all be usable in
 all instances. For example, while the protected bucket is defined as
 part of the recipient structure, some of the algorithms used for
 recipient structures do not provide for authenticated data. If this
 is the case, the protected bucket is left empty.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Schaad Expires July 25, 2019 [Page 10]

Internet-Draft COSE Structure January 2019

 Both buckets are implemented as CBOR maps. The map key is a 'label'
 (Section 1.4). The value portion is dependent on the definition for
 the label. Both maps use the same set of label/value pairs. The
 integer and string values for labels have been divided into several
 sections including a standard range, a private range, and a range
 that is dependent on the algorithm selected. The defined labels can
 be found in the "COSE Header Parameters" IANA registry
 (Section 15.2).

 Two buckets are provided for each layer:

 protected: Contains parameters about the current layer that are
 cryptographically protected. This bucket MUST be empty if it is
 not going to be included in a cryptographic computation. This
 bucket is encoded in the message as a binary object. This value
 is obtained by CBOR encoding the protected map and wrapping it in
 a bstr object. Senders SHOULD encode a zero-length map as a zero-
 length byte string rather than as a zero-length map (encoded as
 h'a0'). The zero-length binary encoding is preferred because it
 is both shorter and the version used in the serialization
 structures for cryptographic computation. After encoding the map,
 the value is wrapped in the binary object. Recipients MUST accept
 both a zero-length binary value and a zero-length map encoded in
 the binary value. The wrapping allows for the encoding of the
 protected map to be transported with a greater chance that it will
 not be altered in transit. (Badly behaved intermediates could
 decode and re-encode, but this will result in a failure to verify
 unless the re-encoded byte string is identical to the decoded byte
 string.) This avoids the problem of all parties needing to be
 able to do a common canonical encoding.

 unprotected: Contains parameters about the current layer that are
 not cryptographically protected.

 Only parameters that deal with the current layer are to be placed at
 that layer. As an example of this, the parameter 'content type'
 describes the content of the message being carried in the message.
 As such, this parameter is placed only in the content layer and is
 not placed in the recipient or signature layers. In principle, one
 should be able to process any given layer without reference to any
 other layer. With the exception of the COSE_Sign structure, the only
 data that needs to cross layers is the cryptographic key.

 The buckets are present in all of the security objects defined in
 this document. The fields in order are the 'protected' bucket (as a
 CBOR 'bstr' type) and then the 'unprotected' bucket (as a CBOR 'map'
 type). The presence of both buckets is required. The parameters
 that go into the buckets come from the IANA "COSE Header Parameters"

Schaad Expires July 25, 2019 [Page 11]

Internet-Draft COSE Structure January 2019

 registry (Section 15.2). Some common parameters are defined in the
 next section, but a number of parameters are defined throughout this
 document.

 Labels in each of the maps MUST be unique. When processing messages,
 if a label appears multiple times, the message MUST be rejected as
 malformed. Applications SHOULD verify that the same label does not
 occur in both the protected and unprotected headers. If the message
 is not rejected as malformed, attributes MUST be obtained from the
 protected bucket before they are obtained from the unprotected
 bucket.

 The following CDDL fragment represents the two header buckets. A
 group "Headers" is defined in CDDL that represents the two buckets in
 which attributes are placed. This group is used to provide these two
 fields consistently in all locations. A type is also defined that
 represents the map of common headers.

 Headers = (
 protected : empty_or_serialized_map,
 unprotected : header_map
)

 header_map = {
 Generic_Headers,
 * label => values
 }

 empty_or_serialized_map = bstr .cbor header_map / bstr .size 0

3.1. Common COSE Headers Parameters

 This section defines a set of common header parameters. A summary of
 these parameters can be found in Table 3. This table should be
 consulted to determine the value of label and the type of the value.

 The set of header parameters defined in this section are:

 alg: This parameter is used to indicate the algorithm used for the
 security processing. This parameter MUST be authenticated where
 the ability to do so exists. This support is provided by AEAD
 algorithms or construction (COSE_Sign, COSE_Sign0, COSE_Mac, and
 COSE_Mac0). This authentication can be done either by placing the
 parameter in the protected header bucket or as part of the
 externally supplied data. The value is taken from the "COSE
 Algorithms" registry (see [COSE.Algorithms]).

Schaad Expires July 25, 2019 [Page 12]

Internet-Draft COSE Structure January 2019

 crit: The parameter is used to indicate which protected header
 labels an application that is processing a message is required to
 understand. Parameters defined in this document do not need to be
 included as they should be understood by all implementations.
 When present, this parameter MUST be placed in the protected
 header bucket. The array MUST have at least one value in it.
 Not all labels need to be included in the 'crit' parameter. The
 rules for deciding which header labels are placed in the array
 are:

 * Integer labels in the range of 0 to 8 SHOULD be omitted.

 * Integer labels in the range -1 to -128 can be omitted as they
 are algorithm dependent. If an application can correctly
 process an algorithm, it can be assumed that it will correctly
 process all of the common parameters associated with that
 algorithm. Integer labels in the range -129 to -65536 SHOULD
 be included as these would be less common parameters that might
 not be generally supported.

 * Labels for parameters required for an application MAY be
 omitted. Applications should have a statement if the label can
 be omitted.

 The header parameter values indicated by 'crit' can be processed
 by either the security library code or an application using a
 security library; the only requirement is that the parameter is
 processed. If the 'crit' value list includes a value for which
 the parameter is not in the protected bucket, this is a fatal
 error in processing the message.

 content type: This parameter is used to indicate the content type of
 the data in the payload or ciphertext fields. Integers are from
 the "CoAP Content-Formats" IANA registry table [COAP.Formats].
 Text values following the syntax of "<type-name>/<subtype-name>"
 where <type-name> and <subtype-name> are defined in Section 4.2 of
 [RFC6838]. Leading and trailing whitespace is also omitted.
 Textual content values along with parameters and subparameters can
 be located using the IANA "Media Types" registry. Applications
 SHOULD provide this parameter if the content structure is
 potentially ambiguous.

 kid: This parameter identifies one piece of data that can be used as
 input to find the needed cryptographic key. The value of this
 parameter can be matched against the 'kid' member in a COSE_Key
 structure. Other methods of key distribution can define an
 equivalent field to be matched. Applications MUST NOT assume that
 'kid' values are unique. There may be more than one key with the

https://datatracker.ietf.org/doc/html/rfc6838#section-4.2
https://datatracker.ietf.org/doc/html/rfc6838#section-4.2

Schaad Expires July 25, 2019 [Page 13]

Internet-Draft COSE Structure January 2019

 same 'kid' value, so all of the keys associated with this 'kid'
 may need to be checked. The internal structure of 'kid' values is
 not defined and cannot be relied on by applications. Key
 identifier values are hints about which key to use. This is not a
 security-critical field. For this reason, it can be placed in the
 unprotected headers bucket.

 IV: This parameter holds the Initialization Vector (IV) value. For
 some symmetric encryption algorithms, this may be referred to as a
 nonce. The IV can be placed in the unprotected header as
 modifying the IV will cause the decryption to yield plaintext that
 is readily detectable as garbled.

 Partial IV: This parameter holds a part of the IV value. When using
 the COSE_Encrypt0 structure, a portion of the IV can be part of
 the context associated with the key. This field is used to carry
 a value that causes the IV to be changed for each message. The IV
 can be placed in the unprotected header as modifying the IV will
 cause the decryption to yield plaintext that is readily detectable
 as garbled. The 'Initialization Vector' and 'Partial
 Initialization Vector' parameters MUST NOT both be present in the
 same security layer.

 The message IV is generated by the following steps:

 1. Left-pad the Partial IV with zeros to the length of IV.

 2. XOR the padded Partial IV with the context IV.

 counter signature: This parameter holds one or more counter
 signature values. Counter signatures provide a method of having a
 second party sign some data. The counter signature parameter can
 occur as an unprotected attribute in any of the following
 structures: COSE_Sign1, COSE_Signature, COSE_Encrypt,
 COSE_recipient, COSE_Encrypt0, COSE_Mac, and COSE_Mac0. These
 structures all have the same beginning elements, so that a
 consistent calculation of the counter signature can be computed.
 Details on computing counter signatures are found in Section 4.5.

Schaad Expires July 25, 2019 [Page 14]

Internet-Draft COSE Structure January 2019

 +-----------+-------+----------------+-------------+----------------+
 | Name | Label | Value Type | Value | Description |
 | | | | Registry | |
 +-----------+-------+----------------+-------------+----------------+
alg	1	int / tstr	COSE	Cryptographic
			Algorithms	algorithm to
			registry	use
crit	2	[+ label]	COSE Header	Critical
			Parameters	headers to be
			registry	understood
content	3	tstr / uint	CoAP	Content type
type			Content-	of the payload
			Formats or	
			Media Types	
			registries	
kid	4	bstr		Key identifier
IV	5	bstr		Full
				Initialization
				Vector
Partial	6	bstr		Partial
IV				Initialization
				Vector
counter	7	COSE_Signature		CBOR-encoded
signature		/ [+		signature
		COSE_Signature		structure
]		
 +-----------+-------+----------------+-------------+----------------+

 Table 3: Common Header Parameters

 The CDDL fragment that represents the set of headers defined in this
 section is given below. Each of the headers is tagged as optional
 because they do not need to be in every map; headers required in
 specific maps are discussed above.

 Generic_Headers = (
 ? 1 => int / tstr, ; algorithm identifier
 ? 2 => [+label], ; criticality
 ? 3 => tstr / int, ; content type
 ? 4 => bstr, ; key identifier
 ? 5 => bstr, ; IV
 ? 6 => bstr, ; Partial IV
 ? 7 => COSE_Signature / [+COSE_Signature] ; Counter signature
)

Schaad Expires July 25, 2019 [Page 15]

Internet-Draft COSE Structure January 2019

4. Signing Objects

 COSE supports two different signature structures. COSE_Sign allows
 for one or more signatures to be applied to the same content.
 COSE_Sign1 is restricted to a single signer. The structures cannot
 be converted between each other; as the signature computation
 includes a parameter identifying which structure is being used, the
 converted structure will fail signature validation.

4.1. Signing with One or More Signers

 The COSE_Sign structure allows for one or more signatures to be
 applied to a message payload. Parameters relating to the content and
 parameters relating to the signature are carried along with the
 signature itself. These parameters may be authenticated by the
 signature, or just present. An example of a parameter about the
 content is the content type. Examples of parameters about the
 signature would be the algorithm and key used to create the signature
 and counter signatures.

RFC 5652 indicates that:

 When more than one signature is present, the successful validation
 of one signature associated with a given signer is usually treated
 as a successful signature by that signer. However, there are some
 application environments where other rules are needed. An
 application that employs a rule other than one valid signature for
 each signer must specify those rules. Also, where simple matching
 of the signer identifier is not sufficient to determine whether
 the signatures were generated by the same signer, the application
 specification must describe how to determine which signatures were
 generated by the same signer. Support for different communities
 of recipients is the primary reason that signers choose to include
 more than one signature.

 For example, the COSE_Sign structure might include signatures
 generated with the Edwards-curve Digital Signature Algorithm (EdDSA)
 [RFC8032] and with the Elliptic Curve Digital Signature Algorithm
 (ECDSA) [DSS]. This allows recipients to verify the signature
 associated with one algorithm or the other. More-detailed
 information on multiple signature evaluations can be found in
 [RFC5752].

 The signature structure can be encoded as either tagged or untagged
 depending on the context it will be used in. A tagged COSE_Sign
 structure is identified by the CBOR tag 98. The CDDL fragment that
 represents this is:

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc5752

Schaad Expires July 25, 2019 [Page 16]

Internet-Draft COSE Structure January 2019

 COSE_Sign_Tagged = #6.98(COSE_Sign)

 A COSE Signed Message is defined in two parts. The CBOR object that
 carries the body and information about the body is called the
 COSE_Sign structure. The CBOR object that carries the signature and
 information about the signature is called the COSE_Signature
 structure. Examples of COSE Signed Messages can be found in

Appendix C.1.

 The COSE_Sign structure is a CBOR array. The fields of the array in
 order are:

 protected: This is as described in Section 3.

 unprotected: This is as described in Section 3.

 payload: This field contains the serialized content to be signed.
 If the payload is not present in the message, the application is
 required to supply the payload separately. The payload is wrapped
 in a bstr to ensure that it is transported without changes. If
 the payload is transported separately ("detached content"), then a
 nil CBOR object is placed in this location, and it is the
 responsibility of the application to ensure that it will be
 transported without changes.

 Note: When a signature with a message recovery algorithm is used
 (Section 8), the maximum number of bytes that can be recovered is
 the length of the payload. The size of the payload is reduced by
 the number of bytes that will be recovered. If all of the bytes
 of the payload are consumed, then the payload is encoded as a
 zero-length binary string rather than as being absent.

 signatures: This field is an array of signatures. Each signature is
 represented as a COSE_Signature structure.

 The CDDL fragment that represents the above text for COSE_Sign
 follows.

 COSE_Sign = [
 Headers,
 payload : bstr / nil,
 signatures : [+ COSE_Signature]
]

 The COSE_Signature structure is a CBOR array. The fields of the
 array in order are:

 protected: This is as described in Section 3.

Schaad Expires July 25, 2019 [Page 17]

Internet-Draft COSE Structure January 2019

 unprotected: This is as described in Section 3.

 signature: This field contains the computed signature value. The
 type of the field is a bstr. Algorithms MUST specify padding if
 the signature value is not a multiple of 8 bits.

 The CDDL fragment that represents the above text for COSE_Signature
 follows.

 COSE_Signature = [
 Headers,
 signature : bstr
]

4.2. Signing with One Signer

 The COSE_Sign1 signature structure is used when only one signature is
 going to be placed on a message. The parameters dealing with the
 content and the signature are placed in the same pair of buckets
 rather than having the separation of COSE_Sign.

 The structure can be encoded as either tagged or untagged depending
 on the context it will be used in. A tagged COSE_Sign1 structure is
 identified by the CBOR tag 18. The CDDL fragment that represents
 this is:

 COSE_Sign1_Tagged = #6.18(COSE_Sign1)

 The CBOR object that carries the body, the signature, and the
 information about the body and signature is called the COSE_Sign1
 structure. Examples of COSE_Sign1 messages can be found in

Appendix C.2.

 The COSE_Sign1 structure is a CBOR array. The fields of the array in
 order are:

 protected: This is as described in Section 3.

 unprotected: This is as described in Section 3.

 payload: This is as described in Section 4.1.

 signature: This field contains the computed signature value. The
 type of the field is a bstr.

 The CDDL fragment that represents the above text for COSE_Sign1
 follows.

Schaad Expires July 25, 2019 [Page 18]

Internet-Draft COSE Structure January 2019

 COSE_Sign1 = [
 Headers,
 payload : bstr / nil,
 signature : bstr
]

4.3. Externally Supplied Data

 One of the features offered in the COSE document is the ability for
 applications to provide additional data to be authenticated, but that
 is not carried as part of the COSE object. The primary reason for
 supporting this can be seen by looking at the CoAP message structure
 [RFC7252], where the facility exists for options to be carried before
 the payload. Examples of data that can be placed in this location
 would be the CoAP code or CoAP options. If the data is in the header
 section, then it is available for proxies to help in performing its
 operations. For example, the Accept Option can be used by a proxy to
 determine if an appropriate value is in the proxy's cache. But the
 sender can cause a failure at the server if a proxy, or an attacker,
 changes the set of accept values by including the field in the
 application supplied data.

 This document describes the process for using a byte array of
 externally supplied authenticated data; the method of constructing
 the byte array is a function of the application. Applications that
 use this feature need to define how the externally supplied
 authenticated data is to be constructed. Such a construction needs
 to take into account the following issues:

 o If multiple items are included, applications need to ensure that
 the same byte string cannot produced if there are different
 inputs. This could occur by appending the strings 'AB' and 'CDE'
 or by appending the strings 'ABC' and 'DE'. This is usually
 addressed by making fields a fixed width and/or encoding the
 length of the field as part of the output. Using options from
 CoAP [RFC7252] as an example, these fields use a TLV structure so
 they can be concatenated without any problems.

 o If multiple items are included, an order for the items needs to be
 defined. Using options from CoAP as an example, an application
 could state that the fields are to be ordered by the option
 number.

 o Applications need to ensure that the byte string is going to be
 the same on both sides. Using options from CoAP might give a
 problem if the same relative numbering is kept. An intermediate
 node could insert or remove an option, changing how the relative
 number is done. An application would need to specify that the

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Schaad Expires July 25, 2019 [Page 19]

Internet-Draft COSE Structure January 2019

 relative number must be re-encoded to be relative only to the
 options that are in the external data.

4.4. Signing and Verification Process

 In order to create a signature, a well-defined byte string is needed.
 The Sig_struture is used to create the canonical form. This signing
 and verification process takes in the body information (COSE_Sign or
 COSE_Sign1), the signer information (COSE_Signature), and the
 application data (external source). A Sig_structure is a CBOR array.
 The fields of the Sig_struture in order are:

 1. A text string identifying the context of the signature. The
 context string is:

 "Signature" for signatures using the COSE_Signature structure.

 "Signature1" for signatures using the COSE_Sign1 structure.

 "CounterSignature" for signatures used as counter signature
 attributes.

 2. The protected attributes from the body structure encoded in a
 bstr type. If there are no protected attributes, a bstr of
 length zero is used.

 3. The protected attributes from the signer structure encoded in a
 bstr type. If there are no protected attributes, a bstr of
 length zero is used. This field is omitted for the COSE_Sign1
 signature structure.

 4. The protected attributes from the application encoded in a bstr
 type. If this field is not supplied, it defaults to a zero-
 length binary string. (See Section 4.3 for application guidance
 on constructing this field.)

 5. The payload to be signed encoded in a bstr type. The payload is
 placed here independent of how it is transported.

 The CDDL fragment that describes the above text is:

 Sig_structure = [
 context : "Signature" / "Signature1" / "CounterSignature",
 body_protected : empty_or_serialized_map,
 ? sign_protected : empty_or_serialized_map,
 external_aad : bstr,
 payload : bstr
]

Schaad Expires July 25, 2019 [Page 20]

Internet-Draft COSE Structure January 2019

 How to compute a signature:

 1. Create a Sig_structure and populate it with the appropriate
 fields.

 2. Create the value ToBeSigned by encoding the Sig_structure to a
 byte string, using the encoding described in Section 13.

 3. Call the signature creation algorithm passing in K (the key to
 sign with), alg (the algorithm to sign with), and ToBeSigned (the
 value to sign).

 4. Place the resulting signature value in the 'signature' field of
 the array.

 The steps for verifying a signature are:

 1. Create a Sig_structure object and populate it with the
 appropriate fields.

 2. Create the value ToBeSigned by encoding the Sig_structure to a
 byte string, using the encoding described in Section 13.

 3. Call the signature verification algorithm passing in K (the key
 to verify with), alg (the algorithm used sign with), ToBeSigned
 (the value to sign), and sig (the signature to be verified).

 In addition to performing the signature verification, the application
 performs the appropriate checks to ensure that the key is correctly
 paired with the signing identity and that the signing identity is
 authorized before performing actions.

4.5. Computing Counter Signatures

 Counter signatures provide a method of associating a different
 signature generated by different signers with some piece of content.
 This is normally used to provide a signature on a signature allowing
 for a proof that a signature existed at a given time (e.g., a
 Timestamp). In this document, we allow for counter signatures to
 exist in a greater number of environments. As an example, it is
 possible to place a counter signature in the unprotected attributes
 of a COSE_Encrypt object. This would allow for an intermediary to
 either verify that the encrypted byte string has not been modified,
 without being able to decrypt it, or assert that an encrypted byte
 string either existed at a given time or passed through it in terms
 of routing (e.g., a proxy signature).

Schaad Expires July 25, 2019 [Page 21]

Internet-Draft COSE Structure January 2019

 An example of a counter signature on a signature can be found in
Appendix C.1.3. An example of a counter signature in an encryption

 object can be found in Appendix C.3.3.

 The creation and validation of counter signatures over the different
 items relies on the fact that the objects have the same structure.
 The elements are a set of protected attributes, a set of unprotected
 attributes, and a body, in that order. This means that the
 Sig_structure can be used in a uniform manner to get the byte string
 for processing a signature. If the counter signature is going to be
 computed over a COSE_Encrypt structure, the body_protected and
 payload items can be mapped into the Sig_structure in the same manner
 as from the COSE_Sign structure.

 It should be noted that only a signature algorithm with appendix (see
Section 8) can be used for counter signatures. This is because the

 body should be able to be processed without having to evaluate the
 counter signature, and this is not possible for signature schemes
 with message recovery.

5. Encryption Objects

 COSE supports two different encryption structures. COSE_Encrypt0 is
 used when a recipient structure is not needed because the key to be
 used is known implicitly. COSE_Encrypt is used the rest of the time.
 This includes cases where there are multiple recipients or a
 recipient algorithm other than direct (i.e. pre-shared secret) is
 used.

5.1. Enveloped COSE Structure

 The enveloped structure allows for one or more recipients of a
 message. There are provisions for parameters about the content and
 parameters about the recipient information to be carried in the
 message. The protected parameters associated with the content are
 authenticated by the content encryption algorithm. The protected
 parameters associated with the recipient are authenticated by the
 recipient algorithm (when the algorithm supports it). Examples of
 parameters about the content are the type of the content and the
 content encryption algorithm. Examples of parameters about the
 recipient are the recipient's key identifier and the recipient's
 encryption algorithm.

 The same techniques and nearly the same structure is used for
 encrypting both the plaintext and the keys. This is different from
 the approach used by both "Cryptographic Message Syntax (CMS)"
 [RFC5652] and "JSON Web Encryption (JWE)" [RFC7516] where different
 structures are used for the content layer and for the recipient

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7516

Schaad Expires July 25, 2019 [Page 22]

Internet-Draft COSE Structure January 2019

 layer. Two structures are defined: COSE_Encrypt to hold the
 encrypted content and COSE_recipient to hold the encrypted keys for
 recipients. Examples of encrypted messages can be found in

Appendix C.3.

 The COSE_Encrypt structure can be encoded as either tagged or
 untagged depending on the context it will be used in. A tagged
 COSE_Encrypt structure is identified by the CBOR tag 96. The CDDL
 fragment that represents this is:

 COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)

 The COSE_Encrypt structure is a CBOR array. The fields of the array
 in order are:

 protected: This is as described in Section 3.

 unprotected: This is as described in Section 3.

 ciphertext: This field contains the ciphertext encoded as a bstr.
 If the ciphertext is to be transported independently of the
 control information about the encryption process (i.e., detached
 content), then the field is encoded as a nil value.

 recipients: This field contains an array of recipient information
 structures. The type for the recipient information structure is a
 COSE_recipient.

 The CDDL fragment that corresponds to the above text is:

 COSE_Encrypt = [
 Headers,
 ciphertext : bstr / nil,
 recipients : [+COSE_recipient]
]

 The COSE_recipient structure is a CBOR array. The fields of the
 array in order are:

 protected: This is as described in Section 3.

 unprotected: This is as described in Section 3.

 ciphertext: This field contains the encrypted key encoded as a bstr.
 All encoded keys are symmetric keys; the binary value of the key
 is the content. If there is not an encrypted key, then this field
 is encoded as a nil value.

Schaad Expires July 25, 2019 [Page 23]

Internet-Draft COSE Structure January 2019

 recipients: This field contains an array of recipient information
 structures. The type for the recipient information structure is a
 COSE_recipient (an example of this can be found in Appendix B).
 If there are no recipient information structures, this element is
 absent.

 The CDDL fragment that corresponds to the above text for
 COSE_recipient is:

 COSE_recipient = [
 Headers,
 ciphertext : bstr / nil,
 ? recipients : [+COSE_recipient]
]

5.1.1. Content Key Distribution Methods

 An encrypted message consists of an encrypted content and an
 encrypted CEK for one or more recipients. The CEK is encrypted for
 each recipient, using a key specific to that recipient. The details
 of this encryption depend on which class the recipient algorithm
 falls into. Specific details on each of the classes can be found in

Section 12. A short summary of the five content key distribution
 methods is:

 direct: The CEK is the same as the identified previously distributed
 symmetric key or is derived from a previously distributed secret.
 No CEK is transported in the message.

 symmetric key-encryption keys (KEK): The CEK is encrypted using a
 previously distributed symmetric KEK. Also known as key wrap.

 key agreement: The recipient's public key and a sender's private key
 are used to generate a pairwise secret, a Key Derivation Function
 (KDF) is applied to derive a key, and then the CEK is either the
 derived key or encrypted by the derived key.

 key transport: The CEK is encrypted with the recipient's public key.
 No key transport algorithms are defined in this document.

 passwords: The CEK is encrypted in a KEK that is derived from a
 password. No password algorithms are defined in this document.

5.2. Single Recipient Encrypted

 The COSE_Encrypt0 encrypted structure does not have the ability to
 specify recipients of the message. The structure assumes that the
 recipient of the object will already know the identity of the key to

Schaad Expires July 25, 2019 [Page 24]

Internet-Draft COSE Structure January 2019

 be used in order to decrypt the message. If a key needs to be
 identified to the recipient, the enveloped structure ought to be
 used.

 Examples of encrypted messages can be found in Appendix C.3.

 The COSE_Encrypt0 structure can be encoded as either tagged or
 untagged depending on the context it will be used in. A tagged
 COSE_Encrypt0 structure is identified by the CBOR tag 16. The CDDL
 fragment that represents this is:

 COSE_Encrypt0_Tagged = #6.16(COSE_Encrypt0)

 The COSE_Encrypt0 structure is a CBOR array. The fields of the array
 in order are:

 protected: This is as described in Section 3.

 unprotected: This is as described in Section 3.

 ciphertext: This is as described in Section 5.1.

 The CDDL fragment for COSE_Encrypt0 that corresponds to the above
 text is:

 COSE_Encrypt0 = [
 Headers,
 ciphertext : bstr / nil,
]

5.3. How to Encrypt and Decrypt for AEAD Algorithms

 The encryption algorithm for AEAD algorithms is fairly simple. The
 first step is to create a consistent byte string for the
 authenticated data structure. For this purpose, we use an
 Enc_structure. The Enc_structure is a CBOR array. The fields of the
 Enc_structure in order are:

 1. A text string identifying the context of the authenticated data
 structure. The context string is:

 "Encrypt0" for the content encryption of a COSE_Encrypt0 data
 structure.

 "Encrypt" for the first layer of a COSE_Encrypt data structure
 (i.e., for content encryption).

Schaad Expires July 25, 2019 [Page 25]

Internet-Draft COSE Structure January 2019

 "Enc_Recipient" for a recipient encoding to be placed in an
 COSE_Encrypt data structure.

 "Mac_Recipient" for a recipient encoding to be placed in a
 MACed message structure.

 "Rec_Recipient" for a recipient encoding to be placed in a
 recipient structure.

 2. The protected attributes from the body structure encoded in a
 bstr type. If there are no protected attributes, a bstr of
 length zero is used.

 3. The protected attributes from the application encoded in a bstr
 type. If this field is not supplied, it defaults to a zero-
 length bstr. (See Section 4.3 for application guidance on
 constructing this field.)

 The CDDL fragment that describes the above text is:

 Enc_structure = [
 context : "Encrypt" / "Encrypt0" / "Enc_Recipient" /
 "Mac_Recipient" / "Rec_Recipient",
 protected : empty_or_serialized_map,
 external_aad : bstr
]

 How to encrypt a message:

 1. Create an Enc_structure and populate it with the appropriate
 fields.

 2. Encode the Enc_structure to a byte string (Additional
 Authenticated Data (AAD)), using the encoding described in

Section 13.

 3. Determine the encryption key (K). This step is dependent on the
 class of recipient algorithm being used. For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current layer. Examples are key transport keys
 (Section 12.3), key wrap keys (Section 12.2), or pre-shared
 secrets.

 Direct Encryption and Direct Key Agreement: The key is
 determined by the key and algorithm in the recipient
 structure. The encryption algorithm and size of the key to be
 used are inputs into the KDF used for the recipient. (For

Schaad Expires July 25, 2019 [Page 26]

Internet-Draft COSE Structure January 2019

 direct, the KDF can be thought of as the identity operation.)
 Examples of these algorithms are found in Sections !!! DIRECT-
 KDF !!! and !!! ECDH !!! of
 [I-D.schaad-cose-rfc8152bis-algs].

 Other: The key is randomly or pseudorandomly generated.

 4. Call the encryption algorithm with K (the encryption key), P (the
 plaintext), and AAD. Place the returned ciphertext into the
 'ciphertext' field of the structure.

 5. For recipients of the message, recursively perform the encryption
 algorithm for that recipient, using K (the encryption key) as the
 plaintext.

 How to decrypt a message:

 1. Create an Enc_structure and populate it with the appropriate
 fields.

 2. Encode the Enc_structure to a byte string (AAD), using the
 encoding described in Section 13.

 3. Determine the decryption key. This step is dependent on the
 class of recipient algorithm being used. For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current layer. Examples are key transport keys
 (Section 12.3), key wrap keys (Section 12.2), or pre-shared
 secrets.

 Direct Encryption and Direct Key Agreement: The key is
 determined by the key and algorithm in the recipient
 structure. The encryption algorithm and size of the key to be
 used are inputs into the KDF used for the recipient. (For
 direct, the KDF can be thought of as the identity operation.)

 Other: The key is determined by decoding and decrypting one of
 the recipient structures.

 4. Call the decryption algorithm with K (the decryption key to use),
 C (the ciphertext), and AAD.

5.4. How to Encrypt and Decrypt for AE Algorithms

 How to encrypt a message:

 1. Verify that the 'protected' field is empty.

Schaad Expires July 25, 2019 [Page 27]

Internet-Draft COSE Structure January 2019

 2. Verify that there was no external additional authenticated data
 supplied for this operation.

 3. Determine the encryption key. This step is dependent on the
 class of recipient algorithm being used. For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current layer. Examples are key transport keys
 (Section 12.3), key wrap keys (Section 12.2), or pre-shared
 secrets.

 Direct Encryption and Direct Key Agreement: The key is
 determined by the key and algorithm in the recipient
 structure. The encryption algorithm and size of the key to be
 used are inputs into the KDF used for the recipient. (For
 direct, the KDF can be thought of as the identity operation.)
 Examples of these algorithms are found in Sections !!!DIRECT-
 KDF!!! and !!! ECDH !!! .

 Other: The key is randomly generated.

 4. Call the encryption algorithm with K (the encryption key to use)
 and P (the plaintext). Place the returned ciphertext into the
 'ciphertext' field of the structure.

 5. For recipients of the message, recursively perform the encryption
 algorithm for that recipient, using K (the encryption key) as the
 plaintext.

 How to decrypt a message:

 1. Verify that the 'protected' field is empty.

 2. Verify that there was no external additional authenticated data
 supplied for this operation.

 3. Determine the decryption key. This step is dependent on the
 class of recipient algorithm being used. For:

 No Recipients: The key to be used is determined by the algorithm
 and key at the current layer. Examples are key transport keys
 (Section 12.3), key wrap keys (Section 12.2), or pre-shared
 secrets.

 Direct Encryption and Direct Key Agreement: The key is
 determined by the key and algorithm in the recipient
 structure. The encryption algorithm and size of the key to be
 used are inputs into the KDF used for the recipient. (For

Schaad Expires July 25, 2019 [Page 28]

Internet-Draft COSE Structure January 2019

 direct, the KDF can be thought of as the identity operation.)
 Examples of these algorithms are found in Sections !!! DIRECT-
 KDF !!! and !!! ECDH !!! .

 Other: The key is determined by decoding and decrypting one of
 the recipient structures.

 4. Call the decryption algorithm with K (the decryption key to use)
 and C (the ciphertext).

6. MAC Objects

 COSE supports two different MAC structures. COSE_MAC0 is used when a
 recipient structure is not needed because the key to be used is
 implicitly known. COSE_MAC is used for all other cases. These
 include a requirement for multiple recipients, the key being unknown,
 and a recipient algorithm of other than direct.

 In this section, we describe the structure and methods to be used
 when doing MAC authentication in COSE. This document allows for the
 use of all of the same classes of recipient algorithms as are allowed
 for encryption.

 When using MAC operations, there are two modes in which they can be
 used. The first is just a check that the content has not been
 changed since the MAC was computed. Any class of recipient algorithm
 can be used for this purpose. The second mode is to both check that
 the content has not been changed since the MAC was computed and to
 use the recipient algorithm to verify who sent it. The classes of
 recipient algorithms that support this are those that use a pre-
 shared secret or do static-static (SS) key agreement (without the key
 wrap step). In both of these cases, the entity that created and sent
 the message MAC can be validated. (This knowledge of the sender
 assumes that there are only two parties involved and that you did not
 send the message to yourself.) The origination property can be
 obtained with both of the MAC message structures.

6.1. MACed Message with Recipients

 The multiple recipient MACed message uses two structures: the
 COSE_Mac structure defined in this section for carrying the body and
 the COSE_recipient structure (Section 5.1) to hold the key used for
 the MAC computation. Examples of MACed messages can be found in

Appendix C.5.

 The MAC structure can be encoded as either tagged or untagged
 depending on the context it will be used in. A tagged COSE_Mac

Schaad Expires July 25, 2019 [Page 29]

Internet-Draft COSE Structure January 2019

 structure is identified by the CBOR tag 97. The CDDL fragment that
 represents this is:

 COSE_Mac_Tagged = #6.97(COSE_Mac)

 The COSE_Mac structure is a CBOR array. The fields of the array in
 order are:

 protected: This is as described in Section 3.

 unprotected: This is as described in Section 3.

 payload: This field contains the serialized content to be MACed. If
 the payload is not present in the message, the application is
 required to supply the payload separately. The payload is wrapped
 in a bstr to ensure that it is transported without changes. If
 the payload is transported separately (i.e., detached content),
 then a nil CBOR value is placed in this location, and it is the
 responsibility of the application to ensure that it will be
 transported without changes.

 tag: This field contains the MAC value.

 recipients: This is as described in Section 5.1.

 The CDDL fragment that represents the above text for COSE_Mac
 follows.

 COSE_Mac = [
 Headers,
 payload : bstr / nil,
 tag : bstr,
 recipients :[+COSE_recipient]
]

6.2. MACed Messages with Implicit Key

 In this section, we describe the structure and methods to be used
 when doing MAC authentication for those cases where the recipient is
 implicitly known.

 The MACed message uses the COSE_Mac0 structure defined in this
 section for carrying the body. Examples of MACed messages with an
 implicit key can be found in Appendix C.6.

 The MAC structure can be encoded as either tagged or untagged
 depending on the context it will be used in. A tagged COSE_Mac0

Schaad Expires July 25, 2019 [Page 30]

Internet-Draft COSE Structure January 2019

 structure is identified by the CBOR tag 17. The CDDL fragment that
 represents this is:

 COSE_Mac0_Tagged = #6.17(COSE_Mac0)

 The COSE_Mac0 structure is a CBOR array. The fields of the array in
 order are:

 protected: This is as described in Section 3.

 unprotected: This is as described in Section 3.

 payload: This is as described in Section 6.1.

 tag: This field contains the MAC value.

 The CDDL fragment that corresponds to the above text is:

 COSE_Mac0 = [
 Headers,
 payload : bstr / nil,
 tag : bstr,
]

6.3. How to Compute and Verify a MAC

 In order to get a consistent encoding of the data to be
 authenticated, the MAC_structure is used to have a canonical form.
 The MAC_structure is a CBOR array. The fields of the MAC_structure
 in order are:

 1. A text string that identifies the structure that is being
 encoded. This string is "MAC" for the COSE_Mac structure. This
 string is "MAC0" for the COSE_Mac0 structure.

 2. The protected attributes from the COSE_MAC structure. If there
 are no protected attributes, a zero-length bstr is used.

 3. The protected attributes from the application encoded as a bstr
 type. If this field is not supplied, it defaults to a zero-
 length binary string. (See Section 4.3 for application guidance
 on constructing this field.)

 4. The payload to be MACed encoded in a bstr type. The payload is
 placed here independent of how it is transported.

 The CDDL fragment that corresponds to the above text is:

Schaad Expires July 25, 2019 [Page 31]

Internet-Draft COSE Structure January 2019

 MAC_structure = [
 context : "MAC" / "MAC0",
 protected : empty_or_serialized_map,
 external_aad : bstr,
 payload : bstr
]

 The steps to compute a MAC are:

 1. Create a MAC_structure and populate it with the appropriate
 fields.

 2. Create the value ToBeMaced by encoding the MAC_structure to a
 byte string, using the encoding described in Section 13.

 3. Call the MAC creation algorithm passing in K (the key to use),
 alg (the algorithm to MAC with), and ToBeMaced (the value to
 compute the MAC on).

 4. Place the resulting MAC in the 'tag' field of the COSE_Mac or
 COSE_Mac0 structure.

 5. For COSE_Mac structures, encrypt and encode the MAC key for each
 recipient of the message.

 The steps to verify a MAC are:

 1. Create a MAC_structure object and populate it with the
 appropriate fields.

 2. Create the value ToBeMaced by encoding the MAC_structure to a
 byte string, using the encoding described in Section 13.

 3. For COSE_Mac structures, obtain the cryptographic key from one of
 the recipients of the message.

 4. Call the MAC creation algorithm passing in K (the key to use),
 alg (the algorithm to MAC with), and ToBeMaced (the value to
 compute the MAC on).

 5. Compare the MAC value to the 'tag' field of the COSE_Mac or
 COSE_Mac0 structure.

7. Key Objects

 A COSE Key structure is built on a CBOR map object. The set of
 common parameters that can appear in a COSE Key can be found in the
 IANA "COSE Key Common Parameters" registry (Section 15.4).

Schaad Expires July 25, 2019 [Page 32]

Internet-Draft COSE Structure January 2019

 Additional parameters defined for specific key types can be found in
 the IANA "COSE Key Type Parameters" registry ([COSE.KeyParameters]).

 A COSE Key Set uses a CBOR array object as its underlying type. The
 values of the array elements are COSE Keys. A COSE Key Set MUST have
 at least one element in the array. Examples of COSE Key Sets can be
 found in Appendix C.7.

 Each element in a COSE Key Set MUST be processed independently. If
 one element in a COSE Key Set is either malformed or uses a key that
 is not understood by an application, that key is ignored and the
 other keys are processed normally.

 The element "kty" is a required element in a COSE_Key map.

 The CDDL grammar describing COSE_Key and COSE_KeySet is:

 COSE_Key = {
 1 => tstr / int, ; kty
 ? 2 => bstr, ; kid
 ? 3 => tstr / int, ; alg
 ? 4 => [+ (tstr / int)], ; key_ops
 ? 5 => bstr, ; Base IV
 * label => values
 }

 COSE_KeySet = [+COSE_Key]

7.1. COSE Key Common Parameters

 This document defines a set of common parameters for a COSE Key
 object. Table 4 provides a summary of the parameters defined in this
 section. There are also parameters that are defined for specific key
 types. Key-type-specific parameters can be found in
 [I-D.schaad-cose-rfc8152bis-algs].

Schaad Expires July 25, 2019 [Page 33]

Internet-Draft COSE Structure January 2019

 +---------+-------+----------------+------------+-------------------+
 | Name | Label | CBOR Type | Value | Description |
 | | | | Registry | |
 +---------+-------+----------------+------------+-------------------+
kty	1	tstr / int	COSE Key	Identification of
			Types	the key type
kid	2	bstr		Key
				identification
				value -- match to
				kid in message
alg	3	tstr / int	COSE	Key usage
			Algorithms	restriction to
				this algorithm
key_ops	4	[+ (tstr/int)]		Restrict set of
				permissible
				operations
Base IV	5	bstr		Base IV to be
				xor-ed with
				Partial IVs
 +---------+-------+----------------+------------+-------------------+

 Table 4: Key Map Labels

 kty: This parameter is used to identify the family of keys for this
 structure and, thus, the set of key-type-specific parameters to be
 found. The set of values defined in this document can be found in
 [COSE.KeyTypes]. This parameter MUST be present in a key object.
 Implementations MUST verify that the key type is appropriate for
 the algorithm being processed. The key type MUST be included as
 part of the trust decision process.

 alg: This parameter is used to restrict the algorithm that is used
 with the key. If this parameter is present in the key structure,
 the application MUST verify that this algorithm matches the
 algorithm for which the key is being used. If the algorithms do
 not match, then this key object MUST NOT be used to perform the
 cryptographic operation. Note that the same key can be in a
 different key structure with a different or no algorithm
 specified; however, this is considered to be a poor security
 practice.

 kid: This parameter is used to give an identifier for a key. The
 identifier is not structured and can be anything from a user-
 provided string to a value computed on the public portion of the

Schaad Expires July 25, 2019 [Page 34]

Internet-Draft COSE Structure January 2019

 key. This field is intended for matching against a 'kid'
 parameter in a message in order to filter down the set of keys
 that need to be checked.

 key_ops: This parameter is defined to restrict the set of operations
 that a key is to be used for. The value of the field is an array
 of values from Table 5. Algorithms define the values of key ops
 that are permitted to appear and are required for specific
 operations. The set of values matches that in [RFC7517] and
 [W3C.WebCrypto].

 Base IV: This parameter is defined to carry the base portion of an
 IV. It is designed to be used with the Partial IV header
 parameter defined in Section 3.1. This field provides the ability
 to associate a Partial IV with a key that is then modified on a
 per message basis with the Partial IV.

 Extreme care needs to be taken when using a Base IV in an
 application. Many encryption algorithms lose security if the same
 IV is used twice.

 If different keys are derived for each sender, using the same Base
 IV with Partial IVs starting at zero is likely to ensure that the
 IV would not be used twice for a single key. If different keys
 are derived for each sender, starting at the same Base IV is
 likely to satisfy this condition. If the same key is used for
 multiple senders, then the application needs to provide for a
 method of dividing the IV space up between the senders. This
 could be done by providing a different base point to start from or
 a different Partial IV to start with and restricting the number of
 messages to be sent before rekeying.

https://datatracker.ietf.org/doc/html/rfc7517

Schaad Expires July 25, 2019 [Page 35]

Internet-Draft COSE Structure January 2019

 +---------+-------+---+
 | Name | Value | Description |
 +---------+-------+---+
sign	1	The key is used to create signatures. Requires
		private key fields.
verify	2	The key is used for verification of signatures.
encrypt	3	The key is used for key transport encryption.
decrypt	4	The key is used for key transport decryption.
		Requires private key fields.
wrap	5	The key is used for key wrap encryption.
key		
unwrap	6	The key is used for key wrap decryption.
key		Requires private key fields.
derive	7	The key is used for deriving keys. Requires
key		private key fields.
derive	8	The key is used for deriving bits not to be
bits		used as a key. Requires private key fields.
MAC	9	The key is used for creating MACs.
create		
MAC	10	The key is used for validating MACs.
verify		
 +---------+-------+---+

 Table 5: Key Operation Values

8. Signature Algorithms

 There are two signature algorithm schemes. The first is signature
 with appendix. In this scheme, the message content is processed and
 a signature is produced; the signature is called the appendix. This
 is the scheme used by algorithms such as ECDSA and the RSA
 Probabilistic Signature Scheme (RSASSA-PSS). (In fact, the SSA in
 RSASSA-PSS stands for Signature Scheme with Appendix.)

 The signature functions for this scheme are:

 signature = Sign(message content, key)

 valid = Verification(message content, key, signature)

 The second scheme is signature with message recovery (an example of
 such an algorithm is [PVSig]). In this scheme, the message content
 is processed, but part of it is included in the signature. Moving
 bytes of the message content into the signature allows for smaller
 signatures; the signature size is still potentially large, but the
 message content has shrunk. This has implications for systems
 implementing these algorithms and for applications that use them.
 The first is that the message content is not fully available until

Schaad Expires July 25, 2019 [Page 36]

Internet-Draft COSE Structure January 2019

 after a signature has been validated. Until that point, the part of
 the message contained inside of the signature is unrecoverable. The
 second is that the security analysis of the strength of the signature
 is very much based on the structure of the message content. Messages
 that are highly predictable require additional randomness to be
 supplied as part of the signature process. In the worst case, it
 becomes the same as doing a signature with appendix. Finally, in the
 event that multiple signatures are applied to a message, all of the
 signature algorithms are going to be required to consume the same
 number of bytes of message content. This means that the mixing of
 the different schemes in a single message is not supported, and if a
 recovery signature scheme is used, then the same amount of content
 needs to be consumed by all of the signatures.

 The signature functions for this scheme are:

 signature, message sent = Sign(message content, key)

 valid, message content = Verification(message sent, key, signature)

 Signature algorithms are used with the COSE_Signature and COSE_Sign1
 structures. At this time, only signatures with appendixes are
 defined for use with COSE; however, considerable interest has been
 expressed in using a signature with message recovery algorithm due to
 the effective size reduction that is possible. Implementations will
 need to keep this in mind for later possible integration.

9. Message Authentication Code (MAC) Algorithms

 Message Authentication Codes (MACs) provide data authentication and
 integrity protection. They provide either no or very limited data
 origination. A MAC, for example, cannot be used to prove the
 identity of the sender to a third party.

 MACs use the same scheme as signature with appendix algorithms. The
 message content is processed and an authentication code is produced.
 The authentication code is frequently called a tag.

 The MAC functions are:

 tag = MAC_Create(message content, key)

 valid = MAC_Verify(message content, key, tag)

 MAC algorithms can be based on either a block cipher algorithm (i.e.,
 AES-MAC) or a hash algorithm (i.e., a Hash-based Message
 Authentication Code (HMAC)). This document defines a MAC algorithm
 using each of these constructions.

Schaad Expires July 25, 2019 [Page 37]

Internet-Draft COSE Structure January 2019

 MAC algorithms are used in the COSE_Mac and COSE_Mac0 structures.

10. Content Encryption Algorithms

 Content encryption algorithms provide data confidentiality for
 potentially large blocks of data using a symmetric key. They provide
 integrity on the data that was encrypted; however, they provide
 either no or very limited data origination. (One cannot, for
 example, be used to prove the identity of the sender to a third
 party.) The ability to provide data origination is linked to how the
 CEK is obtained.

 COSE restricts the set of legal content encryption algorithms to
 those that support authentication both of the content and additional
 data. The encryption process will generate some type of
 authentication value, but that value may be either explicit or
 implicit in terms of the algorithm definition. For simplicity's
 sake, the authentication code will normally be defined as being
 appended to the ciphertext stream. The encryption functions are:

 ciphertext = Encrypt(message content, key, additional data)

 valid, message content = Decrypt(ciphertext, key, additional data)

 Most AEAD algorithms are logically defined as returning the message
 content only if the decryption is valid. Many but not all
 implementations will follow this convention. The message content
 MUST NOT be used if the decryption does not validate.

 These algorithms are used in COSE_Encrypt and COSE_Encrypt0.

11. Key Derivation Functions (KDFs)

 KDFs are used to take some secret value and generate a different one.
 The secret value comes in three flavors:

 o Secrets that are uniformly random: This is the type of secret that
 is created by a good random number generator.

 o Secrets that are not uniformly random: This is type of secret that
 is created by operations like key agreement.

 o Secrets that are not random: This is the type of secret that
 people generate for things like passwords.

 General KDFs work well with the first type of secret, can do
 reasonably well with the second type of secret, and generally do

Schaad Expires July 25, 2019 [Page 38]

Internet-Draft COSE Structure January 2019

 poorly with the last type of secret. Functions like PBES2 [RFC8018]
 need to be used for non-random secrets.

 The same KDF can be set up to deal with the first two types of
 secrets in a different way. The KDF defined in !!! HDKF !!! (section
 XXXX of [I-D.schaad-cose-rfc8152bis-algs]) is such a function. This
 is reflected in the set of algorithms defined around the HMAC-based
 Extract-and-Expand Key Derivation Function (HKDF).

 When using KDFs, one component that is included is context
 information. Context information is used to allow for different
 keying information to be derived from the same secret. The use of
 context-based keying material is considered to be a good security
 practice.

12. Content Key Distribution Methods

 Content key distribution methods (recipient algorithms) can be
 defined into a number of different classes. COSE has the ability to
 support many classes of recipient algorithms. In this section, a
 number of classes are listed. The names of the recipient algorithm
 classes used here are the same as those defined in [RFC7516]. Other
 specifications use different terms for the recipient algorithm
 classes or do not support some of the recipient algorithm classes.

12.1. Direct Encryption

 The direct encryption class algorithms share a secret between the
 sender and the recipient that is used either directly or after
 manipulation as the CEK. When direct encryption mode is used, it
 MUST be the only mode used on the message.

 The COSE_Recipient structure for the recipient is organized as
 follows:

 o The 'protected' field MUST be a zero-length item unless it is used
 in the computation of the content key.

 o The 'alg' parameter MUST be present.

 o A parameter identifying the shared secret SHOULD be present.

 o The 'ciphertext' field MUST be a zero-length item.

 o The 'recipients' field MUST be absent.

https://datatracker.ietf.org/doc/html/rfc8018
https://datatracker.ietf.org/doc/html/rfc7516

Schaad Expires July 25, 2019 [Page 39]

Internet-Draft COSE Structure January 2019

12.2. Key Wrap

 In key wrap mode, the CEK is randomly generated and that key is then
 encrypted by a shared secret between the sender and the recipient.
 All of the currently defined key wrap algorithms for COSE are AE
 algorithms. Key wrap mode is considered to be superior to direct
 encryption if the system has any capability for doing random key
 generation. This is because the shared key is used to wrap random
 data rather than data that has some degree of organization and may in
 fact be repeating the same content. The use of key wrap loses the
 weak data origination that is provided by the direct encryption
 algorithms.

 The COSE_Encrypt structure for the recipient is organized as follows:

 o The 'protected' field MUST be absent if the key wrap algorithm is
 an AE algorithm.

 o The 'recipients' field is normally absent, but can be used.
 Applications MUST deal with a recipient field being present that
 has an unsupported algorthms, not being able to decrypt that
 recipient is an acceptable way of dealing with it. Failing to
 process the message is not an acceptable way of dealing with it.

 o The plaintext to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the shared
 secret.

12.3. Key Transport

 Key transport mode is also called key encryption mode in some
 standards. Key transport mode differs from key wrap mode in that it
 uses an asymmetric encryption algorithm rather than a symmetric
 encryption algorithm to protect the key. This document does not
 define any key transport mode algorithms.

 When using a key transport algorithm, the COSE_Encrypt structure for
 the recipient is organized as follows:

 o The 'protected' field MUST be absent.

 o The plaintext to be encrypted is the key from the next layer down
 (usually the content layer).

Schaad Expires July 25, 2019 [Page 40]

Internet-Draft COSE Structure January 2019

 o At a minimum, the 'unprotected' field MUST contain the 'alg'
 parameter and SHOULD contain a parameter identifying the
 asymmetric key.

12.4. Direct Key Agreement

 The 'direct key agreement' class of recipient algorithms uses a key
 agreement method to create a shared secret. A KDF is then applied to
 the shared secret to derive a key to be used in protecting the data.
 This key is normally used as a CEK or MAC key, but could be used for
 other purposes if more than two layers are in use (see Appendix B).

 The most commonly used key agreement algorithm is Diffie-Hellman, but
 other variants exist. Since COSE is designed for a store and forward
 environment rather than an online environment, many of the DH
 variants cannot be used as the receiver of the message cannot provide
 any dynamic key material. One side effect of this is that perfect
 forward secrecy (see [RFC4949]) is not achievable. A static key will
 always be used for the receiver of the COSE object.

 Two variants of DH that are supported are:

 Ephemeral-Static (ES) DH: where the sender of the message creates
 a one-time DH key and uses a static key for the recipient. The
 use of the ephemeral sender key means that no additional random
 input is needed as this is randomly generated for each message.

 Static-Static (SS) DH: where a static key is used for both the
 sender and the recipient. The use of static keys allows for the
 recipient to get a weak version of data origination for the
 message. When static-static key agreement is used, then some
 piece of unique data for the KDF is required to ensure that a
 different key is created for each message.

 When direct key agreement mode is used, there MUST be only one
 recipient in the message. This method creates the key directly, and
 that makes it difficult to mix with additional recipients. If
 multiple recipients are needed, then the version with key wrap needs
 to be used.

 The COSE_Encrypt structure for the recipient is organized as follows:

 o At a minimum, headers MUST contain the 'alg' parameter and SHOULD
 contain a parameter identifying the recipient's asymmetric key.

 o The headers SHOULD identify the sender's key for the static-static
 versions and MUST contain the sender's ephemeral key for the
 ephemeral-static versions.

https://datatracker.ietf.org/doc/html/rfc4949

Schaad Expires July 25, 2019 [Page 41]

Internet-Draft COSE Structure January 2019

12.5. Key Agreement with Key Wrap

 Key Agreement with Key Wrap uses a randomly generated CEK. The CEK
 is then encrypted using a key wrap algorithm and a key derived from
 the shared secret computed by the key agreement algorithm. The
 function for this would be:

 encryptedKey = KeyWrap(KDF(DH-Shared, context), CEK)

 The COSE_Encrypt structure for the recipient is organized as follows:

 o The 'protected' field is fed into the KDF context structure.

 o The plaintext to be encrypted is the key from the next layer down
 (usually the content layer).

 o The 'alg' parameter MUST be present in the layer.

 o A parameter identifying the recipient's key SHOULD be present. A
 parameter identifying the sender's key SHOULD be present.

13. CBOR Encoder Restrictions

 There has been an attempt to limit the number of places where the
 document needs to impose restrictions on how the CBOR Encoder needs
 to work. We have managed to narrow it down to the following
 restrictions:

 o The restriction applies to the encoding of the COSE_KDF_Context,
 the Sig_structure, the Enc_structure, and the MAC_structure.

 o The rules for "Canonical CBOR" (Section 3.9 of RFC 7049) MUST be
 used in these locations. The main rule that needs to be enforced
 is that all lengths in these structures MUST be encoded such that
 they are using definite lengths, and the minimum length encoding
 is used.

 o Applications MUST NOT generate messages with the same label used
 twice as a key in a single map. Applications MUST NOT parse and
 process messages with the same label used twice as a key in a
 single map. Applications can enforce the parse and process
 requirement by using parsers that will fail the parse step or by
 using parsers that will pass all keys to the application, and the
 application can perform the check for duplicate keys.

https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Schaad Expires July 25, 2019 [Page 42]

Internet-Draft COSE Structure January 2019

14. Application Profiling Considerations

 This document is designed to provide a set of security services, but
 not impose algorithm implementation requirements for specific usage.
 The interoperability requirements are provided for how each of the
 individual services are used and how the algorithms are to be used
 for interoperability. The requirements about which algorithms and
 which services are needed are deferred to each application.

 An example of a profile can be found in
 [I-D.ietf-core-object-security] where a profiles was developed for
 carrying content in combination with CoAP headers.

 It is intended that a profile of this document be created that
 defines the interoperability requirements for that specific
 application. This section provides a set of guidelines and topics
 that need to be considered when profiling this document.

 o Applications need to determine the set of messages defined in this
 document that they will be using. The set of messages corresponds
 fairly directly to the set of security services that are needed
 and to the security levels needed.

 o Applications may define new header parameters for a specific
 purpose. Applications will often times select specific header
 parameters to use or not to use. For example, an application
 would normally state a preference for using either the IV or the
 Partial IV parameter. If the Partial IV parameter is specified,
 then the application also needs to define how the fixed portion of
 the IV is determined.

 o When applications use externally defined authenticated data, they
 need to define how that data is encoded. This document assumes
 that the data will be provided as a byte string. More information
 can be found in Section 4.3.

 o Applications need to determine the set of security algorithms that
 are to be used. When selecting the algorithms to be used as the
 mandatory-to-implement set, consideration should be given to
 choosing different types of algorithms when two are chosen for a
 specific purpose. An example of this would be choosing HMAC-
 SHA512 and AES-CMAC as different MAC algorithms; the construction
 is vastly different between these two algorithms. This means that
 a weakening of one algorithm would be unlikely to lead to a
 weakening of the other algorithms. Of course, these algorithms do
 not provide the same level of security and thus may not be
 comparable for the desired security functionality.

Schaad Expires July 25, 2019 [Page 43]

Internet-Draft COSE Structure January 2019

 o Applications may need to provide some type of negotiation or
 discovery method if multiple algorithms or message structures are
 permitted. The method can be as simple as requiring
 preconfiguration of the set of algorithms to providing a discovery
 method built into the protocol. S/MIME provided a number of
 different ways to approach the problem that applications could
 follow:

 * Advertising in the message (S/MIME capabilities) [RFC5751].

 * Advertising in the certificate (capabilities extension)
 [RFC4262].

 * Minimum requirements for the S/MIME, which have been updated
 over time [RFC2633] [RFC5751] (note that [RFC2633] has been
 obsoleted by [RFC5751]).

15. IANA Considerations

 The registeries and registrations listed below were created during
 processing of RFC 8152 [RFC8152]. The only known action at this time
 is to update the references.

15.1. CBOR Tag Assignment

 IANA assigned tags in the "CBOR Tags" registry as part of processing
 [RFC8152]. IANA is requested to update the references from [RFC8152]
 to this document.

15.2. COSE Header Parameters Registry

 IANA created a registry titled "COSE Header Parameters" as part of
 processing [RFC8152]. The registry has been created to use the
 "Expert Review Required" registration procedure [RFC8126].

 IANA is requested to update the reference for entries in the table
 from [RFC8152] to this document. This document does not update the
 expert review guidelines provided in [RFC8152].

15.3. COSE Header Algorithm Parameters Registry

 IANA created a registry titled "COSE Header Algorithm Parameters" as
 part of processing [RFC8152]. The registry has been created to use
 the "Expert Review Required" registration procedure [RFC8126].

 IANA is requested to update the references from [RFC8152] to this
 document. This document does not update the expert review guidelines
 provided in [RFC8152].

https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc4262
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Schaad Expires July 25, 2019 [Page 44]

Internet-Draft COSE Structure January 2019

15.4. COSE Key Common Parameters Registry

 IANA created a registry titled "COSE Key Common Parameters" as part
 of the processing of [RFC8152]. The registry has been created to use
 the "Expert Review Required" registration procedure [RFC8126].

 IANA is requested to update the reference for entries in the table
 from [RFC8152] to this document. This document does not update the
 expert review guidelines provided in [RFC8152].

15.5. Media Type Registrations

15.5.1. COSE Security Message

 This section registers the 'application/cose' media type in the
 "Media Types" registry. These media types are used to indicate that
 the content is a COSE message.

 Type name: application

 Subtype name: cose

 Required parameters: N/A

 Optional parameters: cose-type

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of [[This Document]].

 Interoperability considerations: N/A

 Published specification: RFC 8152

 Applications that use this media type: IoT applications sending
 security content over HTTP(S) transports.

 Fragment identifier considerations: N/A

 Additional information:

 * Deprecated alias names for this type: N/A

 * Magic number(s): N/A

 * File extension(s): cbor

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Schaad Expires July 25, 2019 [Page 45]

Internet-Draft COSE Structure January 2019

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

15.5.2. COSE Key Media Type

 This section registers the 'application/cose-key' and 'application/
 cose-key-set' media types in the "Media Types" registry. These media
 types are used to indicate, respectively, that content is a COSE_Key
 or COSE_KeySet object.

 The template for registering 'application/cose-key' is:

 Type name: application

 Subtype name: cose-key

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of [[This Document]].

 Interoperability considerations: N/A

 Published specification: RFC 8152

 Applications that use this media type: Distribution of COSE based
 keys for IoT applications.

 Fragment identifier considerations: N/A

 Additional information:

https://datatracker.ietf.org/doc/html/rfc8152

Schaad Expires July 25, 2019 [Page 46]

Internet-Draft COSE Structure January 2019

 * Deprecated alias names for this type: N/A

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

 The template for registering 'application/cose-key-set' is:

 Type name: application

 Subtype name: cose-key-set

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of [[This Document]].

 Interoperability considerations: N/A

 Published specification: RFC 8152

 Applications that use this media type: Distribution of COSE based
 keys for IoT applications.

 Fragment identifier considerations: N/A

 Additional information:

 * Deprecated alias names for this type: N/A

https://datatracker.ietf.org/doc/html/rfc8152

Schaad Expires July 25, 2019 [Page 47]

Internet-Draft COSE Structure January 2019

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Jim Schaad, ietf@augustcellars.com

 Change Controller: IESG

 Provisional registration? No

15.6. CoAP Content-Formats Registry

 IANA added the following entries to the "CoAP Content-Formats"
 registry while processing [RFC8152]. IANA is requested to update the
 reference value from [RFC8152] to [[This Document]].

15.7. Expert Review Instructions

 All of the IANA registries established in this document are defined
 as expert review. This section gives some general guidelines for
 what the experts should be looking for, but they are being designated
 as experts for a reason, so they should be given substantial
 latitude.

 Expert reviewers should take into consideration the following points:

 o Point squatting should be discouraged. Reviewers are encouraged
 to get sufficient information for registration requests to ensure
 that the usage is not going to duplicate one that is already
 registered, and that the point is likely to be used in
 deployments. The zones tagged as private use are intended for
 testing purposes and closed environments; code points in other
 ranges should not be assigned for testing.

 o Specifications are required for the standards track range of point
 assignment. Specifications should exist for specification
 required ranges, but early assignment before a specification is
 available is considered to be permissible. Specifications are
 needed for the first-come, first-serve range if they are expected

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Schaad Expires July 25, 2019 [Page 48]

Internet-Draft COSE Structure January 2019

 to be used outside of closed environments in an interoperable way.
 When specifications are not provided, the description provided
 needs to have sufficient information to identify what the point is
 being used for.

 o Experts should take into account the expected usage of fields when
 approving point assignment. The fact that there is a range for
 standards track documents does not mean that a standards track
 document cannot have points assigned outside of that range. The
 length of the encoded value should be weighed against how many
 code points of that length are left, the size of device it will be
 used on, and the number of code points left that encode to that
 size.

 o When algorithms are registered, vanity registrations should be
 discouraged. One way to do this is to require registrations to
 provide additional documentation on security analysis of the
 algorithm. Another thing that should be considered is requesting
 an opinion on the algorithm from the Crypto Forum Research Group
 (CFRG). Algorithms that do not meet the security requirements of
 the community and the messages structures should not be
 registered.

16. Security Considerations

 There are a number of security considerations that need to be taken
 into account by implementers of this specification. The security
 considerations that are specific to an individual algorithm are
 placed next to the description of the algorithm. While some
 considerations have been highlighted here, additional considerations
 may be found in the documents listed in the references.

 Implementations need to protect the private key material for any
 individuals. There are some cases in this document that need to be
 highlighted on this issue.

 o Using the same key for two different algorithms can leak
 information about the key. It is therefore recommended that keys
 be restricted to a single algorithm.

 o Use of 'direct' as a recipient algorithm combined with a second
 recipient algorithm exposes the direct key to the second
 recipient.

 o Several of the algorithms in this document have limits on the
 number of times that a key can be used without leaking information
 about the key.

Schaad Expires July 25, 2019 [Page 49]

Internet-Draft COSE Structure January 2019

 The use of ECDH and direct plus KDF (with no key wrap) will not
 directly lead to the private key being leaked; the one way function
 of the KDF will prevent that. There is, however, a different issue
 that needs to be addressed. Having two recipients requires that the
 CEK be shared between two recipients. The second recipient therefore
 has a CEK that was derived from material that can be used for the
 weak proof of origin. The second recipient could create a message
 using the same CEK and send it to the first recipient; the first
 recipient would, for either static-static ECDH or direct plus KDF,
 make an assumption that the CEK could be used for proof of origin
 even though it is from the wrong entity. If the key wrap step is
 added, then no proof of origin is implied and this is not an issue.

 Although it has been mentioned before, the use of a single key for
 multiple algorithms has been demonstrated in some cases to leak
 information about a key, provide the opportunity for attackers to
 forge integrity tags, or gain information about encrypted content.
 Binding a key to a single algorithm prevents these problems. Key
 creators and key consumers are strongly encouraged not only to create
 new keys for each different algorithm, but to include that selection
 of algorithm in any distribution of key material and strictly enforce
 the matching of algorithms in the key structure to algorithms in the
 message structure. In addition to checking that algorithms are
 correct, the key form needs to be checked as well. Do not use an
 'EC2' key where an 'OKP' key is expected.

 Before using a key for transmission, or before acting on information
 received, a trust decision on a key needs to be made. Is the data or
 action something that the entity associated with the key has a right
 to see or a right to request? A number of factors are associated
 with this trust decision. Some of the ones that are highlighted here
 are:

 o What are the permissions associated with the key owner?

 o Is the cryptographic algorithm acceptable in the current context?

 o Have the restrictions associated with the key, such as algorithm
 or freshness, been checked and are they correct?

 o Is the request something that is reasonable, given the current
 state of the application?

 o Have any security considerations that are part of the message been
 enforced (as specified by the application or 'crit' parameter)?

 There are a large number of algorithms presented in this document
 that use nonce values. For all of the nonces defined in this

Schaad Expires July 25, 2019 [Page 50]

Internet-Draft COSE Structure January 2019

 document, there is some type of restriction on the nonce being a
 unique value either for a key or for some other conditions. In all
 of these cases, there is no known requirement on the nonce being both
 unique and unpredictable; under these circumstances, it's reasonable
 to use a counter for creation of the nonce. In cases where one wants
 the pattern of the nonce to be unpredictable as well as unique, one
 can use a key created for that purpose and encrypt the counter to
 produce the nonce value.

 One area that has been starting to get exposure is doing traffic
 analysis of encrypted messages based on the length of the message.
 This specification does not provide for a uniform method of providing
 padding as part of the message structure. An observer can
 distinguish between two different strings (for example, 'YES' and
 'NO') based on the length for all of the content encryption
 algorithms that are defined in this document. This means that it is
 up to the applications to document how content padding is to be done
 in order to prevent or discourage such analysis. (For example, the
 strings could be defined as 'YES' and 'NO '.)

17. References

17.1. Normative References

 [COAP.Formats]
 IANA, "CoAP Content-Formats",
 <https://www.iana.org/assignments/core-parameters/

core-parameters.xhtml#content-formats>.

 [COSE.Algorithms]
 IANA, "COSE Algorithms",
 <https://www.iana.org/assignments/cose/

cose.xhtml#algorithms>.

 [COSE.KeyParameters]
 IANA, "COSE Key Parameters",
 <https://www.iana.org/assignments/cose/

cose.xhtml#algorithms>.

 [COSE.KeyTypes]
 IANA, "COSE Key Types",
 <https://www.iana.org/assignments/cose/

cose.xhtml#algorithms>.

https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms

Schaad Expires July 25, 2019 [Page 51]

Internet-Draft COSE Structure January 2019

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-4,
 DOI 10.6028/NIST.FIPS.186-4, July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.186-4.pdf>.

 [I-D.schaad-cose-rfc8152bis-algs]
 Schaad, J., "CBOR Algoritms for Object Signing and
 Encryption (COSE)", draft-schaad-cose-rfc8152bis-algs-01
 (work in progress), December 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <http://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

17.2. Informative References

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-06 (work in progress), November 2018.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-15 (work in
 progress), August 2018.

 [PVSig] Brown, D. and D. Johnson, "Formal Security Proofs for a
 Signature Scheme with Partial Message Recovery",
 DOI 10.1007/3-540-45353-9_11, LNCS Volume 2020, June 2000.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://datatracker.ietf.org/doc/html/draft-schaad-cose-rfc8152bis-algs-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc8032
http://www.rfc-editor.org/info/rfc8032
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-06
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-15

Schaad Expires July 25, 2019 [Page 52]

Internet-Draft COSE Structure January 2019

 [RFC2633] Ramsdell, B., Ed., "S/MIME Version 3 Message
 Specification", RFC 2633, DOI 10.17487/RFC2633, June 1999,
 <https://www.rfc-editor.org/info/rfc2633>.

 [RFC4262] Santesson, S., "X.509 Certificate Extension for Secure/
 Multipurpose Internet Mail Extensions (S/MIME)
 Capabilities", RFC 4262, DOI 10.17487/RFC4262, December
 2005, <https://www.rfc-editor.org/info/rfc4262>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, DOI 10.17487/RFC5751, January
 2010, <https://www.rfc-editor.org/info/rfc5751>.

 [RFC5752] Turner, S. and J. Schaad, "Multiple Signatures in
 Cryptographic Message Syntax (CMS)", RFC 5752,
 DOI 10.17487/RFC5752, January 2010,
 <https://www.rfc-editor.org/info/rfc5752>.

 [RFC5990] Randall, J., Kaliski, B., Brainard, J., and S. Turner,
 "Use of the RSA-KEM Key Transport Algorithm in the
 Cryptographic Message Syntax (CMS)", RFC 5990,
 DOI 10.17487/RFC5990, September 2010,
 <https://www.rfc-editor.org/info/rfc5990>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

https://datatracker.ietf.org/doc/html/rfc2633
https://www.rfc-editor.org/info/rfc2633
https://datatracker.ietf.org/doc/html/rfc4262
https://www.rfc-editor.org/info/rfc4262
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5652
https://www.rfc-editor.org/info/rfc5652
https://datatracker.ietf.org/doc/html/rfc5751
https://www.rfc-editor.org/info/rfc5751
https://datatracker.ietf.org/doc/html/rfc5752
https://www.rfc-editor.org/info/rfc5752
https://datatracker.ietf.org/doc/html/rfc5990
https://www.rfc-editor.org/info/rfc5990
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252

Schaad Expires July 25, 2019 [Page 53]

Internet-Draft COSE Structure January 2019

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC8018] Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:
 Password-Based Cryptography Specification Version 2.1",

RFC 8018, DOI 10.17487/RFC8018, January 2017,
 <https://www.rfc-editor.org/info/rfc8018>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8230] Jones, M., "Using RSA Algorithms with CBOR Object Signing
 and Encryption (COSE) Messages", RFC 8230,
 DOI 10.17487/RFC8230, September 2017,
 <https://www.rfc-editor.org/info/rfc8230>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [W3C.WebCrypto]
 Watson, M., "Web Cryptography API", W3C Recommendation,
 January 2017, <https://www.w3.org/TR/WebCryptoAPI/>.

https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc8018
https://www.rfc-editor.org/info/rfc8018
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc8230
https://www.rfc-editor.org/info/rfc8230
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.w3.org/TR/WebCryptoAPI/

Schaad Expires July 25, 2019 [Page 54]

Internet-Draft COSE Structure January 2019

Appendix A. Guidelines for External Data Authentication of Algorithms

 A portion of the working group has expressed a strong desire to relax
 the rule that the algorithm identifier be required to appear in each
 level of a COSE object. There are two basic reasons that have been
 advanced to support this position. First, the resulting message will
 be smaller if the algorithm identifier is omitted from the most
 common messages in a CoAP environment. Second, there is a potential
 bug that will arise if full checking is not done correctly between
 the different places that an algorithm identifier could be placed
 (the message itself, an application statement, the key structure that
 the sender possesses, and the key structure the recipient possesses).

 This appendix lays out how such a change can be made and the details
 that an application needs to specify in order to use this option.
 Two different sets of details are specified: those needed to omit an
 algorithm identifier and those needed to use a variant on the counter
 signature attribute that contains no attributes about itself.

A.1. Algorithm Identification

 In this section, three sets of recommendations are laid out. The
 first set of recommendations apply to having an implicit algorithm
 identified for a single layer of a COSE object. The second set of
 recommendations apply to having multiple implicit algorithms
 identified for multiple layers of a COSE object. The third set of
 recommendations apply to having implicit algorithms for multiple COSE
 object constructs.

 The key words from [RFC2119] are deliberately not used here. This
 specification can provide recommendations, but it cannot enforce
 them.

 This set of recommendations applies to the case where an application
 is distributing a fixed algorithm along with the key information for
 use in a single COSE object. This normally applies to the smallest
 of the COSE objects, specifically COSE_Sign1, COSE_Mac0, and
 COSE_Encrypt0, but could apply to the other structures as well.

 The following items should be taken into account:

 o Applications need to list the set of COSE structures that implicit
 algorithms are to be used in. Applications need to require that
 the receipt of an explicit algorithm identifier in one of these
 structures will lead to the message being rejected. This
 requirement is stated so that there will never be a case where
 there is any ambiguity about the question of which algorithm
 should be used, the implicit or the explicit one. This applies

https://datatracker.ietf.org/doc/html/rfc2119

Schaad Expires July 25, 2019 [Page 55]

Internet-Draft COSE Structure January 2019

 even if the transported algorithm identifier is a protected
 attribute. This applies even if the transported algorithm is the
 same as the implicit algorithm.

 o Applications need to define the set of information that is to be
 considered to be part of a context when omitting algorithm
 identifiers. At a minimum, this would be the key identifier (if
 needed), the key, the algorithm, and the COSE structure it is used
 with. Applications should restrict the use of a single key to a
 single algorithm. As noted for some of the algorithms in this
 document, the use of the same key in different related algorithms
 can lead to leakage of information about the key, leakage about
 the data or the ability to perform forgeries.

 o In many cases, applications that make the algorithm identifier
 implicit will also want to make the context identifier implicit
 for the same reason. That is, omitting the context identifier
 will decrease the message size (potentially significantly
 depending on the length of the identifier). Applications that do
 this will need to describe the circumstances where the context
 identifier is to be omitted and how the context identifier is to
 be inferred in these cases. (An exhaustive search over all of the
 keys would normally not be considered to be acceptable.) An
 example of how this can be done is to tie the context to a
 transaction identifier. Both would be sent on the original
 message, but only the transaction identifier would need to be sent
 after that point as the context is tied into the transaction
 identifier. Another way would be to associate a context with a
 network address. All messages coming from a single network
 address can be assumed to be associated with a specific context.
 (In this case, the address would normally be distributed as part
 of the context.)

 o Applications cannot rely on key identifiers being unique unless
 they take significant efforts to ensure that they are computed in
 such a way as to create this guarantee. Even when an application
 does this, the uniqueness might be violated if the application is
 run in different contexts (i.e., with a different context
 provider) or if the system combines the security contexts from
 different applications together into a single store.

 o Applications should continue the practice of protecting the
 algorithm identifier. Since this is not done by placing it in the
 protected attributes field, applications should define an
 application-specific external data structure that includes this
 value. This external data field can be used as such for content
 encryption, MAC, and signature algorithms. It can be used in the
 SuppPrivInfo field for those algorithms that use a KDF to derive a

Schaad Expires July 25, 2019 [Page 56]

Internet-Draft COSE Structure January 2019

 key value. Applications may also want to protect other
 information that is part of the context structure as well. It
 should be noted that those fields, such as the key or a Base IV,
 are protected by virtue of being used in the cryptographic
 computation and do not need to be included in the external data
 field.

 The second case is having multiple implicit algorithm identifiers
 specified for a multiple layer COSE object. An example of how this
 would work is the encryption context that an application specifies,
 which contains a content encryption algorithm, a key wrap algorithm,
 a key identifier, and a shared secret. The sender omits sending the
 algorithm identifier for both the content layer and the recipient
 layer leaving only the key identifier. The receiver then uses the
 key identifier to get the implicit algorithm identifiers.

 The following additional items need to be taken into consideration:

 o Applications that want to support this will need to define a
 structure that allows for, and clearly identifies, both the COSE
 structure to be used with a given key and the structure and
 algorithm to be used for the secondary layer. The key for the
 secondary layer is computed as normal from the recipient layer.

 The third case is having multiple implicit algorithm identifiers, but
 targeted at potentially unrelated layers or different COSE objects.
 There are a number of different scenarios where this might be
 applicable. Some of these scenarios are:

 o Two contexts are distributed as a pair. Each of the contexts is
 for use with a COSE_Encrypt message. Each context will consist of
 distinct secret keys and IVs and potentially even different
 algorithms. One context is for sending messages from party A to
 party B, and the second context is for sending messages from party
 B to party A. This means that there is no chance for a reflection
 attack to occur as each party uses different secret keys to send
 its messages; a message that is reflected back to it would fail to
 decrypt.

 o Two contexts are distributed as a pair. The first context is used
 for encryption of the message, and the second context is used to
 place a counter signature on the message. The intention is that
 the second context can be distributed to other entities
 independently of the first context. This allows these entities to
 validate that the message came from an individual without being
 able to decrypt the message and see the content.

Schaad Expires July 25, 2019 [Page 57]

Internet-Draft COSE Structure January 2019

 o Two contexts are distributed as a pair. The first context
 contains a key for dealing with MACed messages, and the second
 context contains a key for dealing with encrypted messages. This
 allows for a unified distribution of keys to participants for
 different types of messages that have different keys, but where
 the keys may be used in a coordinated manner.

 For these cases, the following additional items need to be
 considered:

 o Applications need to ensure that the multiple contexts stay
 associated. If one of the contexts is invalidated for any reason,
 all of the contexts associated with it should also be invalidated.

A.2. Counter Signature without Headers

 There is a group of people who want to have a counter signature
 parameter that is directly tied to the value being signed, and thus
 the authenticated and unauthenticated buckets can be removed from the
 message being sent. The focus on this is an even smaller size, as
 all of the information on the process of creating the counter
 signature is implicit rather than being explicitly carried in the
 message. This includes not only the algorithm identifier as
 presented above, but also items such as the key identification, which
 is always external to the signature structure. This means that the
 entities that are doing the validation of the counter signature are
 required to infer which key is to be used from context rather than
 being explicit. One way of doing this would be to presume that all
 data coming from a specific port (or to a specific URL) is to be
 validated by a specific key. (Note that this does not require that
 the key identifier be part of the value signed as it does not serve a
 cryptographic purpose. If the key validates the counter signature,
 then it should be presumed that the entity associated with that key
 produced the signature.)

 When computing the signature for the bare counter signature header,
 the same Sig_structure defined in Section 4.4 is used. The
 sign_protected field is omitted, as there is no protected header
 field in this counter signature header. The value of
 "CounterSignature0" is placed in the context field of the
 Sig_stucture.

Schaad Expires July 25, 2019 [Page 58]

Internet-Draft COSE Structure January 2019

 +-------------------+-------+-------+-------+-----------------------+
 | Name | Label | Value | Value | Description |
 | | | Type | | |
 +-------------------+-------+-------+-------+-----------------------+
CounterSignature0	9	bstr		Counter signature
				with implied signer
				and headers
 +-------------------+-------+-------+-------+-----------------------+

 Table 6: Header Parameter for CounterSignature0

Appendix B. Two Layers of Recipient Information

 All of the currently defined recipient algorithm classes only use two
 layers of the COSE_Encrypt structure. The first layer is the message
 content, and the second layer is the content key encryption.
 However, if one uses a recipient algorithm such as the RSA Key
 Encapsulation Mechanism (RSA-KEM) (see Appendix A of RSA-KEM
 [RFC5990]), then it makes sense to have three layers of the
 COSE_Encrypt structure.

 These layers would be:

 o Layer 0: The content encryption layer. This layer contains the
 payload of the message.

 o Layer 1: The encryption of the CEK by a KEK.

 o Layer 2: The encryption of a long random secret using an RSA key
 and a key derivation function to convert that secret into the KEK.

 This is an example of what a triple layer message would look like.
 The message has the following layers:

 o Layer 0: Has a content encrypted with AES-GCM using a 128-bit key.

 o Layer 1: Uses the AES Key Wrap algorithm with a 128-bit key.

 o Layer 2: Uses ECDH Ephemeral-Static direct to generate the layer 1
 key.

 In effect, this example is a decomposed version of using the
 ECDH-ES+A128KW algorithm.

 Size of binary file is 183 bytes

https://datatracker.ietf.org/doc/html/rfc5990

Schaad Expires July 25, 2019 [Page 59]

Internet-Draft COSE Structure January 2019

 96(
 [
 / protected / h'a10101' / {
 \ alg \ 1:1 \ AES-GCM 128 \
 } / ,
 / unprotected / {
 / iv / 5:h'02d1f7e6f26c43d4868d87ce'
 },
 / ciphertext / h'64f84d913ba60a76070a9a48f26e97e863e2852948658f0
 811139868826e89218a75715b',
 / recipients / [
 [
 / protected / h'',
 / unprotected / {
 / alg / 1:-3 / A128KW /
 },
 / ciphertext / h'dbd43c4e9d719c27c6275c67d628d493f090593db82
 18f11',
 / recipients / [
 [
 / protected / h'a1013818' / {
 \ alg \ 1:-25 \ ECDH-ES + HKDF-256 \
 } / ,
 / unprotected / {
 / ephemeral / -1:{
 / kty / 1:2,
 / crv / -1:1,
 / x / -2:h'b2add44368ea6d641f9ca9af308b4079aeb519f11
 e9b8a55a600b21233e86e68',
 / y / -3:false
 },
 / kid / 4:'meriadoc.brandybuck@buckland.example'
 },
 / ciphertext / h''
]
]
]
]
]
)

Appendix C. Examples

 This appendix includes a set of examples that show the different
 features and message types that have been defined in this document.
 To make the examples easier to read, they are presented using the
 extended CBOR diagnostic notation (defined in [I-D.ietf-cbor-cddl])
 rather than as a binary dump.

Schaad Expires July 25, 2019 [Page 60]

Internet-Draft COSE Structure January 2019

 A GitHub project has been created at <https://github.com/cose-wg/
Examples> that contains not only the examples presented in this

 document, but a more complete set of testing examples as well. Each
 example is found in a JSON file that contains the inputs used to
 create the example, some of the intermediate values that can be used
 in debugging the example and the output of the example presented in
 both a hex and a CBOR diagnostic notation format. Some of the
 examples at the site are designed failure testing cases; these are
 clearly marked as such in the JSON file. If errors in the examples
 in this document are found, the examples on GitHub will be updated,
 and a note to that effect will be placed in the JSON file.

 As noted, the examples are presented using the CBOR's diagnostic
 notation. A Ruby-based tool exists that can convert between the
 diagnostic notation and binary. This tool can be installed with the
 command line:

 gem install cbor-diag

 The diagnostic notation can be converted into binary files using the
 following command line:

 diag2cbor.rb < inputfile > outputfile

 The examples can be extracted from the XML version of this document
 via an XPath expression as all of the artwork is tagged with the
 attribute type='CBORdiag'. (Depending on the XPath evaluator one is
 using, it may be necessary to deal with > as an entity.)

 //artwork[@type='CDDL']/text()

C.1. Examples of Signed Messages

C.1.1. Single Signature

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 Size of binary file is 103 bytes

https://github.com/cose-wg/Examples
https://github.com/cose-wg/Examples

Schaad Expires July 25, 2019 [Page 61]

Internet-Draft COSE Structure January 2019

 98(
 [
 / protected / h'',
 / unprotected / {},
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
 5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
 98f53afd2fa0f30a'
]
]
]
)

C.1.2. Multiple Signers

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 o Signature Algorithm: ECDSA w/ SHA-512, Curve P-521

 Size of binary file is 277 bytes

Schaad Expires July 25, 2019 [Page 62]

Internet-Draft COSE Structure January 2019

 98(
 [
 / protected / h'',
 / unprotected / {},
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
 5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
 98f53afd2fa0f30a'
],
 [
 / protected / h'a1013823' / {
 \ alg \ 1:-36
 } / ,
 / unprotected / {
 / kid / 4:'bilbo.baggins@hobbiton.example'
 },
 / signature / h'00a2d28a7c2bdb1587877420f65adf7d0b9a06635dd1
 de64bb62974c863f0b160dd2163734034e6ac003b01e8705524c5c4ca479a952f024
 7ee8cb0b4fb7397ba08d009e0c8bf482270cc5771aa143966e5a469a09f613488030
 c5b07ec6d722e3835adb5b2d8c44e95ffb13877dd2582866883535de3bb03d01753f
 83ab87bb4f7a0297'
]
]
]
)

C.1.3. Counter Signature

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 o The same parameters are used for both the signature and the
 counter signature.

 Size of binary file is 180 bytes

Schaad Expires July 25, 2019 [Page 63]

Internet-Draft COSE Structure January 2019

 98(
 [
 / protected / h'',
 / unprotected / {
 / countersign / 7:[
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'5ac05e289d5d0e1b0a7f048a5d2b643813ded50bc9e4
 9220f4f7278f85f19d4a77d655c9d3b51e805a74b099e1e085aacd97fc29d72f887e
 8802bb6650cceb2c'
]
 },
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
 5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
 98f53afd2fa0f30a'
]
]
]
)

C.1.4. Signature with Criticality

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 o There is a criticality marker on the "reserved" header parameter

 Size of binary file is 125 bytes

Schaad Expires July 25, 2019 [Page 64]

Internet-Draft COSE Structure January 2019

 98(
 [
 / protected / h'a2687265736572766564f40281687265736572766564' /
 {
 "reserved":false,
 \ crit \ 2:[
 "reserved"
]
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'3fc54702aa56e1b2cb20284294c9106a63f91bac658d
 69351210a031d8fc7c5ff3e4be39445b1a3e83e1510d1aca2f2e8a7c081c7645042b
 18aba9d1fad1bd9c'
]
]
]
)

C.2. Single Signer Examples

C.2.1. Single ECDSA Signature

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 Size of binary file is 98 bytes

Schaad Expires July 25, 2019 [Page 65]

Internet-Draft COSE Structure January 2019

 18(
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / payload / 'This is the content.',
 / signature / h'8eb33e4ca31d1c465ab05aac34cc6b23d58fef5c083106c4
 d25a91aef0b0117e2af9a291aa32e14ab834dc56ed2a223444547e01f11d3b0916e5
 a4c345cacb36'
]
)

C.3. Examples of Enveloped Messages

C.3.1. Direct ECDH

 This example uses the following:

 o CEK: AES-GCM w/ 128-bit key

 o Recipient class: ECDH Ephemeral-Static, Curve P-256

 Size of binary file is 151 bytes

Schaad Expires July 25, 2019 [Page 66]

Internet-Draft COSE Structure January 2019

 96(
 [
 / protected / h'a10101' / {
 \ alg \ 1:1 \ AES-GCM 128 \
 } / ,
 / unprotected / {
 / iv / 5:h'c9cf4df2fe6c632bf7886413'
 },
 / ciphertext / h'7adbe2709ca818fb415f1e5df66f4e1a51053ba6d65a1a0
 c52a357da7a644b8070a151b0',
 / recipients / [
 [
 / protected / h'a1013818' / {
 \ alg \ 1:-25 \ ECDH-ES + HKDF-256 \
 } / ,
 / unprotected / {
 / ephemeral / -1:{
 / kty / 1:2,
 / crv / -1:1,
 / x / -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbf
 bf054e1c7b4d91d6280',
 / y / -3:true
 },
 / kid / 4:'meriadoc.brandybuck@buckland.example'
 },
 / ciphertext / h''
]
]
]
)

C.3.2. Direct Plus Key Derivation

 This example uses the following:

 o CEK: AES-CCM w/ 128-bit key, truncate the tag to 64 bits

 o Recipient class: Use HKDF on a shared secret with the following
 implicit fields as part of the context.

 * salt: "aabbccddeeffgghh"

 * PartyU identity: "lighting-client"

 * PartyV identity: "lighting-server"

 * Supplementary Public Other: "Encryption Example 02"

Schaad Expires July 25, 2019 [Page 67]

Internet-Draft COSE Structure January 2019

 Size of binary file is 91 bytes

 96(
 [
 / protected / h'a1010a' / {
 \ alg \ 1:10 \ AES-CCM-16-64-128 \
 } / ,
 / unprotected / {
 / iv / 5:h'89f52f65a1c580933b5261a76c'
 },
 / ciphertext / h'753548a19b1307084ca7b2056924ed95f2e3b17006dfe93
 1b687b847',
 / recipients / [
 [
 / protected / h'a10129' / {
 \ alg \ 1:-10
 } / ,
 / unprotected / {
 / salt / -20:'aabbccddeeffgghh',
 / kid / 4:'our-secret'
 },
 / ciphertext / h''
]
]
]
)

C.3.3. Counter Signature on Encrypted Content

 This example uses the following:

 o CEK: AES-GCM w/ 128-bit key

 o Recipient class: ECDH Ephemeral-Static, Curve P-256

 Size of binary file is 326 bytes

Schaad Expires July 25, 2019 [Page 68]

Internet-Draft COSE Structure January 2019

 96(
 [
 / protected / h'a10101' / {
 \ alg \ 1:1 \ AES-GCM 128 \
 } / ,
 / unprotected / {
 / iv / 5:h'c9cf4df2fe6c632bf7886413',
 / countersign / 7:[
 / protected / h'a1013823' / {
 \ alg \ 1:-36
 } / ,
 / unprotected / {
 / kid / 4:'bilbo.baggins@hobbiton.example'
 },
 / signature / h'00929663c8789bb28177ae28467e66377da12302d7f9
 594d2999afa5dfa531294f8896f2b6cdf1740014f4c7f1a358e3a6cf57f4ed6fb02f
 cf8f7aa989f5dfd07f0700a3a7d8f3c604ba70fa9411bd10c2591b483e1d2c31de00
 3183e434d8fba18f17a4c7e3dfa003ac1cf3d30d44d2533c4989d3ac38c38b71481c
 c3430c9d65e7ddff'
]
 },
 / ciphertext / h'7adbe2709ca818fb415f1e5df66f4e1a51053ba6d65a1a0
 c52a357da7a644b8070a151b0',
 / recipients / [
 [
 / protected / h'a1013818' / {
 \ alg \ 1:-25 \ ECDH-ES + HKDF-256 \
 } / ,
 / unprotected / {
 / ephemeral / -1:{
 / kty / 1:2,
 / crv / -1:1,
 / x / -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbf
 bf054e1c7b4d91d6280',
 / y / -3:true
 },
 / kid / 4:'meriadoc.brandybuck@buckland.example'
 },
 / ciphertext / h''
]
]
]
)

Schaad Expires July 25, 2019 [Page 69]

Internet-Draft COSE Structure January 2019

C.3.4. Encrypted Content with External Data

 This example uses the following:

 o CEK: AES-GCM w/ 128-bit key

 o Recipient class: ECDH static-Static, Curve P-256 with AES Key Wrap

 o Externally Supplied AAD: h'0011bbcc22dd44ee55ff660077'

 Size of binary file is 173 bytes

 96(
 [
 / protected / h'a10101' / {
 \ alg \ 1:1 \ AES-GCM 128 \
 } / ,
 / unprotected / {
 / iv / 5:h'02d1f7e6f26c43d4868d87ce'
 },
 / ciphertext / h'64f84d913ba60a76070a9a48f26e97e863e28529d8f5335
 e5f0165eee976b4a5f6c6f09d',
 / recipients / [
 [
 / protected / h'a101381f' / {
 \ alg \ 1:-32 \ ECHD-SS+A128KW \
 } / ,
 / unprotected / {
 / static kid / -3:'peregrin.took@tuckborough.example',
 / kid / 4:'meriadoc.brandybuck@buckland.example',
 / U nonce / -22:h'0101'
 },
 / ciphertext / h'41e0d76f579dbd0d936a662d54d8582037de2e366fd
 e1c62'
]
]
]
)

C.4. Examples of Encrypted Messages

C.4.1. Simple Encrypted Message

 This example uses the following:

 o CEK: AES-CCM w/ 128-bit key and a 64-bit tag

 Size of binary file is 52 bytes

Schaad Expires July 25, 2019 [Page 70]

Internet-Draft COSE Structure January 2019

 16(
 [
 / protected / h'a1010a' / {
 \ alg \ 1:10 \ AES-CCM-16-64-128 \
 } / ,
 / unprotected / {
 / iv / 5:h'89f52f65a1c580933b5261a78c'
 },
 / ciphertext / h'5974e1b99a3a4cc09a659aa2e9e7fff161d38ce71cb45ce
 460ffb569'
]
)

C.4.2. Encrypted Message with a Partial IV

 This example uses the following:

 o CEK: AES-CCM w/ 128-bit key and a 64-bit tag

 o Prefix for IV is 89F52F65A1C580933B52

 Size of binary file is 41 bytes

 16(
 [
 / protected / h'a1010a' / {
 \ alg \ 1:10 \ AES-CCM-16-64-128 \
 } / ,
 / unprotected / {
 / partial iv / 6:h'61a7'
 },
 / ciphertext / h'252a8911d465c125b6764739700f0141ed09192de139e05
 3bd09abca'
]
)

C.5. Examples of MACed Messages

C.5.1. Shared Secret Direct MAC

 This example uses the following:

 o MAC: AES-CMAC, 256-bit key, truncated to 64 bits

 o Recipient class: direct shared secret

 Size of binary file is 57 bytes

Schaad Expires July 25, 2019 [Page 71]

Internet-Draft COSE Structure January 2019

 97(
 [
 / protected / h'a1010f' / {
 \ alg \ 1:15 \ AES-CBC-MAC-256//64 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'9e1226ba1f81b848',
 / recipients / [
 [
 / protected / h'',
 / unprotected / {
 / alg / 1:-6 / direct /,
 / kid / 4:'our-secret'
 },
 / ciphertext / h''
]
]
]
)

C.5.2. ECDH Direct MAC

 This example uses the following:

 o MAC: HMAC w/SHA-256, 256-bit key

 o Recipient class: ECDH key agreement, two static keys, HKDF w/
 context structure

 Size of binary file is 214 bytes

Schaad Expires July 25, 2019 [Page 72]

Internet-Draft COSE Structure January 2019

 97(
 [
 / protected / h'a10105' / {
 \ alg \ 1:5 \ HMAC 256//256 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'81a03448acd3d305376eaa11fb3fe416a955be2cbe7ec96f012c99
 4bc3f16a41',
 / recipients / [
 [
 / protected / h'a101381a' / {
 \ alg \ 1:-27 \ ECDH-SS + HKDF-256 \
 } / ,
 / unprotected / {
 / static kid / -3:'peregrin.took@tuckborough.example',
 / kid / 4:'meriadoc.brandybuck@buckland.example',
 / U nonce / -22:h'4d8553e7e74f3c6a3a9dd3ef286a8195cbf8a23d
 19558ccfec7d34b824f42d92bd06bd2c7f0271f0214e141fb779ae2856abf585a583
 68b017e7f2a9e5ce4db5'
 },
 / ciphertext / h''
]
]
]
)

C.5.3. Wrapped MAC

 This example uses the following:

 o MAC: AES-MAC, 128-bit key, truncated to 64 bits

 o Recipient class: AES Key Wrap w/ a pre-shared 256-bit key

 Size of binary file is 109 bytes

Schaad Expires July 25, 2019 [Page 73]

Internet-Draft COSE Structure January 2019

 97(
 [
 / protected / h'a1010e' / {
 \ alg \ 1:14 \ AES-CBC-MAC-128//64 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'36f5afaf0bab5d43',
 / recipients / [
 [
 / protected / h'',
 / unprotected / {
 / alg / 1:-5 / A256KW /,
 / kid / 4:'018c0ae5-4d9b-471b-bfd6-eef314bc7037'
 },
 / ciphertext / h'711ab0dc2fc4585dce27effa6781c8093eba906f227
 b6eb0'
]
]
]
)

C.5.4. Multi-Recipient MACed Message

 This example uses the following:

 o MAC: HMAC w/ SHA-256, 128-bit key

 o Recipient class: Uses three different methods

 1. ECDH Ephemeral-Static, Curve P-521, AES Key Wrap w/ 128-bit
 key

 2. AES Key Wrap w/ 256-bit key

 Size of binary file is 309 bytes

Schaad Expires July 25, 2019 [Page 74]

Internet-Draft COSE Structure January 2019

 97(
 [
 / protected / h'a10105' / {
 \ alg \ 1:5 \ HMAC 256//256 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'bf48235e809b5c42e995f2b7d5fa13620e7ed834e337f6aa43df16
 1e49e9323e',
 / recipients / [
 [
 / protected / h'a101381c' / {
 \ alg \ 1:-29 \ ECHD-ES+A128KW \
 } / ,
 / unprotected / {
 / ephemeral / -1:{
 / kty / 1:2,
 / crv / -1:3,
 / x / -2:h'0043b12669acac3fd27898ffba0bcd2e6c366d53bc4db
 71f909a759304acfb5e18cdc7ba0b13ff8c7636271a6924b1ac63c02688075b55ef2
 d613574e7dc242f79c3',
 / y / -3:true
 },
 / kid / 4:'bilbo.baggins@hobbiton.example'
 },
 / ciphertext / h'339bc4f79984cdc6b3e6ce5f315a4c7d2b0ac466fce
 a69e8c07dfbca5bb1f661bc5f8e0df9e3eff5'
],
 [
 / protected / h'',
 / unprotected / {
 / alg / 1:-5 / A256KW /,
 / kid / 4:'018c0ae5-4d9b-471b-bfd6-eef314bc7037'
 },
 / ciphertext / h'0b2c7cfce04e98276342d6476a7723c090dfdd15f9a
 518e7736549e998370695e6d6a83b4ae507bb'
]
]
]
)

C.6. Examples of MAC0 Messages

C.6.1. Shared Secret Direct MAC

 This example uses the following:

 o MAC: AES-CMAC, 256-bit key, truncated to 64 bits

Schaad Expires July 25, 2019 [Page 75]

Internet-Draft COSE Structure January 2019

 o Recipient class: direct shared secret

 Size of binary file is 37 bytes

 17(
 [
 / protected / h'a1010f' / {
 \ alg \ 1:15 \ AES-CBC-MAC-256//64 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'726043745027214f'
]
)

 Note that this example uses the same inputs as Appendix C.5.1.

C.7. COSE Keys

C.7.1. Public Keys

 This is an example of a COSE Key Set. This example includes the
 public keys for all of the previous examples.

 In order the keys are:

 o An EC key with a kid of "meriadoc.brandybuck@buckland.example"

 o An EC key with a kid of "peregrin.took@tuckborough.example"

 o An EC key with a kid of "bilbo.baggins@hobbiton.example"

 o An EC key with a kid of "11"

 Size of binary file is 481 bytes

Schaad Expires July 25, 2019 [Page 76]

Internet-Draft COSE Structure January 2019

 [
 {
 -1:1,
 -2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c0
 8551d',
 -3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd008
 4d19c',
 1:2,
 2:'meriadoc.brandybuck@buckland.example'
 },
 {
 -1:1,
 -2:h'bac5b11cad8f99f9c72b05cf4b9e26d244dc189f745228255a219a86d6a
 09eff',
 -3:h'20138bf82dc1b6d562be0fa54ab7804a3a64b6d72ccfed6b6fb6ed28bbf
 c117e',
 1:2,
 2:'11'
 },
 {
 -1:3,
 -2:h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737bf5de
 7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620085e5c8
 f42ad',
 -3:h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e247e
 60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f3fe1ea1
 d9475',
 1:2,
 2:'bilbo.baggins@hobbiton.example'
 },
 {
 -1:1,
 -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b4d91
 d6280',
 -3:h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e03bf
 822bb',
 1:2,
 2:'peregrin.took@tuckborough.example'
 }
]

C.7.2. Private Keys

 This is an example of a COSE Key Set. This example includes the
 private keys for all of the previous examples.

 In order the keys are:

Schaad Expires July 25, 2019 [Page 77]

Internet-Draft COSE Structure January 2019

 o An EC key with a kid of "meriadoc.brandybuck@buckland.example"

 o A shared-secret key with a kid of "our-secret"

 o An EC key with a kid of "peregrin.took@tuckborough.example"

 o A shared-secret key with a kid of "018c0ae5-4d9b-471b-
 bfd6-eef314bc7037"

 o An EC key with a kid of "bilbo.baggins@hobbiton.example"

 o An EC key with a kid of "11"

 Size of binary file is 816 bytes

 [
 {
 1:2,
 2:'meriadoc.brandybuck@buckland.example',
 -1:1,
 -2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c0
 8551d',
 -3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd008
 4d19c',
 -4:h'aff907c99f9ad3aae6c4cdf21122bce2bd68b5283e6907154ad911840fa
 208cf'
 },
 {
 1:2,
 2:'11',
 -1:1,
 -2:h'bac5b11cad8f99f9c72b05cf4b9e26d244dc189f745228255a219a86d6a
 09eff',
 -3:h'20138bf82dc1b6d562be0fa54ab7804a3a64b6d72ccfed6b6fb6ed28bbf
 c117e',
 -4:h'57c92077664146e876760c9520d054aa93c3afb04e306705db609030850
 7b4d3'
 },
 {
 1:2,
 2:'bilbo.baggins@hobbiton.example',
 -1:3,
 -2:h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737bf5de
 7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620085e5c8
 f42ad',
 -3:h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e247e
 60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f3fe1ea1
 d9475',

Schaad Expires July 25, 2019 [Page 78]

Internet-Draft COSE Structure January 2019

 -4:h'00085138ddabf5ca975f5860f91a08e91d6d5f9a76ad4018766a476680b
 55cd339e8ab6c72b5facdb2a2a50ac25bd086647dd3e2e6e99e84ca2c3609fdf177f
 eb26d'
 },
 {
 1:4,
 2:'our-secret',
 -1:h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dcea6c4
 27188'
 },
 {
 1:2,
 -1:1,
 2:'peregrin.took@tuckborough.example',
 -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b4d91
 d6280',
 -3:h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e03bf
 822bb',
 -4:h'02d1f7e6f26c43d4868d87ceb2353161740aacf1f7163647984b522a848
 df1c3'
 },
 {
 1:4,
 2:'our-secret2',
 -1:h'849b5786457c1491be3a76dcea6c4271'
 },
 {
 1:4,
 2:'018c0ae5-4d9b-471b-bfd6-eef314bc7037',
 -1:h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dcea6c4
 27188'
 }
]

Acknowledgments

 This document is a product of the COSE working group of the IETF.

 The following individuals are to blame for getting me started on this
 project in the first place: Richard Barnes, Matt Miller, and Martin
 Thomson.

 The initial version of the specification was based to some degree on
 the outputs of the JOSE and S/MIME working groups.

 The following individuals provided input into the final form of the
 document: Carsten Bormann, John Bradley, Brain Campbell, Michael B.

Schaad Expires July 25, 2019 [Page 79]

Internet-Draft COSE Structure January 2019

 Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and Goran
 Selander.

Author's Address

 Jim Schaad
 August Cellars

 Email: ietf@augustcellars.com

Schaad Expires July 25, 2019 [Page 80]

