
Internet-Draft R. Housley
Intended status: Standards Track Vigil Security
Expires: 19 July 2017 19 January 2017

Using ChaCha20-Poly1305 Authenticated Encryption
in the Cryptographic Message Syntax (CMS)

 <draft-ietf-curdle-cms-chacha20-poly1305-06.txt>

Abstract

 This document describes the conventions for using ChaCha20-Poly1305
 Authenticated Encryption in the Cryptographic Message Syntax (CMS).
 ChaCha20-Poly1305 is an authenticated encryption algorithm
 constructed of the ChaCha stream cipher and Poly1305 authenticator.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 19 July 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-curdle-cms-chacha20-poly1305-06.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft 19 January 2017

1. Introduction

 This document specifies the conventions for using ChaCha20-Poly1305
 Authenticated Encryption with the Cryptographic Message Syntax (CMS)
 [CMS] authenticated-enveloped-data content type [AUTHENV].

 ChaCha [CHACHA] is a stream cipher developed by D. J. Bernstein in
 2008. It is a refinement of Salsa20, which is one of the ciphers in
 the eSTREAM portfolio [ESTREAM].

 ChaCha20 is the 20-round variant of ChaCha; it requires a 256-bit key
 and a 96-bit nonce. [FORIETF] provides a detailed algorithm
 description, examples, and test vectors of ChaCha20.

 Poly1305 [POLY1305] is a Wegman-Carter, one-time authenticator
 designed by D. J. Bernstein. Poly1305 produces a 16-byte
 authentication tag; it requires a 256-bit, single-use key. [FORIETF]
 also provides a detailed algorithm description, examples, and test
 vectors of Poly1305.

 ChaCha20 and Poly1305 have been designed for high performance
 software implementations. They can typically be implemented with few
 resources and inexpensive operations, making them suitable on a wide
 range of systems. They have also been designed to minimize leakage
 of information through side channels.

1.1. The ChaCha20 and Poly1305 AEAD Construction

 ChaCha20 and Poly1305 have been combined to create an Authenticated
 Encryption with Associated Data (AEAD) algorithm [AEAD]. This AEAD
 algorithm is often referred to as AEAD_CHACHA20_POLY1305, and it is
 described [FORIETF].

 AEAD_CHACHA20_POLY1305 accepts four inputs: a 256-bit key, a 96-bit
 nonce, an arbitrary length plaintext, and an arbitrary length
 additional authenticated data (AAD). As the name implies, a nonce
 value cannot be used securely more than once with the same key.

 AEAD_CHACHA20_POLY1305 produces two outputs: ciphertext of the same
 length as the plaintext and a 128-bit authentication tag.

 AEAD_CHACHA20_POLY1305 authenticated decryption processing is similar
 to the encryption processing. Of course, the roles of ciphertext and
 plaintext are reversed, so the ChaCha20 encryption function is
 applied to the ciphertext, producing the plaintext. The Poly1305
 function is run over the AAD and the ciphertext, not the plaintext,
 and the resulting authentication tag is bitwise compared to the
 received authentication tag. The message is authenticated if and

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 2]

Internet-Draft 19 January 2017

 only if the calculated and received authentication tags match.

1.2. ASN.1

 CMS values are generated using ASN.1 [X680], which uses the Basic
 Encoding Rules (BER) and the Distinguished Encoding Rules (DER)
 [X690].

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [STDWORDS].

2. Key Management

 The reuse of an AEAD_CHACHA20_POLY1305 nonce value with the same key
 destroys the security guarantees. It can be extremely difficult to
 use a statically configured AEAD_CHACHA20_POLY1305 key and never
 repeat a nonce value; however, the CMS authenticated-enveloped-data
 content type supports four key management techniques that allow a
 fresh AEAD_CHACHA20_POLY1305 key to be used as the content-
 authenticated-encryption key for a single protected content:

 Key Transport: the fresh content-authenticated-encryption key
 is encrypted in the recipient's public key;

 Key Agreement: the recipient's public key and the sender's
 private key are used to generate a pairwise symmetric key-
 encryption key, then the fresh content-authenticated-encryption
 key is encrypted in the pairwise symmetric key;

 Symmetric Key-Encryption Keys: the fresh content-authenticated-
 encryption key is encrypted in a previously distributed
 symmetric key-encryption key; and

 Passwords: the fresh content-authenticated-encryption key is
 encrypted in a key-encryption key that is derived from a
 password or other shared secret value.

 In addition to these four general key management techniques, CMS
 supports other key management techniques. See Section 6.2.5 of
 [CMS]. Since the properties of these key management techniques are
 unknown, no statement about their support of fresh content-
 authenticated-encryption keys can be made. Designers and
 implementers must perform their own analysis if one of these other
 key management techniques is supported.

https://datatracker.ietf.org/doc/html/rfc2119

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 3]

Internet-Draft 19 January 2017

3. Using the AEAD_CHACHA20_POLY1305 Algorithm with AuthEnvelopedData

 This section specifies the conventions employed by CMS
 implementations that support the authenticated-enveloped-data content
 type and the AEAD_CHACHA20_POLY1305 algorithm.

 The AEAD_CHACHA20_POLY1305 algorithm identifier is located in the
 AuthEnvelopedData EncryptedContentInfo contentEncryptionAlgorithm
 field.

 The AEAD_CHACHA20_POLY1305 algorithm is used to authenticate the
 attributes located in the AuthEnvelopedData authAttrs field, if any
 are present, encipher the content located in the AuthEnvelopedData
 EncryptedContentInfo encryptedContent field, and to provide the
 message authentication code (MAC) located in the AuthEnvelopedData
 mac field. The authenticated attributes are DER encoded to produce
 the AAD input value to the AEAD_CHACHA20_POLY1305 algorithm. The
 ciphertext and the MAC are the two outputs of the
 AEAD_CHACHA20_POLY1305 algorithm. Note that the MAC, which is called
 the authentication tag in [FORIETF], provides integrity protection
 for both the AuthEnvelopedData authAttrs and the AuthEnvelopedData
 EncryptedContentInfo encryptedContent.

 Neither the plaintext content nor the optional AAD inputs need to be
 padded prior to invoking the AEAD_CHACHA20_POLY1305 algorithm.

 There is one algorithm identifier for the AEAD_CHACHA20_POLY1305
 algorithm:

 id-alg-AEADChaCha20Poly1305 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs9(9) smime(16) alg(3) TBD1 }

 The AlgorithmIdentifier parameters field MUST be present, and the
 parameters field MUST contain a AEADChaCha20Poly1305Nonce:

 AEADChaCha20Poly1305Nonce ::= OCTET STRING (SIZE(12))

 The AEADChaCha20Poly1305Nonce contains a 12-octet nonce. With the
 CMS, the content-authenticated-encryption key is normally used for a
 single content. Within the scope of any content-authenticated-
 encryption key, the nonce value MUST be unique. That is, the set of
 nonce values used with any given key MUST NOT contain any duplicate
 values.

4. S/MIME Capabilities Attribute

Section 2.5.2 of RFC 5751 [MSG] defines the SMIMECapabilities

https://datatracker.ietf.org/doc/html/rfc5751#section-2.5.2

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 4]

Internet-Draft 19 January 2017

 attribute, which is used to specify a partial list of algorithms that
 the software announcing the SMIMECapabilities can support. When
 constructing a CMS signed-data content type, compliant software MAY
 include the SMIMECapabilities signed attribute to announce support
 for the AEAD_CHACHA20_POLY1305 algorithm.

 The SMIMECapability SEQUENCE representing the AEAD_CHACHA20_POLY1305
 algorithm MUST include the id-alg-AEADChaCha20Poly1305 object
 identifier in the capabilityID field and MUST omit the parameters
 field.

 The DER encoding of a SMIMECapability SEQUENCE is the same as the DER
 encoding of an AlgorithmIdentifier. The DER encoding for the
 AEAD_CHACHA20_POLY1305 algorithm in the SMIMECapability SEQUENCE (in
 hexadecimal) is:

 30 0c 06 0b 2a 86 48 86 f7 0d 01 09 10 03 ??

 {{{ Correct above after IANA assigns the object identifier. }}}

5. IANA Considerations

 IANA is requested to add the following entry in the SMI Security for
 S/MIME Algorithms (1.2.840.113549.1.9.16.3) registry:

 TBD1 id-alg-AEADChaCha20Poly1305 [This Document]

 IANA is requested to add the following entry in the SMI Security for
 S/MIME Module Identifier (1.2.840.113549.1.9.16.0) registry:

 TBD2 id-mod-CMS-AEADChaCha20Poly1305 [This Document]

6. Security Considerations

 The CMS AuthEnvelopedData provides all of the tools needed to avoid
 reuse of the same nonce value under the same key. See the discussion
 in Section 2 of this document. RFC 7539 [FORIETF] describes the
 consequences of using a nonce value more than once:

 Consequences of repeating a nonce: If a nonce is repeated, then
 both the one-time Poly1305 key and the keystream are identical
 between the
 messages. This reveals the XOR of the plaintexts, because the
 XOR of the plaintexts is equal to the XOR of the ciphertexts.

 When using AEAD_CHACHA20_POLY1305, the resulting ciphertext is always
 the same size as the original plaintext. Some other mechanism needs
 to be used in conjunction with AEAD_CHACHA20_POLY1305 if disclosure

https://datatracker.ietf.org/doc/html/rfc7539

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 5]

Internet-Draft 19 January 2017

 of the size of the plaintext is a concern.

 The amount of encrypted data possible in a single invocation of
 AEAD_CHACHA20_POLY1305 is 2^32-1 blocks of 64 octets each, because of
 the size of the block counter field in the ChaCha20 block function.
 This gives a total of 247,877,906,880 octets, which likely to be
 sufficient to handle the size of any CMS content type. Note that
 ciphertext length field in the authentication buffer will accomodate
 2^64 octets, which is much larger than necessary.

 The AEAD_CHACHA20_POLY1305 construction is a novel composition of
 ChaCha20 and Poly1305. A security analysis of this composition is
 given in [PROCTER].

 Implementations must randomly generate content-authenticated-
 encryption keys. The use of inadequate pseudo-random number
 generators (PRNGs) to generate cryptographic keys can result in
 little or no security. An attacker may find it much easier to
 reproduce the PRNG environment that produced the keys, searching the
 resulting small set of possibilities, rather than brute force
 searching the whole key space. The generation of quality random
 numbers is difficult. RFC 4086 [RANDOM] offers important guidance in
 this area.

7. Acknowledgements

 Thanks to Jim Schaad, Daniel Migault, Stephen Farrell, Yoav Nir, and
 Niclas Comstedt for their review and insightful comments.

8. Normative References

 [AUTHENV] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 November 2007.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
5652, September 2009.

 [FORIETF] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, May 2015.

 [MSG] Ramsdell, B., and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [STDWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7539
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 6]

Internet-Draft 19 January 2017

 [X680] ITU-T, "Information technology -- Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ITU-T
 Recommendation X.680, 2015.

 [X690] ITU-T, "Information technology -- ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, 2015.

9. Informative References

 [AEAD] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [CHACHA] Bernstein, D., "ChaCha, a variant of Salsa20", January
 2008,
 <http://cr.yp.to/chacha/chacha-20080128.pdf>.

 [ESTREAM] Babbage, S., DeCanniere, C., Cantenaut, A., Cid, C.,
 Gilbert, H., Johansson, T., Parker, M., Preneel, B.,
 Rijmen, V., and M. Robshaw, "The eSTREAM Portfolio
 (rev. 1)", September 2008,
 <http://www.ecrypt.eu.org/stream/finallist.html>.

 [POLY1305] Bernstein, D., "The Poly1305-AES message-authentication
 code.", March 2005,
 <http://cr.yp.to/mac/poly1305-20050329.pdf>.

 [PROCTER] Procter, G., "A Security Analysis of the Composition of
 ChaCha20 and Poly1305", August 2014,
 <http://eprint.iacr.org/2014/613.pdf>.

 [RANDOM] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Recommendations for Security", BCP 106, RFC 4086, June
 2005.

https://datatracker.ietf.org/doc/html/rfc5116
http://cr.yp.to/chacha/chacha-20080128.pdf
http://www.ecrypt.eu.org/stream/finallist.html
http://cr.yp.to/mac/poly1305-20050329.pdf
http://eprint.iacr.org/2014/613.pdf
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 7]

Internet-Draft 19 January 2017

Appendix: ASN.1 Module

 CMS-AEADChaCha20Poly1305
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) TBD2 }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 IMPORTS
 CONTENT-ENCRYPTION
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) };

 -- EXPORTS All

 AEADContentEncryptionAlgs CONTENT-ENCRYPTION ::=
 { cea-AEADChaCha20Poly1305, ... }

 cea-AEADChaCha20Poly1305 CONTENT-ENCRYPTION ::= {
 IDENTIFIER id-alg-AEADChaCha20Poly1305
 PARAMS TYPE AEADChaCha20Poly1305Nonce ARE required
 SMIME-CAPS { IDENTIFIED BY id-alg-AEADChaCha20Poly1305 } }

 id-alg-AEADChaCha20Poly1305 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs9(9) smime(16) alg(3) TBD1 }

 AEADChaCha20Poly1305Nonce ::= OCTET STRING (SIZE(12))

 END

Author's Address

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

Housley Using AEAD_CHACHA20_POLY1305 with CMS [Page 8]

