
Internet Engineering Task Force S. Sorce
Internet-Draft H. Kario
Updates: 4462 (if approved) Red Hat, Inc.
Intended status: Standards Track June 4, 2017
Expires: December 6, 2017

GSS-API Key Exchange with SHA2
draft-ietf-curdle-gss-keyex-sha2-01

Abstract

 This document specifies additions and amendments to SSH GSS-API
 Methods [RFC4462]. It defines a new key exchange method that uses
 SHA-2 for integrity and deprecates weak DH groups. The purpose of
 this specification is to modernize the cryptographic primitives used
 by GSS Key Exchanges.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 6, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Sorce & Kario Expires December 6, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft GSS Keyex SHA2 June 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Rationale . 2
3. Document Conventions . 3
4. New Diffie-Hellman Key Exchange methods 3
4.1. gss-group14-sha256-* 3
4.2. gss-group15-sha512-* 3
4.3. gss-group16-sha512-* 4
4.4. gss-group17-sha512-* 4
4.5. gss-group18-sha512-* 4

5. New Elliptic Curve Diffie-Hellman Key Exchange methods . . . 4
5.1. Generic GSS-API Key Exchange with ECDH 4
5.2. ECDH Key Exchange Methods 11
5.2.1. gss-nistp256-sha256-* 11
5.2.2. gss-nistp384-sha384-* 12
5.2.3. gss-nistp521-sha512-* 12
5.2.4. gss-curve25519-sha256-* 12
5.2.5. gss-curve448-sha512-* 12

6. IANA Considerations . 13
7. Security Considerations 13
7.1. New Finite Field DH mechanisms 13
7.2. New Elliptic Curve DH mechanisms 13

8. Normative References . 13
 Authors' Addresses . 15

1. Introduction

 SSH GSS-API Methods [RFC4462] allows the use of GSSAPI for
 authentication and key exchange in SSH. It defines three exchange
 methods all based on DH groups and SHA-1. The new methods described
 in this document are intended to support environments that desire to
 use the SHA-2 cryptographic hash functions.

2. Rationale

 Due to security concerns with SHA-1 [RFC6194] and with MODP groups
 with less than 2048 bits [NIST-SP-800-131Ar1] we propose the use of
 the SHA-2 based hashes with DH group14, group15, group16, group17 and
 group18 [RFC3526]. Additionally we add support for key exchange
 based on Elliptic Curve Diffie Hellman with NIST P-256, P-384 and
 P-521 as well as X25519 and X448 curves. Following the rationale of
 [I-D.ietf-curdle-ssh-modp-dh-sha2] only SHA-256 and SHA-512 hashes
 are used for DH groups. For NIST curves the same curve-to-hashing
 algorithm pairing used in [RFC5656] is adopted for consistency.

https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc6194
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc5656

Sorce & Kario Expires December 6, 2017 [Page 2]

Internet-Draft GSS Keyex SHA2 June 2017

3. Document Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

4. New Diffie-Hellman Key Exchange methods

 This document adopts the same naming convention defined in [RFC4462]
 to define families of methods that cover any GSS-API mechanism used
 with a specific Diffie-Hellman group and SHA-2 Hash combination.

 The following new key exchange algorithms are defined:

 +--------------------------+--------------------------------+
 | Key Exchange Method Name | Implementation Recommendations |
 +--------------------------+--------------------------------+
 | gss-group14-sha256-* | SHOULD/RECOMMENDED |
 | gss-group15-sha512-* | MAY/OPTIONAL |
 | gss-group16-sha512-* | SHOULD/RECOMMENDED |
 | gss-group17-sha512-* | MAY/OPTIONAL |
 | gss-group18-sha512-* | MAY/OPTIONAL |
 +--------------------------+--------------------------------+

 Each key exchange method is implicitly registered by this document.
 The IESG is considered to be the owner of all these key exchange
 methods; this does NOT imply that the IESG is considered to be the
 owner of the underlying GSS-API mechanism.

4.1. gss-group14-sha256-*

 Each of these methods specifies GSS-API-authenticated Diffie-Hellman
 key exchange as described in Section 2.1 of [RFC4462] with SHA-256 as
 HASH, and the group defined in Section 8.2 of [RFC4253] The method
 name for each method is the concatenation of the string "gss-
 group14-sha256-" with the Base64 encoding of the MD5 hash [RFC1321]
 of the ASN.1 DER encoding [ISO-IEC-8825-1] of the underlying GSS-API
 mechanism's OID. Base64 encoding is described in Section 6.8 of
 [RFC2045].

4.2. gss-group15-sha512-*

 Each of these methods specifies GSS-API-authenticated Diffie-Hellman
 key exchange as described in Section 2.1 of [RFC4462] with SHA-512 as
 HASH, and the group defined in Section 4 of [RFC3526] The method name
 for each method is the concatenation of the string "gss-
 group15-sha512-" with the Base64 encoding of the MD5 hash of the
 ASN.1 DER encoding of the underlying GSS-API mechanism's OID.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc4253#section-8.2
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc3526#section-4

Sorce & Kario Expires December 6, 2017 [Page 3]

Internet-Draft GSS Keyex SHA2 June 2017

4.3. gss-group16-sha512-*

 Each of these methods specifies GSS-API-authenticated Diffie-Hellman
 key exchange as described in Section 2.1 of [RFC4462] with SHA-512 as
 HASH, and the group defined in Section 5 of [RFC3526] The method name
 for each method is the concatenation of the string "gss-
 group16-sha512-" with the Base64 encoding of the MD5 hash of the
 ASN.1 DER encoding of the underlying GSS-API mechanism's OID.

4.4. gss-group17-sha512-*

 Each of these methods specifies GSS-API-authenticated Diffie-Hellman
 key exchange as described in Section 2.1 of [RFC4462] with SHA-512 as
 HASH, and the group defined in Section 6 of [RFC3526] The method name
 for each method is the concatenation of the string "gss-
 group17-sha512-" with the Base64 encoding of the MD5 hash of the
 ASN.1 DER encoding of the underlying GSS-API mechanism's OID.

4.5. gss-group18-sha512-*

 Each of these methods specifies GSS-API-authenticated Diffie-Hellman
 key exchange as described in Section 2.1 of [RFC4462] with SHA-512 as
 HASH, and the group defined in Section 7 of [RFC3526] The method name
 for each method is the concatenation of the string "gss-
 group18-sha512-" with the Base64 encoding of the MD5 hash of the
 ASN.1 DER encoding of the underlying GSS-API mechanism's OID.

5. New Elliptic Curve Diffie-Hellman Key Exchange methods

 In [RFC5656] new SSH key exchange algorithms based on Elliptic Curve
 Cryptography are introduced. We reuse much of section 4 to implement
 GSS-API-authenticated ECDH Key Exchanges.

 Additionally we utilize also the curves defined in
 [I-D.ietf-curdle-ssh-curves] to complement the 3 classic NIST defined
 curves required by [RFC5656].

5.1. Generic GSS-API Key Exchange with ECDH

 This section reuses much of the scheme defined in Section 2.1 of
 [RFC4462] and combines it with the scheme defined in Section 4 of
 [RFC5656]; in particular, all checks and verification steps
 prescribed in Section 4 of [RFC5656] apply here as well.

 The symbols used in this description conform to the symbols used in
Section 2.1 of [RFC4462]. Additionally, the following symbols are

 defined:

https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc3526#section-5
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc3526#section-6
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc3526#section-7
https://datatracker.ietf.org/doc/html/rfc5656
https://datatracker.ietf.org/doc/html/rfc5656
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc5656#section-4
https://datatracker.ietf.org/doc/html/rfc5656#section-4
https://datatracker.ietf.org/doc/html/rfc5656#section-4
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1

Sorce & Kario Expires December 6, 2017 [Page 4]

Internet-Draft GSS Keyex SHA2 June 2017

 Q_C is the client ephemeral public key octet string

 Q_S is the server ephemeral public key octet string

 This section defers to [RFC7546] as the source of information on GSS-
 API context establishment operations, Section 3 being the most
 relevant. All Security Considerations described in [RFC7546] apply
 here too.

 The Client:

 1. C generates an ephemeral key pair with public key Q_C. It does
 that by:

 For NIST curves:

 Selecting a value d_C uniformly at random from the interval [1,
 n-1] where n is the order of generator of the curve associated
 with the selected key exchange method.

 Performing point multiplication between the curve base point
 and selected integer d_C to get the public point q_C.

 Converts the point q_C to the Q_C octet string by concatenation
 of value 0x04 and big-endian representation of the x coordinate
 and then y coordinate. The coordinate coversion MUST preserve
 leading zero octets. Thus for nistp521 curve the encoded x
 coordinate will always have a length of 66 octets while the Q_C
 representation will be 133 octets long. This is the
 uncompressed representation specified in Section 4.3.6 of
 [ANSI-X9-62-2005].

 For curve25519 and curve448:

 Selecting d_C as 32 uniformly distributed random octets for
 curve25519 and 56 octets for curve448.

 Preparing the generator g as the number 9 little-endian encoded
 in 32 octets for curve25519 and number 5 in 56 octets for
 curve448. This is the same as an octet of value 0x09 followed
 by 31 zero octets for curve255519 and as an octect of value
 0x05 followed by 55 zero octets.

 Calculating Q_C as the result of the call to X25519 or X448
 function, respectively for curve25519 and curve448 key
 exchange, with parameters d_C and g.

https://datatracker.ietf.org/doc/html/rfc7546
https://datatracker.ietf.org/doc/html/rfc7546

Sorce & Kario Expires December 6, 2017 [Page 5]

Internet-Draft GSS Keyex SHA2 June 2017

 2. C calls GSS_Init_sec_context(), using the most recent reply token
 received from S during this exchange, if any. For this call, the
 client MUST set mutual_req_flag to "true" to request that mutual
 authentication be performed. It also MUST set integ_req_flag to
 "true" to request that per-message integrity protection be supported
 for this context. In addition, deleg_req_flag MAY be set to "true"
 to request access delegation, if requested by the user. Since the
 key exchange process authenticates only the host, the setting of
 anon_req_flag is immaterial to this process. If the client does not
 support the "gssapi-keyex" user authentication method described in

Section 4 of [RFC4462], or does not intend to use that method in
 conjunction with the GSS-API context established during key exchange,
 then anon_req_flag SHOULD be set to "true". Otherwise, this flag MAY
 be set to true if the client wishes to hide its identity. Since the
 key exchange process will involve the exchange of only a single token
 once the context has been established, it is not necessary that the
 GSS-API context support detection of replayed or out-of-sequence
 tokens. Thus, replay_det_req_flag and sequence_req_flag need not be
 set for this process. These flags SHOULD be set to "false".

 If the resulting major_status code is GSS_S_COMPLETE and the
 mutual_state flag is not true, then mutual authentication has not
 been established, and the key exchange MUST fail.

 If the resulting major_status code is GSS_S_COMPLETE and the
 integ_avail flag is not true, then per-message integrity
 protection is not available, and the key exchange MUST fail.

 If the resulting major_status code is GSS_S_COMPLETE and both the
 mutual_state and integ_avail flags are true, the resulting output
 token is sent to S.

 If the resulting major_status code is GSS_S_CONTINUE_NEEDED, the
 output_token is sent to S, which will reply with a new token to be
 provided to GSS_Init_sec_context().

 The client MUST also include Q_C with the first message it sends
 to the server during this process; if the server receives more
 than one Q_C or none at all, the key exchange MUST fail.

 It is an error if the call does not produce a token of non-zero
 length to be sent to the server. In this case, the key exchange
 MUST fail.

 3. When a Q_C key is received, S verifies that the key is valid. If
 the key is not valid the key exchange MUST fail.

https://datatracker.ietf.org/doc/html/rfc4462#section-4

Sorce & Kario Expires December 6, 2017 [Page 6]

Internet-Draft GSS Keyex SHA2 June 2017

 The server first checks if the length of the Q_C matches the
 selected key exchange: 65 octets for nistp256, 97 octets for
 nistp384, 133 octets for nistp521, 32 octets for curve25519 or 56
 octets for curve448. If the value does not have matching length
 the key exchange MUST fail.

 In case of key exchanges that use NIST curves, the server MUST
 check if the first octet of the Q_C is equal to 0x04. If the
 octet has different value the key exchange MUST fail.

 For NIST curves, the server converts the octet representation of
 the key to q_C point representation by interpreting the first half
 of remaining octets as the unsigned big-endian representation of
 the x coordinate of the point and the second half as the unsigned
 big-endian representation of the y coordinate.

 For NIST curves, the server verifies that the q_C is not a point
 at infinity, that both coordinates are in the interval [0, p - 1],
 where p is the prime associated with the curve of the selected key
 exchange and that the point lies on the curve (satisfies the curve
 equation).

 For curve25519, the server verifies that the the high-order bit of
 the last octet is not set - this prevents distinguishing attacks
 between implementations that use Montgomery ladder implementation
 of the curve and ones that use generic elliptic-curve libraries.
 If the bit is set, the key exchange SHOULD fail. For curve448 any
 bit can be set.

 For curve25519 and curve448, the point is not decoded but used as
 is. Q_C and q_C are considered equivalent.

 4. S calls GSS_Accept_sec_context(), using the token received from
 C.

 If the resulting major_status code is GSS_S_COMPLETE and the
 mutual_state flag is not true, then mutual authentication has not
 been established, and the key exchange MUST fail.

 If the resulting major_status code is GSS_S_COMPLETE and the
 integ_avail flag is not true, then per-message integrity
 protection is not available, and the key exchange MUST fail.

 If the resulting major_status code is GSS_S_COMPLETE and both the
 mutual_state and integ_avail flags are true, then the security
 context has been established, and processing continues with step
 5.

Sorce & Kario Expires December 6, 2017 [Page 7]

Internet-Draft GSS Keyex SHA2 June 2017

 If the resulting major_status code is GSS_S_CONTINUE_NEEDED, then
 the output token is sent to C, and processing continues with step
 2.

 If the resulting major_status code is GSS_S_COMPLETE, but a non-
 zero-length reply token is returned, then that token is sent to
 the client.

 5. S generates an ephemeral key pair with public key Q_S calculated
 the same way it is done in step 1 and peforms the following
 computations:

 K a shared secret obtained using ECDH key exchange:

 Both client and server perform the same calculation where d_U
 is the secret value, d_C for client and d_S for server and q_V
 is the received public value, q_S for client and q_C for
 server.

 For NIST curves, the peers perform point multiplication using
 d_U and q_V to get point P.

 For NIST curves, peers verify that P is not a point at
 infinity. If P is a point at infinity, the key exchange MUST
 fail.

 For NIST curves, the shared secret is the zero-padded big-
 endian representation of the x coordinate of P.

 For curve25519 and curve448, the peers apply the X25519 or X448
 function, respectively for curve25519 and curve448, on the d_U
 and q_V. The result of the function is the shared secret.

 For curve25519 and curve448, if all the octets of the shared
 secret are zero octets, the key exchange MUST fail.

 H = hash(V_C || V_S || I_C || I_S || K_S || Q_C || Q_S || K).

 MIC is the GSS-API message integrity code for H computed by
 calling GSS_GetMIC().

 6. This step is performed only if the server's final call to
 GSS_Accept_sec_context() produced a non-zero-length final reply token
 to be sent to the client and if no previous call by the client to
 GSS_Init_sec_context() has resulted in a major_status of
 GSS_S_COMPLETE. Under these conditions, the client makes an

Sorce & Kario Expires December 6, 2017 [Page 8]

Internet-Draft GSS Keyex SHA2 June 2017

 additional call to GSS_Init_sec_context() to process the final reply
 token. This call is made exactly as described above. However, if
 the resulting major_status is anything other than GSS_S_COMPLETE, or
 a non-zero-length token is returned, it is an error and the key
 exchange MUST fail.

 7. C verifies that the key Q_S is valid the same way it is done in
 step 3. If the key is not valid the key exchange MUST fail.

 8. C computes the shared secret K and H the same way it is done in
 step 5. It then calls GSS_VerifyMIC() to check that the MIC sent by
 S verifies H's integrity. If the MIC is not successfully verified,
 the key exchange MUST fail.

 If any GSS_Init_sec_context() or GSS_Accept_sec_context() returns a
 major_status other than GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED, or
 any other GSS-API call returns a major_status other than
 GSS_S_COMPLETE, the key exchange MUST fail. The same recommendations
 expressed in Section 2.1 of [RFC4462] are followed with regards to
 error reporting.

 This exchange is implemented with the following messages:

 The client sends:

 byte SSH_MSG_KEXGSS_INIT
 string output_token (from GSS_Init_sec_context())
 string Q_C, client's ephemeral public key octet string

 The server may responds with:

 byte SSH_MSG_KEXGSS_HOSTKEY
 string server public host key and certificates (K_S)

 Since this key exchange method does not require the host key to be
 used for any encryption operations, this message is OPTIONAL. If the
 "null" host key algorithm described in Section 5 of [RFC4462] is
 used, this message MUST NOT be sent.

 Each time the server's call to GSS_Accept_sec_context() returns a
 major_status code of GSS_S_CONTINUE_NEEDED

 The server replies:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Accept_sec_context())

https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc4462#section-5

Sorce & Kario Expires December 6, 2017 [Page 9]

Internet-Draft GSS Keyex SHA2 June 2017

 If the client receives this message after a call to
 GSS_Init_sec_context() has returned a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

 Each time the client receives the message described above, it makes
 another call to GSS_Init_sec_context().

 The client sends:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Init_sec_context())

 The server and client continue to trade these two messages as long as
 the server's calls to GSS_Accept_sec_context() result in major_status
 codes of GSS_S_CONTINUE_NEEDED. When a call results in a
 major_status code of GSS_S_COMPLETE, it sends one of two final
 messages.

 If the server's final call to GSS_Accept_sec_context() (resulting in
 a major_status code of GSS_S_COMPLETE) returns a non-zero-length
 token to be sent to the client, it sends the following:

 byte SSH_MSG_KEXGSS_COMPLETE
 string Q_S, server's ephemeral public key octet string
 string mic_token (MIC of H)
 boolean TRUE
 string output_token (from GSS_Accept_sec_context())

 If the client receives this message after a call to
 GSS_Init_sec_context() has returned a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

 If the server's final call to GSS_Accept_sec_context() (resulting in
 a major_status code of GSS_S_COMPLETE) returns a zero-length token or
 no token at all, it sends the following:

 byte SSH_MSG_KEXGSS_COMPLETE
 string Q_S, server's ephemeral public key octet string
 string mic_token (MIC of H)
 boolean FALSE

 If the client receives this message when no call to
 GSS_Init_sec_context() has yet resulted in a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

Sorce & Kario Expires December 6, 2017 [Page 10]

Internet-Draft GSS Keyex SHA2 June 2017

 In case of errors the messages described in Section 2.1 of [RFC4462]
 are used as well as the recommendation about the messages' order.

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client's version string (CR, NL excluded)
 string V_S, server's version string (CR, NL excluded)
 string I_C, payload of the client's SSH_MSG_KEXINIT
 string I_S, payload of the server's SSH_MSG_KEXINIT
 string K_S, server's public host key
 string Q_C, client's ephemeral public key octet string
 string Q_S, server's ephemeral public key octet string
 mpint K, shared secret

 This value is called the exchange hash, and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret. If no SSH_MSG_KEXGSS_HOSTKEY message has been sent by the
 server or received by the client, then the empty string is used in
 place of K_S when computing the exchange hash.

 The GSS_GetMIC call MUST be applied over H, not the original data.

5.2. ECDH Key Exchange Methods

 The following new key exchange methods are defined:

 +--------------------------+--------------------------------+
 | Key Exchange Method Name | Implementation Recommendations |
 +--------------------------+--------------------------------+
 | gss-nistp256-sha256-* | SHOULD/RECOMMENDED |
 | gss-nistp384-sha384-* | MAY/OPTIONAL |
 | gss-nistp521-sha512-* | MAY/OPTIONAL |
 | gss-curve25519-sha256-* | SHOULD/RECOMMENDED |
 | gss-curve448-sha512-* | MAY/OPTIONAL |
 +--------------------------+--------------------------------+

 Each key exchange method is implicitly registered by this document.
 The IESG is considered to be the owner of all these key exchange
 methods; this does NOT imply that the IESG is considered to be the
 owner of the underlying GSS-API mechanism.

5.2.1. gss-nistp256-sha256-*

 Each of these methods specifies GSS-API-authenticated Elliptic Curve
 Diffie-Hellman key exchange as described in Section 5.1 of this
 document with SHA-256 as HASH, and the curve and base point defined
 in section 2.4.2 of [SEC2v2] as secp256r1. The method name for each

https://datatracker.ietf.org/doc/html/rfc4462#section-2.1

Sorce & Kario Expires December 6, 2017 [Page 11]

Internet-Draft GSS Keyex SHA2 June 2017

 method is the concatenation of the string "gss-nistp256-sha256-" with
 the Base64 encoding of the MD5 hash [RFC1321] of the ASN.1 DER
 encoding [ISO-IEC-8825-1] of the underlying GSS-API mechanism's OID.
 Base64 encoding is described in Section 6.8 of [RFC2045].

5.2.2. gss-nistp384-sha384-*

 Each of these methods specifies GSS-API-authenticated Elliptic Curve
 Diffie-Hellman key exchange as described in Section 5.1 of this
 document with SHA-384 as HASH, and the curve and base point defined
 in section 2.5.1 of [SEC2v2] as secp384r1. The method name for each
 method is the concatenation of the string "gss-nistp384-sha384-" with
 the Base64 encoding of the MD5 hash [RFC1321] of the ASN.1 DER
 encoding [ISO-IEC-8825-1] of the underlying GSS-API mechanism's OID.
 Base64 encoding is described in Section 6.8 of [RFC2045].

5.2.3. gss-nistp521-sha512-*

 Each of these methods specifies GSS-API-authenticated Elliptic Curve
 Diffie-Hellman key exchange as described in Section 5.1 of this
 document with SHA-512 as HASH, and the curve and base point defined
 in section 2.6.1 of [SEC2v2] as secp521r1. The method name for each
 method is the concatenation of the string "gss-nistp521-sha512-" with
 the Base64 encoding of the MD5 hash [RFC1321] of the ASN.1 DER
 encoding [ISO-IEC-8825-1] of the underlying GSS-API mechanism's OID.
 Base64 encoding is described in Section 6.8 of [RFC2045].

5.2.4. gss-curve25519-sha256-*

 Each of these methods specifies GSS-API-authenticated Elliptic Curve
 Diffie-Hellman key exchange as described in Section 5.1 of this
 document with SHA-256 as HASH, and the X25519 function defined in

section 5 of [RFC7748]. The method name for each method is the
 concatenation of the string "gss-curve25519-sha256-" with the Base64
 encoding of the MD5 hash [RFC1321] of the ASN.1 DER encoding
 [ISO-IEC-8825-1] of the underlying GSS-API mechanism's OID. Base64
 encoding is described in Section 6.8 of [RFC2045].

5.2.5. gss-curve448-sha512-*

 Each of these methods specifies GSS-API-authenticated Elliptic Curve
 Diffie-Hellman key exchange as described in Section 5.1 of this
 document with SHA-512 as HASH, and the X448 function defined in

section 5 of [RFC7748]. The method name for each method is the
 concatenation of the string "gss-curve448-sha512-" with the Base64
 encoding of the MD5 hash [RFC1321] of the ASN.1 DER encoding
 [ISO-IEC-8825-1] of the underlying GSS-API mechanism's OID. Base64
 encoding is described in Section 6.8 of [RFC2045].

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc7748#section-5
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc7748#section-5
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Sorce & Kario Expires December 6, 2017 [Page 12]

Internet-Draft GSS Keyex SHA2 June 2017

6. IANA Considerations

 This document augments the SSH Key Exchange Method Names in
 [RFC4462].

 IANA is requested to update the SSH algorithm registry with the
 following entries:

 +--------------------------+------------+------------------------+
 | Key Exchange Method Name | Reference | Implementation Support |
 +--------------------------+------------+------------------------+
 | gss-group14-sha256-* | This draft | SHOULD |
 | gss-group15-sha512-* | This draft | MAY |
 | gss-group16-sha512-* | This draft | SHOULD |
 | gss-group17-sha512-* | This draft | MAY |
 | gss-group18-sha512-* | This draft | MAY |
 | gss-nistp256-sha256-* | This draft | SHOULD |
 | gss-nistp384-sha384-* | This draft | MAY |
 | gss-nistp521-sha512-* | This draft | MAY |
 | gss-curve25519-sha256-* | This draft | SHOULD |
 | gss-curve448-sha512-* | This draft | MAY |
 +--------------------------+------------+------------------------+

7. Security Considerations

7.1. New Finite Field DH mechanisms

 Except for the use of a different secure hash function and larger DH
 groups, no significant changes has been made to the protocol
 described by [RFC4462]; therefore all the original Security
 Considerations apply.

7.2. New Elliptic Curve DH mechanisms

 Although a new cryptographic primitive is used with these methods the
 actual key exchange closely follows the key exchange defined in
 [RFC5656]; therefore all the original Security Considerations as well
 as those expressed in [RFC5656] apply.

8. Normative References

 [ANSI-X9-62-2005]
 American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry, The
 Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI
 Standard X9.62, 2005.

https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc5656
https://datatracker.ietf.org/doc/html/rfc5656

Sorce & Kario Expires December 6, 2017 [Page 13]

Internet-Draft GSS Keyex SHA2 June 2017

 [FIPS-180-4]
 National Institute of Standards and Technology, "FIPS PUB
 180-4: Secure Hash Standard (SHS)", FIPS PUB 180-4, August
 2015, <http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.180-4.pdf>.

 [I-D.ietf-curdle-ssh-curves]
 Adamantiadis, A., Josefsson, S., and M. Baushke, "Secure
 Shell (SSH) Key Exchange Method using Curve25519 and
 Curve448", draft-ietf-curdle-ssh-curves-04 (work in
 progress), April 2017.

 [I-D.ietf-curdle-ssh-modp-dh-sha2]
 Baushke, M., "More Modular Exponential (MODP) Diffie-
 Hellman (DH) Key Exchange (KEX) Groups for Secure Shell
 (SSH)", draft-ietf-curdle-ssh-modp-dh-sha2-04 (work in
 progress), April 2017.

 [ISO-IEC-8825-1]
 International Organization for Standardization /
 International Electrotechnical Commission, "ASN.1 encoding
 rules: Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished Encoding
 Rules (DER)", ISO/IEC 8825-1, November 2015,
 <http://standards.iso.org/ittf/PubliclyAvailableStandards/

c068345_ISO_IEC_8825-1_2015.zip>.

 [NIST-SP-800-131Ar1]
 National Institute of Standards and Technology,
 "Transitions: Recommendation for Transitioning of the Use
 of Cryptographic Algorithms and Key Lengths", NIST Special
 Publication 800-131A Revision 1, November 2015,
 <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-131Ar1.pdf>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <http://www.rfc-editor.org/info/rfc1321>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-curdle-ssh-curves-04
https://datatracker.ietf.org/doc/html/draft-ietf-curdle-ssh-modp-dh-sha2-04
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068345_ISO_IEC_8825-1_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068345_ISO_IEC_8825-1_2015.zip
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://datatracker.ietf.org/doc/html/rfc1321
http://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045
http://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Sorce & Kario Expires December 6, 2017 [Page 14]

Internet-Draft GSS Keyex SHA2 June 2017

 [RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, DOI 10.17487/RFC3526, May 2003,
 <http://www.rfc-editor.org/info/rfc3526>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <http://www.rfc-editor.org/info/rfc4253>.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, DOI 10.17487/RFC4462, May
 2006, <http://www.rfc-editor.org/info/rfc4462>.

 [RFC5656] Stebila, D. and J. Green, "Elliptic Curve Algorithm
 Integration in the Secure Shell Transport Layer",

RFC 5656, DOI 10.17487/RFC5656, December 2009,
 <http://www.rfc-editor.org/info/rfc5656>.

 [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
 <http://www.rfc-editor.org/info/rfc6194>.

 [RFC7546] Kaduk, B., "Structure of the Generic Security Service
 (GSS) Negotiation Loop", RFC 7546, DOI 10.17487/RFC7546,
 May 2015, <http://www.rfc-editor.org/info/rfc7546>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <http://www.rfc-editor.org/info/rfc7748>.

 [SEC2v2] Certicom Research, "SEC 2: Recommended Elliptic Curve
 Domain Parameters", Standards for Efficient
 Cryptography SEC 2, 2010.

Authors' Addresses

 Simo Sorce
 Red Hat, Inc.
 140 Broadway
 24th Floor
 New York, NY 10025
 USA

 Email: simo@redhat.com

https://datatracker.ietf.org/doc/html/rfc3526
http://www.rfc-editor.org/info/rfc3526
https://datatracker.ietf.org/doc/html/rfc4253
http://www.rfc-editor.org/info/rfc4253
https://datatracker.ietf.org/doc/html/rfc4462
http://www.rfc-editor.org/info/rfc4462
https://datatracker.ietf.org/doc/html/rfc5656
http://www.rfc-editor.org/info/rfc5656
https://datatracker.ietf.org/doc/html/rfc6194
http://www.rfc-editor.org/info/rfc6194
https://datatracker.ietf.org/doc/html/rfc7546
http://www.rfc-editor.org/info/rfc7546
https://datatracker.ietf.org/doc/html/rfc7748
http://www.rfc-editor.org/info/rfc7748

Sorce & Kario Expires December 6, 2017 [Page 15]

Internet-Draft GSS Keyex SHA2 June 2017

 Hubert Kario
 Red Hat, Inc.
 Purkynova 99/71
 Brno 612 45
 Czech Republic

 Email: hkario@redhat.com

Sorce & Kario Expires December 6, 2017 [Page 16]

