
Workgroup: Internet Engineering Task Force

Internet-Draft:

draft-ietf-curdle-ssh-kex-sha2-13

Updates: 4250 4253 4432 4462 (if approved)

Published: 14 January 2021

Intended Status: Standards Track

Expires: 18 July 2021

Authors: M. D. Baushke

Juniper Networks, Inc.

Key Exchange (KEX) Method Updates and Recommendations for Secure Shell

(SSH)

Abstract

This document is intended to update the recommended set of key

exchange methods for use in the Secure Shell (SSH) protocol to meet

evolving needs for stronger security. This document updates RFC

4250, RFC 4253, RFC 4432, and RFC 4462.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 July 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc4250%204253%204432%204462
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Overview and Rationale

1.1. Selecting an appropriate hashing algorithm

1.2. Selecting an appropriate Public Key Algorithm

1.2.1. Elliptic Curve Cryptography (ECC)

1.2.2. Finite Field Cryptography (FFC)

1.2.3. Integer Factorization Cryptography (IFC)

2. Requirements Language

3. Key Exchange Methods

3.1. SHA-1 and SHA-2 Hashing

3.2. Elliptic Curve Cryptography (ECC)

3.2.1. curve25519-sha256 and gss-curve25519-sha256-*

3.2.2. curve448-sha512 and gss-curve448-sha512-*

3.2.3. ECC diffie-hellman using ecdh-*, ecmqv-sha2, and gss-

nistp*

3.3. Finite Field Cryptography (FFC)

3.3.1. FFC diffie-hellman using generated MODP groups

3.3.2. FFC diffie-hellman using named MODP groups

3.4. Integer Factorization Cryptography (IFC)

3.5. Secure Shell Extension Negotiation

4. Summary Guidance for Key Exchange Method Names Implementations

5. Acknowledgements

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Author's Address

1. Overview and Rationale

Secure Shell (SSH) is a common protocol for secure communication on

the Internet. In [RFC4253], SSH originally defined two Key Exchange

(KEX) Method Names that MUST be implemented. Over time what was once

considered secure is no longer considered secure. The purpose of

this RFC is to recommend that some published key exchanges be

deprecated as well as recommending some that SHOULD and one that

MUST be adopted. This document updates [RFC4250] [RFC4253] [RFC4432]

[RFC4462] by changing the requirement level ("MUST" moving to

"SHOULD" or "MAY" or "SHOULD NOT", and "MAY" moving to "MUST" or

"SHOULD" or "SHOULD NOT" or "MUST NOT") of various key-exchange

mechanisms.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A key exchange has two components, a hashing algorithm and a public

key algorithm. The following subsections describe how to select each

component.

1.1. Selecting an appropriate hashing algorithm

The SHA-1 hash is in the process of being deprecated for many

reasons. There have been attacks against SHA-1 that have shown there

are weaknesses in the algorithm. Therefore, it is desirable to move

away from using it before attacks become more serious.

At present, the attacks against SHA-1 are collision attacks that

usually rely on human help rather than a pre-image attack. SHA-1

resistance against 2nd pre-image is still at 160 bits, but SSH does

not depend on that, but rather on chosen prefix resistance.

Transcript Collision attacks are documented in [TRANS-COLL]. This

paper shows that the man in the middle does not tamper with the

Diffie-Hellman values and does not know the connection keys.

However, it manages to tamper with both Ic and Is, and can therefore

downgrade the negotiated ciphersuite to a weak cryptographic

algorithm that the attacker knows how to break.

These attacks are still computationally very difficult to perform,

but is is desirable that any Key Exchanging using SHA-1 be phased

out as soon as possible.

These attacks are potentially slightly easier when the server

provides the Diffie-Hellman parameters such as using the [RFC4419]

generated set of diffie-hellman parameters with SHA-1 hashing. If

there is a need for using SHA-1 in a Key Exchange for compatibility,

it would be desirable it be listed last in the preference list of

key exchanges.

Use of the SHA-2 family of hashes found in [RFC6234] rather than the

SHA-1 hash is strongly advised.

When it comes to the SHA-2 family of Secure Hashing functions,

SHA2-224 has 112 bits of security strength; SHA2-256 has 128 bits of

security strength; SHA2-384 has 192 bits of security strength; and

SHA2-512 has 256 bits of security strength. As the same compute

power is needed for both SHA2-224 and SHA2-256 and currently no KeX

uses SHA2-224, it is suggested that the minimum secure hashing

function that should be used for Key Exchange Methods is SHA2-256.

To avoid combinatorial explosion of key exchange names, newer key

exchanges are restricting to the use of *-sha256 and *-sha512.

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.2. Selecting an appropriate Public Key Algorithm

SSH uses mathematically hard problems for doing Key Exchange:

Elliptic Curve Cryptography (ECC) has families of curves for Key

Exchange Methods for SSH. NIST prime curves with names and other

curves are available using an object identifier (OID) with

Elliptic Curve Diffie-Hellman (ECDH) via [RFC5656]. Curve25519

and Curve448 key exchanges are used with ECDH via [RFC8731].

Finite Field Cryptography (FFC) is used for Diffie-Hellman (DH)

key exchange with "safe primes" either from a specified list

found in [RFC3526] or generated dynamically via [RFC4419] as

updated by [RFC8270].

Integer Factorization Cryptography (IFC) using the RSA algorithm

is provided for in [RFC4432].

It is desirable for the security strength of the key exchange be

chosen to be comparable with the security strength of the other

elements of the SSH handshake. Attackers can target the weakest

element of the SSH handshake.

It is desirable to select a minimum of 112 bits of security

strength. Based on implementer security needs, a stronger minimum

may be desired.

1.2.1. Elliptic Curve Cryptography (ECC)

For ECC, it is recommended to select one with approximately 128 bits

of security strength.

Curve Name Estimated Security Strength

nistp256 128 bits

nistp384 192 bits

nistp521 512 bits

Curve25519 128 bits

Curve448 224 bits

Table 1: ECC Security Strengths

1.2.2. Finite Field Cryptography (FFC)

For FFC, a modulus 2048 bits (112 bits of security strength).

Prime Field Size Estimated Security Strength Example MODP Group

2048-bit 112 bits group14

3072-bit 128 bits group15

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

Prime Field Size Estimated Security Strength Example MODP Group

4096-bit 152 bits group16

6144-bit 176 bits group17

8192-bit 200 bits group18

Table 2: FFC MODP Security Strengths

The minimum MODP group that MAY be used is the 2048-bit MODP

group14. Implementations SHOULD support a 3072-bit MODP group or

larger.

1.2.3. Integer Factorization Cryptography (IFC)

The only IFC algorithm for key exchange is the RSA algorithm via

[RFC4432]. The minimum modulus size is 2048 bits. The use of a SHA-2

Family hash with RSA 2048-bit keys has sufficient security. The

rsa1024-sha1 key exchange has less than 2048 bits and MUST NOT be

implemented.

Key Exchange Method Estimated Security Strength

rsa1024-sha1 80 bits

rsa2048-sha256 112 bits

Table 3: IFC Security Strengths

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Key Exchange Methods

This memo adopts the style and conventions of [RFC4253] in

specifying how the use of data key exchange is indicated in SSH.

This RFC also collects key exchange method names in various existing

RFCs [RFC4253], [RFC4419], [RFC4432], [RFC4462], [RFC5656],

[RFC8268], [RFC8731], [RFC8732], and [RFC8308], and provides a

suggested suitability for implementation of MUST, SHOULD, SHOULD

NOT, and MUST NOT. Any method not explicitly listed MAY be

implemented.

This document is intended to provide guidance as to what key

exchange algorithms are to be considered for new or updated SSH

implementations.

¶

¶

¶

¶

¶

¶

3.1. SHA-1 and SHA-2 Hashing

All of the key exchanges using the SHA-1 hashing algorithm should be

deprecated and phased out of use because SHA-1 has security concerns

provided in [RFC6194]. The SHA-2 Family of hashes [RFC6234] is the

only one which is more secure than SHA-1 and has been standardized

for use with SSH key exchanges.

diffie-hellman-group1-sha1 and diffie-hellman-group14-sha1 are

currently mandatory to implement (MTI). diffie-hellman-group14-sha1

is the stronger of the two. Group14 (a 2048-bit MODP group) is

defined in [RFC3526]. It is reasonable to retain the diffie-hellman-

group14-sha1 exchange for interoperability with legacy

implementations. The diffie-hellman-group14-sha1 key exchange MAY be

implemented.

The diffie-hellman-group1-sha1, diffie-hellman-group-exchange-sha1,

gss-gex-sha1-*, and gss-group1-sha1-* key exchanges SHOULD NOT be

implemented.

3.2. Elliptic Curve Cryptography (ECC)

3.2.1. curve25519-sha256 and gss-curve25519-sha256-*

Curve25519 is efficient on a wide range of architectures with

properties that allow higher performance implementations compared to

traditional elliptic curves. The use of SHA2-256 (also known as

SHA-256 and sha256) as defined in [RFC6234] for integrity is a

reasonable one for this method. These key exchange methods are

described in [RFC8731] and [RFC8732] and is similar to the IKEv2 Key

Agreement described in [RFC8031]. The curve25519-sha256 key exchange

method has multiple implementations and SHOULD be implemented. The

gss-curve25519-sha256-* key exchange method SHOULD also be

implemented because it shares the same performance and security

characteristics as curve25519-sha2.

3.2.2. curve448-sha512 and gss-curve448-sha512-*

Curve448 provides more security strength than Curve25519 at a higher

computational and bandwidth cost. It uses SHA2-512 (also known as

SHA-512) defined in [RFC6234] for integrity. This Key Exchange

Method is described in [RFC8731] and is similar to the IKEv2 Key

Agreement described in [RFC8031]. This method MAY be implemented.

The gss-curve448-sha512-* key exchange method MAY also be

implemented because it shares the same performance and security

characteristics as curve448-sha512.

¶

¶

¶

¶

¶

3.2.3. ECC diffie-hellman using ecdh-*, ecmqv-sha2, and gss-nistp*

The ecdh-sha2-* name-space allows for other curves to be defined for

the elliptic curve Diffie Hellman key exchange. At present, there

are three named curves in this name-space which SHOULD be supported.

They appear in [RFC5656] in section 10.1 Required Curves all of the

NISTP curves named are mandatory to implement if any of this RFC is

implemented. This set of methods MAY be implemented. If implemented,

the named curves SHOULD always be enabled unless specifically

disabled by local security policy. In [RFC5656], section 6.1, the

method to name other ECDH curves using OIDs is specified. These

other curves MAY be implemented.

The GSS-API name-space with gss-nistp*-sha* mirrors the algorithms

used by ecdh-sha2-* names. The table provides guidance for

implementation.

ECDH reduces bandwidth of key exchanges compared to FFC DH at a

similar security strength.

The following table lists algorithms as SHOULD where implementations

may be more efficient or widely deployed. The items listed as MAY

are potentially less efficient.

Key Exchange Method Name Guidance

ecdh-sha2-* MAY

ecdh-sha2-nistp256 SHOULD

gss-nistp256-sha256-* SHOULD

ecdh-sha2-nistp384 SHOULD

gss-nistp384-sha384-* SHOULD

ecdh-sha2-nistp521 SHOULD

gss-nistp521-sha512-* SHOULD

ecmqv-sha2 MAY

Table 4: ECDH Implementation

Guidance

It is advisable to match the ECDSA and ECDH algorithms to use the

same curve for both to maintain the same security strength in the

connection.

3.3. Finite Field Cryptography (FFC)

3.3.1. FFC diffie-hellman using generated MODP groups

This random selection from a set of pre-generated moduli for key

exchange uses SHA2-256 as defined in [RFC4419]. [RFC8270] mandates

implementations avoid any MODP group whose modulus size is less than

2048 bits. Care should be taken in the pre-generation of the moduli

¶

¶

¶

¶

¶

P and generator G such that the generator provides a Q-ordered

subgroup of P. Otherwise, the parameter set may leak one bit of the

shared secret leaving the MODP group half as strong. This key

exchange MAY be used.

3.3.2. FFC diffie-hellman using named MODP groups

diffie-hellman-group14-sha256 represents the smallest FFC DH key

exchange method considered to be secure. It is a reasonably simple

transition from SHA-1 to SHA-2. diffie-hellman-group14-sha256 method

MUST be implemented. The rest of the FFC MODP groups MAY be

implemented. The table below provides explicit guidance by name.

Key Exchange Method Name Guidance

diffie-hellman-group14-sha256 MUST

gss-group14-sha256-* SHOULD

diffie-hellman-group15-sha512 MAY

gss-group15-sha512-* MAY

diffie-hellman-group16-sha512 SHOULD

gss-group16-sha512-* MAY

diffie-hellman-group17-sha512 MAY

gss-group17-sha512-* MAY

diffie-hellman-group18-sha512 MAY

gss-group18-sha512-* MAY

Table 5: FFC Implementation Guidance

3.4. Integer Factorization Cryptography (IFC)

The rsa2048-sha256 key exchange method is defined in [RFC4432]. Uses

an RSA 2048-bit modulus with a SHA2-256 hash. This key exchange

meets 112 bit minimum security strength. This method MAY be

implemented.

3.5. Secure Shell Extension Negotiation

There are two key exchange methods, ext-info-c and ext-info-s,

defined in [RFC8308] which are not actually key exchanges. They

provide a method to support other Secure Shell negotiations. Being

able to extend functionality is desirable. This method SHOULD be

implemented.

4. Summary Guidance for Key Exchange Method Names Implementations

The Implement column is the current recommendations of this RFC. Key

Exchange Method Names are listed alphabetically.

¶

¶

¶

¶

¶

Key Exchange Method Name Reference Implement

curve25519-sha256 RFC8731 SHOULD

curve448-sha512 RFC8731 MAY

diffie-hellman-group-exchange-sha1 RFC4419 SHOULD NOT

diffie-hellman-group-exchange-sha256 RFC4419 MAY

diffie-hellman-group1-sha1 RFC4253 SHOULD NOT

diffie-hellman-group14-sha1 RFC4253 MAY

diffie-hellman-group14-sha256 RFC8268 MUST

diffie-hellman-group15-sha512 RFC8268 MAY

diffie-hellman-group16-sha512 RFC8268 SHOULD

diffie-hellman-group17-sha512 RFC8268 MAY

diffie-hellman-group18-sha512 RFC8268 MAY

ecdh-sha2-* RFC5656 MAY

ecdh-sha2-nistp256 RFC5656 SHOULD

ecdh-sha2-nistp384 RFC5656 SHOULD

ecdh-sha2-nistp521 RFC5656 SHOULD

ecmqv-sha2 RFC5656 MAY

ext-info-c RFC8308 SHOULD

ext-info-s RFC8308 SHOULD

gss-* RFC4462 MAY

gss-curve25519-sha256-* RFC8732 SHOULD

gss-curve448-sha512-* RFC8732 MAY

gss-gex-sha1-* RFC4462 SHOULD NOT

gss-group1-sha1-* RFC4462 SHOULD NOT

gss-group14-sha256-* RFC8732 SHOULD

gss-group15-sha512-* RFC8732 MAY

gss-group16-sha512-* RFC8732 SHOULD

gss-group17-sha512-* RFC8732 MAY

gss-group18-sha512-* RFC8732 MAY

gss-nistp256-sha256-* RFC8732 SHOULD

gss-nistp384-sha384-* RFC8732 SHOULD

gss-nistp521-sha512-* RFC8732 SHOULD

rsa1024-sha1 RFC4432 MUST NOT

rsa2048-sha256 RFC4432 MAY

Table 6: IANA guidance for key exchange method name

implementations

The full set of official [IANA-KEX] key algorithm method names not

otherwise mentioned in this document MAY be implemented.

[TO BE REMOVED: This registration should take place at the following

location URL: http://www.iana.org/assignments/ssh-parameters/ssh-

parameters.xhtml#ssh-parameters-16]

¶

¶

[RFC2119]

[RFC3526]

[RFC4250]

5. Acknowledgements

Thanks to the following people for review and comments: Denis Bider,

Peter Gutmann, Damien Miller, Niels Moeller, Matt Johnston, Iwamoto

Kouichi, Simon Josefsson, Dave Dugal, Daniel Migault, Anna Johnston,

Tero Kivinen, and Travis Finkenauer.

Thanks to the following people for code to implement interoperable

exchanges using some of these groups as found in an this draft:

Darren Tucker for OpenSSH and Matt Johnston for Dropbear. And thanks

to Iwamoto Kouichi for information about RLogin, Tera Term (ttssh)

and Poderosa implementations also adopting new Diffie-Hellman groups

based on this draft.

6. Security Considerations

This SSH protocol provides a secure encrypted channel over an

insecure network. It performs server host authentication, key

exchange, encryption, and integrity checks. It also derives a unique

session ID that may be used by higher-level protocols.

Full security considerations for this protocol are provided in

[RFC4251].

It is desirable to deprecate or remove key exchange method name that

are considered weak. A key exchange method may be weak because too

few bits are used, or the hashing algorithm is considered too weak.

7. IANA Considerations

IANA is requested to annotate entries in [IANA-KEX] which MUST NOT

be implemented as being deprecated by this document.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)

Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, DOI 10.17487/RFC3526, May 2003, <https://

www.rfc-editor.org/info/rfc3526>.

Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Assigned Numbers", RFC 4250, DOI 10.17487/

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3526
https://www.rfc-editor.org/info/rfc3526

[RFC4253]

[RFC8031]

[RFC8174]

[RFC8268]

[RFC8270]

[RFC8308]

[IANA-KEX]

[RFC4251]

[RFC4419]

[RFC4432]

RFC4250, January 2006, <https://www.rfc-editor.org/info/

rfc4250>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Transport Layer Protocol", RFC 4253, DOI 10.17487/

RFC4253, January 2006, <https://www.rfc-editor.org/info/

rfc4253>.

Nir, Y. and S. Josefsson, "Curve25519 and Curve448 for

the Internet Key Exchange Protocol Version 2 (IKEv2) Key

Agreement", RFC 8031, DOI 10.17487/RFC8031, December

2016, <https://www.rfc-editor.org/info/rfc8031>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Baushke, M., "More Modular Exponentiation (MODP) Diffie-

Hellman (DH) Key Exchange (KEX) Groups for Secure Shell

(SSH)", RFC 8268, DOI 10.17487/RFC8268, December 2017,

<https://www.rfc-editor.org/info/rfc8268>.

Velvindron, L. and M. Baushke, "Increase the Secure Shell

Minimum Recommended Diffie-Hellman Modulus Size to 2048

Bits", RFC 8270, DOI 10.17487/RFC8270, December 2017,

<https://www.rfc-editor.org/info/rfc8270>.

Bider, D., "Extension Negotiation in the Secure Shell

(SSH) Protocol", RFC 8308, DOI 10.17487/RFC8308, March

2018, <https://www.rfc-editor.org/info/rfc8308>.

8.2. Informative References

Internet Assigned Numbers Authority (IANA), "Secure Shell

(SSH) Protocol Parameters: Key Exchange Method Names",

December 2020, <http://www.iana.org/assignments/ssh-

parameters/ssh-parameters.xhtml#ssh-parameters-16>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,

January 2006, <https://www.rfc-editor.org/info/rfc4251>.

Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman

Group Exchange for the Secure Shell (SSH) Transport Layer

Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006,

<https://www.rfc-editor.org/info/rfc4419>.

Harris, B., "RSA Key Exchange for the Secure Shell (SSH)

Transport Layer Protocol", RFC 4432, DOI 10.17487/

https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc8031
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8268
https://www.rfc-editor.org/info/rfc8270
https://www.rfc-editor.org/info/rfc8308
http://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-16
http://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-16
https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc4419

[RFC4462]

[RFC5656]

[RFC6194]

[RFC6234]

[RFC8731]

[RFC8732]

[TRANS-COLL]

RFC4432, March 2006, <https://www.rfc-editor.org/info/

rfc4432>.

Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,

"Generic Security Service Application Program Interface

(GSS-API) Authentication and Key Exchange for the Secure

Shell (SSH) Protocol", RFC 4462, DOI 10.17487/RFC4462,

May 2006, <https://www.rfc-editor.org/info/rfc4462>.

Stebila, D. and J. Green, "Elliptic Curve Algorithm

Integration in the Secure Shell Transport Layer", RFC

5656, DOI 10.17487/RFC5656, December 2009, <https://

www.rfc-editor.org/info/rfc5656>.

Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security

Considerations for the SHA-0 and SHA-1 Message-Digest

Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,

<https://www.rfc-editor.org/info/rfc6194>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/info/rfc6234>.

Adamantiadis, A., Josefsson, S., and M. Baushke, "Secure

Shell (SSH) Key Exchange Method Using Curve25519 and

Curve448", RFC 8731, DOI 10.17487/RFC8731, February 2020,

<https://www.rfc-editor.org/info/rfc8731>.

Sorce, S. and H. Kario, "Generic Security Service

Application Program Interface (GSS-API) Key Exchange with

SHA-2", RFC 8732, DOI 10.17487/RFC8732, February 2020,

<https://www.rfc-editor.org/info/rfc8732>.

Bhargavan, K. and G. Leurent, "Transcript Collision

Attacks: Breaking Authentication in TLS, IKE, and SSH",

Network and Distributed System Security Symposium - NDSS

2016, Feb 2016, San Diego, United States. 10.14722/ndss.

2016.23418 . hal-01244855, <https://hal.inria.fr/

hal-01244855/document>.

Author's Address

Mark D. Baushke

Juniper Networks, Inc.

Email: mdb@juniper.net

https://www.rfc-editor.org/info/rfc4432
https://www.rfc-editor.org/info/rfc4432
https://www.rfc-editor.org/info/rfc4462
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc6194
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc8731
https://www.rfc-editor.org/info/rfc8732
https://hal.inria.fr/hal-01244855/document
https://hal.inria.fr/hal-01244855/document
mailto:mdb@juniper.net

	Key Exchange (KEX) Method Updates and Recommendations for Secure Shell (SSH)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Overview and Rationale
	1.1. Selecting an appropriate hashing algorithm
	1.2. Selecting an appropriate Public Key Algorithm
	1.2.1. Elliptic Curve Cryptography (ECC)
	1.2.2. Finite Field Cryptography (FFC)
	1.2.3. Integer Factorization Cryptography (IFC)

	2. Requirements Language
	3. Key Exchange Methods
	3.1. SHA-1 and SHA-2 Hashing
	3.2. Elliptic Curve Cryptography (ECC)
	3.2.1. curve25519-sha256 and gss-curve25519-sha256-*
	3.2.2. curve448-sha512 and gss-curve448-sha512-*
	3.2.3. ECC diffie-hellman using ecdh-*, ecmqv-sha2, and gss-nistp*

	3.3. Finite Field Cryptography (FFC)
	3.3.1. FFC diffie-hellman using generated MODP groups
	3.3.2. FFC diffie-hellman using named MODP groups

	3.4. Integer Factorization Cryptography (IFC)
	3.5. Secure Shell Extension Negotiation

	4. Summary Guidance for Key Exchange Method Names Implementations
	5. Acknowledgements
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Author's Address

