
INTERNET-DRAFT Saveen Reddy,
 Microsoft
draft-ietf-dasl-protocol-00.txt Dale Lowry, Novell
 Surendra Reddy,
 Oracle
 Rick Henderson,
 Netscape
 Jim Davis, CourseNet
 Alan Babich, Filenet

Expires December 24, 1999 June 24, 1999

DAV Searching & Locating

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet drafts are
 working documents of the Internet Engineering Task Force (IETF),
 its areas and its working groups. Note that other groups may also
 distribute working information as Internet drafts.

 Internet Drafts are draft documents valid for a maximum of six months
 and can be updated, replaced or obsoleted by other documents at any
 time. It is inappropriate to use Internet drafts as reference material
 or to cite them as other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this document is unlimited. Please send comments to
 the mailing list at <www-webdav-dasl@w3.org>, which may be joined by
 sending a message with subject "subscribe" to
 <www-webdav-dasl-request@w3.org>.

 Discussions of the list are archived at <URL:
http://www.w3.org/pub/WWW/Archives/Public/www-webdav-dasl >.

 Abstract

 This document specifies a set of methods, headers, and content-types
 composing DASL, an application of the HTTP/1.1 protocol to efficiently
 search for DAV resources based upon a set of client-supplied criteria.

1. Introduction

1.1 DASL

 This document defines DAV Searching & Locating (DASL), an application

https://datatracker.ietf.org/doc/html/draft-ietf-dasl-protocol-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.w3.org/pub/WWW/Archives/Public/www-webdav-dasl

 of HTTP/1.1 forming a lightweight search protocol to transport queries
 and result sets and allows clients to make use of server-side search
 facilities. [DASLREQ] describes the motivation for DASL.

Reddy et al [Page 1]

 DASL

 DASL will minimize the complexity of clients so as to facilitate
 widespread deployment of applications capable of utilizing the DASL
 search mechanisms.

 DASL consists of:
 * the SEARCH method,
 * the DASL response header,
 * the DAV:searchrequest XML element,
 * the DAV:queryschema property,
 * the DAV:basicsearch XML element and query grammar, and
 * the DAV:basicsearchschema XML element.

1.2 Relationship to DAV

 DASL relies on the resource and property model defined by [WebDAV].
 DASL does not alter this model. Instead, DASL allows clients to access
 DAV-modeled resources through server-side search.

1.3 Terms

 This draft uses the terms defined in [RFC2068], [WebDAV], and
 [DASLREQ].

1.4 Notational Conventions

 The augmented BNF used by this document to describe protocol elements
 is exactly the same as the one described in Section 2.1 of [RFC2068].
 Because this augmented BNF uses the basic production rules provided in

Section 2.2 of [RFC2068], those rules apply to this document as well.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.5 An Overview of DASL at Work

 One can express the basic usage of DASL in the following steps:
 * The client constructs a query using the DAV:basicsearch grammar.
 * The client invokes the SEARCH method on a resource that will
 perform the search (the search arbiter) and includes a text/xml
 request entity that contains the query.
 * The search arbiter performs the query.
 * The search arbiter sends the results of the query back to the
 client in the response. The server MUST send a text/xml entity
 that matches the [WebDAV] PROPFIND response.

2. The SEARCH Method

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068#section-2.1
https://datatracker.ietf.org/doc/html/rfc2068#section-2.2
https://datatracker.ietf.org/doc/html/rfc2119

Reddy et al [Page 2]

 DASL

 2.1 Overview

 The client invokes the SEARCH method to initiate a server-side search.
 The body of the request defines the query. The server MUST emit
 text/xml entity matching the [WebDAV] PROPFIND response.

 The SEARCH method plays the role of transport mechanism for the query
 and the result set. It does not define the semantics of the query. The
 type of the query defines the semantics.

2.2 The Request

 The client invokes the SEARCH method on the resource named by the
 Request-URI.

2.2.1 The Request-URI

 The Request-URI identifies the search arbiter.

 The SEARCH method defines no relationship between the arbiter and the
 scope of the search, rather the particular query grammar used in the
 query defines the relationship. For example, the FOO query grammar may
 force the request-URI to correspond exactly to the search scope.

2.2.2 The Request Body

 The server MUST process a text/xml or application/xml request body,
 and MAY process request bodies in other formats. See [RFC 2376] for
 guidance on packaging XML in requests.

 If the client sends a text/xml or application/xml body, it MUST
 include the DAV:searchrequest XML element. The DAV:searchrequest XML
 element identifies the query grammar, defines the criteria, the result
 record, and any other details needed to perform the search.

2.3 The DAV:searchrequest XML Element

 <!ELEMENT searchrequest ANY > The DAV:searchrequest XML element
 contains a single XML element that defines the query. The name of the
 query element defines the type of the query. The value of that element
 defines the query itself.

2.4 The Successful 207 (Multistatus) Response

 If the server returns 207 (Multistatus), then the search proceeded
 successfully and the response MUST match that of a PROPFIND.

 There MUST be one DAV:response for each resource that matched the
 search criteria. For each such response, the DAV:href element contains

https://datatracker.ietf.org/doc/html/rfc2376

 the URI of the resource, and the response MUST include a DAV:propstat
 element.

Reddy et al [Page 3]

 DASL

 In addition, the server MAY include DAV:response items in the reply where
 the DAV:href element contains a URI that is not a matching resource,
 e.g. that of a scope or the query arbiter. Each such response item
 MUST NOT contain a DAV:propstat element, and MUST contain a DAV:status
 . It SHOULD contain a DAV:responsedescription .

2.4.1 Extending the PROPFIND Response

 A response MAY include more information than PROPFIND defines so long
 as the extra information does not invalidate the PROPFIND response.
 Query grammars SHOULD define how the response matches the PROPFIND
 response.

2.4.1 Example: A Simple Request and Response

 This example demonstrates the request and response framework. The
 following XML document shows a simple (hypothetical) natural language
 query. The name of the query element is FOO:natural-language-query,
 thus the type of the query is FOO:natural-language-query. The actual
 query is "Find the locations of good Thai restaurants in Los Angeles".
 For this hypothetical query, the arbiter returns two properties for
 each selected resource.SEARCH / HTTP/1.1
 Host: ryu.com
 Content-Type: text/xml
 Connection: Close
 Content-Length: 243

 <?xml version="1.0"?>
 <D:searchrequest xmlns:D = "DAV:" xmlns:F = "FOO:">
 <F:natural-language-query>
 Find the locations of good Thai restaurants in Los Angeles
 </F:natural-language-query>
 </D:searchrequest> >> ResponseHTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: 333

 <?xml version="1.0"?>
 <D:multistatus xmlns:D="DAV:" xmlns:F="FOO:"
 xmlns:R="http://ryu.com/propschema">
 <D:response>
 <D:href>http://siamiam.com/</D:href>
 <D:propstat>
 <D:prop>
 <R:location>259 W. Hollywood</R:location>
 <R:rating><R:stars>4</R:stars></R:rating>
 </D:prop>
 </D:propstat>
 </D:response>

 </D:multistatus>

Reddy et al [Page 4]

 DASL

 2.5 Unsuccessful Responses

 If an error occurred that prevented execution of the query, the server
 MUST indicate the failure with the appropriate status code and SHOULD
 include a DAV:multistatus element to point out errors associated with
 scopes.

 400 Bad Request. The query could not be executed. The request may be
 malformed (not valid XML for example). Additionally, this can be used
 for invalid scopes and search redirections.

 422 Unprocessable entity. The query could not be executed. If a
 text/xml request entity was provided, then it may have been valid
 (well-formed) but may have contained an unsupported or unimplemented
 query operator.

 507 (Insufficient Storage). The query produced more results than the
 server was willing to transmit. Partial results have been transmitted.
 The server MUST send a body that matches that for 207, except that
 there MAY exist resources that matched the search criteria for which
 no corresponding DAV:response exists in the reply.

2.5.1 Example: Result Set Truncation

 A server MAY limit the number of resources in a reply, for example to
 limit the amount of resources expended in processing a query. If it
 does so, the reply MUST use status code 507. It SHOULD include the
 partial results.

 When a result set is truncated, there may be many more resources that
 satisfy the search criteria but that were not examined.

 If partial results are included and the client requested an ordered
 result set in the original request, then any partial results that are
 returned MUST be ordered as the client directed.

 Note that the partial results returned MAY be any subset of the result
 set that would have satisfied the original query.SEARCH / HTTP/1.1
 Host: gdr.com
 Content-Type: text/xml
 Connection: Close
 Content-Length: xxxxx

 <?xml version="1.0"?>
 <D:searchrequest xmlns:D="DAV:">
 <D:basicsearch>
 à the query goes here à
 </D:basicsearch>
 </D:searchrequest>>> Response

 HTTP/1.1 507 Insufficient Storage
 Content-Type: text/xml

Reddy et al [Page 5]

 DASL

 Content-Length: 738

 <?xml version="1.0"?>
 <D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://www.gdr.com/sounds/unbrokenchain.au</D:href>
 <D:propstat>
 <D:prop/>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://tech.mit.edu/archive96/photos/Lesh1.jpg</D:href>
 <D:propstat>
 <D:prop/>
 <D:status>HTTP/1.1 200 OK</D:status>
 <D:/propstat>
 </D:response>
 <D:response>
 <D:href>http://gdr.com</href>
 <D:status>HTTP/1.1 507 Insufficient Storage</D:status>
 <D:responsedescription>
 Only first two matching records were returned
 </D:responsedescription>
 </D:response>
 </D:multistatus>

2.6 Invalid Scopes & Search Redirections

2.6.1 Indicating an Invalid Scope

 A client may submit a scope that the arbiter may be unable to query.
 The inability to query may be due to network failure, administrative
 policy, security, etc. This raises the condition described as an
 "invalid scope".

 To indicate an invalid scope, the server MUST respond with a 400 (Bad
 Request).

 The response includes a text/xml body with a DAV:multistatus element.
 Each DAV:resource in the DAV:multistatus identifies a scope. To
 indicate that this scope is the source of the error, the server MUST
 include the DAV:scopeerror element.

2.6.2 Example of an Invalid Scope

 HTTP/1.1 400 Bad-Request

 Content-Type: text/xml
 Content-Length: xxxxx

Reddy et al [Page 6]

 DASL

 <?xml version="1.0" ?>

 <d:multistatus xmlns:d="DAV:">
 <d:response>
 <d:href>http://www.foo.com/X</d:href>
 <d:status>HTTP/1.1 404 Object Not Found</d:status>
 <d:scopeerror/>
 </d:response>
 </d:multistatus>

2.6.3 Redirections

 As described above, a server can indicate only that the scope is
 invalid. Some search arbiters may be able to indicate that other
 search arbiters exist for that scope.

 In this case, the server MUST:

 (1) include the DAV:scopeerror element

 (2) include the DAV:status element for that scope. The value of this
 element MUST be a 303 (See Other) response.

 (3) include the DAV:redirectarbiter element for each arbiter the
 client should use for the redirect. The value of this element is the
 URI of the arbiter to use. Multiple DAV:redirectarbiter elements are
 allowed.

2.6.4 Example of a Search Redirection

 HTTP/1.1 400 Bad-Request
 Content-Type: text/xml
 Content-Length: xxxxx

 <?xml version="1.0" ?>
 <?xml:namespace ns="DAV:" prefix="d" ?>

 <d:multistatus>
 <d:response>
 <d:href>http://www.foo.com/X</d:href>
 <d:status>HTTP/1.1 303 See Other</d:status>
 <d:scopeerror/>
 <d:redirectarbiter>http://bar.com/B</d:redirectarbiter>
 <d:redirectarbiter>http://baz.com/B</d:redirectarbiter>
 </d:response>
 </d:multistatus>

2.6.5 Syntax for DAV:scopeerror

 <!ELEMENT scopeerror EMPTY>

Reddy et al [Page 7]

 DASL

 2.6.6 Syntax for DAV:redirectarbiter

 <!ELEMENT redirectarbiter (#PCDATA)> The contents must
 be a URL.

3. Discovery of Supported Query Grammars

 Servers MUST support discovery of the query grammars supported by a
 search arbiter resource.

 Clients can determine which query grammars are supported by an arbiter
 by invoking OPTIONS on the search arbiter. If the resource supports
 SEARCH, then the DASL response header will appear in the response. The
 DASL response header lists the supported grammars.

3.1 The OPTIONS Method

 The OPTIONS method allows the client to discover if a resource
 supports the SEARCH method and to determine the list of search
 grammars supported for that resource.

 The client issues the OPTIONS method against a resource named by the
 Request-URI. This is a normal invocation of OPTIONS defined in
 [RFC2068].

 If a resource supports the SEARCH method, then the server MUST list
 SEARCH in the OPTIONS response as defined by [RFC2068].

 DASL servers MUST include the DASL header in the OPTIONS response.
 This header identifies the search grammars supported by that resource.

3.2 The DASL Response Header

 DASLHeader = "DASL" ":" Coded-URL-List
 Coded-URL-List : Coded-URL ["," Coded-URL-List]
 Coded-URL ; defined in section 9.4 of [WEBDAV] The DASL response
 header indicates server support for a query grammar in the OPTIONS
 method. The value is a URI that indicates the type of grammar. This
 header MAY be repeated.

 For example:DASL: <http://foo.bar.com/syntax1>
 DASL: <http://akuma.com/syntax2>
 DASL: <FOO:natural-language-query>

3.3 Example: Grammar Discovery

 This example shows that the server supports search on the /somefolder
 resource with the query grammars: DAV:basicsearch,

http://foo.bar.com/syntax1 and http://akuma.com/syntax2 . Note that

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
http://foo.bar.com/syntax1
http://akuma.com/syntax2
http://foo.bar.com/syntax1
http://akuma.com/syntax2

 every server MUST support DAV:basicsearch .

Reddy et al [Page 8]

 DASL

 >>Request
 OPTIONS /somefolder HTTP/1.1
 Connection: Close
 Host: ryu.com >> ResponseHTTP/1.1 200 OK
 Date: Tue, 20 Jan 1998 20:52:29 GMT
 Connection: close
 Accept-Ranges: none
 Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE,
 MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH
 Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE,
 MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH
 DASL: <DAV:basicsearch>
 DASL: <http://foo.bar.com/syntax1>
 DASL: <http://akuma.com/syntax2>

4. Query Schema Discovery: QSD

 Servers MAY support the discovery of the schema for a query grammar.

 The DASL response header provides means for clients to discover the
 set of query grammars supported by a resource. This alone is not
 sufficient information for a client to generate a query. For example,
 the DAV:basicsearch grammar defines a set of queries consisting of a
 set of operators applied to a set of properties and values, but the
 grammar itself does not specify which properties may be used in the
 query. QSD for the DAV:basicsearch grammar allows a client to discover
 the set of properties that are searchable, selectable, and sortable.
 Moreover, although the DAV:basicsearch grammar defines a minimal set
 of operators, it is possible that a resource might support additional
 operators in a query. For example, a resource might support a optional
 operator that can be used to express content-based queries in a
 proprietary syntax. QSD allows a client to discover these operators
 and their syntax. The set of discoverable quantities will differ from
 grammar to grammar, but each grammar can define a means for a client
 to discover what can be discovered.

 In general, the schema for a given query grammar depends on both the
 resource (the arbiter) and the scope. A given resource might have
 access to one set of properties for one potential scope, and another
 set for a different scope. For example, consider a server able to
 search two distinct collections, one holding cooking recipes, the
 other design documents for nuclear weapons. While both collections
 might support properties such as author, title, and date, the first
 might also define properties such as calories and preparation time,
 while the second defined properties such as yield and applicable
 patents. Two distinct arbiters indexing the same collection might also
 have access to different properties. For example, the recipe
 collection mentioned above might also indexed by a value-added server

http://foo.bar.com/syntax1
http://akuma.com/syntax2

 that also stored the names of chefs who had tested the recipe. Note
 also that the available query schema might also depend on other
 factors, such as the identity of the principal conducting the search,
 but these factors are not exposed in this protocol.

Reddy et al [Page 9]

 DASL

 Each query grammar supported by DASL defines its own syntax for
 expressing the possible query schema. A client retrieves the schema
 for a given query grammar on an arbiter resource with a given scope by
 invoking the SEARCH method on that arbiter, with that grammar and
 scope, with a query whose DAV:select element includes the
 DAV:queryschema property. This property is defined only in the context
 of such a search, a server SHOULD not treat it as defined in the
 context of a PROPFIND on the scope. The content of this property is an
 XML element whose name and syntax depend upon the grammar, and whose
 value may (and likely will) vary depending upon the grammar, arbiter,
 and scope.

 The query schema for DAV:basicsearch is defined in section 5.19.

4.1 The DAV:queryschema Property

 <!ELEMENT queryschema ANY >

4.1.1 Example of query schema discovery

 In this example, the arbiter is recipes.com, the grammar is
 DAV:basicsearch , the scope is also recipes.com.SEARCH / HTTP/1.1
 Host: recipes.com
 Content-Type: application/xml
 Connection: Close
 Content-Length: xxx

 <?xml version="1.0"?>
 <D:searchrequest xmlns:D="DAV:" >
 <D:basicsearch>
 <D:select>
 <D:queryschema/>
 </D:select>

 <D:from><D:scope><D:href>http://recipes.com</d:href></D:scope></D:from>
 </D:basicsearch>
 </D:searchrequest> Response:HTTP/1.1 207 Multistatus
 Content-Type: application/xml
 Content-Length: xxx

 <?xml version="1.0"?>
 <D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://recipes.com</D:href>
 <D:propstat>
 <D:prop>
 <D:querygrammar>
 <D:basicsearchschema>
 See section 5.19.9 for actual contents

 </D:basicsearchschema>
 </D:querygrammar>
 </D:prop>

Reddy et al [Page 10]

 DASL

 <D:status>HTTP/1.1 200 Okay</D:status>
 </D:propstat>
 </D:response>
 </D:multistatus>

5 The DAV:basicsearch Grammar

5.1 Introduction

 DAV:basicsearch uses an extensible XML syntax that allows clients to
 express search requests that are generally useful for WebDAV
 scenarios. DASL-extended servers MUST accept this grammar, and MAY
 accept others grammars.

 DAV:basicsearch has several components:
 * DAV:select provides the result record definition.
 * DAV:from defines the scope.
 * DAV:where defines the criteria.
 * DAV:orderby defines the sort order of the result set.
 * DAV:limit provides constraints on the query as a whole.

Reddy et al [Page 11]

5.2 The DAV:basicsearch DTD

 <!ELEMENT basicsearch (select, from, where?, orderby?, limit?) >

 <!ELEMENT select (allprop | prop) >

 <!ELEMENT from (scope) >
 <!ELEMENT scope (href, depth?) ><!ENTITY %comp_ops "eq | lt | gt|
 lte | gte">
 <!ENTITY %log_ops "and | or | not">
 <!ENTITY %special_ops "isdefined">
 <!ENTITY %string_ops "like">
 <!ENTITY %content_ops "contains">

 <!ENTITY %all_ops "%comp_ops; | %log_ops; | %special_ops;
 |%string_ops; | %content_ops;"><!ELEMENT where (%all_ops;) >

 <!ELEMENT and ((%all_ops;) +) >

 <!ELEMENT or ((%all_ops;) +) >

 <!ELEMENT not (%all_ops;) >

 <!ELEMENT lt (prop , literal) >
 <!ATTLIST lt casesensitive (1|0) "1" >

 <!ELEMENT lte (prop , literal) >
 <!ATTLIST lte casesensitive (1|0) "1" >

 <!ELEMENT gt (prop , literal) >
 <!ATTLIST gt casesensitive (1|0) "1" >

 <!ELEMENT gte (prop , literal) >
 <!ATTLIST gte casesensitive (1|0) "1" >

 <!ELEMENT eq (prop , literal) >
 <!ATTLIST eq casesensitive (1|0) "1" >

 <!ELEMENT literal (#PCDATA)>
 <!ATTLIST literal xml:space (default|preserve) preserve >

 <!ELEMENT isdefined (prop) >
 <!ELEMENT like (prop, literal) >
 <!ELEMENT contains (#PCDATA)>

 <!ELEMENT orderby (order+) >
 <!ELEMENT order (prop, (ascending | descending)?)

 <!ATTLIST order casesensitive (1|0) "1" >
 <!ELEMENT ascending EMPTY>
 <!ELEMENT descending EMPTY>

 <!ELEMENT limit (nresults) >
 <!ELEMENT nresults (#PCDATA) >

Reddy et al [Page 12]

 DASL

5.2.1 Example Query

 This query retrieves the content length values for all resources
 located under the server's "/container1/" URI namespace whose length
 exceeds 10000.<d:searchrequest>
 <d:basicsearch>
 <d:select>
 <d:prop><d:getcontentlength/></d:prop>
 </d:select>
 <d:from>
 <d:scope>
 <d:href>/container1/</d:href>
 <d:depth>infinity</d:depth>
 </d:scope>
 </d:from>
 <d:where>
 <d:gt>
 <d:prop><d:getcontentlength/></d:prop>
 <d:literal>10000</d:literal>
 </d:gt>
 </d:where>
 <d:orderby>
 <d:order>
 <d:prop><d:getcontentlength/><d:prop>
 <d:ascending/>
 </d:order>
 </d:orderby>
 </d:basicsearch>
 </d:searchrequest>

5.3 DAV:select

 DAV:select defines the result record, which is a set of properties and
 values. This document defines two possible values: DAV:allprop and
 DAV:prop , both defined in [WebDAV].

 If the value is DAV:allprop , the result record for a given resource
 includes all the properties for that resource.

 If the value is DAV:prop , then the result record for a given resource
 includes only those properties named by the DAV:prop element. Each
 property named by the DAV:prop element must be referenced in the
 Multistatus response.

Reddy et al [Page 13]

 DASL

The rules governing the status codes for each property match those of
 the PROPFIND method defined in [WebDAV].

5.4 DAV:from

 DAV:from defines the query scope. This contains exactly one DAV:scope
 element. The scope element contains a mandatory DAV:href element and
 an optional DAV:depth element.

 DAV:href indicates the URI for a collection to use as a scope.

 When the scope is a collection, if DAV:depth is "0", the search
 includes only the collection. When it is "1", the search includes the
 (toplevel) members of the collection. When it is "infinity", the
 search includes all recursive members of the collection.

5.4.1 Relationship to the Request-URI

 If the DAV:scope element is an absolute URI, the scope is exactly that
 URI.

 If the DAV:scope element is a relative URI, the scope is taken to be
 relative to the request-URI.

5.4.2 Scope

 A Scope can be an arbitrary URI.

 Servers, of course, may support only particular scopes. This may
 include limitations for particular schemes such as "http:" or "ftp:"
 or certain URI namespaces.

 If a scope is given that is not supported the server MUST respond with
 a 400 status code that includes a Multistatus error. A scope in the
 query appears as a resource in the response and must include an
 appropriate status code indicating its validity with respect to the
 search arbiter.

 Example:HTTP/1.1 400 Bad Request
 Content-Type: text/xml
 Content-Length: 428

 <?xml version="1.0" ?>
 <d:multistatus xmlns:D="DAV:" xmlns:F="FOO:" >
 <d:response>
 <d:href>http://www.foo.com/scope1</d:href>
 <d:status>HTTP/1.1 502 Bad Gateway</d:status>
 </d:response>
 </d:multistatus> This example shows the response if there is a scope

 error. The response provides a Multistatus with a status for the
 scope. In this case, the scope cannot be reached because the server
 cannot search another server (502).

Reddy et al [Page 14]

 DASL

 5.5 DAV:where

 DAV:where element defines the search condition for inclusion of
 resources in the result set. The value of this element is an XML
 element that defines a search operator that evaluates to one of the
 Boolean truth values TRUE, FALSE, or UNKNOWN. The search operator
 contained by DAV:where may itself contain and evaluate additional
 search operators as operands, which in turn may contain and evaluate
 additional search operators as operands, etc. recursively.

5.5.1 Use of Three-Valued Logic in Queries

 Each operator defined for use in the where clause that returns a
 Boolean value MUST evaluate to TRUE, FALSE, or UNKNOWN. The resource
 under scan is included as a member of the result set if and only if
 the search condition evaluates to TRUE.

 Consult Appendix A for details on the application of three-valued
 logic in query expressions.

5.5.2 Handling Optional operators

 If a query provides an operator that is not supported by the server,
 then the server MUST respond with a 422 (Unprocessable Entity) status
 code.

5.5.3 Treatment of NULL Values

 If a SEARCH PROPFIND for a property value would yield a 404 or 403
 response for that property, then that property is considered NULL.

 NULL values are "less than" all other values in comparisons.

 Empty strings (zero length strings) are not NULL values. An empty
 string is "less then" a string with length greater than zero.

 The DAV:isdefined operator is defined to test if the value of a
 property is NULL.

5.5.4 Example: Testing for Equality

 The example shows a single operator (DAV:eq) applied in the
 criteria.<d:where>
 <d:eq>
 <d:prop> <d:getcontentlength/> </d:prop>
 <d:literal> 100 </d:literal>
 </d:eq>

 </d:where>

Reddy et al [Page 15]

 DASL

5.5.5 Example: Relative Comparisons

 The example shows a more complex operation involving several operators
 (DAV:and , DAV:eq , DAV:gt) applied in the criteria. This DAV:where
 expression matches those resources that are "image/gifs" over 4K in
 size.<D:where>
 <D:and>
 <D:eq>
 <D:prop> <D:getcontenttype/> </D:prop>
 <D:literal> image/gif </D:literal>
 </D:eq>
 <D:gt>
 <D:prop> <D:getcontentlength/> </D:prop>
 <D:literal> 4096 </D:literal>
 </D:gt>
 </D:and>

 </D:where>

5.6 DAV:orderby

 The DAV:orderby element specifies the ordering of the result set. It
 contains one or more DAV:order elements, each of which specifies a
 comparison between two items in the result set. Informally, a
 comparison specifies a test that determines whether one resource
 appears before another in the result set. Comparisons are applied in
 the order they occur in the DAV:orderby element, earlier comparisons
 being more significant.

 The comparisons defined here use only a single property from each
 resource, compared using the same ordering as the DAV:lt operator
 (ascending) or DAV:gt operator (descending). If neither direction is
 specified, the default is DAV:ascending .

 In the context of the DAV:orderby element, null values are considered
 to collate before any actual (i.e., non null) value, including strings
 of zero length (as in ANSI standard SQL, [ANSISQL]).

5.6.1 Comparing Natural Language Strings.

 Comparisons on strings take into account the language defined for that
 property. Clients MAY specify the language using the xml:lang
 attribute. If no language is specified either by the client or defined
 for that property by the server or if a comparison is performed on
 strings of two different languages, the results are undefined.

 The DAV:casesensitive attribute may be used to indicate
 case-sensitivity for comparisons.

Reddy et al [Page 16]

 DASL

 5.6.2 Example of Sorting

 This sort orders first by last name of the author, and then by size,
 in descending order, so that the largest works appear first.
 <d:orderby>
 <d:order>
 <d:prop><r:lastname/></d:prop>
 <d:ascending/>
 </d:order>
 <d:order>
 <d:prop><d:getcontentlength/></d:prop>
 <d:descending/>
 </d:order>
 </d:orderby>

5.7 Boolean Operators: DAV:and , DAV:or , and DAV:not

 The DAV:and operator performs a logical AND operation on the
 expressions it contains.

 The DAV:or operator performs a logical OR operation on the values it
 contains.

 The DAV:not operator performs a logical NOT operation on the values it
 contains.

5.8 DAV:eq

 The DAV:eq operator provides simple equality matching on property
 values.

 The DAV:casesensitive attribute may be used with this element.

5.9 DAV:lt , DAV:lte , DAV:gt , DAV:gte

 The DAV:lt , DAV:lte , DAV:gt , and DAV:gte operators provide
 comparisons on property values, using less-than, less-than or equal,
 greater-than, and greater-than or equal respectively. The
 DAV:casesensitive attribute may be used with these elements.

5.10 DAV:literal

 DAV:literal allows literal values to be placed in an expression.

 Because white space in literal values is significant in comparisons,
 DAV:literal makes use of the xml:space attribute to identify this
 significance. The default value of this attribute for DAV:literal is
 preserve. Consult section 2.10 of [XML] for more information on the
 use of this attribute.

Reddy et al [Page 17]

 DASL

5.11 DAV:isdefined

 The DAV:isdefined operator allows clients to determine whether a
 property is defined on a resource. The meaning of "defined on a
 resource" is found in section 5.5.3.

 Example:
 <d:isdefined>
 <d:prop><x:someprop/></d:prop>
 </d:isdefined>

 The DAV:isdefined operator is optional.

5.12 DAV:like

 The DAV:like is an optional operator intended to give simple
 wildcard-based pattern matching ability to clients.

 The operator takes two arguments.

 The first argument is a DAV:prop element identifying a single property
 to evaluate.

 The second argument is a DAV:literal element that gives the pattern
 matching string.

5.12.1 Syntax for the Literal Pattern

 Pattern := [wildcard] 0*(text [wildcard])
 wildcard := exactlyone | zeroormore
 text := 1*(<octet> | escapesequence)
 exactlyone : = "?"
 zeroormore := "%"
 escapechar := "\"
 escapesequence := "\" (exactlyone | zeroormore | escapechar) The
 value for the literal is composed of wildcards separated by segments
 of text. Wildcards may begin or end the literal. Wildcards may not be
 adjacent.

 The "?" wildcard matches exactly one character.

 The "%" wildcard matches zero or more characters

 The "\" character is an escape sequence so that the literal can
 include "?" and "%". To include the "\" character in the pattern, the
 escape sequence "\\" is used..

5.12.2 Example of DAV:like

 This example shows how a client might use DAV:like to identify those
 resources whose content type was a subtype of image.<D:where>
 <D:like>
 <D:prop><D:getcontenttype/></D:prop>
 <D:literal>image%</D:literal>
 </D:like>

Reddy et al [Page 18]

 DASL

 </D:where>

5.13 DAV:contains

 The DAV:contains operator is an optional operator that provides
 content-based search capability. This operator implicitly searches
 against the text content of a resource, not against content of
 properties. The DAV:contains operator is intentionally not overly
 constrained, in order to allow the server to do the best job it can in
 performing the search.

 The DAV:contains operator evaluates to a Boolean value. It evaluates
 to TRUE if the content of the resource satisfies the search.
 Otherwise, It evaluates to FALSE.

 Within the DAV:contains XML element, the client provides a phrase: a
 single word or whitespace delimited sequence of words. Servers MAY
 ignore punctuation in a phrase. Case-sensitivity is left to the
 server.

 The following things may or may not be done as part of the search:
 Phonetic methods such as "soundex" may or may not be used. Word
 stemming may or may not be performed. Thesaurus expansion of words may
 or may not be done. Right or left truncation may or may not be
 performed. The search may be case insensitive or case sensitive. The
 word or words may or may not be interpreted as names. Multiple words
 may or may not be required to be adjacent or "near" each other.
 Multiple words may or may not be required to occur in the same order.
 Multiple words may or may not be treated as a phrase. The search may
 or may not be interpreted as a request to find documents "similar" to
 the string operand.

 The DAV:score property is intended to be useful to rank documents
 satisfying the DAV:contains operator.

5.13.1 Examples

 The example below shows a search for the phrase "Peter Forsberg".

 Depending on its support for content-based searching, a server MAY
 treat this as a search for documents that contain the words "Peter"
 and "Forsberg".<D:where>
 <D:contains>Peter Forsberg</D:contains>
 </D:where> The example below shows a search for resources that contain
 "Peter" and "Forsberg".<D:where>
 <D:and>
 <D:contains>Peter</D:contains>
 <D:contains>Forsberg</D:contains>
 </D:and>

 </D:where>

Reddy et al [Page 19]

 DASL

 5.14 The DAV:limit XML Element

 <!ELEMENT limit (nresults) > The DAV:limit XML element contains
 requested limits from the client to limit the size of the reply or
 amount of effort expended by the server.

5.15 The DAV:nresults XML Element

 <!ELEMENT nresults (#PCDATA)> ;only digits The DAV:nresults XML
 element contains a requested maximum number of records to be returned
 in a reply. The server MAY disregard this limit. The value of this
 element is an integer.

5.16 The DAV:casesensitive XML attribute

 The DAV:casesensitive attribute allows clients to specify
 case-sensitive or case-insensitive behavior for DAV:basicsearch
 operators.

 The possible values for DAV:casesensitive are "1" or "0". The "1"
 value indicates case-sensitivity. The "0" value indicates
 case-insensitivity. The default value is server-specified.

 Support for the DAV:casesensitive is optional. A server should respond
 with an error 422 if the DAV:casesensitive attribute is used but
 cannot be supported.

5.17 The DAV:score Property

 <!ELEMENT score (#PCDATA)> The DAV:score XML element is a synthetic
 property whose value is defined only in the context of a query result
 where the server computes a score, e.g. based on relevance. It may be
 used in DAV:select or DAV:orderby elements. Servers SHOULD support
 this property. The value is a string representing the score, an
 integer from zero to 10000 inclusive, where a higher value indicates a
 higher score (e.g. more relevant).

 Clients should note that, in general, it is not meaningful to compare
 the numeric values of scores from two different queries unless both
 were executed by the same underlying search system on the same
 collection of resources.

5.18 The DAV:iscollection Property

 <!ELEMENT iscollection (#PCDATA)> The DAV:iscollection XML element is
 a synthetic property whose value is defined only in the context of a
 query.

Reddy et al [Page 20]

 DASL

 The property is TRUE (the literal string "1") of a resource if and only
 if a PROPFIND of the DAV:resourcetype property for that resource would
 contain the DAV:collection XML element. The property is FALSE (the
 literal string "0") otherwise.

 Rationale : This property is provided in lieu of defining generic
 structure queries, which would suffice for this and for many more
 powerful queries, but seems inappropriate to standardize at this time.

5.18.1 Example of DAV:iscollection

 This example shows a search criterion that picks out all and only the
 resources in the scope that are collections.<D:where>
 <D:eq>
 <D:prop><D:iscollection></D:prop>
 <D:literal>1<D:literal>
 </D:eq>
 </D:where>

5.19 QuerySchema for DAV:basicsearch

 The DAV:basicsearch grammar defines a search criteria that is a
 Boolean-valued expression, and allows for an arbitrary set of
 properties to be included in the result record. The result set may be
 sorted on a set of property values. Accordingly the DTD for schema
 discovery for this grammar allows the server to express:
 1 the set of optional operators defined by the resource.

5.19.1 DTD for DAV:basicsearch QSD

 <!ELEMENT basicsearchschema (properties, operators)>
 <!ELEMENT properties (propdesc*)>
 <!ELEMENT propdesc (prop, ANY)>
 <!ELEMENT operators (opdesc*)>
 <!ELEMENT opdesc ANY>
 <!ELEMENT operand_property EMPTY>
 <!ELEMENT operand_literal EMPTY> The DAV:properties element
 holds a list of descriptions of properties.

 The DAV:operators element describes the optional operators that may be
 used in a DAV:where element.

5.19.2 DAV:propdesc Element

 Each instance of a DAV:propdesc element describes the property or
 properties in the DAV:prop element it contains. All subsequent
 elements are descriptions that apply to those properties. All
 descriptions are optional and may appear in any order. Servers SHOULD
 support all the descriptions defined here, and MAY define others.

Reddy et al [Page 21]

 DASL

 DASL defines five descriptions. The first, DAV:datatype , provides a
 hint about the type of the property value, and may be useful to a user
 interface prompting for a value. The remaining four (DAV:searchable ,
 DAV:selectable , DAV:sortable , and DAV:casesensitive) identify
 portions of the query (DAV:where , DAV:select , and DAV:orderby ,
 respectively). If a property has a description for a section, then the
 server MUST allow the property to be used in that section. These
 descriptions are optional. If a property does not have such a
 description, or is not described at all, then the server MAY still
 allow the property to be used in the corresponding section.

5.19.3 The DAV:datatype Property Description

 The DAV:datatype element contains a single XML element that provides a
 hint about the domain of the property, which may be useful to a user
 interface prompting for a value to be used in a query. The namespace
 for expressing a DASL defined data type is
 "urn:uuid:C2F41010-65B3-11d1-A29F-00AA00C14882/".<!ELEMENT datatype
 ANY > DASL defines the following data type elements: Name example
 boolean 1, 0
 string Foobar
 dateTime.iso8601tz 1994-11-05T08:15:5Z
 float .314159265358979E+1
 int -259, 23

 If the data type of a property is not given, then the data type
 defaults to string.

5.19.4 The DAV:searchable Property Description

 <!ELEMENT searchable EMPTY > If this element is
 present, then the server MUST allow this property to appear within a
 DAV:where element where an operator allows a property. Allowing a
 search does not mean that the property is guaranteed to be defined on
 every resource in the scope, it only indicates the server's
 willingness to check.

5.19.5 The DAV:selectable Property Description

 <!ELEMENT selectable EMPTY > This element indicates
 that the property may appear in the DAV:select element.

5.19.6 The DAV:sortable Property Description

 This element indicates that the property may appear in the DAV:orderby
 element<!ELEMENT sortable EMPTY >

Reddy et al [Page 22]

 DASL

 5.19.7 The DAV:casesensitive Property Description

 This element only applies to properties whose data type is "string" as
 per the DAV:datatype property description. Its presence indicates that
 compares performed for searches, and the comparisons for ordering
 results on the string property will be case sensitive. (The default is
 case insensitive.)<!ELEMENT casesensitive EMPTY >

5.19.8 The DAV:operators XML Element

 The DAV:operators element describes every optional operator supported
 in a query. (Mandatory operators are not listed since they are
 mandatory and permit no variation in syntax.). All optional operators
 that are supported MUST be listed in the DAV:operators element. The
 listing for an operator consists of the operator (as an empty
 element), followed by one element for each operand. The operand MUST
 be either DAV:operand _property or DAV:operand _literal, which
 indicate that the operand in the corresponding position is a property
 or a literal value, respectively. If an operator is polymorphic
 (allows more than one operand syntax) then each permitted syntax MUST
 be listed separately.
 <D:propdesc><D:like/><D:operand_property/><D:operand_literal/></D:propdesc>

5.19.9 Example of Query Schema for DAV:basicsearch

 <D:basicsearchschema xmlns:D="DAV:"
 xmlns:t="urn:uuid:C2F41010-65B3-11d1-A29F-00AA00C14882/"
 xmlns:J="http://jennicam.org">
 <D:properties>
 <D:propdesc>
 <D:prop><D:getcontentlength/></D:prop>
 <D:datatype><t:int></D:datatype>
 <D:searchable/><D:selectable/><D:sortable/>
 </D:propdesc>
 <D:propdesc>
 <D:prop><D:getcontenttype/><D:displayname></D:prop>
 <D:searchable/><D:selectable/> <D:sortable/>
 </D:propdesc>
 <D:propdesc>
 <D:prop><J:fstop/></D:prop>
 <D:selectable/>
 </D:propdesc>
 </D:properties>
 <D:operators>
 <D:opdesc>
 <D:isdefined/><D:operand_property/>
 </D:opdesc>
 <D:opdesc>

 <D:like/><D:operand_property/><D:operand_literal/>
 </D:opdesc>
 </D:operators>
 </D:basicsearchschema> This response lists four properties. The

Reddy et al [Page 23]

 DASL

 datatype of the last three properties is not given, so it defaults to
 string. All are selectable, and the first three may be searched. All
 but the last may be used in a sort. Of the optional DAV operators,
 DAV:isdefined and DAV:like are supported.

 Note: The schema discovery defined here does not provide for discovery
 of supported values of the DAV:casesensitive attribute. This may
 require that the reply also list the mandatory operators.

6 Internationalization Considerations

 Clients have the opportunity to tag properties when they are stored in
 a language. The server SHOULD read this language-tagging by examining
 the xml:lang attribute on any properties stored on a resource.

 The xml:lang attribute specifies a nationalized collation sequence
 when properties are compared.

 Comparisons when this attribute differs have undefined order.

7 Security Considerations

 This section is provided to detail issues concerning security
 implications of which DASL applications need to be aware. All of the
 security considerations of HTTP/1.1 also apply to DASL. In addition,
 this section will include security risks inherent in searching and
 retrieval of resource properties and content.

 A query must not allow one to retrieve information about values or
 existence of properties that one could not obtain via PROPFIND. (e.g.
 by use in DAV:orderby , or in expressions on properties.)

 A server should prepare for denial of service attacks. For example a
 client may issue a query for which the result set is expensive to
 calculate or transmit because many resources match or must be
 evaluated. 7.1 Implications of XML External Entities

 XML supports a facility known as "external entities", defined in
section 4.2.2 of [REC-XML], which instruct an XML processor to

 retrieve and perform an inline include of XML located at a particular
 URI. An external XML entity can be used to append or modify the
 document type declaration (DTD) associated with an XML document. An
 external XML entity can also be used to include XML within the content
 of an XML document. For non-validating XML, such as the XML used in
 this specification, including an external XML entity is not required
 by [REC-XML]. However, [REC-XML] does state that an XML processor may,
 at its discretion, include the external XML entity.

Reddy et al [Page 24]

 DASL

 External XML entities have no inherent trustworthiness and are subject
 to all the attacks that are endemic to any HTTP GET request.
 Furthermore, it is possible for an external XML entity to modify the
 DTD, and hence affect the final form of an XML document, in the worst
 case significantly modifying its semantics, or exposing the XML
 processor to the security risks discussed in [RFC2376]. Therefore,
 implementers must be aware that external XML entities should be
 treated as untrustworthy.

 There is also the scalability risk that would accompany a widely
 deployed application which made use of external XML entities. In this
 situation, it is possible that there would be significant numbers of
 requests for one external XML entity, potentially overloading any
 server which fields requests for the resource containing the external
 XML entity.

8 Scalability

 Query grammars are identified by URIs. Applications SHOULD not attempt
 to retrieve these URIs even if they appear to be retrievable (for
 example, those that begin with "http://")

9 Authentication

 Authentication mechanisms defined in WebDAV will also apply to DASL.

10 IANA Considerations

 This document uses the namespace defined by [WebDAV] for XML elements.
 All other IANA considerations mentioned in [WebDAV] also applicable to
 DASL

11 Copyright

 To be supplied.

12 Intellectual Property

 To be supplied.

13 References

13.1 Normative References

 [DASLREQ] J. Davis, S. Reddy, J. Slein, "Requirements for DAV
 Searching and Locating", Feb 24, 1999, internet-draft,
 work-in-progress, draft-dasl-requirements-01.txt

https://datatracker.ietf.org/doc/html/rfc2376
https://datatracker.ietf.org/doc/html/draft-dasl-requirements-01.txt

Reddy et al [Page 25]

 DASL

 [RFC2068] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, U.C.
 Irvine, DEC, MIT/LCS, January 1997.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels." RFC 2119, BCP 14. Harvard University. March,
 1997.

 [RFC2376] E. Whitehead, M. Murata, "XML Media Types". RFC 2376, July
 1998.

 [WebDAV] Y. Goland, E.J. Whitehead, A. Faizi, S.R. Carter, D. Jenson,
 "HTTP Extensions for Distributed Authoring -- WebDAV", RFC 2518,
 February 1999.

 [XML] T. Bray, J. Paoli, C. M. Sperberg-McQueen, "Extensible Markup
 Language (XML) 1.0", September 16, 1998, W3C Recommendation.

 [XMLNS] T. Bray, D. Hollander, A. Layman, "Namespaces in XML",
 14-January-1999, W3C Recommendation.

http://www.w3.org/TR/REC-xml-names/ .

13.2 Non-Normative References

 [ANSISQL] ANSI, "Information Systems - Database Language - SQL
 (includes ANSI X3.168-1989)", ANSI X3.135-1992 (R1998), 1992.

14 Author's Addresses

 Saveen Reddy
 Microsoft
 One Microsoft Way
 Redmond WA, 9085-6933
 Email:saveenr@microsoft.com

 Dale Lowry
 Novell
 1555 N. Technology Way
 M/S ORM-M-314
 Orem, UT 84097
 Email: dlowry@novell.com

 Surendra Reddy
 Oracle Corporation
 600 Oracle Parkway, M/S 6op3,
 Redwoodshores, CA 94065
 Email: skreddy@us.oracle.com
 Phone:(650) 506 5441

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2376
https://datatracker.ietf.org/doc/html/rfc2518
http://www.w3.org/TR/REC-xml-names/

 Rick Henderson
 Netscape

Reddy et al [Page 26]

 DASL

 Email: rickh@netscape.com

 Jim Davis
 CourseNet Systems
 San Francisco, CA
 Email: jrd3@alum.mit.edu

 Alan Babich
 Filenet
 3565 Harbor Blvd.
 Costa Mesa, CA 92626
 714-966-3403
 Email: ababich@filenet.com

15 APPENDICES

Three-Valued Logic in DAV:basicsearch

 ANSI standard three valued logic is used when evaluating the search
 condition (as defined in the ANSI standard SQL specifications, for
 example in ANSI X3.135-1992, section 8.12, pp. 188-189, section 8.2,
 p. 169, General Rule 1)a), etc.).

 ANSI standard three valued logic is undoubtedly the most widely
 practiced method of dealing with the issues of properties in the
 search condition not having a value (e.g., being null or not defined)
 for the resource under scan, and with undefined expressions in the
 search condition (e.g., division by zero, etc.). Three valued logic
 works as follows.

 Undefined expressions are expressions for which the value of the
 expression is not defined. Undefined expressions are a completely
 separate concept from the truth value UNKNOWN, which is, in fact, well
 defined. Property names and literal constants are considered
 expressions for purposes of this section. If a property in the current
 resource under scan has not been set to a value (either because the
 property is not defined for the current resource, or because it is
 null for the current resource), then the value of that property is
 undefined for the resource under scan. DASL 1.0 has no arithmetic
 division operator, but if it did, division by zero would be an
 undefined arithmetic expression.

 If any subpart of an arithmetic, string, or datetime subexpression is
 undefined, the whole arithmetic, string, or datetime subexpression is
 undefined.

Reddy et al [Page 27]

 DASL

 There are no manifest constants to explicitly represent undefined
 number, string, or datetime values.

 Since a Boolean value is ultimately returned by the search condition,
 arithmetic, string, and datetime expressions are always arguments to
 other operators. Examples of operators that convert arithmetic,
 string, and datetime expressions to Boolean values are the six
 relational operators ("greater than", "less than", "equals", etc.). If
 either or both operands of a relational operator have undefined
 values, then the relational operator evaluates to UNKNOWN. Otherwise,
 the relational operator evaluates to TRUE or FALSE, depending upon the
 outcome of the comparison.

 The Boolean operators DAV:and , DAV:or and DAV:not are evaluated
 according to the following rules:

 UNKNOWN and UNKNOWN = UNKNOWN

 UNKNOWN or UNKKNOWN = UNKNOWN

 not UNKNOWN = UNKNOWN

 UNKNOWN and TRUE = UNKNOWN

 UNKNOWN and FALSE = FALSE

 UNKNOWN and UNKNOWN = UNKNOWN

 UNKNOWN or TRUE = TRUE

 UNKNOWN or FALSE = UNKNOWN

 UNKNOWN or UNKNOWN = UNKNOWN

16 Change History

 Feb 14, 1998
 Initial Draft
 Feb 28, 1998
 Referring to DASL as an extension to HTTP/1.1 rather than DAV

 Added new sections "Notational Conventions", "Protocol Model",
 "Security Considerations"
 Changed section 3 to "Elements of Protocol"
 Added some stuff to introduction
 Added "result set" terminology
 Added "IANA Considerations".

 Mar 9, 1998
 Moved sub-headings of "Elements of Protocol" to first level and
 removed "Elements of Protocol" Heading.

Reddy et al [Page 28]

 DASL

 Added an sentence in introduction explaining that this is a "sketch"
 of a protocol.
 Mar 11, 1998
 Added orderby, data typing, three valued logic, query schema
 property, and element definitions for schema for basicsearch.
 April 8, 1998
 - made changes based on last weekÆs DASL BOF.
 May 8, 1998
 Removed most of DAV:searcherror ; converted to DAV:searchredirect

 Altered DAV:basicsearch grammar to use avoid use of ANY in DTD
 June 17, 1998
 -Added details on Query Schema Discovery

 -Shortened list of data types
 June 23, 1998
 moved data types before change history

 rewrote the data types section
 removed the casesensitive element and replace with the casesensitive
 attribute
 added the casesensitive attribute to the DTD for all operations that
 might work on a string
 Jul 20, 1998
 A series of changes. See AuthorÆs meeting minutes for details.
 July 28, 1998
 Changes as per author's meeting. QSD uses SEARCH, not PROPFIND.

 Moved text around to keep concepts nearby.
 Boolean literals are 1 and 0, not T and F.
 contains changed to contentspassthrough.
 Renamed rank to score.
 July 28, 1998
 Added Dale Lowry as Author
 September 4, 1998
 Added 422 as response when query lists unimplemented operators.

 DAV:literal declares a default value for xml:space, 'preserve' (see
 XML spec, section 2.10)
 moved to new XML namespace syntax
 September 22, 1998
 Changed "simplesearch" to "basicsearch"

 Changed isnull to isdefined
 Defined NULLness as having a 404 or 403 response
 used ENTITY syntax in DTD
 Added redirect

 October 9, 1998
 Fixed a series of typographical and formatting errors.

 Modified the section of three-valued logic to use a table rather than

Reddy et al [Page 29]

 DASL

 a text description of the role of UNKNOWN in expressions.
 November 2, 1998
 Added the DAV:contains operator.

 Removed the DAV:contentpassthrough operator.
 November 18, 1998
 Various author comments for submission
 June 3, 1999
 Cosmetic and minor editorial changes only. Fix nits reported by
 Jim Whitehead in email of April 26, 1999. Converted to HTML from
 Word 97, manually.

Reddy et al Expires December 24 1999 [Page 30]

