
Internet Engineering Task Force Sally Floyd
INTERNET-DRAFT ICIR
draft-ietf-dccp-ccid2-10.txt Eddie Kohler
Expires: 10 September 2005 UCLA
 10 March 2005

Profile for DCCP Congestion Control ID 2:
TCP-like Congestion Control

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on 10 September 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Floyd/Kohler [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-10.txt
https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Expires: 10 September 2005 March 2005

Abstract

 This document contains the profile for Congestion Control Identifier
 2, TCP-like Congestion Control, in the Datagram Congestion Control
 Protocol (DCCP). CCID 2 should be used by senders who would like to
 take advantage of the available bandwidth in an environment with
 rapidly changing conditions, and who are able to adapt to the abrupt
 changes in the congestion window typical of TCP's Additive Increase
 Multiplicative Decrease (AIMD) congestion control.

Floyd/Kohler [Page 2]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 TO BE DELETED BY THE RFC EDITOR UPON PUBLICATION:

 Changes from draft-ietf-dccp-ccid2-07.txt:

 * Restrict the use of byte-counting to be at most as aggressive
 as the current TCP (without byte-counting).

 Changes from draft-ietf-dccp-ccid2-06.txt:

 * Moved three citations to Informational.

 * Added that "The sender SHOULD not attempt Ack Ratio
 renegotiations more than once per round-trip time."

 * Specified that ssthresh is never less than two, instead of one.

 * Added references to RFC 2988 and RFC 2018.

 * Specify that the congestion window is only increased for packets
 that aren't ECN-marked.

 Changes from draft-ietf-dccp-ccid2-05.txt:

 * Changes to the discussion about how the sender infers that DCCP-
 Ack packets are lost. The sender does not know for sure whether a
 missing sequence number is for a dropped ACK packet or a dropped
 data packet. Our changes include a new appendix on "The Costs of
 Inferring Lost Ack Packets".

 * Minor editing for clarity, including some reordering of sections.

 * Added a section on response to idle and application-limited
 periods.

 * Clarifications on changing the Ack Ratio, based on feedback from
 Nils-Erik Mattsson.

 Changes from draft-ietf-dccp-ccid2-04.txt:

 * Minor editing, as follows:
 - Added a note that CCID2 implementations MAY check for apps that
 are
 gaming with regard to the packet size.
 - Deleted a statement that the maximum packet size is 1500 bytes.
 - Added that the receiver MAY know the round-trip time from its
 role as
 - Added a note that the initial cwnd is up to four packets.

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-06.txt
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-04.txt

Floyd/Kohler [Page 3]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 * Added Intellectual Property Notice.

 Changes from draft-ietf-dccp-ccid2-03.txt:

 * Disallow direct tracking of TCP standards.

 Changes from draft-ietf-dccp-ccid2-02.txt:

 * Added to the section on application requirements.

 * Changed the default Ack Ratio to be two, as recommended for TCP.

 * Added a paragraph about packet sizes.

 Changes from draft-ietf-dccp-ccid2-01.txt:

 * Added "Security Considerations" and "IANA Considerations"
 sections.

 * Refer explicitly to SACK-based TCP, and flesh out Section 3
 ("Congestion Control on Data Packets").

 * When cwnd < ssthresh, increase cwnd by one per newly acknowledged
 packet up to some limit, in line with TCP Appropriate Byte Counting.

 * Refined definition of quiescence.

 Changes from draft-ietf-dccp-ccid2-00.txt:

 * Said that the Acknowledgement Number reports the largest sequence
 number, not the most recent packet, for consistency with draft-ietf-

dccp-spec.

 * Added notes about ECN nonces for acknowledgements, and about
 dealing with piggybacked acknowledgements.

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-spec
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-spec

Floyd/Kohler [Page 4]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 Table of Contents

1. Introduction. 6
2. Conventions and Notation. 6
3. Usage . 6

3.1. Relationship with TCP. 7
3.2. Example Half-Connection. 8

4. Connection Establishment. 9
5. Congestion Control on Data Packets. 9

 5.1. Response to Idle and Application-limited
 Periods . 11

5.2. Response to Data Dropped and Slow Receiver 12
5.3. Packet Size. 12

6. Acknowledgements. 13
6.1. Congestion Control on Acknowledgements 13

 6.1.1. Detecting Lost and Marked
 Acknowledgements . 13

6.1.2. Changing Ack Ratio. 14
6.2. Acknowledgements of Acknowledgements 15

6.2.1. Determining Quiescence. 15
7. Explicit Congestion Notification. 16
8. Options and Features. 16
9. Security Considerations 16
10. IANA Considerations. 16

10.1. Reset Codes . 17
10.2. Option Types. 17
10.3. Feature Numbers . 17

11. Thanks . 17
A. Appendix: Derivation of Ack Ratio Decrease. 18

 B. Appendix: Cost of Loss Inference Mistakes to Ack
 Ratio. 18
 Normative References . 20
 Informative References . 21
 Authors' Addresses . 21
 Full Copyright Statement . 22
 Intellectual Property. 22

Floyd/Kohler [Page 5]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

1. Introduction

 This document contains the profile for Congestion Control Identifier
 2, TCP-like Congestion Control, in the Datagram Congestion Control
 Protocol (DCCP) [DCCP]. DCCP uses Congestion Control Identifiers,
 or CCIDs, to specify the congestion control mechanism in use on a
 half-connection.

 The TCP-like Congestion Control CCID sends data using a close
 variant of TCP's congestion control mechanisms, incorporating
 selective acknowledgements (SACK) [RFC 2018, RFC 3517]. CCID 2 is
 suitable for senders who can adapt to the abrupt changes in
 congestion window typical of TCP's Additive Increase Multiplicative
 Decrease (AIMD) congestion control, and particularly useful for
 senders who would like to take advantage of the available bandwidth
 in an environment with rapidly changing conditions. See Section 3
 for more on application requirements.

2. Conventions and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

 A DCCP half-connection consists of the application data sent by one
 endpoint and the corresponding acknowledgements sent by the other
 endpoint. The terms "HC-Sender" and "HC-Receiver" denote the
 endpoints sending application data and acknowledgements,
 respectively. Since CCIDs apply at the level of half-connections,
 we abbreviate HC-Sender to "sender" and HC-Receiver to "receiver" in
 this document. See [DCCP] for more discussion.

 For simplicity, we say that senders send DCCP-Data packets and
 receivers send DCCP-Ack packets. Both of these categories are meant
 to include DCCP-DataAck packets.

 The phrases "ECN-marked" and "marked" refer to packets marked ECN
 Congestion Experienced unless otherwise noted.

3. Usage

 CCID 2, TCP-like Congestion Control, is appropriate for DCCP flows
 that would like to receive as much bandwidth as possible over the
 long term, consistent with the use of end-to-end congestion control,
 and that can tolerate the large sending rate variations
 characteristic of AIMD congestion control, including halving of the
 congestion window in response to a congestion event.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc2119

Floyd/Kohler Section 3. [Page 6]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 Applications that simply need to transfer as much data as possible
 in as short a time as possible should use CCID 2. This contrasts
 with CCID 3, TCP-Friendly Rate Control (TFRC) Congestion Control
 [CCID 3 PROFILE], which is appropriate for flows that would prefer
 to minimize abrupt changes in the sending rate. For example, CCID 2
 is recommended over CCID 3 for streaming media applications that
 buffer a considerable amount of data at the application receiver
 before playback time, insulating the application somewhat from
 abrupt changes in the sending rate. Such applications could easily
 choose DCCP's CCID 2 over TCP itself, possibly adding some form of
 selective reliability at the application layer. CCID 2 is also
 recommended over CCID 3 for applications where halving the sending
 rate in response to congestion is not likely to interfere with
 application-level performance.

 An additional advantage of CCID 2 is that its TCP-like congestion
 control mechanisms are reasonably well-understood, with traffic
 dynamics quite similar to those of TCP. While the network research
 community is still learning about the dynamics of TCP after 15 years
 of its being the dominant transport protocol in the Internet, some
 applications might prefer the more well-known dynamics of TCP-like
 congestion control over that of newer congestion control mechanisms,
 which haven't yet met the test of widespread Internet deployment.

3.1. Relationship with TCP

 The congestion control mechanisms described here closely follow
 mechanisms standardized by the IETF for use in SACK-based TCP, and
 we rely partially on existing TCP documentation, such as RFC 793,

RFC 2581, RFC 3465, and RFC 3517. TCP congestion control continues
 to evolve, but CCID 2 implementations SHOULD wait for explicit
 updates to CCID 2 rather than track TCP's evolution directly.
 Differences between CCID 2 and straight TCP congestion control
 include the following:

 o CCID 2 applies congestion control to acknowledgements, a
 mechanism not currently standardized for use in TCP.

 o DCCP is a datagram protocol, so several parameters whose units
 are specified in bytes in TCP, such as the congestion window
 cwnd, have units of packets in DCCP.

 o As an unreliable protocol, DCCP never retransmits a packet, so
 congestion control mechanisms that distinguish retransmissions
 from new packets have been redesigned for the DCCP context.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc3517

Floyd/Kohler Section 3.1. [Page 7]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

3.2. Example Half-Connection

 This example shows the typical progress of a half-connection using
 CCID 2's TCP-like Congestion Control, not including connection
 initiation and termination. The example is informative, not
 normative.

 1. The sender sends DCCP-Data packets, where the number of packets
 sent is governed by a congestion window, cwnd, as in TCP. Each
 DCCP-Data packet uses a sequence number. The sender also sends
 an Ack Ratio feature option specifying the number of data
 packets to be covered by an Ack packet from the receiver; Ack
 Ratio defaults to two. The DCCP header's CCVal field is set to
 zero.

 Assuming that the half-connection is Explicit Congestion
 Notification (ECN) capable (the ECN Incapable feature is zero --
 the default), each DCCP-Data packet is sent as ECN-Capable with
 either the ECT(0) or the ECT(1) codepoint set, as described in

RFC 3540.

 2. The receiver sends a DCCP-Ack packet acknowledging the data
 packets for every Ack Ratio data packets transmitted by the
 sender. Each DCCP-Ack packet uses a sequence number and
 contains an Ack Vector. The sequence number acknowledged in a
 DCCP-Ack packet is that of the received packet with the highest
 sequence number, rather than a TCP-like cumulative
 acknowledgement.

 The receiver returns the sum of received ECN Nonces via Ack
 Vector options, allowing the sender to probabilistically verify
 that the receiver is not misbehaving. DCCP-Ack packets from the
 receiver are also sent as ECN-Capable, since the sender will
 control the acknowledgement rate in a roughly TCP-friendly way
 using the Ack Ratio feature. There is little need for the
 receiver to verify the nonces of its DCCP-Ack packets, since the
 sender cannot get significant benefit from misreporting the ack
 mark rate.

 3. The sender continues sending DCCP-Data packets as controlled by
 the congestion window. Upon receiving DCCP-Ack packets, the
 sender examines their Ack Vectors to learn about marked or
 dropped data packets, and adjusts its congestion window
 accordingly. Because this is unreliable transfer, the sender
 does not retransmit dropped packets.

 4. Because DCCP-Ack packets use sequence numbers, the sender has
 some information about lost or marked DCCP-Ack packets. The

https://datatracker.ietf.org/doc/html/rfc3540

Floyd/Kohler Section 3.2. [Page 8]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 sender responds to lost or marked DCCP-Ack packets by modifying
 the Ack Ratio sent to the receiver.

 5. The sender acknowledges the receiver's acknowledgements at least
 once per congestion window. If both half-connections are
 active, the sender's acknowledgement of the receiver's
 acknowledgements is included in the sender's acknowledgement of
 the receiver's data packets. If the reverse-path half-
 connection is quiescent, the sender sends a DCCP-DataAck packet
 that includes an Acknowledgement Number in the header.

 6. The sender estimates round-trip times, either through keeping
 track of acknowledgement round-trip times as TCP does or through
 explicit Timestamp options, and calculates a TimeOut (TO) value
 much as the RTO (Retransmit Timeout) is calculated in TCP. The
 TO is used to determine when a new DCCP-Data packet can be
 transmitted when the sender has been limited by the congestion
 window and no feedback has been received from the receiver.

4. Connection Establishment

 Use of the Ack Vector is MANDATORY on CCID 2 half-connections, so
 the sender MUST send a "Change R(Send Ack Vector, 1)" option to the
 receiver as part of connection establishment. The sender SHOULD NOT
 send data until it has received the corresponding "Confirm L(Send
 Ack Vector, 1)" from the receiver, except possibly for data included
 on the initial DCCP-Request packet.

5. Congestion Control on Data Packets

 CCID 2's congestion control mechanisms are based on those for SACK-
 based TCP [RFC 3517], since the Ack Vector provides all the
 information that might be transmitted in SACK options.

 A CCID 2 data sender maintains three integer parameters measured in
 packets.

 1. The congestion window "cwnd", which equals the maximum number of
 data packets allowed in the network at any time. ("Data packet"
 means any DCCP packet that contains user data: DCCP-Data, DCCP-
 DataAck, and occasionally DCCP-Request and DCCP-Response.)

 2. The slow-start threshold "ssthresh", which controls adjustments
 to cwnd.

 3. The pipe value "pipe", which is the sender's estimate of the
 number of data packets outstanding in the network.

https://datatracker.ietf.org/doc/html/rfc3517

Floyd/Kohler Section 5. [Page 9]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 These parameters are manipulated, and their initial values
 determined, according to SACK-based TCP's behavior, except that they
 are measured in packets, not bytes. The rest of this section
 provides more specific guidance.

 The sender MAY send a data packet when pipe < cwnd, but MUST NOT
 send a data packet when pipe >= cwnd. Every data packet sent
 increases pipe by 1.

 The sender reduces pipe as it infers that data packets have left the
 network, either by being received or by being dropped. In
 particular:

 1. Acked data packets. The sender reduces pipe by 1 for each data
 packet newly-acknowledged as received (Ack Vector State 0 or
 State 1) by some DCCP-Ack.

 2. Dropped data packets. The sender reduces pipe by 1 for each
 data packet it can infer as lost due to the DCCP equivalent of
 TCP's "duplicate acknowledgements". This depends on the
 NUMDUPACK parameter, the number of duplicate acknowledgements
 needed to infer a loss. The NUMDUPACK parameter is set to
 three, as is currently the case in TCP. A packet P is inferred
 to be lost, rather than delayed, when at least NUMDUPACK packets
 transmitted after P have been acknowledged as received (Ack
 Vector State 0 or 1) by the receiver. Note that the
 acknowledged packets following the hole may be DCCP-Acks or
 other non-data packets.

 3. Transmit timeouts. Finally, the sender needs transmit timeouts,
 handled like TCP's retransmission timeouts, in case an entire
 window of packets is lost. The sender estimates the round-trip
 time at most once per window of data, and uses the TCP
 algorithms for maintaining the average round-trip time, mean
 deviation, and timeout value [RFC 2988]. (If more than one
 measurement per round-trip time was used for these calculations,
 then the weights of the averagers would have to be adjusted, so
 that the average round-trip time is effectively derived from
 measurements over multiple round-trip times.) Because DCCP does
 not retransmit data, DCCP does not require TCP's recommended
 minimum timeout of one second. The exponential backoff of the
 timer is exactly as in TCP. When a transmit timeout occurs, the
 sender sets pipe to zero. The adjustments to cwnd and ssthresh
 are described below.

 The sender MUST NOT decrement pipe more than once per data packet.
 True duplicate acknowledgements, for example, MUST NOT affect pipe.
 Furthermore, the sender MUST NOT decrement pipe for non-data

https://datatracker.ietf.org/doc/html/rfc2988

Floyd/Kohler Section 5. [Page 10]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 packets, such as DCCP-Acks, even though the Ack Vector will contain
 information about them.

 Congestion events cause CCID 2 to reduce its congestion window. A
 congestion event contains at least one lost or marked packet. As in
 TCP, two losses or marks are considered to be part of a single
 congestion event when the second packet was sent before the loss or
 mark of the first packet was detected. As an approximation, a
 sender can consider two losses or marks to be part of a single
 congestion event when the packets were sent within one RTT estimate
 of one another, using an RTT estimate current at the time the
 packets were sent. For each congestion event, either indicated
 explicitly as an Ack Vector State 1 (ECN-marked) acknowledgement or
 inferred via "duplicate acknowledgements", cwnd is halved, then
 ssthresh is set to the new cwnd. Cwnd is never reduced below one
 packet. After a timeout, the slow-start threshold is set to cwnd/2,
 then cwnd is set to one packet. When halved, cwnd and ssthresh have
 their values rounded down, except that cwnd is never less than one
 and ssthresh is never less than two.

 When cwnd < ssthresh, meaning that the sender is in slow-start, the
 congestion window is increased by one packet for every two newly
 acknowledged data packets with Ack Vector State 0 (not ECN-marked),
 up to a maximum of Ack Ratio/2 packets per acknowledgement. This is
 a modified form of Appropriate Byte Counting [RFC 3465] that is
 consistent with TCP's current standard (which does not include byte-
 counting), but allows CCID 2 to increase as aggressively as TCP when
 CCID-2's Ack Ratio is greater than the default value of two. When
 cwnd >= ssthresh, the congestion window is increased by one packet
 for every window of data acknowledged without lost or marked
 packets. The cwnd parameter is initialized to at most four packets
 for new connections, following the rules from RFC 3390; the ssthresh
 parameter is initialized to an arbitrarily high value.

 Senders MAY use a form of rate-based pacing when sending multiple
 data packets liberated by a single ack packet, rather than sending
 all liberated data packets in a single burst.

5.1. Response to Idle and Application-limited Periods

 CCID 2 is designed to follow TCP's congestion control mechanisms to
 the extent possible, but TCP does not have complete standardization
 for its congestion control response to idle periods (when no data
 packets are sent) or to application-limited periods (when the
 sending rate is less than that allowed by cwnd). This section is a
 brief guide to the standards for TCP in this area.

https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc3390

Floyd/Kohler Section 5.1. [Page 11]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 For idle periods, RFC 2581 recommends that the TCP sender SHOULD
 slow-start after an idle period, where an idle period is defined as
 a period exceeding the timeout interval. RFC 2861, currently
 Experimental, suggests a slightly more moderate mechanism where the
 congestion window is halved for every round-trip time that the
 sender has remained idle.

 There are currently no standards governing TCP's use of the
 congestion window during an application-limited period. In
 particular, it is possible for TCP's congestion window to grow quite
 large during a long uncongested period when the sender is
 application-limited, sending at a low rate. RFC 2861 essentially
 suggests that TCP's congestion window not be increased during
 application-limited periods, when the congestion window is not being
 fully utilized.

5.2. Response to Data Dropped and Slow Receiver

 As described in [DCCP], the Data Dropped option lets an endpoint
 declare that a packet was dropped at the end host before delivery to
 the application -- for instance, because of corruption or receive
 buffer overflow. CCID 2 senders respond to these options as
 described in [DCCP], with the following further clarifications.

 o Drop Code 2 ("receive buffer drop"). The congestion window
 "cwnd" is reduced by one for each packet newly acknowledged as
 Drop Code 2, except that it is never reduced below one.

 o Exiting slow-start. The sender MUST exit slow start whenever it
 receives a relevant Data Dropped or Slow Receiver option.

5.3. Packet Size

 CCID 2 is optimized for applications that generally use a fixed
 packet size, and that vary their sending rate in packets per second
 in response to congestion. CCID 2 is not appropriate for
 applications that require a fixed interval of time between packets,
 and vary their packet size instead of their packet rate in response
 to congestion. CCID 2 maintains a congestion window in packets, and
 does not increase the congestion window in response to a decrease in
 the packet size. However, some attention might be required for
 applications using CCID 2 that vary their packet size not in
 response to congestion, but in response to other application-level
 requirements.

 CCID 2 implementations MAY check for applications that appear to be
 manipulating the packet size inappropriately. For example, an
 application might send small packets for a while, building up a fast

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861

Floyd/Kohler Section 5.3. [Page 12]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 rate, then switch to large packets to take advantage of the fast
 rate. (Preliminary simulations indicate that applications may not
 be able to increase their overall transfer rates this way, so it is
 not clear this manipulation will occur in practice [V03].)

6. Acknowledgements

 CCID 2 acknowledgements are generally paced by the sender's data
 packets. Each required acknowledgement MUST contain Ack Vector
 options that declare exactly which packets arrived, and whether
 those packets were ECN-marked. Acknowledgement data in the Ack
 Vector options SHOULD generally cover the receiver's entire
 Acknowledgement Window; see [DCCP] (Section 11.4.2).

 CCID 2 senders use DCCP's Ack Ratio feature to influence the rate at
 which DCCP-Ack packets are generated, thus controlling reverse-path
 congestion. This differs from TCP, which presently has no
 congestion control for pure acknowledgement traffic. CCID 2's
 reverse-path congestion control does not try to be TCP-friendly; it
 just tries to avoid congestion collapse, and to be somewhat better
 than TCP in the presence of a high packet loss or mark rate on the
 reverse path. The default Ack Ratio is two, and CCID 2 with this
 Ack Ratio behaves like TCP with delayed acks. [DCCP] (Section 11.3)
 describes the Ack Ratio in more detail, including its relationship
 to acknowledgement pacing and DCCP-DataAck packets. Section 6.1.1
 below describes the sender's detection of lost or marked
 acknowledgements, and Section 6.1.2 gives the sender's rules for
 changing the Ack Ratio.

6.1. Congestion Control on Acknowledgements

 When Ack Ratio is R, the receiver sends one DCCP-Ack packet per R
 data packets, more or less. Since the sender sends cwnd data
 packets per round-trip time, the acknowledgement rate equals cwnd/R
 DCCP-Acks per round-trip time. The sender keeps the acknowledgement
 rate roughly TCP-friendly by monitoring the acknowledgement stream
 for lost and marked DCCP-Ack packets, and modifying R accordingly.
 For every RTT containing a DCCP-Ack congestion event (that is, a
 lost or marked DCCP-Ack), the sender halves the acknowledgement rate
 by doubling Ack Ratio; for every RTT containing no DCCP-Ack
 congestion event, it additively increases the acknowledgement rate
 through gradual decreases in Ack Ratio.

6.1.1. Detecting Lost and Marked Acknowledgements

 All packets from the receiver contain sequence numbers, so the
 sender can detect both losses and marks on the receiver's packets.
 The sender infers receiver packet loss in the same way as it infers

Floyd/Kohler Section 6.1.1. [Page 13]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 losses of its data packets: a packet from the receiver is considered
 lost after at least NUMDUPACK packets with greater sequence numbers
 have been received.

 DCCP-Ack packets are generally small, so they might impose less load
 on congested network links than DCCP-Data and DCCP-DataAck packets.
 For this reason, Ack Ratio depends on losses and marks on the
 receiver's non-data packets, not on aggregate losses and marks on
 all of the receiver's packets. The non-data packet category
 consists of those packet types that cannot carry application data:
 DCCP-Ack, DCCP-Close, DCCP-CloseReq, DCCP-Reset, DCCP-Sync, and
 DCCP-SyncAck. The sender can easily distinguish non-data marks from
 other marks. This is harder for losses, though, since the sender
 can't always know whether a lost packet carried data. Unless it has
 better information, the sender SHOULD assume, for the purpose of Ack
 Ratio calculation, that every lost packet was a non-data packet.
 Better information is available via DCCP's NDP Count option, if
 necessary. (Appendix B discusses the costs of mistaking data packet
 loss for non-data packet loss.)

 A receiver that implements its own acknowledgement congestion
 control SHOULD NOT reduce its DCCP-Ack acknowledgement rate due to
 losses or marks on its data packets.

6.1.2. Changing Ack Ratio

 Ack Ratio always meets three constraints: (1) Ack Ratio is an
 integer. (2) Ack Ratio does not exceed cwnd/2, rounded up, except
 that Ack Ratio 2 is always acceptable. (3) Ack Ratio is two or more
 for a congestion window of four or more packets.

 The sender changes Ack Ratio within those constraints as follows.
 For each congestion window of data with lost or marked DCCP-Ack
 packets, Ack Ratio is doubled; and for each cwnd/(R^2 - R)
 consecutive congestion windows of data with no lost or marked DCCP-
 Ack packets, Ack Ratio is decreased by 1. (See Appendix A for the
 derivation.) Changes in Ack Ratio are signalled through feature
 negotiation; see [DCCP] (Section 11.3).

 For a constant congestion window, this gives an Ack sending rate
 that is roughly TCP-friendly. Of course, cwnd usually varies over
 time; the dynamics will be rather complex, but roughly TCP-friendly.
 We recommend that the sender use the most recent value of cwnd when
 determining whether to decrease Ack Ratio by 1.

 The sender need not keep Ack Ratio completely up to date. For
 instance, it MAY rate-limit Ack Ratio renegotiations to once every
 four or five round-trip times, or to once every second or two. The

Floyd/Kohler Section 6.1.2. [Page 14]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 sender SHOULD NOT attempt to renegotiate the Ack Ratio more than
 once per round-trip time. Additionally, it MAY enforce a minimum
 Ack Ratio of two, or it MAY set Ack Ratio to one for half-
 connections with persistent congestion windows of 1 or 2 packets.

 Putting it all together, the receiver always sends at least one
 acknowledgement per window of data when cwnd = 1, and at least two
 acknowledgements per window of data otherwise. Thus, the receiver
 could be sending two ack packets per window of data even in the face
 of very heavy congestion on the reverse path. We would note,
 however, that if congestion is sufficiently heavy that all of the
 ack packets are dropped, then the sender falls back on an
 exponentially-backed-off timeout, as in TCP. Thus, if congestion is
 sufficiently heavy on the reverse path, then the sender reduces its
 sending rate on the forward path, which reduces the rate on the
 reverse path as well.

6.2. Acknowledgements of Acknowledgements

 An active sender DCCP A MUST occasionally acknowledge its peer DCCP
 B's acknowledgements, so that DCCP B can free up Ack Vector state.
 When both half-connections are active, A's acknowledgements of B's
 acknowledgements are automatically contained in A's acknowledgements
 of B's data. If the B-to-A half-connection is quiescent, however,
 DCCP A must occasionally send acknowledgements proactively, such as
 by sending a DCCP-DataAck packet that includes an Acknowledgement
 Number in the header.

 An active sender SHOULD acknowledge the receiver's acknowledgements
 at least once per congestion window. Of course, the sender's
 application might fall silent. This is no problem; when neither
 side is sending data, a sender can wait arbitrarily long before
 sending an ack.

6.2.1. Determining Quiescence

 This section describes how a CCID 2 receiver determines that the
 corresponding sender is not sending any data, and therefore has gone
 quiescent. See [DCCP] (Section 11.1) for general information on
 quiescence.

 Let T equal the greater of 0.2 seconds and two round-trip times.
 (The receiver may know the round-trip time in its role as the sender
 for the other half-connection. If it does not, it should use a
 default RTT of 0.2 seconds, as described in [DCCP] (Section 3.4).)
 Once the sender acknowledges the receiver's Ack Vectors, and the
 sender has not sent additional data for at least T seconds, the
 receiver can infer that the sender is quiescent. More precisely,

Floyd/Kohler Section 6.2.1. [Page 15]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 the receiver infers that the sender has gone quiescent when at least
 T seconds have passed without receiving any data from the sender,
 and the sender has acknowledged receiver Ack Vectors covering all
 data packets received at the receiver.

7. Explicit Congestion Notification

 CCID 2 supports Explicit Congestion Notification (ECN) [RFC 3168].
 The sender will use the ECN Nonce for data packets, and the receiver
 will echo those nonces in its Ack Vectors, as specified in [DCCP]
 (Section 12.2). Information about marked packets is also returned
 in the Ack Vector. Because the information in the Ack Vector is
 reliably transferred, DCCP does not need the TCP flags of ECN-Echo
 and Congestion Window Reduced.

 For unmarked data packets, the receiver computes the ECN Nonce Echo
 as in RFC 3540, and returns it as part of its Ack Vector options.
 The sender SHOULD check these ECN Nonce Echoes against the expected
 values, thus protecting against the accidental or malicious
 concealment of marked packets.

 Because CCID 2 acknowledgements are congestion-controlled, ECN may
 also be used for its acknowledgements. In this case we do not make
 use of the ECN Nonce, because it would not be easy to provide
 protection against the concealment of marked ack packets by the
 sender, and because the sender does not have much motivation for
 lying about the mark rate on acknowledgements.

8. Options and Features

 DCCP's Ack Vector option, and its ECN Capable, Ack Ratio, and Send
 Ack Vector features, are relevant for CCID 2.

9. Security Considerations

 Security considerations for DCCP have been discussed in [DCCP], and
 security considerations for TCP have been discussed in RFC 2581.

RFC 2581 discusses ways that an attacker could impair the
 performance of a TCP connection by dropping packets, or by forging
 extra duplicate acknowledgements or acknowledgements for new data.
 We are not aware of any new security considerations created by this
 document in its use of TCP-like congestion control.

10. IANA Considerations

 This specification defines the value 2 in the DCCP CCID namespace
 managed by IANA. This assignment is also mentioned in [DCCP].

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

Floyd/Kohler Section 10. [Page 16]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 CCID 2 also introduces three sets of numbers whose values should be
 allocated by IANA, namely CCID 2-specific Reset Codes, option types,
 and feature numbers. These ranges will prevent any future
 CCID 2-specific allocations from polluting DCCP's corresponding
 global namespaces; see [DCCP] (Section 10.3). However, this
 document makes no particular allocations from any range, except for
 experimental and testing use [RFC 3692]. We refer to the Standards
 Action policy outlined in RFC 2434.

10.1. Reset Codes

 Each entry in the DCCP CCID 2 Reset Code registry contains a
 CCID 2-specific Reset Code, which is a number in the range 128-255;
 a short description of the Reset Code; and a reference to the RFC
 defining the Reset Code. Reset Codes 184-190 and 248-254 are
 permanently reserved for experimental and testing use. The
 remaining Reset Codes -- 128-183, 191-247, and 255 -- are currently
 reserved, and should be allocated with the Standards Action policy,
 which requires IESG review and approval and standards-track IETF RFC
 publication.

10.2. Option Types

 Each entry in the DCCP CCID 2 option type registry contains a
 CCID 2-specific option type, which is a number in the range 128-255;
 the name of the option; and a reference to the RFC defining the
 option type. Option types 184-190 and 248-254 are permanently
 reserved for experimental and testing use. The remaining option
 types -- 128-183, 191-247, and 255 -- are currently reserved, and
 should be allocated with the Standards Action policy, which requires
 IESG review and approval and standards-track IETF RFC publication.

10.3. Feature Numbers

 Each entry in the DCCP CCID 2 feature number registry contains a
 CCID 2-specific feature number, which is a number in the range
 128-255; the name of the feature; and a reference to the RFC
 defining the feature number. Feature numbers 184-190 and 248-254
 are permanently reserved for experimental and testing use. The
 remaining feature numbers -- 128-183, 191-247, and 255 -- are
 currently reserved, and should be allocated with the Standards
 Action policy, which requires IESG review and approval and
 standards-track IETF RFC publication.

11. Thanks

 We thank Mark Handley and Jitendra Padhye for their help in defining
 CCID 2. We also thank Mark Allman, Aaron Falk, Nils-Erik Mattsson,

https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc2434

Floyd/Kohler Section 11. [Page 17]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 Greg Minshall, Arun Venkataramani, Magnus Westerlund, and members of
 the DCCP Working Group for feedback on this document.

A. Appendix: Derivation of Ack Ratio Decrease

 This section justifies the algorithm for increasing and decreasing
 the Ack Ratio given in Section 6.1.2.

 The congestion avoidance phase of TCP halves the cwnd for every
 window with congestion. Similarly, CCID 2 doubles Ack Ratio for
 every window with congestion on the return path, roughly halving the
 DCCP-Ack sending rate.

 The congestion avoidance phase of TCP increases cwnd by one MSS for
 every congestion-free window. Applying this congestion avoidance
 behavior to acknowledgement traffic, this would correspond to
 increasing the number of DCCP-Ack packets per window by one after
 every congestion-free window of DCCP-Ack packets. We cannot achieve
 this exactly using Ack Ratio, since it is an integer. Instead, we
 must decrease Ack Ratio by one after K windows have been sent
 without a congestion event on the reverse path, where K is chosen so
 that the long-term number of DCCP-Ack packets per congestion window
 is roughly TCP-friendly, following AIMD congestion control.

 In CCID 2, rough TCP-friendliness for the ack traffic can be
 accomplished by setting K to cwnd/(R^2 - R), where R is the current
 Ack Ratio.

 This result was calculated as follows:

 R = Ack Ratio = # data packets / ack packets, and
 W = Congestion Window = # data packets / window, so
 W/R = # ack packets / window.

 Requirement: Increase W/R by 1 per congestion-free window.
 Since we can only reduce R by increments of one, we find K
 so that, after K congestion-free windows,
 W/R + K would equal W/(R-1).

 (W/R) + K = W/(R-1), so
 K = W/(R-1) - W/R = W/(R^2 - R).

B. Appendix: Cost of Loss Inference Mistakes to Ack Ratio

 As discussed in Section 6.1.1, the sender often cannot determine
 whether lost packets carried data. This hinders its ability to
 separate non-data loss events from other loss events. In the

Floyd/Kohler Section B. [Page 18]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 absence of better information, the sender assumes, for the purpose
 of Ack Ratio calculation, that all lost packets were non-data
 packets. This may overestimate the non-data loss event rate, which
 can lead to a too-high Ack Ratio, and thus a too-slow
 acknowledgement rate. All acknowledgement information will still
 get through -- DCCP acknowledgements are reliable -- but
 acknowledgement information will arrive in a burstier fashion.
 Absent some form of rate-based pacing, this could lead to increased
 burstiness for the sender's data traffic.

 There are several cases when the problem of an overly-high Ack
 Ratio, and the resulting increased burstiness of the data traffic,
 will not arise. In particular, call the receiver DCCP B and the
 sender DCCP A. Then:

 o The problem won't arise unless DCCP B is sending a significant
 amount of data itself. When the B-to-A half-connection is
 quiescent or low-rate, most packets sent by DCCP B will, in fact,
 be pure acknowledgements, and DCCP A's estimate of the DCCP-Ack
 loss rate will be reasonably accurate.

 o The problem won't arise if DCCP B habitually piggybacks
 acknowledgement information on its data packets. The piggybacked
 acknowledgements are not limited by Ack Ratio, so they can arrive
 frequently enough to prevent burstiness.

 o The problem won't arise if DCCP A's sending rate is low, since
 burstiness isn't a problem at low rates.

 o The problem won't arise if DCCP B's sending rate is high relative
 to DCCP A's sending rate, since the B-to-A loss rate must be low
 to support DCCP B's sending rate. This bounds the Ack Ratio to
 reasonable values even when DCCP A labels every loss as a DCCP-
 Ack loss.

 o The problem won't arise if DCCP B sends NDP Count options when
 appropriate (the Send NDP Count/B feature is true). Then the
 sender can use the receiver's NDP Count options to detect, in
 most cases, whether lost packets were data packets or DCCP-Acks.

 o Finally, the problem won't arise if DCCP A rate-paces its data
 packets.

 This leaves the case when DCCP B is sending roughly the same amount
 of data packets and non-data packets, without NDP Count options, and
 with all acknowledgement information in DCCP-Ack packets. We now
 quantify the potential cost, in terms of a too-large Ack Ratio, due
 to the sender's misclassifying data packet losses as DCCP-Ack

Floyd/Kohler Section B. [Page 19]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 losses. For simplicity, we assume an environment of large-scale
 statistical multiplexing, where the packet drop rate is independent
 of the sending rate of any individual connection.

 Assume that when DCCP A correctly counts non-data losses, Ack Ratio
 is set so that B-to-A data and acknowledgement traffic both have a
 sending rate of D packets per second. Then when DCCP A incorrectly
 counts data losses as non-data losses, the sending rate for the B-
 to-A data traffic is still D pps, but the reduced sending rate for
 the B-to-A acknowledgement traffic is f*D pps, with f < 1. Let the
 packet loss rate be p. The sender incorrectly estimates the non-
 data loss rate as (pD+pfD)/fD, or, equivalently, as p(1 + 1/f).
 Because the congestion control mechanism for acknowledgement traffic
 is roughly TCP-friendly, and therefore the non-data sending rate and
 the data sending rate both grow as 1/sqrt(x) for x the packet drop
 rate, we have
 fD/D = sqrt(p)/sqrt(p(1 + 1/f)),
 so
 f^2 = 1/(1 + 1/f).
 Solving, we get f = 0.62. If the sender incorrectly counts lost
 data packets as non-data in this scenario, the acknowledgement rate
 is decreased by a factor of 0.62. This would result in a moderate
 increase in burstiness for the A-to-B data traffic, which could be
 mitigated by sending NDP Count options or piggybacked
 acknowledgements, or by rate-pacing out the data.

Normative References

 [DCCP] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion
 Control Protocol, draft-ietf-dccp-spec-11.txt, work in progress,
 March 2005.

 [RFC 793] J. Postel, editor. Transmission Control Protocol.
RFC 793.

 [RFC 2018] M. Mathis, J. Mahdavi, A. Floyd, and A. Romanow. TCP
 Selective Acknowledgement Options, RFC 2018, October 1996.

 [RFC 2119] S. Bradner. Key Words For Use in RFCs to Indicate
 Requirement Levels. RFC 2119.

 [RFC 2434] T. Narten and H. Alvestrand. Guidelines for Writing an
 IANA Considerations Section in RFCs. RFC 2434.

 [RFC 2581] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
 Control. RFC 2581.

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-spec-11.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2581

Floyd/Kohler [Page 20]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

 [RFC 2988] V. Paxson and M. Allman, Computing TCP's Retransmission
 Timer, RFC 2988, November 2000.

 [RFC 3168] K.K. Ramakrishnan, S. Floyd, and D. Black. The Addition
 of Explicit Congestion Notification (ECN) to IP. RFC 3168.

 [RFC 3390] M. Allman, S. Floyd, and C. Partridge. Increasing TCP's
 Initial Window. RFC 3390.

 [RFC 3517] E. Blanton, M. Allman, K. Fall, and L. Wang. A
 Conservative Selective Acknowledgment (SACK)-based Loss Recovery
 Algorithm for TCP. RFC 3517.

 [RFC 3692] T. Narten. Assigning Experimental and Testing Numbers
 Considered Useful. RFC 3692.

Informative References

 [CCID 3 PROFILE] S. Floyd, E. Kohler, and J. Padhye. Profile for
 DCCP Congestion Control ID 3: TFRC Congestion Control. draft-

ietf-dccp-ccid3-11.txt, work in progress, March 2005.

 [RFC 2861] M. Handley, J. Padhye, and S. Floyd. TCP Congestion
 Window Validation. RFC 2861.

 [RFC 3465] M. Allman. TCP Congestion Control with Appropriate Byte
 Counting (ABC). RFC 3465.

 [RFC 3540] N. Spring, D. Wetherall, and D. Ely. Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces. RFC 3540.

 [V03] Arun Venkataramani, August 2003. Citation for acknowledgement
 purposes only.

Authors' Addresses

 Sally Floyd <floyd@icir.org>
 ICSI Center for Internet Research
 1947 Center Street, Suite 600
 Berkeley, CA 94704
 USA

 Eddie Kohler <kohler@cs.ucla.edu>
 4531C Boelter Hall
 UCLA Computer Science Department
 Los Angeles, CA 90095
 USA

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid3-11.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid3-11.txt
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc3540

Floyd/Kohler [Page 21]

INTERNET-DRAFT Expires: 10 September 2005 March 2005

Full Copyright Statement

 Copyright (C) The Internet Society 2005. This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Floyd/Kohler [Page 22]

