
Internet Engineering Task Force Sally Floyd
INTERNET-DRAFT ICIR
draft-ietf-dccp-problem-03.txt Mark Handley
 UCL
 Eddie Kohler
 UCLA
 24 August 2005
 Expires: February 2006

Problem Statement for DCCP

Status of this Document

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she becomes aware will be disclosed, in accordance with

Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on February 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Floyd/Handley/Kohler [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-problem-03.txt
https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Expires: February 2006 August 2005

 Abstract

 This document describes, for the historical record, the
 motivation behind DCCP (the Datagram Congestion Control
 Protocol), an unreliable transport protocol incorporating end-
 to-end congestion control. DCCP implements a congestion-
 controlled, unreliable flow of datagrams for use by
 applications such as streaming media or on-line games.

Floyd/Handley/Kohler [Page 2]

INTERNET-DRAFT Expires: February 2006 August 2005

 NOTE TO RFC EDITOR: PLEASE DELETE THIS NOTE UPON
 PUBLICATION.

 Changes from draft-ietf-dccp-problem-02.txt:

 * Added a table of contents.

 Changes from draft-ietf-dccp-problem-01.txt:

 * Add references to RFCs 2914 and 3714. Edits.

 * Make historical-record motivation clearer.

 * Fairer description of PR-SCTP.

 * Updated addresses for Mark, Eddie.

 * Added Security Considerations and IANA Considerations
 sections.

 Changes from draft-ietf-dccp-problem-00.txt:

 * Updated references, minor editing changes.

 Changes from draft-floyd-dcp-problem-01.txt:

 * Added an "Acknowledgements" section.

 * Added a section on "Transport Requirements of
 Request/Response Applications"

 Changes in response to feedback from Spencer Dawkins:

 * Small phrasing changes.

 * Added a section on Design Preferences in the beginning.

 * Added a bullet about "Interactions with NATs and
 Firewalls" under "Additional Design Considerations".

 * Added a paragraph to the section on "Difficulties with
 ECN" about the possibility that in times of congestion,
 routers would first "turn off" the use of ECN to UDP
 flows.

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-problem-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-problem-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-problem-00.txt
https://datatracker.ietf.org/doc/html/draft-floyd-dcp-problem-01.txt

Floyd/Handley/Kohler [Page 3]

INTERNET-DRAFT Expires: February 2006 August 2005

 Table of Contents

1. Introduction. 5
2. Problem Space 6

2.1. Congestion Control for Unreliable Transfer . . 7
2.2. Overhead 8
2.3. Firewall Traversal 9
2.4. Parameter Negotiation. 9

 3. Solution Space for Congestion Control of Unreliable
 Flows. 10

3.1. Providing Congestion Control Above UDP 10
3.1.1. The Burden on the Application Designer. . 10
3.1.2. Difficulties with ECN 11
3.1.3. The Evasion of Congestion Control 12

3.2. Providing Congestion Control Below UDP 12
 3.2.1. Case 1: Congestion Feedback at the Applica-
 tion . 13
 3.2.2. Case 2: Congestion Feedback at a Layer
 below UDP. 13
 3.3. Providing Congestion Control at the Transport
 Layer . 14

3.3.1. Modifying TCP?. 14
3.3.2. Unreliable Variants of SCTP?. 15
3.3.3. Modifying RTP?. 16
3.3.4. Designing a New Transport Protocol. . . . 17

 4. Selling Congestion Control to Reluctant
 Applications . 17

5. Additional Design Considerations. 18
 6. Transport Requirements of Request/Response Applica-
 tions. 19

7. Summary of Recommendations. 20
8. Security Considerations 20
9. IANA Considerations 21
10. Acknowledgements 21
11. Informative References 21
12. Authors' Addresses 23
13. Full Copyright Statement 23
14. Intellectual Property. 23

Floyd/Handley/Kohler [Page 4]

INTERNET-DRAFT Expires: February 2006 August 2005

1. Introduction

 Historically, the great majority of Internet unicast traffic has
 used congestion-controlled TCP, with UDP making up most of the
 remainder. UDP has mainly been used for short, request-response
 transfers, like DNS and SNMP, that wish to avoid TCP's three-way
 handshake, retransmission, and/or stateful connections. UDP also
 avoids TCP's built-in end-to-end congestion control, and UDP
 applications tended not to implement their own congestion control.
 However, since UDP traffic volume was small relative to congestion-
 controlled TCP flows, the network didn't collapse.

 Recent years have seen the growth of applications that use UDP in a
 different way. These applications, including streaming audio,
 Internet telephony, and multiplayer and massively multiplayer on-
 line games, share a preference for timeliness over reliability. TCP
 can introduce arbitrary delay because of its reliability and in-
 order delivery requirements; thus, the applications use UDP instead.
 This growth of long-lived non-congestion-controlled traffic,
 relative to congestion-controlled traffic, poses a real threat to
 the overall health of the Internet [RFC 2914, RFC 3714].

 Applications could implement their own congestion control mechanisms
 on a case-by-case basis, with encouragement from the IETF. Some
 already do this. However, experience shows that congestion control
 is difficult to get right, and many application writers would like
 to avoid reinventing this particular wheel. We believe that a new
 protocol is needed, one that combines unreliable datagram delivery
 with built-in congestion control. This protocol will act as an
 enabling technology: existing and new applications could easily use
 it to transfer timely data without destabilizing the Internet.

 This document provides a problem statement for such a protocol. We
 list the properties the protocol should have, then explain why those
 properties are necessary. We describe why a new protocol is the
 best solution for the more general problem of bringing congestion
 control to unreliable flows of unicast datagrams, and discuss
 briefly subsidiary requirements for mobility, defense against DOS
 attacks and spoofing, interoperation with RTP, and interactions with
 NATs and firewalls.

 One of the design preferences that we bring to this question is a
 preference for a clean, understandable, low-overhead, and minimal
 protocol. As described later in this document, this results in the
 design decision to leave functionality such as reliability or
 Forward Error Correction (FEC) to be layered on top, rather than
 provided in the transport protocol itself.

https://datatracker.ietf.org/doc/html/rfc3714

Floyd/Handley/Kohler Section 1. [Page 5]

INTERNET-DRAFT Expires: February 2006 August 2005

 This document began in 2002 as a formalization of the goals of DCCP,
 the Datagram Congestion Control Protocol [DCCP]. We intended DCCP
 to satisfy this problem statement, and thus the original reasoning
 behind many of DCCP's design choices can be found here. However, we
 believed, and continue to believe, that the problem should be solved
 whether or not DCCP is the chosen solution.

2. Problem Space

 We perceive a number of problems related to the use of unreliable
 data flows in the Internet. The major issues are:

 o The potential for non-congestion-controlled datagram flows to
 cause congestion collapse of the network. (See Section 5 of [RFC
 2914] and Section 2 of [RFC 3714].)

 o The difficulty of correctly implementing effective congestion
 control mechanisms for unreliable datagram flows.

 o The lack of a standard solution for reliably transmitting
 congestion feedback for an unreliable data flow.

 o The lack of a standard solution for negotiating Explicit
 Congestion Notification (ECN) [RFC 2481] usage for unreliable
 flows.

 o The lack of a choice of TCP-friendly congestion control
 mechanisms.

 We assume that most application writers would use congestion control
 for long-lived unreliable flows if it was available in a standard,
 easy-to-use form.

 More minor issues include:

 o The difficulty of deploying applications using UDP-based flows in
 the presence of firewalls.

 o The desire to have a single way to negotiate congestion control
 parameters for unreliable flows, independently of the signalling
 protocol used to set up the flow.

 o The desire for low per-packet byte overhead.

 The subsections below discuss these problems of providing congestion
 control, traversing firewalls, and negotiating parameters in more
 detail. A separate subsection also discusses the problem of
 minimizing the overhead of packet headers.

https://datatracker.ietf.org/doc/html/rfc3714#section-2
https://datatracker.ietf.org/doc/html/rfc2481

Floyd/Handley/Kohler Section 2. [Page 6]

INTERNET-DRAFT Expires: February 2006 August 2005

2.1. Congestion Control for Unreliable Transfer

 We aim to bring easy-to-use congestion control mechanisms to
 applications that generate large or long-lived flows of unreliable
 datagrams, such as RealAudio, Internet telephony, and multiplayer
 games. Our motivation is to avoid congestion collapse. (The short
 flows generated by request-response applications, such as DNS, SNMP,
 and SIP [RFC 3261], don't cause congestion in practice, and any
 congestion control mechanism would take effect between flows, not
 within a single end-to-end transfer of information.) However,
 before designing a congestion control mechanism for these
 applications, we must understand why they use unreliable datagrams
 in the first place, lest we destroy the very properties they
 require.

 There are several reasons why protocols currently use UDP instead of
 TCP, amongst them:

 o Startup Delay: they wish to avoid the delay of a three-way
 handshake before initiating data transfer.

 o Statelessness: they wish to avoid holding connection state, and
 the potential state-holding attacks that come with this.

 o Trading of Reliability against Timing: the data being sent is
 timely in the sense that if it is not delivered by some deadline
 (typically a small number of RTTs) then the data will not be
 useful at the receiver.

 Of these issues, applications that generate large or long-lived
 flows of datagrams, such as media transfer and games, mostly care
 about controlling the tradeoff between timing and reliability. Such
 applications use UDP because when they send a datagram, they wish to
 send the most appropriate data in that datagram. If the datagram is
 lost, they may or may not resend the same data, depending on whether
 the data will still be useful at the receiver. Data may no longer
 be useful for many reasons:

 o In a telephony or streaming video session, data in a packet
 comprises a timeslice of a continuous stream. Once a timeslice
 has been played out, the next timeslice is required immediately.
 If the data comprising that timeslice arrives at some later time,
 then it is no longer useful. Such applications can cope with
 masking the effects of missing packets to some extent, so when the
 sender transmits its next packet, it is important for it to only
 send data that has a good chance of arriving in time for its
 playout.

https://datatracker.ietf.org/doc/html/rfc3261

Floyd/Handley/Kohler Section 2.1. [Page 7]

INTERNET-DRAFT Expires: February 2006 August 2005

 o In an interactive game or virtual-reality session, position
 information is transient. If a datagram containing position
 information is lost, resending the old position does not usually
 make sense -- rather, every position information datagram should
 contain the latest position information.

 In a congestion-controlled flow, the allowed packet sending rate
 depends on measured network congestion. Thus, some control is given
 up to the congestion control mechanism, which determines precisely
 when packets can be sent. However, applications could still decide,
 at transmission time, which information to put in a packet. TCP
 doesn't allow control over this; these applications demand it.

 Often, these applications (especially games and telephony
 applications) work on very short playout timescales. Whilst they
 are usually able to adjust their transmission rate based on
 congestion feedback, they do have constraints on how this adaptation
 can be performed so that it has minimal impact on the quality of the
 session. Thus, they tend to need some control over the short-term
 dynamics of the congestion control algorithm, whilst being fair to
 other traffic on medium timescales. This control includes, but is
 not limited to, some influence on which congestion control algorithm
 should be used -- for example, TFRC rather than strict TCP-like
 congestion control. (TCP-Friendly Rate Control, or TFRC, has been
 standardized in the IETF as a congestion control mechanism that
 adjusts its sending rate more smoothly than TCP does, while
 maintaining long-term fair bandwidth sharing with TCP [RFC 3448].)

2.2. Overhead

 The applications we are concerned with often send compressed data,
 or send frequent small packets. For example, when internet
 telephony or streaming media are used over low-bandwidth modem
 links, highly compressing the payload data is essential. For
 internet telephony applications and for games, the requirement is
 for low delay, and hence small packets are sent frequently.

 For example, a telephony application sending a 5.6Kbps data stream
 but wanting moderately low delay may send a packet every 20ms,
 sending only 14 data bytes in each packet. In addition, 20 bytes is
 taken up by the IP header, with additional bytes for transport
 and/or application headers. Clearly, for such an application it is
 desirable to have a low overhead for the transport protocol header.

 In some cases the correct solution would be to use link-based packet
 header compression to compress the packet headers, although we
 cannot guarantee the availability of such compression schemes on any

https://datatracker.ietf.org/doc/html/rfc3448

Floyd/Handley/Kohler Section 2.2. [Page 8]

INTERNET-DRAFT Expires: February 2006 August 2005

 particular link.

 The delay of data until after the completion of a handshake also
 represents potentially unnecessary overhead. A new protocol might
 therefore allow senders to include some data on their initial
 datagrams.

2.3. Firewall Traversal

 Applications requiring a flow of unreliable datagrams currently tend
 to use signalling protocols such as RTSP [RFC 2326], SIP and H.323
 in conjunction with UDP for the data flow. The initial setup
 request uses a signalling protocol to locate the correct remote end-
 system for the data flow, sometimes being redirected or relayed to
 other machines, before the data flow is established.

 As UDP flows contain no explicit setup and teardown, it is hard for
 firewalls to handle them correctly. Typically the firewall needs to
 parse RTSP, SIP and H.323 to obtain the information necessary to
 open a hole in the firewall. Alternatively, for bi-directional
 flows, the firewall can open a bi-directional hole if it receives a
 UDP packet from inside the firewall, but in this case the firewall
 can't easily know when to close the hole again.

 While we do not consider these to be major problems, they are
 nonetheless issues that application designers face. Currently
 streaming media players attempt UDP first, and then switch to TCP if
 UDP is not successful. Streaming media over TCP is undesirable, and
 can result in the receiver needing to temporarily halt playout while
 it "rebuffers" data. Telephony applications don't even have this
 option.

2.4. Parameter Negotiation

 Different applications have different requirements for congestion
 control, which may map into different congestion feedback. Examples
 include ECN capability and desired congestion control dynamics (the
 choice of congestion control algorithm and, therefore, the form of
 feedback information required). Such parameters need to be reliably
 negotiated before congestion control can function correctly.

 While this negotiation could be performed using signalling protocols
 such as SIP, RTSP and H.323, it would be desirable to have a single
 standard way of negotiating these transport parameters. This is of
 particular importance with ECN, where sending ECN-marked packets to
 a non-ECN-capable receiver can cause significant congestion problems
 to other flows. We discuss the ECN issue in more detail below.

https://datatracker.ietf.org/doc/html/rfc2326

Floyd/Handley/Kohler Section 2.4. [Page 9]

INTERNET-DRAFT Expires: February 2006 August 2005

3. Solution Space for Congestion Control of Unreliable Flows

 We thus want to provide congestion control for unreliable flows,
 providing both ECN and the choice of different forms of congestion
 control, and providing moderate overhead in terms of packet size,
 state, and CPU processing. There are a number of options for
 providing end-to-end congestion control for the unicast traffic that
 currently uses UDP, in terms of the layer that provides the
 congestion control mechanism:

 o Congestion control above UDP.

 o Congestion control below UDP.

 o Congestion control at the transport layer in an alternative to
 UDP.

 We explore these alternatives in the sections below. The concerns
 from the discussions below have convinced us that the best way to
 provide congestion control for unreliable flows is to provide
 congestion control at the transport layer, as an alternative to the
 use of UDP and TCP.

3.1. Providing Congestion Control Above UDP

 One possibility would be to provide congestion control at the
 application layer, or at some other layer above UDP. This would
 allow the congestion control mechanism to be closely integrated with
 the application itself.

3.1.1. The Burden on the Application Designer

 A key disadvantage of providing congestion control above UDP is that
 it places an unnecessary burden on the application-level designer,
 who might be just as happy to use the congestion control provided by
 a lower layer. If the application can rely on a lower layer that
 gives a choice between TCP-like or TFRC-like congestion control, and
 that offers ECN, then this might be highly satisfactory to many
 application designers.

 The long history of debugging TCP implementations [RFC 2525, TBIT]
 makes the difficulties in implementing end-to-end congestion control
 abundantly clear. It is clearly more robust for congestion control
 to be provided for the application by a lower layer. In rare cases
 there might be compelling reasons for the congestion control
 mechanism to be implemented in the application itself, but we do not
 expect this to be the general case. For example, applications that
 use RTP over UDP might be just as happy if RTP itself implemented

Floyd/Handley/Kohler Section 3.1.1. [Page 10]

INTERNET-DRAFT Expires: February 2006 August 2005

 end-to-end congestion control. (See Section 3.3.3 for more
 discussion of RTP.)

 In addition to congestion control issues, we also note the problems
 with firewall traversal and parameter negotiation discussed in
 sections 2.3 and 2.4. Implementing on top of UDP requires that the
 application designer also address these issues.

3.1.2. Difficulties with ECN

 A second problem of providing congestion control above UDP is that
 it would require either giving up the use of ECN, or giving the
 application direct control over setting and reading the ECN field in
 the IP header. Giving up the use of ECN would be problematic, since
 ECN can be particularly useful for unreliable flows, where a dropped
 packet will not be retransmitted by the data sender.

 With the development of the ECN nonce, ECN can also be useful even
 in the absence of ECN support from the network. The data sender can
 use the ECN nonce, along with feedback from the data receiver, to
 verify that the data receiver is correctly reporting all lost
 packets. This use of ECN can be particularly useful for an
 application using unreliable delivery, where the receiver might
 otherwise have little incentive to report lost packets.

 In order to allow the use of ECN by a layer above UDP, the UDP
 socket would have to allow the application to control the ECN field
 in the IP header. In particular, the UDP socket would have to allow
 the application to specify whether or not the ECN-Capable Transport
 (ECT) codepoints should be set in the ECN field of the IP header.

 The ECN contract is that senders who set the ECT codepoint must
 respond to Congestion Experienced (CE) codepoints by reducing their
 sending rates. Therefore, the ECT codepoint can only safely be set
 in the packet header of a UDP packet if the following is guaranteed:

 o If the CE codepoint is set by a router, the receiving IP layer
 will pass the CE status to the UDP layer, which will pass it to
 the receiving application at the data receiver, and:

 o Upon receiving a packet that had the CE codepoint set, the
 receiving application will take the appropriate congestion control
 action, such as informing the data sender.

 However, the UDP implementation at the data sender has no way of
 knowing if the UDP implementation at the data receiver has been
 upgraded to pass a CE status up to the receiving application, let
 alone whether or not the application will use the conformant end-to-

Floyd/Handley/Kohler Section 3.1.2. [Page 11]

INTERNET-DRAFT Expires: February 2006 August 2005

 end congestion control that goes along with use of ECN.

 In the absence of the widespread deployment of mechanisms in routers
 to detect flows that are not using conformant congestion control,
 allowing applications arbitrary control of the ECT codepoints for
 UDP packets would seem like an unnecessary opportunity for
 applications to use ECN while evading the use of end-to-end
 congestion control. Thus, there is an inherent "chicken-and-egg"
 problem of whether first to deploy policing mechanisms in routers,
 or first to enable the use of ECN by UDP flows. Without the
 policing mechanisms in routers, we would not advise adding ECN-
 capability to UDP sockets at this time.

 In the absence of more fine-grained mechanisms for dealing with a
 period of sustained congestion, one possibility would be for routers
 to discontinue using ECN with UDP packets during the congested
 period, and to use ECN only with TCP or DCCP packets. This would be
 a reasonable response, for example, if TCP or DCCP flows were found
 to be more likely to be using conformant end-to-end congestion
 control than were UDP flows. If routers were to adopt such a
 policy, then DCCP flows could be more likely to receive the benefits
 of ECN in times of congestion than would UDP flows.

3.1.3. The Evasion of Congestion Control

 A third problem of providing congestion control above UDP is that
 relying on congestion control at the application level makes it
 somewhat easier for some users to evade end-to-end congestion
 control. We do not claim that a transport protocol such as DCCP
 would always be implemented in the kernel, and do not attempt to
 evaluate the relative difficulty of modifying code inside the kernel
 vs. outside the kernel in any case. However, we believe that
 putting the congestion control at the transport level rather than at
 the application level makes it just slightly less likely that users
 will go to the trouble of modifying the code in order to avoid using
 end-to-end congestion control.

3.2. Providing Congestion Control Below UDP

 Instead of providing congestion control above UDP, a second
 possibility would be to provide congestion control for unreliable
 applications at a layer below UDP, with applications using UDP as
 their transport protocol. Given that UDP does not itself provide
 sequence numbers or congestion feedback, there are two possible
 forms for this congestion feedback:

 o (1) Feedback at the application: The application above UDP could
 provide sequence numbers and feedback to the sender, which would

Floyd/Handley/Kohler Section 3.2. [Page 12]

INTERNET-DRAFT Expires: February 2006 August 2005

 then communicate loss information to the congestion control
 mechanism. This is the approach currently standardized by the
 Congestion Manager (CM) [RFC 3124].

 o (2) Feedback at the layer below UDP: The application could use
 UDP, and a protocol could be implemented using a shim header
 between IP and UDP to provide sequence number information for data
 packets and return feedback to the data sender. The original
 proposal for the Congestion Manager [Bala99] suggested providing
 this layer for applications that did not have their own feedback
 about dropped packets.

 We discuss these two cases separately below.

3.2.1. Case 1: Congestion Feedback at the Application

 In this case, the application provides sequence numbers and
 congestion feedback above UDP, but communicates that feedback to a
 congestion manager below UDP, which regulates when packets can be
 sent. This approach suffers from most of the problems described in

Section 3.1, namely forcing the application designer to reinvent the
 wheel each time for packet formats and parameter negotiation, and
 problems with ECN usage, firewalls and evasion.

 It would avoid the application writer needing to implement the
 control part of the congestion control mechanism, but it is unclear
 how easily multiple congestion control algorithms (such as receiver-
 based TFRC) can be supported, given that the form of congestion
 feedback usually needs to be closely coupled to the congestion
 control algorithm being used. Thus, this design limits the choice
 of congestion control mechanisms available to applications while
 simultaneously burdening the applications with implementations of
 congestion feedback.

3.2.2. Case 2: Congestion Feedback at a Layer below UDP

 Providing feedback at a layer below UDP would require an additional
 packet header below UDP to carry sequence numbers in addition to the
 eight-byte header for UDP itself. Unless this header were an IP
 option (which is likely to cause problems for many IPv4 routers)
 then its presence would need to be indicated using a different IP
 protocol value from UDP. Thus, the packets would no longer look
 like UDP on the wire, and the modified protocol would face
 deployment challenges similar to those of an entirely new protocol.

 To use congestion feedback at a layer below UDP most effectively,
 the semantics of the UDP socket API (Application Programming
 Interface) would also need changing, both to support a late decision

https://datatracker.ietf.org/doc/html/rfc3124

Floyd/Handley/Kohler Section 3.2.2. [Page 13]

INTERNET-DRAFT Expires: February 2006 August 2005

 on what to send, and to provide access to the sequence numbers to
 avoid the application needing to duplicate them for its own
 purposes. Thus, the socket API would no longer look like UDP to end
 hosts. This would effectively be a new transport protocol.

 Given these complications, it seems cleaner to actually design a new
 transport protocol, which also allows us to address the issues of
 firewall traversal, flow setup, and parameter negotiation. We note
 that any new transport protocol could also use a Congestion Manager
 approach to share congestion state between flows using the same
 congestion control algorithm, if this were deemed to be desirable.

3.3. Providing Congestion Control at the Transport Layer

 The concerns from the discussions above have convinced us that the
 best way to provide congestion control to applications that
 currently use UDP is to provide congestion control at the transport
 layer, in a transport protocol used as an alternative to UDP. One
 advantage of providing end-to-end congestion control in an
 unreliable transport protocol is that it could be used easily by a
 wide range of the applications that currently use UDP, with minimal
 changes to the application itself. The application itself would not
 have to provide the congestion control mechanism, or even the
 feedback from the data receiver to the data sender about lost or
 marked packets.

 The question then arises of whether to adapt TCP for use by
 unreliable applications, to use an unreliable variant of SCTP or a
 version of RTP with built-in congestion control, or to design a new
 transport protocol.

 As we argue below, the desire for minimal overhead results in the
 design decision to use a transport protocol containing only the
 minimal necessary functionality, and to leave other functionality
 such as reliability, semi-reliability, or Forward Error Correction
 (FEC) to be layered on top.

3.3.1. Modifying TCP?

 One alternative might be to create an unreliable variant of TCP,
 with the reliability layered on top for applications desiring
 reliable delivery. However, our requirement is not simply for TCP
 minus the in-order reliable delivery, but also for the application
 to be able to choose congestion control algorithms. TCP's feedback
 mechanism works well for TCP-like congestion control, but is
 inappropriate (or at the very least, inefficient) for TFRC. In
 addition, TCP sequence numbers are in bytes, not datagrams. This
 would complicate both congestion feedback and any attempt to allow

Floyd/Handley/Kohler Section 3.3.1. [Page 14]

INTERNET-DRAFT Expires: February 2006 August 2005

 the application to decide, at transmission time, what information
 should go into a packet. Finally, there is the issue of whether a
 modified TCP would require a new IP protocol number as well; a
 significantly modified TCP using the same IP protocol number could
 have unwanted interactions with some of the middleboxes already
 deployed in the network.

 It seems best simply to leave TCP as it is, and to create a new
 congestion control protocol for unreliable transfer. This is
 especially true since any change to TCP, no matter how small, takes
 an inordinate amount of time to standardize and deploy, given TCP's
 importance in the current Internet and the historical difficulty of
 getting TCP implementations right.

3.3.2. Unreliable Variants of SCTP?

 SCTP, the Stream Control Transmission Protocol [RFC 2960], was in
 part designed to accommodate multiple streams within a single end-
 to-end connection, modifying TCP's semantics of reliable, in-order
 delivery to allow out-of-order delivery. However, explicit support
 for multiple streams over a single flow at the transport layer is
 not necessary for an unreliable transport protocol such as DCCP,
 which of necessity allows out-of-order delivery. Because an
 unreliable transport does not need streams support, applications
 should not have to pay the penalties in terms of increased header
 size that accompany the use of streams in SCTP.

 The basic underlying structure of the SCTP packet, of a common SCTP
 header followed by chunks for data, SACK information, and so on, is
 motivated by SCTP's goal of accommodating multiple streams.
 However, this use of chunks comes at the cost of an increased header
 size for packets, as each chunk must be aligned on 32-bit
 boundaries, and therefore requires a fixed-size 4-byte chunk header.
 For example, for a connection using ECN, SCTP includes separate
 control chunks for the Explicit Congestion Notification Echo and
 Congestion Window Reduced functions, with the ECNE and CWR chunks
 each requiring 8 bytes. As another example, the common header
 includes a 4-byte verification tag to validate the sender.

 As a second concern, SCTP as currently specified uses TCP-like
 congestion control, and does not provide support for alternative
 congestion control algorithms such as TFRC that would be more
 attractive to some of the applications currently using UDP flows.
 Thus, the current version of SCTP would not meet the requirements
 for a choice between forms of end-to-end congestion control.

 Finally, the SCTP Partial Reliability extension [RFC 3758] allows a
 sender to selectively abandon outstanding messages, which ceases

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3758

Floyd/Handley/Kohler Section 3.3.2. [Page 15]

INTERNET-DRAFT Expires: February 2006 August 2005

 retransmissions and allows the receiver to deliver any queued
 messages on the affected streams. This service model, although
 well-suited for some applications, differs from, and provides the
 application somewhat less flexibility than, UDP's fully unreliable
 service.

 One could suggest adding support for alternative congestion control
 mechanisms as an option to SCTP, and adding a fully-unreliable
 variant that does not include the mechanisms for multiple streams.
 We would argue against this. SCTP is well-suited for applications
 that desire limited retransmission with multi-stream or multi-homing
 support. Adding support for fully-unreliable variants, multiple
 congestion control profiles, and reduced single-stream headers would
 risk introducing unforeseen interactions and make further
 modifications ever more difficult. We have chosen instead to
 implement a minimal protocol, designed for fully-unreliable datagram
 service, that provides only end-to-end congestion control and any
 other mechanisms that cannot be provided in a higher layer.

3.3.3. Modifying RTP?

 Several of our target applications currently use RTP layered above
 UDP to transfer their data. Why not modify RTP to provide end-to-
 end congestion control?

 When RTP lives above UDP, modifying it to support congestion control
 might encounter some of the problems described in Section 3.1. In
 particular, user-level RTP implementations would want access to ECN
 bits in UDP datagrams. It might be difficult or undesirable to
 allow that access for RTP, but not for other user-level programs.

 Kernel implementations of RTP would not suffer from this problem. In
 the end, the argument against modifying RTP is the same as that
 against modifying SCTP: Some applications, such as the export of
 flow information from routers, need congestion control but don't
 need much of RTP's functionality. From these applications' point of
 view, RTP would induce unnecessary overhead. Again, we would argue
 for a clean and minimal protocol focused on end-to-end congestion
 control.

 RTP would commonly be used as a layer above any new transport
 protocol, however. The design of that new transport protocol should
 take this into account, either by avoiding undue duplication of
 information available in the RTP header, or by suggesting
 modifications to RTP, such as a reduced RTP header that removes any
 fields redundant with the new protocol's headers.

Floyd/Handley/Kohler Section 3.3.3. [Page 16]

INTERNET-DRAFT Expires: February 2006 August 2005

3.3.4. Designing a New Transport Protocol

 In the first half of this document we have argued for providing
 congestion control at the transport layer as an alternative to UDP,
 instead of relying on congestion control supplied only above or
 below UDP. In this section, we have examined the possibilities of
 modifying SCTP, modifying TCP, and designing a new transport
 protocol. In large part because of the requirement for unreliable
 transport, and for accommodating TFRC as well as TCP-like congestion
 control, we have concluded that modifications of SCTP or TCP are not
 the best answer, and that a new transport protocol is needed. Thus,
 we have argued for the need for a new transport protocol that offers
 unreliable delivery; accommodates TFRC as well as TCP-like
 congestion control; accommodates the use of ECN; and requires
 minimal overhead in packet size and in the state and CPU processing
 required at the data receiver.

4. Selling Congestion Control to Reluctant Applications

 The goal of this work is to provide general congestion control
 mechanisms that will actually be used by many of the applications
 that currently use UDP. This may include applications that are
 perfectly happy without end-to-end congestion control. Several of
 our design requirements follow from a desire to design and deploy a
 congestion-controlled protocol that is actually attractive to these
 "reluctant" applications. These design requirements include the use
 of Explicit Congestion Notification (ECN) and the ECN Nonce, which
 both provide positive benefit to the application itself; the choice
 between different forms of congestion control; and moderate overhead
 in the size of the packet header.

 There will always be a few flows that are resistant to the use of
 end-to-end congestion control, preferring an environment where end-
 to-end congestion control is used by everyone else, but not by
 themselves. There has been substantial agreement [RFC 2309, FF99]
 that in order to maintain the continued use of end-to-end congestion
 control, router mechanisms are needed to detect and penalize
 uncontrolled high-bandwidth flows in times of high congestion; these
 router mechanisms are colloquially known as "penalty boxes".
 However, before undertaking a concerted effort towards the
 deployment of penalty boxes in the Internet, it seems reasonable,
 and more effective, to first make a concerted effort to make end-to-
 end congestion control easily available to applications currently
 using UDP.

Floyd/Handley/Kohler Section 4. [Page 17]

INTERNET-DRAFT Expires: February 2006 August 2005

5. Additional Design Considerations

 This section mentions some additional design considerations that
 should be considered in designing a new transport protocol.

 o Mobility: Mechanisms for multihoming and mobility are one area of
 additional functionality that cannot necessarily be layered
 cleanly and effectively on top of a transport protocol. Thus, one
 outstanding design decision with any new transport protocol
 concerns whether to incorporate mechanisms for multihoming and
 mobility into the protocol itself. The current version of DCCP
 includes no multihoming or mobility support.

 o Defense against DoS attacks and spoofing: A reliable handshake for
 connection setup and teardown offers protection against DoS and
 spoofing attacks. Mechanisms allowing a server to avoid holding
 any state for unacknowledged connection attempts or already-
 finished connections offer additional protection against DoS
 attacks. Thus, in designing a new transport protocol, even one
 designed to provide minimal functionality, the requirements for
 providing defense against DoS attacks and spoofing need to be
 considered.

 o Interoperation with RTP: As Section 3.3.3 describes, attention
 should be paid to any necessary or desirable changes in RTP when
 it is used over the new protocol, such as reduced RTP headers.

 o API: Some functionality required by the protocol, or useful for
 applications using the protocol, may require the definition of new
 API mechanisms. Examples include allowing applications to decide
 what information to put in a packet at transmission time, and
 providing applications with some information about packet sequence
 numbers.

 o Interactions with NATs and Firewalls: NATs and firewalls don't
 interact well with UDP, with its lack of explicit flow setup and
 teardown and, in practice, the lack of well-known ports for many
 UDP applications. Some of these issues are application-specific;
 others should be addressed by the transport protocol itself.

 o Consider general experiences with unicast transport: A
 Requirements for Unicast Transport/Sessions (RUTS) BOF was held at
 the IETF meeting in December, 1998, with the goal of understanding
 the requirements of applications whose needs were not met by TCP
 [RUTS]. Not all of those unmet needs are relevant to or
 appropriate for a unicast, congestion-controlled, unreliable flow
 of datagrams designed for long-lived transfers. Some are,
 however, and any new protocol should address those needs, and

Floyd/Handley/Kohler Section 5. [Page 18]

INTERNET-DRAFT Expires: February 2006 August 2005

 other requirements derived from the community's experience. We
 believe that this document addresses the requirements relevant to
 our problem area that were brought up at the RUTS BOF.

6. Transport Requirements of Request/Response Applications

 Up until now, this document has discussed the transport and
 congestion control requirements of applications that generate long-
 lived, large flows of unreliable datagrams. This section discusses
 briefly the transport needs of another class of applications, those
 of request/response transfers where the response might be a small
 number of packets, with preferences that include both reliable
 delivery and a minimum of state maintained at the ends. The
 reliable delivery could be accomplished, for example, by having the
 receiver re-query when one or more of the packets in the response is
 lost. This is a class of applications whose needs are not well-met
 by either UDP or by TCP.

 Although there is a legitimate need for a transport protocol for
 such short-lived reliable flows of such request/response
 applications, we believe that the overlap with the requirements of
 DCCP is almost non-existent, and that DCCP should not be designed to
 meet the needs of these request/response applications. Areas of
 non-compatible requirements include the following:

 o Reliability: DCCP applications don't need reliability (and long-
 lived applications that do require reliability are well-suited to
 TCP or SCTP). In contrast, these short-lived request/response
 applications do require reliability (possibly client-driven
 reliability in the form of requesting missing segments of a
 response).

 o Connection setup and teardown: Because DCCP is aimed at flows
 whose duration is often unknown in advance, it addresses
 interactions with NATs and firewalls by having explicit handshakes
 for setup and teardown. In contrast, the short-lived
 request/response applications know the transfer length in advance,
 but cannot tolerate the additional delay of a handshake for flow
 set-up. Thus, mechanisms for interacting with NATs and firewalls
 are likely to be completely different for the two sets of
 applications.

 o Congestion-control mechanisms: The styles of congestion control
 mechanisms and negotiations of congestion control features are
 heavily dependent on the flow duration. In addition, the
 preference of the request/response applications for a stateless
 server strongly impacts the congestion control choices. Thus,
 DCCP and the short-lived request/response applications have rather

Floyd/Handley/Kohler Section 6. [Page 19]

INTERNET-DRAFT Expires: February 2006 August 2005

 different requirements both for congestion control mechanisms and
 for negotiation procedures.

7. Summary of Recommendations

 Our problem statement has discussed the need for implementing
 congestion control for unreliable flows. Additional problems
 concern the need for low overhead, the problems of firewall
 traversal, and the need for reliable parameter negotiation. Our
 consideration of the problem statement has resulted in the following
 general recommendations:

 o A unicast transport protocol for unreliable datagrams should be
 developed, including mandatory, built-in congestion control,
 explicit connection setup and teardown, reliable feature
 negotiation, and reliable congestion feedback.

 o The protocol must provide a set of congestion control mechanisms
 from which the application may choose. These mechanisms should
 include, at minimum, TCP-like congestion control and a more
 slowly-responding congestion control such as TFRC.

 o Important features of the connection, such as the congestion
 control mechanism in use, should be reliably negotiated by both
 endpoints.

 o Support for ECN should be included. (Applications could still
 make the decision not to use ECN for a particular session.)

 o The overhead must be low, in terms of both packet size and
 protocol complexity.

 o Some DoS protection for servers must be included. In particular,
 servers can make themselves resistant to spoofed connection
 attacks ("SYN floods").

 o Connection setup and teardown must use explicit handshakes,
 facilitating transmission through stateful firewalls.

 In 2002, there was judged to be a consensus about the need for a new
 unicast transport protocol for unreliable datagrams, and the next
 step was then the consideration of more detailed architectural
 issues.

8. Security Considerations

 There are no security considerations for this document. The
 security considerations for DCCP are discussed separately in [DCCP].

Floyd/Handley/Kohler Section 8. [Page 20]

INTERNET-DRAFT Expires: February 2006 August 2005

9. IANA Considerations

 There are no IANA Considerations for this document.

10. Acknowledgements

 We would like to thank Spencer Dawkins, Jiten Goel, Jeff Hammond,
 Lars-Erik Jonsson, John Loughney, Michael Mealling, and Rik Wade for
 feedback on earlier versions of this document. We would also like
 to thank members of the Transport Area Working Group and of the DCCP
 Working Group for discussions of these issues.

11. Informative References

 [Bala99] H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated
 Congestion Management Architecture for Internet Hosts. SIGCOMM,
 Sept. 1999.

 [CCID 2 PROFILE] S. Floyd and E. Kohler. Profile for DCCP Congestion
 Control ID 2: TCP-like Congestion Control. draft-ietf-dccp-

ccid2-08.txt, work in progress, November 2004.

 [CCID 3 PROFILE] S. Floyd, E. Kohler, and J. Padhye. Profile for
 DCCP Congestion Control ID 3: TFRC Congestion Control. draft-

ietf-dccp-ccid3-08.txt, work in progress, November 2004.

 [DCCP] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion
 Control Protocol. draft-ietf-dccp-spec-09.txt, work in
 progress, November 2004.

 [MEASWEB] Ramon Caceres and Sally Floyd. Measurement Studies of
 End-to-End Congestion Control in the Internet. Web Page, 2001.

 [FF99] S. Floyd and K. Fall. Promoting the Use of End-to-End
 Congestion Control in the Internet. IEEE/ACM Transactions on
 Networking, August 1999.

 [MC01] S. McCreary and K.C. Claffy. Trends in Wide Area IP Traffic
 Patterns: A View from Ames Internet Exchange. ITC Specialist
 Seminar, 2001. URL

http://www.caida.org/outreach/papers/2000/AIX0005/.

 [RFC 1191] J. C. Mogul and S. E. Deering. Path MTU Discovery.
RFC 1191.

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid3-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid3-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-spec-09.txt
http://www.caida.org/outreach/papers/2000/AIX0005/
https://datatracker.ietf.org/doc/html/rfc1191

Floyd/Handley/Kohler Section 11. [Page 21]

INTERNET-DRAFT Expires: February 2006 August 2005

 [RFC 2026] S. Bradner. The Internet Standards Process -- Revision
 3. RFC 2026.

 [RFC 2309] B. Braden et al. Recommendations on Queue Management and
 Congestion Avoidance in the Internet. RFC 2309.

 [RFC 2326] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
 Streaming Protocol (RTSP). RFC 2326.

 [RFC 2481] K. Ramakrishnan and S. Floyd. A Proposal to add Explicit
 Congestion Notification (ECN) to IP. RFC 2481.

 [RFC 2525] V. Paxson et al. Known TCP Implementation Problems.
RFC 2525.

 [RFC 2914] S. Floyd. Congestion Control Principles. RFC 2914.

 [RFC 2960] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
 Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V.
 Paxson. Stream Control Transmission Protocol. RFC 2960.

 [RFC 3124] H. Balakrishnan and S. Seshan. The Congestion Manager.
RFC 3124.

 [RFC 3261] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
 J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
 Session Initiation Protocol. RFC 3261.

 [RFC 3448] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP
 Friendly Rate Control (TFRC): Protocol Specification. RFC 3448.

 [RFC 3540] D. Wetherall, D. Ely, and N. Spring. Robust ECN
 Signaling with Nonces. RFC 3540.

 [RFC 3714] S. Floyd and J. Kempf, editors. IAB Concerns Regarding
 Congestion Control for Voice Traffic in the Internet. RFC 3714.

 [RFC 3758] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad.
 Stream Control Transmission Protocol (SCTP) Partial Reliability
 Extension. RFC 3758.

 [RUTS] Requirements for Unicast Transport/Sessions (RUTS) BOF, Dec.
 7, 1998. URL "http://www.ietf.org/proceedings/98dec/43rd-
 ietf-98dec-142.html".

 [TBIT] J. Padhye and S. Floyd. Identifying the TCP Behavior of Web
 Servers. SIGCOMM 2001.

https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2309
https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc2481
https://datatracker.ietf.org/doc/html/rfc2525
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3714
https://datatracker.ietf.org/doc/html/rfc3758

Floyd/Handley/Kohler Section 11. [Page 22]

INTERNET-DRAFT Expires: February 2006 August 2005

12. Authors' Addresses

 Sally Floyd <floyd@icir.org>
 ICSI Center for Internet Research (ICIR),
 International Computer Science Institute,
 1947 Center Street, Suite 600
 Berkeley, CA 94704.
 USA

 Mark Handley <M.Handley@cs.ucl.ac.uk>
 Department of Computer Science
 University College London
 Gower Street
 London WC1E 6BT
 UK

 Eddie Kohler <kohler@cs.ucla.edu>
 4531C Boelter Hall
 UCLA Computer Science Department
 Los Angeles, CA 90095
 USA

13. Full Copyright Statement

 Copyright (C) The Internet Society 2005. This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

14. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Floyd/Handley/Kohler Section 14. [Page 23]

INTERNET-DRAFT Expires: February 2006 August 2005

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

http://www.ietf.org/ipr

Floyd/Handley/Kohler Section 14. [Page 24]

