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                                Abstract

     This document describes, for the historical record, the
     motivation behind DCCP (the Datagram Congestion Control
     Protocol), an unreliable transport protocol incorporating end-
     to-end congestion control.  DCCP implements a congestion-
     controlled, unreliable flow of datagrams for use by
     applications such as streaming media or on-line games.
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1.  Introduction

    Historically, the great majority of Internet unicast traffic has
    used congestion-controlled TCP, with UDP making up most of the
    remainder.  UDP has mainly been used for short, request-response
    transfers, like DNS and SNMP, that wish to avoid TCP's three-way
    handshake, retransmission, and/or stateful connections.  UDP also
    avoids TCP's built-in end-to-end congestion control, and UDP
    applications tended not to implement their own congestion control.
    However, since UDP traffic volume was small relative to congestion-
    controlled TCP flows, the network didn't collapse.

    Recent years have seen the growth of applications that use UDP in a
    different way.  These applications, including streaming audio,
    Internet telephony, and multiplayer and massively multiplayer on-
    line games, share a preference for timeliness over reliability.  TCP
    can introduce arbitrary delay because of its reliability and in-
    order delivery requirements; thus, the applications use UDP instead.
    This growth of long-lived non-congestion-controlled traffic,
    relative to congestion-controlled traffic, poses a real threat to
    the overall health of the Internet [RFC 2914, RFC 3714].

    Applications could implement their own congestion control mechanisms
    on a case-by-case basis, with encouragement from the IETF.  Some
    already do this.  However, experience shows that congestion control
    is difficult to get right, and many application writers would like
    to avoid reinventing this particular wheel.  We believe that a new
    protocol is needed, one that combines unreliable datagram delivery
    with built-in congestion control.  This protocol will act as an
    enabling technology: existing and new applications could easily use
    it to transfer timely data without destabilizing the Internet.

    This document provides a problem statement for such a protocol.  We
    list the properties the protocol should have, then explain why those
    properties are necessary.  We describe why a new protocol is the
    best solution for the more general problem of bringing congestion
    control to unreliable flows of unicast datagrams, and discuss
    briefly subsidiary requirements for mobility, defense against DOS
    attacks and spoofing, interoperation with RTP, and interactions with
    NATs and firewalls.

    One of the design preferences that we bring to this question is a
    preference for a clean, understandable, low-overhead, and minimal
    protocol.  As described later in this document, this results in the
    design decision to leave functionality such as reliability or
    Forward Error Correction (FEC) to be layered on top, rather than
    provided in the transport protocol itself.

https://datatracker.ietf.org/doc/html/rfc3714
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    This document began in 2002 as a formalization of the goals of DCCP,
    the Datagram Congestion Control Protocol [DCCP].  We intended DCCP
    to satisfy this problem statement, and thus the original reasoning
    behind many of DCCP's design choices can be found here.  However, we
    believed, and continue to believe, that the problem should be solved
    whether or not DCCP is the chosen solution.

2.  Problem Space

    We perceive a number of problems related to the use of unreliable
    data flows in the Internet.  The major issues are:

    o The potential for non-congestion-controlled datagram flows to
      cause congestion collapse of the network.  (See Section 5 of [RFC
      2914] and Section 2 of [RFC 3714].)

    o The difficulty of correctly implementing effective congestion
      control mechanisms for unreliable datagram flows.

    o The lack of a standard solution for reliably transmitting
      congestion feedback for an unreliable data flow.

    o The lack of a standard solution for negotiating Explicit
      Congestion Notification (ECN) [RFC 2481] usage for unreliable
      flows.

    o The lack of a choice of TCP-friendly congestion control
      mechanisms.

    We assume that most application writers would use congestion control
    for long-lived unreliable flows if it was available in a standard,
    easy-to-use form.

    More minor issues include:

    o The difficulty of deploying applications using UDP-based flows in
      the presence of firewalls.

    o The desire to have a single way to negotiate congestion control
      parameters for unreliable flows, independently of the signalling
      protocol used to set up the flow.

    o The desire for low per-packet byte overhead.

    The subsections below discuss these problems of providing congestion
    control, traversing firewalls, and negotiating parameters in more
    detail.  A separate subsection also discusses the problem of
    minimizing the overhead of packet headers.

https://datatracker.ietf.org/doc/html/rfc3714#section-2
https://datatracker.ietf.org/doc/html/rfc2481
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2.1.  Congestion Control for Unreliable Transfer

    We aim to bring easy-to-use congestion control mechanisms to
    applications that generate large or long-lived flows of unreliable
    datagrams, such as RealAudio, Internet telephony, and multiplayer
    games.  Our motivation is to avoid congestion collapse.  (The short
    flows generated by request-response applications, such as DNS, SNMP,
    and SIP [RFC 3261], don't cause congestion in practice, and any
    congestion control mechanism would take effect between flows, not
    within a single end-to-end transfer of information.)  However,
    before designing a congestion control mechanism for these
    applications, we must understand why they use unreliable datagrams
    in the first place, lest we destroy the very properties they
    require.

    There are several reasons why protocols currently use UDP instead of
    TCP, amongst them:

    o Startup Delay: they wish to avoid the delay of a three-way
      handshake before initiating data transfer.

    o Statelessness: they wish to avoid holding connection state, and
      the potential state-holding attacks that come with this.

    o Trading of Reliability against Timing: the data being sent is
      timely in the sense that if it is not delivered by some deadline
      (typically a small number of RTTs) then the data will not be
      useful at the receiver.

    Of these issues, applications that generate large or long-lived
    flows of datagrams, such as media transfer and games, mostly care
    about controlling the tradeoff between timing and reliability.  Such
    applications use UDP because when they send a datagram, they wish to
    send the most appropriate data in that datagram.  If the datagram is
    lost, they may or may not resend the same data, depending on whether
    the data will still be useful at the receiver.  Data may no longer
    be useful for many reasons:

    o In a telephony or streaming video session, data in a packet
      comprises a timeslice of a continuous stream.  Once a timeslice
      has been played out, the next timeslice is required immediately.
      If the data comprising that timeslice arrives at some later time,
      then it is no longer useful.  Such applications can cope with
      masking the effects of missing packets to some extent, so when the
      sender transmits its next packet, it is important for it to only
      send data that has a good chance of arriving in time for its
      playout.

https://datatracker.ietf.org/doc/html/rfc3261
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    o In an interactive game or virtual-reality session, position
      information is transient.  If a datagram containing position
      information is lost, resending the old position does not usually
      make sense -- rather, every position information datagram should
      contain the latest position information.

    In a congestion-controlled flow, the allowed packet sending rate
    depends on measured network congestion.  Thus, some control is given
    up to the congestion control mechanism, which determines precisely
    when packets can be sent.  However, applications could still decide,
    at transmission time, which information to put in a packet.  TCP
    doesn't allow control over this; these applications demand it.

    Often, these applications (especially games and telephony
    applications) work on very short playout timescales.  Whilst they
    are usually able to adjust their transmission rate based on
    congestion feedback, they do have constraints on how this adaptation
    can be performed so that it has minimal impact on the quality of the
    session.  Thus, they tend to need some control over the short-term
    dynamics of the congestion control algorithm, whilst being fair to
    other traffic on medium timescales.  This control includes, but is
    not limited to, some influence on which congestion control algorithm
    should be used -- for example, TFRC rather than strict TCP-like
    congestion control.  (TCP-Friendly Rate Control, or TFRC, has been
    standardized in the IETF as a congestion control mechanism that
    adjusts its sending rate more smoothly than TCP does, while
    maintaining long-term fair bandwidth sharing with TCP [RFC 3448].)

2.2.  Overhead

    The applications we are concerned with often send compressed data,
    or send frequent small packets.  For example, when internet
    telephony or streaming media are used over low-bandwidth modem
    links, highly compressing the payload data is essential.  For
    internet telephony applications and for games, the requirement is
    for low delay, and hence small packets are sent frequently.

    For example, a telephony application sending a 5.6Kbps data stream
    but wanting moderately low delay may send a packet every 20ms,
    sending only 14 data bytes in each packet.  In addition, 20 bytes is
    taken up by the IP header, with additional bytes for transport
    and/or application headers.  Clearly, for such an application it is
    desirable to have a low overhead for the transport protocol header.

    In some cases the correct solution would be to use link-based packet
    header compression to compress the packet headers, although we
    cannot guarantee the availability of such compression schemes on any

https://datatracker.ietf.org/doc/html/rfc3448
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    particular link.

    The delay of data until after the completion of a handshake also
    represents potentially unnecessary overhead. A new protocol might
    therefore allow senders to include some data on their initial
    datagrams.

2.3.  Firewall Traversal

    Applications requiring a flow of unreliable datagrams currently tend
    to use signalling protocols such as RTSP [RFC 2326], SIP and H.323
    in conjunction with UDP for the data flow.  The initial setup
    request uses a signalling protocol to locate the correct remote end-
    system for the data flow, sometimes being redirected or relayed to
    other machines, before the data flow is established.

    As UDP flows contain no explicit setup and teardown, it is hard for
    firewalls to handle them correctly.  Typically the firewall needs to
    parse RTSP, SIP and H.323 to obtain the information necessary to
    open a hole in the firewall.  Alternatively, for bi-directional
    flows, the firewall can open a bi-directional hole if it receives a
    UDP packet from inside the firewall, but in this case the firewall
    can't easily know when to close the hole again.

    While we do not consider these to be major problems, they are
    nonetheless issues that application designers face.  Currently
    streaming media players attempt UDP first, and then switch to TCP if
    UDP is not successful.  Streaming media over TCP is undesirable, and
    can result in the receiver needing to temporarily halt playout while
    it "rebuffers" data.  Telephony applications don't even have this
    option.

2.4.  Parameter Negotiation

    Different applications have different requirements for congestion
    control, which may map into different congestion feedback.  Examples
    include ECN capability and desired congestion control dynamics (the
    choice of congestion control algorithm and, therefore, the form of
    feedback information required).  Such parameters need to be reliably
    negotiated before congestion control can function correctly.

    While this negotiation could be performed using signalling protocols
    such as SIP, RTSP and H.323, it would be desirable to have a single
    standard way of negotiating these transport parameters.  This is of
    particular importance with ECN, where sending ECN-marked packets to
    a non-ECN-capable receiver can cause significant congestion problems
    to other flows.  We discuss the ECN issue in more detail below.

https://datatracker.ietf.org/doc/html/rfc2326
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3.  Solution Space for Congestion Control of Unreliable Flows

    We thus want to provide congestion control for unreliable flows,
    providing both ECN and the choice of different forms of congestion
    control, and providing moderate overhead in terms of packet size,
    state, and CPU processing.  There are a number of options for
    providing end-to-end congestion control for the unicast traffic that
    currently uses UDP, in terms of the layer that provides the
    congestion control mechanism:

    o Congestion control above UDP.

    o Congestion control below UDP.

    o Congestion control at the transport layer in an alternative to
      UDP.

    We explore these alternatives in the sections below.  The concerns
    from the discussions below have convinced us that the best way to
    provide congestion control for unreliable flows is to provide
    congestion control at the transport layer, as an alternative to the
    use of UDP and TCP.

3.1.  Providing Congestion Control Above UDP

    One possibility would be to provide congestion control at the
    application layer, or at some other layer above UDP.  This would
    allow the congestion control mechanism to be closely integrated with
    the application itself.

3.1.1.  The Burden on the Application Designer

    A key disadvantage of providing congestion control above UDP is that
    it places an unnecessary burden on the application-level designer,
    who might be just as happy to use the congestion control provided by
    a lower layer.  If the application can rely on a lower layer that
    gives a choice between TCP-like or TFRC-like congestion control, and
    that offers ECN, then this might be highly satisfactory to many
    application designers.

    The long history of debugging TCP implementations [RFC 2525, TBIT]
    makes the difficulties in implementing end-to-end congestion control
    abundantly clear.  It is clearly more robust for congestion control
    to be provided for the application by a lower layer.  In rare cases
    there might be compelling reasons for the congestion control
    mechanism to be implemented in the application itself, but we do not
    expect this to be the general case.  For example, applications that
    use RTP over UDP might be just as happy if RTP itself implemented
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    end-to-end congestion control.  (See Section 3.3.3 for more
    discussion of RTP.)

    In addition to congestion control issues, we also note the problems
    with firewall traversal and parameter negotiation discussed in
    sections 2.3 and 2.4. Implementing on top of UDP requires that the
    application designer also address these issues.

3.1.2.  Difficulties with ECN

    A second problem of providing congestion control above UDP is that
    it would require either giving up the use of ECN, or giving the
    application direct control over setting and reading the ECN field in
    the IP header.  Giving up the use of ECN would be problematic, since
    ECN can be particularly useful for unreliable flows, where a dropped
    packet will not be retransmitted by the data sender.

    With the development of the ECN nonce, ECN can also be useful even
    in the absence of ECN support from the network.  The data sender can
    use the ECN nonce, along with feedback from the data receiver, to
    verify that the data receiver is correctly reporting all lost
    packets.  This use of ECN can be particularly useful for an
    application using unreliable delivery, where the receiver might
    otherwise have little incentive to report lost packets.

    In order to allow the use of ECN by a layer above UDP, the UDP
    socket would have to allow the application to control the ECN field
    in the IP header.  In particular, the UDP socket would have to allow
    the application to specify whether or not the ECN-Capable Transport
    (ECT) codepoints should be set in the ECN field of the IP header.

    The ECN contract is that senders who set the ECT codepoint must
    respond to Congestion Experienced (CE) codepoints by reducing their
    sending rates.  Therefore, the ECT codepoint can only safely be set
    in the packet header of a UDP packet if the following is guaranteed:

    o If the CE codepoint is set by a router, the receiving IP layer
      will pass the CE status to the UDP layer, which will pass it to
      the receiving application at the data receiver, and:

    o Upon receiving a packet that had the CE codepoint set, the
      receiving application will take the appropriate congestion control
      action, such as informing the data sender.

    However, the UDP implementation at the data sender has no way of
    knowing if the UDP implementation at the data receiver has been
    upgraded to pass a CE status up to the receiving application, let
    alone whether or not the application will use the conformant end-to-
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    end congestion control that goes along with use of ECN.

    In the absence of the widespread deployment of mechanisms in routers
    to detect flows that are not using conformant congestion control,
    allowing applications arbitrary control of the ECT codepoints for
    UDP packets would seem like an unnecessary opportunity for
    applications to use ECN while evading the use of end-to-end
    congestion control.  Thus, there is an inherent "chicken-and-egg"
    problem of whether first to deploy policing mechanisms in routers,
    or first to enable the use of ECN by UDP flows.  Without the
    policing mechanisms in routers, we would not advise adding ECN-
    capability to UDP sockets at this time.

    In the absence of more fine-grained mechanisms for dealing with a
    period of sustained congestion, one possibility would be for routers
    to discontinue using ECN with UDP packets during the congested
    period, and to use ECN only with TCP or DCCP packets.  This would be
    a reasonable response, for example, if TCP or DCCP flows were found
    to be more likely to be using conformant end-to-end congestion
    control than were UDP flows.  If routers were to adopt such a
    policy, then DCCP flows could be more likely to receive the benefits
    of ECN in times of congestion than would UDP flows.

3.1.3.  The Evasion of Congestion Control

    A third problem of providing congestion control above UDP is that
    relying on congestion control at the application level makes it
    somewhat easier for some users to evade end-to-end congestion
    control.  We do not claim that a transport protocol such as DCCP
    would always be implemented in the kernel, and do not attempt to
    evaluate the relative difficulty of modifying code inside the kernel
    vs. outside the kernel in any case.  However, we believe that
    putting the congestion control at the transport level rather than at
    the application level makes it just slightly less likely that users
    will go to the trouble of modifying the code in order to avoid using
    end-to-end congestion control.

3.2.  Providing Congestion Control Below UDP

    Instead of providing congestion control above UDP, a second
    possibility would be to provide congestion control for unreliable
    applications at a layer below UDP, with applications using UDP as
    their transport protocol.  Given that UDP does not itself provide
    sequence numbers or congestion feedback, there are two possible
    forms for this congestion feedback:

    o (1) Feedback at the application: The application above UDP could
      provide sequence numbers and feedback to the sender, which would
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      then communicate loss information to the congestion control
      mechanism.  This is the approach currently standardized by the
      Congestion Manager (CM) [RFC 3124].

    o (2) Feedback at the layer below UDP: The application could use
      UDP, and a protocol could be implemented using a shim header
      between IP and UDP to provide sequence number information for data
      packets and return feedback to the data sender.  The original
      proposal for the Congestion Manager [Bala99] suggested providing
      this layer for applications that did not have their own feedback
      about dropped packets.

    We discuss these two cases separately below.

3.2.1.  Case 1: Congestion Feedback at the Application

    In this case, the application provides sequence numbers and
    congestion feedback above UDP, but communicates that feedback to a
    congestion manager below UDP, which regulates when packets can be
    sent.  This approach suffers from most of the problems described in

Section 3.1, namely forcing the application designer to reinvent the
    wheel each time for packet formats and parameter negotiation, and
    problems with ECN usage, firewalls and evasion.

    It would avoid the application writer needing to implement the
    control part of the congestion control mechanism, but it is unclear
    how easily multiple congestion control algorithms (such as receiver-
    based TFRC) can be supported, given that the form of congestion
    feedback usually needs to be closely coupled to the congestion
    control algorithm being used.  Thus, this design limits the choice
    of congestion control mechanisms available to applications while
    simultaneously burdening the applications with implementations of
    congestion feedback.

3.2.2.  Case 2: Congestion Feedback at a Layer below UDP

    Providing feedback at a layer below UDP would require an additional
    packet header below UDP to carry sequence numbers in addition to the
    eight-byte header for UDP itself.  Unless this header were an IP
    option (which is likely to cause problems for many IPv4 routers)
    then its presence would need to be indicated using a different IP
    protocol value from UDP.  Thus, the packets would no longer look
    like UDP on the wire, and the modified protocol would face
    deployment challenges similar to those of an entirely new protocol.

    To use congestion feedback at a layer below UDP most effectively,
    the semantics of the UDP socket API (Application Programming
    Interface) would also need changing, both to support a late decision

https://datatracker.ietf.org/doc/html/rfc3124
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    on what to send, and to provide access to the sequence numbers to
    avoid the application needing to duplicate them for its own
    purposes.  Thus, the socket API would no longer look like UDP to end
    hosts.  This would effectively be a new transport protocol.

    Given these complications, it seems cleaner to actually design a new
    transport protocol, which also allows us to address the issues of
    firewall traversal, flow setup, and parameter negotiation.  We note
    that any new transport protocol could also use a Congestion Manager
    approach to share congestion state between flows using the same
    congestion control algorithm, if this were deemed to be desirable.

3.3.  Providing Congestion Control at the Transport Layer

    The concerns from the discussions above have convinced us that the
    best way to provide congestion control to applications that
    currently use UDP is to provide congestion control at the transport
    layer, in a transport protocol used as an alternative to UDP.  One
    advantage of providing end-to-end congestion control in an
    unreliable transport protocol is that it could be used easily by a
    wide range of the applications that currently use UDP, with minimal
    changes to the application itself.  The application itself would not
    have to provide the congestion control mechanism, or even the
    feedback from the data receiver to the data sender about lost or
    marked packets.

    The question then arises of whether to adapt TCP for use by
    unreliable applications, to use an unreliable variant of SCTP or a
    version of RTP with built-in congestion control, or to design a new
    transport protocol.

    As we argue below, the desire for minimal overhead results in the
    design decision to use a transport protocol containing only the
    minimal necessary functionality, and to leave other functionality
    such as reliability, semi-reliability, or Forward Error Correction
    (FEC) to be layered on top.

3.3.1.  Modifying TCP?

    One alternative might be to create an unreliable variant of TCP,
    with the reliability layered on top for applications desiring
    reliable delivery.  However, our requirement is not simply for TCP
    minus the in-order reliable delivery, but also for the application
    to be able to choose congestion control algorithms.  TCP's feedback
    mechanism works well for TCP-like congestion control, but is
    inappropriate (or at the very least, inefficient) for TFRC.  In
    addition, TCP sequence numbers are in bytes, not datagrams.  This
    would complicate both congestion feedback and any attempt to allow
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    the application to decide, at transmission time, what information
    should go into a packet.  Finally, there is the issue of whether a
    modified TCP would require a new IP protocol number as well; a
    significantly modified TCP using the same IP protocol number could
    have unwanted interactions with some of the middleboxes already
    deployed in the network.

    It seems best simply to leave TCP as it is, and to create a new
    congestion control protocol for unreliable transfer.  This is
    especially true since any change to TCP, no matter how small, takes
    an inordinate amount of time to standardize and deploy, given TCP's
    importance in the current Internet and the historical difficulty of
    getting TCP implementations right.

3.3.2.  Unreliable Variants of SCTP?

    SCTP, the Stream Control Transmission Protocol [RFC 2960], was in
    part designed to accommodate multiple streams within a single end-
    to-end connection, modifying TCP's semantics of reliable, in-order
    delivery to allow out-of-order delivery.  However, explicit support
    for multiple streams over a single flow at the transport layer is
    not necessary for an unreliable transport protocol such as DCCP,
    which of necessity allows out-of-order delivery.  Because an
    unreliable transport does not need streams support, applications
    should not have to pay the penalties in terms of increased header
    size that accompany the use of streams in SCTP.

    The basic underlying structure of the SCTP packet, of a common SCTP
    header followed by chunks for data, SACK information, and so on, is
    motivated by SCTP's goal of accommodating multiple streams.
    However, this use of chunks comes at the cost of an increased header
    size for packets, as each chunk must be aligned on 32-bit
    boundaries, and therefore requires a fixed-size 4-byte chunk header.
    For example, for a connection using ECN, SCTP includes separate
    control chunks for the Explicit Congestion Notification Echo and
    Congestion Window Reduced functions, with the ECNE and CWR chunks
    each requiring 8 bytes.  As another example, the common header
    includes a 4-byte verification tag to validate the sender.

    As a second concern, SCTP as currently specified uses TCP-like
    congestion control, and does not provide support for alternative
    congestion control algorithms such as TFRC that would be more
    attractive to some of the applications currently using UDP flows.
    Thus, the current version of SCTP would not meet the requirements
    for a choice between forms of end-to-end congestion control.

    Finally, the SCTP Partial Reliability extension [RFC 3758] allows a
    sender to selectively abandon outstanding messages, which ceases

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3758
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    retransmissions and allows the receiver to deliver any queued
    messages on the affected streams.  This service model, although
    well-suited for some applications, differs from, and provides the
    application somewhat less flexibility than, UDP's fully unreliable
    service.

    One could suggest adding support for alternative congestion control
    mechanisms as an option to SCTP, and adding a fully-unreliable
    variant that does not include the mechanisms for multiple streams.
    We would argue against this.  SCTP is well-suited for applications
    that desire limited retransmission with multi-stream or multi-homing
    support.  Adding support for fully-unreliable variants, multiple
    congestion control profiles, and reduced single-stream headers would
    risk introducing unforeseen interactions and make further
    modifications ever more difficult.  We have chosen instead to
    implement a minimal protocol, designed for fully-unreliable datagram
    service, that provides only end-to-end congestion control and any
    other mechanisms that cannot be provided in a higher layer.

3.3.3.  Modifying RTP?

    Several of our target applications currently use RTP layered above
    UDP to transfer their data.  Why not modify RTP to provide end-to-
    end congestion control?

    When RTP lives above UDP, modifying it to support congestion control
    might encounter some of the problems described in Section 3.1.  In
    particular, user-level RTP implementations would want access to ECN
    bits in UDP datagrams.  It might be difficult or undesirable to
    allow that access for RTP, but not for other user-level programs.

    Kernel implementations of RTP would not suffer from this problem. In
    the end, the argument against modifying RTP is the same as that
    against modifying SCTP: Some applications, such as the export of
    flow information from routers, need congestion control but don't
    need much of RTP's functionality.  From these applications' point of
    view, RTP would induce unnecessary overhead.  Again, we would argue
    for a clean and minimal protocol focused on end-to-end congestion
    control.

    RTP would commonly be used as a layer above any new transport
    protocol, however.  The design of that new transport protocol should
    take this into account, either by avoiding undue duplication of
    information available in the RTP header, or by suggesting
    modifications to RTP, such as a reduced RTP header that removes any
    fields redundant with the new protocol's headers.
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3.3.4.  Designing a New Transport Protocol

    In the first half of this document we have argued for providing
    congestion control at the transport layer as an alternative to UDP,
    instead of relying on congestion control supplied only above or
    below UDP.  In this section, we have examined the possibilities of
    modifying SCTP, modifying TCP, and designing a new transport
    protocol.  In large part because of the requirement for unreliable
    transport, and for accommodating TFRC as well as TCP-like congestion
    control, we have concluded that modifications of SCTP or TCP are not
    the best answer, and that a new transport protocol is needed.  Thus,
    we have argued for the need for a new transport protocol that offers
    unreliable delivery; accommodates TFRC as well as TCP-like
    congestion control; accommodates the use of ECN; and requires
    minimal overhead in packet size and in the state and CPU processing
    required at the data receiver.

4.  Selling Congestion Control to Reluctant Applications

    The goal of this work is to provide general congestion control
    mechanisms that will actually be used by many of the applications
    that currently use UDP.  This may include applications that are
    perfectly happy without end-to-end congestion control.  Several of
    our design requirements follow from a desire to design and deploy a
    congestion-controlled protocol that is actually attractive to these
    "reluctant" applications.  These design requirements include the use
    of Explicit Congestion Notification (ECN) and the ECN Nonce, which
    both provide positive benefit to the application itself; the choice
    between different forms of congestion control; and moderate overhead
    in the size of the packet header.

    There will always be a few flows that are resistant to the use of
    end-to-end congestion control, preferring an environment where end-
    to-end congestion control is used by everyone else, but not by
    themselves.  There has been substantial agreement [RFC 2309, FF99]
    that in order to maintain the continued use of end-to-end congestion
    control, router mechanisms are needed to detect and penalize
    uncontrolled high-bandwidth flows in times of high congestion; these
    router mechanisms are colloquially known as "penalty boxes".
    However, before undertaking a concerted effort towards the
    deployment of penalty boxes in the Internet, it seems reasonable,
    and more effective, to first make a concerted effort to make end-to-
    end congestion control easily available to applications currently
    using UDP.
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5.  Additional Design Considerations

    This section mentions some additional design considerations that
    should be considered in designing a new transport protocol.

    o Mobility: Mechanisms for multihoming and mobility are one area of
      additional functionality that cannot necessarily be layered
      cleanly and effectively on top of a transport protocol.  Thus, one
      outstanding design decision with any new transport protocol
      concerns whether to incorporate mechanisms for multihoming and
      mobility into the protocol itself.  The current version of DCCP
      includes no multihoming or mobility support.

    o Defense against DoS attacks and spoofing: A reliable handshake for
      connection setup and teardown offers protection against DoS and
      spoofing attacks.  Mechanisms allowing a server to avoid holding
      any state for unacknowledged connection attempts or already-
      finished connections offer additional protection against DoS
      attacks.  Thus, in designing a new transport protocol, even one
      designed to provide minimal functionality, the requirements for
      providing defense against DoS attacks and spoofing need to be
      considered.

    o Interoperation with RTP: As Section 3.3.3 describes, attention
      should be paid to any necessary or desirable changes in RTP when
      it is used over the new protocol, such as reduced RTP headers.

    o API: Some functionality required by the protocol, or useful for
      applications using the protocol, may require the definition of new
      API mechanisms.  Examples include allowing applications to decide
      what information to put in a packet at transmission time, and
      providing applications with some information about packet sequence
      numbers.

    o Interactions with NATs and Firewalls: NATs and firewalls don't
      interact well with UDP, with its lack of explicit flow setup and
      teardown and, in practice, the lack of well-known ports for many
      UDP applications.  Some of these issues are application-specific;
      others should be addressed by the transport protocol itself.

    o Consider general experiences with unicast transport: A
      Requirements for Unicast Transport/Sessions (RUTS) BOF was held at
      the IETF meeting in December, 1998, with the goal of understanding
      the requirements of applications whose needs were not met by TCP
      [RUTS].  Not all of those unmet needs are relevant to or
      appropriate for a unicast, congestion-controlled, unreliable flow
      of datagrams designed for long-lived transfers.  Some are,
      however, and any new protocol should address those needs, and
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      other requirements derived from the community's experience. We
      believe that this document addresses the requirements relevant to
      our problem area that were brought up at the RUTS BOF.

6.  Transport Requirements of Request/Response Applications

    Up until now, this document has discussed the transport and
    congestion control requirements of applications that generate long-
    lived, large flows of unreliable datagrams.  This section discusses
    briefly the transport needs of another class of applications, those
    of request/response transfers where the response might be a small
    number of packets, with preferences that include both reliable
    delivery and a minimum of state maintained at the ends.  The
    reliable delivery could be accomplished, for example, by having the
    receiver re-query when one or more of the packets in the response is
    lost.  This is a class of applications whose needs are not well-met
    by either UDP or by TCP.

    Although there is a legitimate need for a transport protocol for
    such short-lived reliable flows of such request/response
    applications, we believe that the overlap with the requirements of
    DCCP is almost non-existent, and that DCCP should not be designed to
    meet the needs of these request/response applications.  Areas of
    non-compatible requirements include the following:

    o Reliability: DCCP applications don't need reliability (and long-
      lived applications that do require reliability are well-suited to
      TCP or SCTP).  In contrast, these short-lived request/response
      applications do require reliability (possibly client-driven
      reliability in the form of requesting missing segments of a
      response).

    o Connection setup and teardown: Because DCCP is aimed at flows
      whose duration is often unknown in advance, it addresses
      interactions with NATs and firewalls by having explicit handshakes
      for setup and teardown.  In contrast, the short-lived
      request/response applications know the transfer length in advance,
      but cannot tolerate the additional delay of a handshake for flow
      set-up.  Thus, mechanisms for interacting with NATs and firewalls
      are likely to be completely different for the two sets of
      applications.

    o Congestion-control mechanisms: The styles of congestion control
      mechanisms and negotiations of congestion control features are
      heavily dependent on the flow duration.  In addition, the
      preference of the request/response applications for a stateless
      server strongly impacts the congestion control choices.  Thus,
      DCCP and the short-lived request/response applications have rather
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      different requirements both for congestion control mechanisms and
      for negotiation procedures.

7.  Summary of Recommendations

    Our problem statement has discussed the need for implementing
    congestion control for unreliable flows.  Additional problems
    concern the need for low overhead, the problems of firewall
    traversal, and the need for reliable parameter negotiation.  Our
    consideration of the problem statement has resulted in the following
    general recommendations:

    o A unicast transport protocol for unreliable datagrams should be
      developed, including mandatory, built-in congestion control,
      explicit connection setup and teardown, reliable feature
      negotiation, and reliable congestion feedback.

    o The protocol must provide a set of congestion control mechanisms
      from which the application may choose.  These mechanisms should
      include, at minimum, TCP-like congestion control and a more
      slowly-responding congestion control such as TFRC.

    o Important features of the connection, such as the congestion
      control mechanism in use, should be reliably negotiated by both
      endpoints.

    o Support for ECN should be included.  (Applications could still
      make the decision not to use ECN for a particular session.)

    o The overhead must be low, in terms of both packet size and
      protocol complexity.

    o Some DoS protection for servers must be included.  In particular,
      servers can make themselves resistant to spoofed connection
      attacks ("SYN floods").

    o Connection setup and teardown must use explicit handshakes,
      facilitating transmission through stateful firewalls.

    In 2002, there was judged to be a consensus about the need for a new
    unicast transport protocol for unreliable datagrams, and the next
    step was then the consideration of more detailed architectural
    issues.

8.  Security Considerations

    There are no security considerations for this document.  The
    security considerations for DCCP are discussed separately in [DCCP].
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9.  IANA Considerations

    There are no IANA Considerations for this document.
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