
Internet Engineering Task Force S. Floyd
INTERNET-DRAFT ICIR
Intended status: Proposed Standard M. Handley
Expires: October 2008 University College London
Obsoletes: 3448 (if approved) J. Padhye
Updates: 4342 (if approved) Microsoft
 J. Widmer
 DoCoMo
 12 April 2008

TCP Friendly Rate Control (TFRC): Protocol Specification
draft-ietf-dccp-rfc3448bis-06.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Floyd et al. Expires: October 2008 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT TFRC: Protocol Specification April 2008

Abstract

 This document specifies TCP-Friendly Rate Control (TFRC). TFRC is a
 congestion control mechanism for unicast flows operating in a best-
 effort Internet environment. It is reasonably fair when competing
 for bandwidth with TCP flows, but has a much lower variation of
 throughput over time compared with TCP, making it more suitable for
 applications such as streaming media where a relatively smooth
 sending rate is of importance.

 This document obsoletes RFC 3448 and updates RFC 4342.

Floyd et al. Expires: October 2008 [Page 2]

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4342

INTERNET-DRAFT TFRC: Protocol Specification April 2008

Table of Contents

1. Introduction ..12
2. Conventions ...13
3. Protocol Mechanism ..13

3.1. TCP Throughput Equation14
3.2. Packet Contents ..16

3.2.1. Data Packets16
3.2.2. Feedback Packets17

4. Data Sender Protocol ..17
4.1. Measuring the Segment Size18
4.2. Sender Initialization19
4.3. Sender Behavior When a Feedback Packet is Received19
4.4. Expiration of Nofeedback Timer24
4.5. Reducing Oscillations26
4.6. Scheduling of Packet Transmissions27

5. Calculation of the Loss Event Rate (p)28
5.1. Detection of Lost or Marked Packets28
5.2. Translation from Loss History to Loss Events29
5.3. Inter-loss Event Interval31
5.4. Average Loss Interval31
5.5. History Discounting32

6. Data Receiver Protocol ..34
6.1. Receiver Behavior When a Data Packet is Received35
6.2. Expiration of Feedback Timer36
6.3. Receiver Initialization37

 6.3.1. Initializing the Loss History after the First Loss
 Event ..37

7. Sender-based Variants ...39
8. Implementation Issues ...39

8.1. Computing the Throughput Equation39
8.2. Sender Behavior When a Feedback Packet is Received40

 8.2.1. Determining If an Interval Was a Data-limited
 Interval ...40

8.2.2. Maintaining X_recv_set42
8.3. Sending Packets Before their Nominal Send Time42
8.4. Calculation of the Average Loss Interval44
8.5. The Optional History Discounting Mechanism44

9. Changes from RFC 3448 ...44
9.1. Overview of Changes44
9.2. Changes in each Section45

10. Security Considerations47
11. IANA Considerations ..48
12. Acknowledgments ..48
A. Terminology ...48
B. The Initial Value of the Nofeedback Timer51
C. Response to Idle or Data-limited Periods51

C.1. Long Idle or Data-limited Periods53

https://datatracker.ietf.org/doc/html/rfc3448

Floyd et al. Expires: October 2008 [Page 3]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

C.2. Short Idle or Data-limited Periods56
C.3. Moderate Idle or Data-limited Periods56
C.4. Losses During Data-Limited Periods57
C.5. Other Patterns ...61
C.6. Evaluating TFRC's Response to Idle Periods61

 Normative References ...62
 Informational References ...62
 Authors' Addresses ...64
 Full Copyright Statement ...64
 Intellectual Property ..65

Floyd et al. Expires: October 2008 [Page 4]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 NOTE TO RFC EDITOR: PLEASE DELETE THIS NOTE UPON PUBLICATION.

 Changes from draft-ietf-dccp-rfc3448bis-05.txt:

 * Editing in response to AD review from Lars Eggert.
 Using normative language (MAY/SHOULD/REQUIRE/OPTIONAL/etc.),
 fixing a few nits.

 * Added to Maximize X_recv_set that the initial value Infinity
 is deleted. This only matters if the sender is data-limited
 for a number of round-trip times starting with its initial
 start-up.

 * Added that if this document is approved, CCID-3 and CCID-4
 SHOULD use this document instead of RFC 3448.

 * Editing in response to feedback from Gerrit.

 * Clarified definition of X_Bps. Feedback from Tom Phelan.

 * Clarified that "segment size" means user data only.
 Feedback from Tom Phelan.

 * A small change to the Update_limits procedure in Section 4.4.
 Feedback from Tom Phelan.

 * Editing in response to feedback from Gorry. This includes the
 use of normative language.

 Changes from draft-ietf-dccp-rfc3448bis-04.txt:

 * Added a mechanism for decaying the value in X_recv_set
 following a loss event in a data-limited interval, and
 restricting recv_limit to "max (X_recv_set)" for the next
 RTT. Also added a discussion to Appendix C of the
 response to a loss during a data-limited period.
 Following feedback from Gorry and Arjuna.

 * Removed a restriction in step 4) of Section 4.3 about
 checking if the sender was not data-limited, when the sender
 has been in initial slow-start. It is no longer needed.
 Feedback from Arjuna.

 * Added pseudocode to Section 8.2.1 on "Determining If an
 Interval Was a Data-limited Interval", fixing a bug in the
 procedure. Feedback from Arjuna.

 Changes from draft-ietf-dccp-rfc3448bis-03.txt:

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-05.txt
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-03.txt

Floyd et al. Expires: October 2008 [Page 5]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 * Added text that the choice of b=1 is consistent with RFC3465bis.
 Feedback from Gorry.

 * Typos and such reported by Arjuna.

 * Updated terminology section, fixed typos and such.
 Feedback from Vladimir Moltchanov.

 * Added a section to the Appendix about how one would
 add CWV-style behavior to TFRC for data-limited periods,
 if one wanted to. Feedback from Gorry.

 * Added an implementation section about X_recv_set.

 Changes from draft-ietf-dccp-rfc3448bis-02.txt:

 * In a data-limited period, instead of setting the receive rate to
 Infinity, set it to the maximum of (X_recv, values in X_recv_set).
 Step (4) of Section 4.3.

 * Added a fix so that when data-limited and p = 0, the sender
 does not double the allowed sending rate after each feedback
 packet. Step (4) of Section 4.3. Problem reported by Arjuna.

 * Added a line to the pseudocode for reducing the sending rate
 during idle periods during initial slow-start. This fixes
 a problem when the sender is in initial slow-start, has
 an allowed sending rate less than twice the initial sending rate,
 and has been idle since the nofeedback timer was set.
 Step (1) of Section 4.4. Problem reported by Arjuna.

 * Added one line to the pseudocode in Section 4.4 on "Expiration of
 Nofeedback Timer" so that when the nofeedback timer expires and
 the sender does not have an RTT sample and has not yet received
 feedback from the receiver, we also look at whether the sender has
 been idle during the entire nofeedback interval.

 * General editing from feedback from Colin Perkins.

 * General editing from feedback from Gerrit Renker.
 This includes the following:
 - Added a subsection to Section 8 on implementation issues about
 "Sender Behavior When a Feedback Packet is Received".
 - Moved Section 4.6.1 on "Sending Packets Before their Nominal
 Send Time" to Section 8 on "Implementation Issues".

 * Added a subsection on "Evaluating TFRC's Response to Idle Periods"
 to the Appendix, encouraging future work on TFRC's responses to

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-02.txt

Floyd et al. Expires: October 2008 [Page 6]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 idle and data-limited periods.

 Changes from draft-ietf-dccp-rfc3448bis-01.txt:

 * Specified that the sender is not limited by the receive rate
 if the sender has been data-limited for an entire feedback
 interval.

 * Added variables "initial_rate" and "recover_rate, for the
 initial transmit rate and the rate for resuming after an idle
 period, for easier specification of Faster Restart (in a separate
 document). Also added the variable "recv_limit" to specify
 the limit on the sending rate that is computed from the receive
 rate, and the variable "timer_limit" to specify the
 limit on the sending rate from the expiration of the nofeedback
 timer.
 Explained why recover_rate is not used as lower bound
 for nofeedback timer expirations after a data-limited period.

 * Added Appendix C on "Response to Idle or Data-limited Periods".

 * Revised the section on "Scheduling of Packet Transmissions"
 to make clear what is specification, and what is
 implementation. From Gerrit Renker. Also stated that the
 accumulation of sending credits should be limited
 to a round-trip time's worth of packets.

 * For measuring the receive rate, added that after a loss event,
 the receive rate SHOULD be measured over the most recent RTT,
 but for simplicity of implementation, MAY be measured over
 a slightly longer time interval.

 * Clarified that RTT measurements do not necessarily come from
 feedback packets; they could also come from other places,
 e.g., from the SYN exchange.

 * Specified that the sender may maintain unused sent credits
 up to one RTT. This gives behavior similar to TCP.
 Also specified that the sender should not sent packets more
 that rtt/2 seconds before their nominal send time.

 * Reinserted the last paragraph of Section 4.4 from RFC 3448.
 It must have been deleted accidentally.

 * Feedback from Arjuna Sathiaseelan:
 - Changing W_init to be in terms of segment size s, not MSS.

 * Changed THRESHOLD, the lower bound on the history

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-01.txt
https://datatracker.ietf.org/doc/html/rfc3448

Floyd et al. Expires: October 2008 [Page 7]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 discounting parameter DF, from 0.5 to 0.25, for more
 history discounting when the current interval is long.

 * Relying on the sender not to use X_recv from data-limited
 periods. This gives behavior similar to TCP, when
 ACK-clocking is not in effect in data-limited periods.
 The largest X_recv over the most recent two round-trip
 times is used to limit the sending rate. This is
 maintained using X_recv_set. Taken together, these avoid
 problems with the first feedback packet after an idle
 period, and this avoids problems with limitations
 from X_recv during data-limited periods.

 * Clarified that when the receiver receives a data packet,
 and didn't send a feedback packet when the feedback timer
 last expired (because no data packets were received),
 then the receiver sends a feedback packet immediately.

 * Clarified that the feedback packet reports the rate over
 the last RTT, not necessarily the rate since the
 last feedback packet was sent (if no feedback packet was
 sent when the feedback timer last expired).

 * Corrected earlier code designed to prevent the receive
 rate from limiting the sending rate when the first feedback
 packet received, or for the first feedback packet received
 after an idle period.

 * Clarified that we have p=0 only until the first loss event.
 After the first loss event, p>0, and it is not possible to go
 back to p=0. In response to old email.

 * Clarified in Section 6.1 that the loss event rate does not
 have to be recalculated with the arrival of each new data
 packet.

 * Clarified the section on Reducing Oscillations. Feedback from
 Gerrit Renker.

 Changes from draft-ietf-dccp-rfc3448bis-00.txt:

 * When initializing the loss history after the first
 data packet sent is lost or ECN-marked, TFRC uses
 a minimum receive rate of 0.5 packets per second.

 * For initializing the estimated packet drop rate
 for the first loss interval when coming out of slow-start,
 it is ok to use the maximum receive rate so far, not just

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-00.txt

Floyd et al. Expires: October 2008 [Page 8]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 the receive rate in the last round-trip time.
 Feedback from Ladan Gharai.

 * General feedback from Gorry Fairhurst:
 - Added a reference for RFC4828.
 - Clarified that R_m is sender's estimate of RTT, as reported
 in Section 3.2.1.
 - Added a definition of terms.
 - Added a discussion of why the initial value of the nofeedback
 timer is two seconds, instead of three seconds for the
 recommended initial value for TCP's retransmit timer.

 * General feedback from Arjuna Sathiaseelan:
 - Added more details about sending multiple feedback
 packets per RTT.
 - Added change to Section 4.3 to use the first feedback
 packet, or the first feedback packet after a
 nofeedback timer during slow-start, *if min_rate > X*.

 * General feedback from Gerrit Renker:
 - Changed "delta" to "t_delta".
 - Changed X_calc to X_Bps, clarified X.
 - Clarified send times in "Scheduling of Packet Transmissions".
 - Changed so that tld can be initialized to either 0 or -1.
 - Fixed Section 5.5 to say that the most recent lost
 interval has weight 1/(0.75*n) *when there have been
 at least eight loss intervals*.
 - Clarified introduction about fixed-size and variable-size
 packets.

 * Added more about sender-based variants.
 Feedback from Guillaume Jourjon.

 * Corrected that the loss interval I_0 includes all transmitted
 packets, including lost and marked packets (as defined in Section

5.3 in the general definition.) Email from Eddie Kohler and
 Gerrit Renker.

 * Not done: I didn't add a minimum value for the nofeedback
 timer. (Why would a nofeedback timer need to be bigger
 than max(4*R, 2*s/X)? Email discussing pros and cons from
 Arjuna.

 Changes from draft-floyd-rfc3448bis-00.txt:

 * Name change to draft-ietf-dccp-rfc3448bis-00.txt.

 * Specified the receiver's initialization of the feedback timer

https://datatracker.ietf.org/doc/html/rfc4828
https://datatracker.ietf.org/doc/html/draft-floyd-rfc3448bis-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-00.txt

Floyd et al. Expires: October 2008 [Page 9]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 when the first data packet does not have an estimate of the
 RTT. From feedback from Dado Colussi.

 * Added the procedure for sending receiver
 feedback packets when a coarse-grained
 timestamp is used. From RFC 4243.

 Changes from RFC 3448:

 * Incorporated changes in the RFC 3448 errata:

 - "If the sender does not receive a feedback report for
 four round trip times, it cuts its sending rate in half."
 ("Two" changed to "four", for consistency with the rest
 of the document. Reported by Joerg Widmer).

 - "If the nofeedback timer expires when the sender does not
 yet have an RTT sample, and has not yet received any
 feedback from the receiver, or when p == 0,..."
 (Added "or when p == 0,", reported by Wim Heirman).

 - In Section 5.5, changed:
 for (i = 1 to n) { DF_i = 1; }
 to:
 for (i = 0 to n) { DF_i = 1; }
 Reported by Michele R.

 * Changed RFC 3448 to correspond to the larger initial windows
 specified in RFC 3390. This includes the following:

 - Incorporated Section 5.1 from [RFC4342], saying that
 when reducing the sending rate after an idle period, do not
 reduce the sending rate below the initial sending rate.

 - Change for a data-limited sender:
 When the sender has been data-limited, the sender does not
 let the receive rate limit it to a sending rate less than
 the initial rate.

 - Small change to slow-start:
 Changed so that for the first feedback packet received,
 or for the first feedback packet received after an idle
 period, the receive rate is not used to limit the
 sending rate. This is because the receiver might not yet
 have seen an entire window of data.

 * Clarified how the average loss interval is calculated when
 the receiver has not yet seen eight loss intervals.

https://datatracker.ietf.org/doc/html/rfc4243
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc4342

Floyd et al. Expires: October 2008 [Page 10]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 * Discussed more about estimating the average segment size:

 - For initializing the loss history after the first loss event,
 either the receiver knows the sender's value for s, or
 the receiver uses the throughput equation for X_pps and does
 not need to know an estimate for s.

 - Added a discussion about estimating the average segment size
 s in Section 4.1 on "Measuring the Segment Size".

 - Changed "packet size" to "segment size".

 END OF NOTE TO RFC EDITOR.

Floyd et al. Expires: October 2008 [Page 11]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

1. Introduction

 This document specifies TCP-Friendly Rate Control (TFRC). TFRC is a
 congestion control mechanism designed for unicast flows operating in
 an Internet environment and competing with TCP traffic [FHPW00].
 Instead of specifying a complete protocol, this document simply
 specifies a congestion control mechanism that could be used in a
 transport protocol such as DCCP (Datagram Congestion Control
 Protocol) [RFC4340], in an application incorporating end-to-end
 congestion control at the application level, or in the context of
 endpoint congestion management [BRS99]. This document does not
 discuss packet formats or reliability. Implementation-related
 issues are discussed only briefly, in Section 8.

 TFRC is designed to be reasonably fair when competing for bandwidth
 with TCP flows, where we call a flow "reasonably fair" if its
 sending rate is generally within a factor of two of the sending rate
 of a TCP flow under the same conditions. However, TFRC has a much
 lower variation of throughput over time compared with TCP, which
 makes it more suitable for applications such as telephony or
 streaming media where a relatively smooth sending rate is of
 importance.

 The penalty of having smoother throughput than TCP while competing
 fairly for bandwidth is that TFRC responds slower than TCP to
 changes in available bandwidth. Thus, TFRC should only be used when
 the application has a requirement for smooth throughput, in
 particular, avoiding TCP's halving of the sending rate in response
 to a single packet drop. For applications that simply need to
 transfer as much data as possible in as short a time as possible we
 recommend using TCP, or if reliability is not required, using an
 Additive-Increase, Multiplicative-Decrease (AIMD) congestion control
 scheme with similar parameters to those used by TCP.

 TFRC is designed for best performance with applications that use a
 fixed segment size, and vary their sending rate in packets per
 second in response to congestion. TFRC can also be used, perhaps
 with less optimal performance, with applications that do not have a
 fixed segment size, but where the segment size varies according to
 the needs of the application (e.g., video applications).

 Some applications (e.g., some audio applications) require a fixed
 interval of time between packets and vary their segment size instead
 of their packet rate in response to congestion. The congestion
 control mechanism in this document is not designed for those
 applications; TFRC-SP (Small-Packet TFRC) is a variant of TFRC for
 applications that have a fixed sending rate in packets per second
 but either use small packets, or vary their packet size in response

https://datatracker.ietf.org/doc/html/rfc4340

Floyd et al. Expires: October 2008 [Page 12]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 to congestion. TFRC-SP is specified in a separate document
 [RFC4828].

 This document specifies TFRC as a receiver-based mechanism, with the
 calculation of the congestion control information (i.e., the loss
 event rate) in the data receiver rather in the data sender. This is
 well-suited to an application where the sender is a large server
 handling many concurrent connections, and the receiver has more
 memory and CPU cycles available for computation. In addition, a
 receiver-based mechanism is more suitable as a building block for
 multicast congestion control. However, it is also possible to
 implement TFRC in sender-based variants, as allowed in DCCP's
 Congestion Control ID 3 (CCID 3) [RFC4342].

 This document obsoletes RFC 3448. In the transport protocol DCCP
 (Datagram Congestion Control Protocol) [RFC4340], the Congestion
 Control ID Profiles CCID-3 [RFC4342] and CCID-4 [CCID-4] both
 specify the use of TFRC from RFC 3448. If this document is
 approved, then CCID-3 and CCID-4 implementations SHOULD use this
 document instead of RFC 3448 for the specification of TFRC.

 The normative specification of TFRC is in Sections 3-6. Section 7
 discusses sender-based variants, Section 8 discusses implementation
 issues, and Section 9 gives a non-normative overview of differences
 with RFC 3448.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Appendix A gives a list of technical terms used in this document.

3. Protocol Mechanism

 For its congestion control mechanism, TFRC directly uses a
 throughput equation for the allowed sending rate as a function of
 the loss event rate and round-trip time. In order to compete fairly
 with TCP, TFRC uses the TCP throughput equation, which roughly
 describes TCP's sending rate as a function of the loss event rate,
 round-trip time, and segment size. We define a loss event as one or
 more lost or marked packets from a window of data, where a marked
 packet refers to a congestion indication from Explicit Congestion
 Notification (ECN) [RFC3168].

 Generally speaking, TFRC's congestion control mechanism works as
 follows:

https://datatracker.ietf.org/doc/html/rfc4828
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168

Floyd et al. Expires: October 2008 [Page 13]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 o The receiver measures the loss event rate and feeds this
 information back to the sender.

 o The sender also uses these feedback messages to measure the
 round-trip time (RTT).

 o The loss event rate and RTT are then fed into TFRC's throughput
 equation, and the resulting sending rate is limited to at most
 twice the receive rate to give the allowed transmit rate X.

 o The sender then adjusts its transmit rate to match the allowed
 transmit rate X.

 The dynamics of TFRC are sensitive to how the measurements are
 performed and applied. We recommend specific mechanisms below to
 perform and apply these measurements. Other mechanisms are
 possible, but it is important to understand how the interactions
 between mechanisms affect the dynamics of TFRC.

3.1. TCP Throughput Equation

 Any realistic equation giving TCP throughput as a function of loss
 event rate and RTT should be suitable for use in TFRC. However, we
 note that the TCP throughput equation used must reflect TCP's
 retransmit timeout behavior, as this dominates TCP throughput at
 higher loss rates. We also note that the assumptions implicit in
 the throughput equation about the loss event rate parameter have to
 be a reasonable match to how the loss rate or loss event rate is
 actually measured. While this match is not perfect for the
 throughput equation and loss rate measurement mechanisms given
 below, in practice the assumptions turn out to be close enough.

 The throughput equation currently REQUIRED for TFRC is a slightly
 simplified version of the throughput equation for Reno TCP from
 [PFTK98]. Ideally we would prefer a throughput equation based on
 SACK TCP, but no one has yet derived the throughput equation for
 SACK TCP, and simulations and experiments suggest that the
 differences between the two equations would be relatively minor
 [FF99] (Appendix B).

 The throughput equation for X_Bps, TCP's average sending rate in
 bytes per second, is:

 s
 X_Bps = --
 R*sqrt(2*b*p/3) + (t_RTO * (3*sqrt(3*b*p/8)*p*(1+32*p^2)))

Floyd et al. Expires: October 2008 [Page 14]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 Where:

 X_Bps is TCP's average transmit rate in bytes per second.
 (X_Bps is the same as X_calc in RFC 3448.)

 s is the segment size in bytes (excluding IP and transport
 protocol headers).

 R is the round trip time in seconds.

 p is the loss event rate, between 0 and 1.0, of the number of
 loss events as a fraction of the number of packets transmitted.

 t_RTO is the TCP retransmission timeout value in seconds.

 b is the maximum number of packets acknowledged by a single TCP
 acknowledgement.

 Setting the TCP retransmission timeout value t_RTO:
 Implementations SHOULD set t_RTO = 4*R. Implementations MAY choose
 to implement a more accurate calculation of t_RTO. Implementatins
 MAY also set t_RTO to max(4*R, one second), to match the recommended
 minimum of one second on the RTO [RFC2988].

 Setting the parameter b for delayed acknowledgements:
 Some current TCP connections use delayed acknowledgements, sending
 an acknowledgement for every two data packets received. However,
 TCP is also allowed to send an acknowledgement for every data
 packet. For the revised TCP congestion control mechanisms,
 [RFC2581bis] currently specifies that the delayed acknowledgement
 algorithm should be used with TCP. However, [RFC2581bis] recommends
 increasing the congestion window during congestion avoidance by one
 segment per RTT even in the face of delayed acknowledgements,
 consistent with a TCP throughput equation with b = 1. On an
 experimental basis, [RFC2581bis] allows for increases of the
 congestion window during slow-start that are also consistent with a
 TCP throughput equation with b = 1. Thus, the use of b = 1 is
 consistent with [RFC2581bis]. The use of b = 1 is RECOMMENDED.

 With t_RTO=4*R and b=1, the throughput equation for X_Bps, the TCP
 sending rate in bytes per second, can be simplified as:

 s
 X_Bps = ---
 R * (sqrt(2*p/3) + 12*sqrt(3*p/8)*p*(1+32*p^2))

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc2988

Floyd et al. Expires: October 2008 [Page 15]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 In the future, updates to this document could specify different TCP
 equations to be substituted for this equation. The requirement is
 that the throughput equation be a reasonable approximation of the
 sending rate of TCP for conformant TCP congestion control.

 The throughput equation can also be expressed in terms of X_pps, the
 sending rate in packets per second, with

 X_pps = X_Bps / s .

 The parameters s (segment size), p (loss event rate) and R (RTT)
 need to be measured or calculated by a TFRC implementation. The
 measurement of s is specified in Section 4.1, measurement of R is
 specified in Section 4.3, and measurement of p is specified in

Section 5. In the rest of this document data rates are measured in
 bytes per second unless otherwise specified.

3.2. Packet Contents

 Before specifying the sender and receiver functionality, we describe
 the contents of the data packets sent by the sender and feedback
 packets sent by the receiver. As TFRC will be used along with a
 transport protocol, we do not specify packet formats, as these
 depend on the details of the transport protocol used.

3.2.1. Data Packets

 Each data packet sent by the data sender contains the following
 information:

 o A sequence number. This number MUST be incremented by one for
 each data packet transmitted. The field must be sufficiently
 large that it does not wrap causing two different packets with
 the same sequence number to be in the receiver's recent packet
 history at the same time.

 o A timestamp indicating when the packet is sent. We denote by
 ts_i the timestamp of the packet with sequence number i. The
 resolution of the timestamp SHOULD typically be measured in
 milliseconds.

 This timestamp is used by the receiver to determine which losses
 belong to the same loss event. The timestamp is also echoed by
 the receiver to enable the sender to estimate the round-trip
 time, for senders that do not save timestamps of transmitted
 data packets.

Floyd et al. Expires: October 2008 [Page 16]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 We note that as an alternative to a timestamp incremented in
 milliseconds, a "timestamp" that increments every quarter of a
 round-trip time MAY be used for determining when losses belong
 to the same loss event, in the context of a protocol where this
 is understood by both sender and receiver, and where the sender
 saves the timestamps of transmitted data packets.

 o The sender's current estimate of the round trip time. The
 estimate reported in packet i is denoted by R_i. The round-trip
 time estimate is used by the receiver, along with the timestamp,
 to determine when multiple losses belong to the same loss event.
 The round-trip time estimate is also used by the receiver to
 determine the interval to use for calculating the receive rate,
 and to determine when to send feedback packets.

 If the sender sends a coarse-grained "timestamp" that increments
 every quarter of a round-trip time, as discussed above, then the
 sender is not required to send its current estimate of the round
 trip time.

3.2.2. Feedback Packets

 Each feedback packet sent by the data receiver contains the
 following information:

 o The timestamp of the last data packet received. We denote this
 by t_recvdata. If the last packet received at the receiver has
 sequence number i, then t_recvdata = ts_i.
 This timestamp is used by the sender to estimate the round-trip
 time, and is only needed if the sender does not save timestamps
 of transmitted data packets.

 o The amount of time elapsed between the receipt of the last data
 packet at the receiver, and the generation of this feedback
 report. We denote this by t_delay.

 o The rate at which the receiver estimates that data was received
 in the previous round-trip time. We denote this by X_recv.

 o The receiver's current estimate of the loss event rate p.

4. Data Sender Protocol

 The data sender sends a stream of data packets to the data receiver
 at a controlled rate. When a feedback packet is received from the
 data receiver, the data sender changes its sending rate, based on
 the information contained in the feedback report. If the sender does
 not receive a feedback report for four round trip times, then the

Floyd et al. Expires: October 2008 [Page 17]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 sender cuts its sending rate in half. This is achieved by means of
 a timer called the nofeedback timer.

 We specify the sender-side protocol in the following steps:

 o Measurement of the mean segment size being sent.

 o Sender initialization.

 o The sender behavior when a feedback packet is received.

 o The sender behavior when the nofeedback timer expires.

 o Oscillation prevention (optional)

 o Scheduling of packet transmission and allowed burstiness.

4.1. Measuring the Segment Size

 The TFRC sender uses the segment size s in the throughput equation,
 in the setting of the maximum receive rate and the minimum and
 initial sending rates, and in the setting of the nofeedback timer.
 The TFRC receiver MAY use the average segment size s in initializing
 the loss history after the first loss event. As specified in

Section 6.3.1, if the TFRC receiver does not know the segment size s
 used by the sender, the TFRC receiver MAY instead use the arrival
 rate in packets per second in initializing the loss history.

 The segment size is normally known to an application. This may not
 be so in two cases:

 1) The segment size naturally varies depending on the data. In
 this case, although the segment size varies, that variation is
 not coupled to the transmit rate. The TFRC sender can either
 compute the average segment size or use the maximum segment size
 for the segment size s.

 2) The application needs to change the segment size rather than the
 number of segments per second to perform congestion control.
 This would normally be the case with packet audio applications
 where a fixed interval of time needs to be represented by each
 packet. Such applications need to have a completely different
 way of measuring parameters.

 For the first class of applications where the segment size varies
 depending on the data, the sender SHOULD estimate the segment size s
 as the average segment size over the last four loss intervals. The
 sender MAY estimate the average segment size over longer time

Floyd et al. Expires: October 2008 [Page 18]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 intervals, if so desired.

 The second class of applications are discussed separately in a
 separate document on TFRC-SP [RFC4828]. For the remainder of this
 section we assume the sender can estimate the segment size, and that
 congestion control is performed by adjusting the number of packets
 sent per second.

4.2. Sender Initialization

 The initial values for X (the allowed sending rate in bytes per
 second) and tld (the Time Last Doubled during slow-start, in
 seconds) are undefined until they are set as described below. If
 the sender is ready to send data when it does not yet have a round
 trip sample, the value of X is set to s bytes per second, for
 segment size s, the nofeedback timer is set to expire after two
 seconds, and tld is set to 0 (or to -1, either one is okay). Upon
 receiving the first round trip time measurement (e.g., after the
 first feedback packet or the SYN exchange from connection set-up, or
 from a previous connection [RFC2140]), tld is set to the current
 time, and the allowed transmit rate X is set to the initial_rate,
 specified as W_init/R, for W_init based on [RFC3390]:

 W_init = min(4*MSS, max(2*MSS, 4380)).

 In computing W_init, instead of using MSS, the TFRC sender SHOULD
 use the maximum segment size to be used for the initial round-trip
 time of data, if that is known by the TFRC sender when X is
 initialized.

 For responding to the initial feedback packet, this replaces step
 (4) of Section 4.3 below.

Appendix B explains why the initial value of TFRC's nofeedback timer
 is set to two seconds, instead of the recommended initial value of
 three seconds for TCP's retransmit timer from [RFC2988].

4.3. Sender Behavior When a Feedback Packet is Received

 The sender knows its current allowed sending rate X, and maintains
 an estimate of the current round trip time R. The sender also
 maintains X_recv_set as a small set of recent X_recv values
 (typically only two values).

 Initialization: X_recv_set is first initialized to contain a single
 item, with value Infinity. (As a implementation-specific issue,
 X_recv_set MAY be initialized to a large number instead of to
 Infinity, e.g., to the largest integer that is easily

https://datatracker.ietf.org/doc/html/rfc4828
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2988

Floyd et al. Expires: October 2008 [Page 19]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 representable).

 When a feedback packet is received by the sender at time t_now, the
 current time in seconds, the following actions MUST be performed.

 1) Calculate a new round trip sample:

 R_sample = (t_now - t_recvdata) - t_delay.

 As described in Section 3.2.2, t_delay gives the elapsed time at
 the receiver.

 2) Update the round trip time estimate:

 If no feedback has been received before {
 R = R_sample;
 } Else {
 R = q*R + (1-q)*R_sample;
 }

 TFRC is not sensitive to the precise value for the filter
 constant q, but a default value of 0.9 is RECOMMENDED.

 3) Update the timeout interval:

 RTO = max(4*R, 2*s/X)

 4) Update the allowed sending rate as follows. This procedure uses
 the variables t_mbi and recv_limit:

 t_mbi: the maximum backoff interval of 64 seconds.
 recv_limit: the limit on the sending rate computed from
 X_recv_set.

 This procedure also uses the procedures Maximize X_recv_set()
 and Update X_recv_set(), which are defined below.

 The procedure for updating the allowed sending rate:

Floyd et al. Expires: October 2008 [Page 20]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 If (the entire interval covered by the feedback packet
 was a data-limited interval) {
 If (the feedback packet reports a new loss event or an
 increase in the loss event rate p) {
 Halve entries in X_recv_set;
 X_recv = 0.85 * X_recv;
 Maximize X_recv_set();
 recv_limit = max (X_recv_set);
 } Else {
 Maximize X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 }
 } Else { // typical behavior
 Update X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 }
 If (p > 0) { // congestion avoidance phase
 Calculate X_Bps using the TCP throughput equation.
 X = max(min(X_Bps, recv_limit), s/t_mbi);
 } Else if (t_now - tld >= R) }
 // initial slow-start
 X = max(min(2*X, recv_limit), initial_rate);
 tld = t_now;
 }

 5) If oscillation reduction is used, calculate the instantaneous
 transmit rate X_inst, following Section 4.5.

 6) Reset the nofeedback timer to expire after RTO seconds.

 The procedure for maximizing X_recv_set keeps a single value, the
 largest value from X_recv_set and the new X_recv.

 Maximize X_recv_set():
 Add X_recv to X_recv_set;
 Delete initial value Infinity from X_recv_set,
 if it is still a member.
 Set the timestamp of the largest item to the current time;
 Delete all other items.

 The procedure for updating X_recv_set keeps a set of X_recv values
 with timestamps from the most recent two round-trip times.

Floyd et al. Expires: October 2008 [Page 21]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 Update X_recv_set():
 Add X_recv to X_recv_set;
 Delete from X_recv_set values older than
 two round-trip times.

 Definition of a data-limited interval:
 We define a sender as data-limited any time it is not sending as
 much as it is allowed to send. We define an interval as a 'data-
 limited interval' if the sender was data-limited over the *entire*
 interval; Section 8.2.1 discusses implementation issues for a sender
 in determining if an interval was a data-limited interval. The term
 `data-limited interval' is used in the first "if" condition in step
 (4), which prevents a sender from having to reduce its sending rate
 as a result of a feedback packet reporting the receive rate from a
 data-limited period.

 As an example, consider a sender that is sending at its full allowed
 rate, except that it is sending packets in pairs, rather than
 sending each packet as soon as it can. Such a sender is considered
 data-limited part of the time, because it is not always sending
 packets as soon as it can. However, consider an interval that
 covers this sender's transmission of at least two data packets;
 such an interval does not meet the definition of a data-limited
 interval, because the sender was not data-limited *over the entire
 interval*.

 X_recv_set and the first feedback packet:
 Because X_recv_set is initialized with a single item, with value
 Infinity, recv_limit is set to Infinity for the first two round-trip
 times of the connection. As a result, the sending rate is not
 limited by the receive rate during that period. This avoids the
 problem of the sending rate being limited by the value of X_recv
 from the first feedback packet, which reports only one segment
 received in the last round-trip time,

 The interval covered by a feedback packet:
 How does the sender determine the period covered by a feedback
 packet? This is discussed in more detail in Section 8.2. In
 general, the receiver will be sending a feedback packet once per
 round-trip time, so typically the sender will be able to determine
 exactly the period covered by the current feedback packet from the
 previous feedback packet. However, in cases when the previous
 feedback packet was lost, or when the receiver sends a feedback
 packet early because it detected a lost or ECN-marked packet, the
 sender will have to estimate the interval covered by the feedback
 packet. As specified in Section 6.2, each feedback packet sent by
 the receiver covers a round-trip time, for the round-trip time

Floyd et al. Expires: October 2008 [Page 22]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 estimate R_m maintained by the receiver R_m seconds before the
 feedback packet was sent.

 The response to a loss during a data-limited interval:
 In TFRC, after the initial slow-start, the sender always updates the
 calculated transmit rate X_Bps after a feedback packet is received,
 and the allowed sending rate X is always limited by X_Bps. However,
 during a data-limited interval, when the actual sending rate is
 usually below X_Bps, the sending rate is still limited by
 recv_limit, derived from X_recv_set. If the sender is data-limited,
 possibly with a varying sending rate from one round-trip time to the
 next, and is experiencing losses, then we decrease the entry in
 X_recv_set in order to reduce the allowed sending rate.

 The sender can detect a loss event during a data-limited period
 either from explicit feedback from the receiver, or from a reported
 increase in the loss event rate. When the sender receives a
 feedback packet reporting such a loss event in a data-limited
 interval, the sender limits the allowed increases in the sending
 rate during the data-limited interval.

 The initial slow-start phase:
 Note that when p=0, the sender has not yet learned of any loss
 events, and the sender is in the initial slow-start phase. In this
 initial slow-start phase, the sender can approximately double the
 sending rate each round-trip time until a loss occurs. The
 initial_rate term in step (4) gives a minimum allowed sending rate
 during slow-start of the initial allowed sending rate.

 We note that if the sender is data-limited during slow-start, or if
 the connection is limited by the path bandwidth, then the sender is
 not necessarily able to double its sending rate each round-trip
 time; the sender's sending rate is limited to at most twice the past
 receive rate, or at most initial_rate, whichever is larger. This is
 similar to TCP's behavior, where the sending rate is limited by the
 rate of incoming acknowledgement packets as well as by the
 congestion window. Thus in TCP's Slow-Start, for the most
 aggressive case of the TCP receiver acknowledging every data packet,
 the TCP sender's sending rate is limited to at most twice the rate
 of these incoming acknowledgment packets.

 The minimum allowed sending rate:
 The term s/t_mbi ensures that when p > 0, the sender is allowed to
 send at least one packet every 64 seconds.

Floyd et al. Expires: October 2008 [Page 23]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

4.4. Expiration of Nofeedback Timer

 This section specifies the sender's response to a nofeedback timer.
 The nofeedback timer could expire because of an idle period, or
 because of data or feedback packets dropped in the network.

 This section uses the variable recover_rate. If the TFRC sender has
 been idle ever since the nofeedback timer was set, the allowed
 sending rate is not reduced below the recover_rate. For this
 document, the recover_rate is set to the initial_rate. Future
 updates to this specification may explore other possible values for
 the recover_rate.

 If the nofeedback timer expires, the sender MUST perform the
 following actions:

 1) Cut the allowed sending rate in half.

 If the nofeedback timer expires when the sender has had at least
 one RTT measurement, the allowed sending rate is reduced by
 modifying X_recv_set as described in the pseudocode below
 (including item (2)). In the general case, the sending rate is
 limited to at most twice X_recv. Modifying X_recv_set limits
 the sending rate, but still allows the sender to slow-start,
 doubling its sending rate each RTT, if feedback messages resume
 reporting no losses.

 If the sender has been idle since this nofeedback timer was set
 and X_recv is less than the recover_rate, then the allowed
 sending rate is not halved, and X_recv_set is not changed. This
 ensures that the allowed sending rate is not reduced to less
 than half the recover_rate as a result of an idle period.

 In the general case, the allowed sending rate is halved in
 response to the expiration of the nofeedback timer. The
 details, in the pseudocode below, depend on whether the sender
 is in slow-start, is in congestion avoidance limited by X_recv,
 or is in congestion avoidance limited by the throughput
 equation.

Floyd et al. Expires: October 2008 [Page 24]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 X_recv = max (X_recv_set);
 If (sender does not have an RTT sample,
 has not received any feedback from receiver,
 and has not been idle ever since the nofeedback timer
 was set) {
 // We do not have X_Bps or recover_rate yet.
 // Halve the allowed sending rate.
 X = max(X/2, s/t_mbi);
 } Else if (((p>0 && X_recv < recover_rate) or
 (p==0 && X < 2 * recover_rate)), and
 sender has been idle ever
 since nofeedback timer was set) {
 // Don't halve the allowed sending rate.
 Do nothing;
 } Else if (p==0) {
 // We do not have X_Bps yet.
 // Halve the allowed sending rate.
 X = max(X/2, s/t_mbi);
 } Else if (X_Bps > 2*X_recv)) {
 // 2*X_recv was already limiting the sending rate.
 // Halve the allowed sending rate.
 Update_Limits(X_recv;)
 } Else {
 // The sending rate was limited by X_Bps, not by X_recv.
 // Halve the allowed sending rate.
 Update_Limits(X_Bps/2);
 }

 The term s/t_mbi limits the backoff to one packet every 64
 seconds.

 The procedure Update_Limits() uses the variable timer_limit for
 the limit on the sending rate computed from the expiration of
 the nofeedback timer, as follows:

 Update_Limits(timer_limit):
 If (timer_limit < s/t_mbi)
 timer_limit = s/t_mbi;
 Replace X_recv_set contents with the single item
 timer_limit/2;
 Recalculate X as in steps (4) and (5) of Section 4.3;

 2) Restart the nofeedback timer to expire after max(4*R, 2*s/X)
 seconds.

Floyd et al. Expires: October 2008 [Page 25]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 If the sender has been data-limited but not idle since the
 nofeedback timer was set, it is possible that the nofeedback timer
 expired because data or feedback packets were dropped in the
 network. In this case, the nofeedback timer is the backup mechanism
 for the sender to detect these losses, similar to the retransmit
 timer in TCP.

 Note that when the sender stops sending data for a period of time,
 the receiver will stop sending feedback. When the sender's
 nofeedback timer expires, the sender could use the procedure above
 to limit the sending rate. If the sender subsequently starts to
 send again, X_recv_set will be used to limit the transmit rate, and
 slow-start behavior will occur until the transmit rate reaches
 X_Bps.

 The TFRC sender's reduction of the allowed sending rate after the
 nofeedback timer expires is similar to TCP's reduction of the
 congestion window cwnd after each RTO seconds of an idle period, for
 TCP with Congestion Window Validation [RFC2861].

4.5. Reducing Oscillations

 To reduce oscillations in queueing delay and sending rate in
 environments with a low degree of statistical multiplexing at the
 congested link, it is RECOMMENDED that the sender reduce the
 transmit rate as the queuing delay (and hence RTT) increases. To do
 this the sender maintains R_sqmean, a long-term estimate of the
 square root of the RTT, and modifies its sending rate depending on
 how the square root of R_sample, the most recent sample of the RTT,
 differs from the long-term estimate. The long-term estimate
 R_sqmean is set as follows:

 If no feedback has been received before {
 R_sqmean = sqrt(R_sample);
 } Else {
 R_sqmean = q2*R_sqmean + (1-q2)*sqrt(R_sample);
 }

 Thus R_sqmean gives the exponentially weighted moving average of the
 square root of the RTT samples. The constant q2 should be set
 similarly to q, the constant used in the round trip time estimate R.
 A value of 0.9 as the default for q2 is RECOMMENDED.

 When sqrt(R_sample) is greater than R_sqmean then the current round-
 trip time is greater than the long-term average, implying that
 queueing delay is probably increasing. In this case, the transmit
 rate is decreased to minimize oscillations in queueing delay.

https://datatracker.ietf.org/doc/html/rfc2861

Floyd et al. Expires: October 2008 [Page 26]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 The sender obtains the base allowed transmit rate, X, as described
 in step (4) of Section 4.3 above. It then calculates a modified
 instantaneous transmit rate X_inst, as follows:

 X_inst = X * R_sqmean / sqrt(R_sample);
 If (p > 0) { // congestion avoidance phase
 X_inst = max(X_inst, s/t_mbi)
 } Else if (t_now - tld >= R) { // initial slow-start
 X_inst = max(X_inst, s/R)
 }

 Because we are using square roots, there is generally only a
 moderate difference between the instantaneous transmit rate X_inst
 and the allowed transmit rate X. For example, in a somewhat extreme
 case when the current RTT sample R_sample is twice as large as the
 long-term average, then sqrt(R_sample) will be roughly 1.44 times
 R_sqmean, and the allowed transmit rate will be reduced by a factor
 of roughly 0.7.

 We note that this modification for reducing oscillatory behavior is
 not always needed, especially if the degree of statistical
 multiplexing in the network is high. We also note that the measured
 round-trip time is not necessarily strongly correlated with the data
 packet queueing delay. However, this modification SHOULD be
 implemented because it makes TFRC behave better in some environments
 with a low level of statistical multiplexing. The performance of
 this modification is illustrated in Section 3.1.3 of [FHPW00]. If
 it is not implemented, implementations SHOULD use a very low value
 of the weight q for the average round-trip time.

4.6. Scheduling of Packet Transmissions

 As TFRC is rate-based, and as operating systems typically cannot
 schedule events precisely, it is necessary to be opportunistic about
 sending data packets so that the correct average rate is maintained
 despite the coarse-grain or irregular scheduling of the operating
 system. To help maintain the correct average sending rate, the TFRC
 sender MAY send some packets before their nominal send time.

 In addition, the scheduling of packet transmissions controls the
 allowed burstiness of senders after an idle or data-limited period.
 The TFRC sender MAY accumulate sending 'credits' for past unused
 send times; this allows the TFRC sender to send a burst of data
 after an idle or data-limited period. To compare with TCP, TCP may
 send up to a round-trip time's worth of packets in a single burst,
 but never more. As examples, packet bursts can be sent by TCP when
 an ACK arrives acknowledging a window of data, or when a data-
 limited sender suddenly has a window of data to send after a delay

Floyd et al. Expires: October 2008 [Page 27]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 of nearly a round-trip time.

 To limit burstiness, a TFRC implementation MUST prevent bursts of
 arbitrary size. This limit MUST be less than or equal to one round-
 trip time's worth of packets. A TFRC implementation MAY limit
 bursts to less than a round-trip time's worth of packets.

 As an implementation-specific example, a sending loop could
 calculate the correct inter-packet interval, t_ipi, as follows:

 t_ipi = s/X_inst;

 Let t_now be the current time and i be a natural number, i = 0, 1,
 ..., with t_i the nominal send time for the i-th packet. Then the
 nominal send time t_(i+1) would derive recursively as

 t_0 = t_now,
 t_(i+1) = t_i + t_ipi.

 For TFRC senders allowed to accumulate sending credits for unused
 send time over the last T seconds, the sender would be allowed to
 use unused nominal send times t_j for t_j < now - T, for T set to
 the round-trip time.

5. Calculation of the Loss Event Rate (p)

 Obtaining an accurate and stable measurement of the loss event rate
 is of primary importance for TFRC. Loss rate measurement is
 performed at the receiver, based on the detection of lost or marked
 packets from the sequence numbers of arriving packets. We describe
 this process before describing the rest of the receiver protocol.
 If the receiver has not yet detected a lost or marked packet, then
 the receiver does not calculate the loss event rate, but reports a
 loss event rate of zero.

5.1. Detection of Lost or Marked Packets

 TFRC assumes that all packets contain a sequence number that is
 incremented by one for each packet that is sent. For the purposes
 of this specification, it is REQUIRED that if a lost packet is
 retransmitted, the retransmission is given a new sequence number
 that is the latest in the transmission sequence, and not the same
 sequence number as the packet that was lost. If a transport
 protocol has the requirement that it must retransmit with the
 original sequence number, then the transport protocol designer must
 figure out how to distinguish delayed from retransmitted packets and
 how to detect lost retransmissions.

Floyd et al. Expires: October 2008 [Page 28]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 The receiver maintains a data structure that keeps track of which
 packets have arrived and which are missing. For the purposes of
 specification, we assume that the data structure consists of a list
 of packets that have arrived along with the receiver timestamp when
 each packet was received. In practice this data structure will
 normally be stored in a more compact representation, but this is
 implementation-specific.

 The loss of a packet is detected by the arrival of at least NDUPACK
 packets with a higher sequence number than the lost packet, for
 NDUPACK set to 3. The requirement for NDUPACK subsequent packets is
 the same as with TCP, and is to make TFRC more robust in the
 presence of reordering. In contrast to TCP, if a packet arrives
 late (after NDUPACK subsequent packets arrived) in TFRC, the late
 packet can fill the hole in TFRC's reception record, and the
 receiver can recalculate the loss event rate. Future versions of
 TFRC might make the requirement for NDUPACK subsequent packets
 adaptive based on experienced packet reordering, but such a
 mechanism is not part of the current specification.

 For an ECN-capable connection, a marked packet is detected as a
 congestion event as soon as it arrives, without having to wait for
 the arrival of subsequent packets.

5.2. Translation from Loss History to Loss Events

 TFRC requires that the loss fraction be robust to several
 consecutive packets lost or marked in the same loss event. This is
 similar to TCP, which (typically) only performs one halving of the
 congestion window during any single RTT. Thus the receiver needs to
 map the packet loss history into a loss event record, where a loss
 event is one or more packets lost or marked in an RTT. To perform
 this mapping, the receiver needs to know the RTT to use, and this is
 supplied periodically by the sender, typically as control
 information piggy-backed onto a data packet. TFRC is not sensitive
 to how the RTT measurement sent to the receiver is made, but it is
 RECOMMENDED to use the sender's calculated RTT, R, (see Section 4.3)
 for this purpose.

 To determine whether a lost or marked packet should start a new loss
 event, or be counted as part of an existing loss event, we need to
 compare the sequence numbers and timestamps of the packets that
 arrived at the receiver. For a marked packet S_new, its reception
 time T_new can be noted directly. For a lost packet, we can
 interpolate to infer the nominal "arrival time". Assume:

 S_loss is the sequence number of a lost packet.

Floyd et al. Expires: October 2008 [Page 29]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 S_before is the sequence number of the last packet to arrive,
 before any packet arrivals with a sequence number above S_loss,
 with a sequence number below S_loss.

 S_after is the sequence number of the first packet to arrive
 after S_before with a sequence number above S_loss.

 S_max is the largest sequence number.

 Therefore, S_before < S_loss < S_after <= S_max.

 T_loss is the nominal estimated arrival time for the lost
 packet.

 T_before is the reception time of S_before.

 T_after is the reception time of S_after.

 Note that due to reordering, T_before could be either before or
 after T_after.

 For a lost packet S_loss, we can interpolate its nominal "arrival
 time" at the receiver from the arrival times of S_before and
 S_after. Thus:

 T_loss = T_before + ((T_after - T_before)
 * (S_loss - S_before)/(S_after - S_before));

 To address sequence number wrapping, let S_MAX be the maximum
 sequence number using by the particular implementation. In this
 case, we can interpolate the arrival time T_loss as follows:

 T_loss = T_before + (T_after - T_before)
 * Dist(S_loss, S_before)/Dist(S_after, S_before)

 where

 Dist(S_A, S_B) = (S_A + S_MAX - S_B) % S_MAX

 If the lost packet S_old was determined to have started the previous
 loss event, and we have just determined that S_new has been lost,
 then we interpolate the nominal arrival times of S_old and S_new,
 called T_old and T_new respectively.

 If T_old + R >= T_new, then S_new is part of the existing loss
 event. Otherwise S_new is the first packet in a new loss event.

Floyd et al. Expires: October 2008 [Page 30]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

5.3. Inter-loss Event Interval

 If a loss interval, A, is determined to have started with packet
 sequence number S_A and the next loss interval, B, started with
 packet sequence number S_B, then the number of packets in loss
 interval A is given by (S_B - S_A). Thus, loss interval A contains
 all of the packets transmitted by the sender starting with the first
 packet transmitted in loss interval A, and ending with but not
 including the first packet transmitted in loss interval B.

5.4. Average Loss Interval

 To calculate the loss event rate p, we first calculate the average
 loss interval. This is done using a filter that weights the n most
 recent loss event intervals in such a way that the measured loss
 event rate changes smoothly. If the receiver has not yet seen a
 lost or marked packet, then the receiver does not calculate the
 average loss interval.

 Weights w_0 to w_(n-1) are calculated as:

 If (i < n/2) {
 w_i = 1;
 } Else {
 w_i = 2 * (n-i)/(n+2);
 }

 Thus if n=8, the values of w_0 to w_7 are:

 1.0, 1.0, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2

 The value n for the number of loss intervals used in calculating the
 loss event rate determines TFRC's speed in responding to changes in
 the level of congestion. It is RECOMMENDED to set the value n to 8.
 TFRC SHOULD NOT use values of n greater than 8, for traffic that
 might compete in the global Internet with TCP. At the very least,
 safe operation with values of n greater than 8 would require a
 slight change to TFRC's mechanisms, to include a more severe
 response to two or more round-trip times with heavy packet loss.

 When calculating the average loss interval we need to decide whether
 to include the current loss interval, defined as the loss interval
 containing the most recent loss event. We only include the current
 loss interval if it is sufficiently large to increase the average
 loss interval.

Floyd et al. Expires: October 2008 [Page 31]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 Let the most recent loss intervals be I_0 to I_k, where I_0 is the
 current loss interval. If there have been at least n loss
 intervals, then k is set to n; otherwise k is the maximum number of
 loss intervals seen so far. We calculate the average loss interval
 I_mean as follows:

 I_tot0 = 0;
 I_tot1 = 0;
 W_tot = 0;
 for (i = 0 to k-1) {
 I_tot0 = I_tot0 + (I_i * w_i);
 W_tot = W_tot + w_i;
 }
 for (i = 1 to k) {
 I_tot1 = I_tot1 + (I_i * w_(i-1));
 }
 I_tot = max(I_tot0, I_tot1);
 I_mean = I_tot/W_tot;

 The loss event rate, p is simply:

 p = 1 / I_mean;

5.5. History Discounting

 As described in Section 5.4, when there have been at least n loss
 intervals, the most recent loss interval is only assigned 1/(0.75*n)
 of the total weight in calculating the average loss interval,
 regardless of the size of the most recent loss interval. This
 section describes an OPTIONAL history discounting mechanism,
 discussed further in [FHPW00a] and [W00], that allows the TFRC
 receiver to adjust the weights, concentrating more of the relative
 weight on the most recent loss interval, when the most recent loss
 interval is more than twice as large as the computed average loss
 interval.

 To carry out history discounting, we associate a discount factor
 DF_i with each loss interval L_i, for i > 0, where each discount
 factor is a floating point number. The discount array maintains the
 cumulative history of discounting for each loss interval. At the
 beginning, the values of DF_i in the discount array are initialized
 to 1:

 for (i = 0 to n) {
 DF_i = 1;
 }

Floyd et al. Expires: October 2008 [Page 32]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 History discounting also uses a general discount factor DF, also a
 floating point number, that is also initialized to 1. First we show
 how the discount factors are used in calculating the average loss
 interval, and then we describe later in this section how the
 discount factors are modified over time.

 As described in Section 5.4 the average loss interval is calculated
 using the n previous loss intervals I_1, ..., I_n and the current
 loss interval I_0. The computation of the average loss interval
 using the discount factors is a simple modification of the procedure
 in Section 5.4, as follows:

 I_tot0 = I_0 * w_0;
 I_tot1 = 0;
 W_tot0 = w_0;
 W_tot1 = 0;
 for (i = 1 to n-1) {
 I_tot0 = I_tot0 + (I_i * w_i * DF_i * DF);
 W_tot0 = W_tot0 + w_i * DF_i * DF;
 }
 for (i = 1 to n) {
 I_tot1 = I_tot1 + (I_i * w_(i-1) * DF_i);
 W_tot1 = W_tot1 + w_(i-1) * DF_i;
 }
 p = min(W_tot0/I_tot0, W_tot1/I_tot1);

 The general discounting factor DF is updated on every packet arrival
 as follows. First, the receiver computes the weighted average I_mean
 of the loss intervals I_1, ..., I_n:

 I_tot = 0;
 W_tot = 0;
 for (i = 1 to n) {
 W_tot = W_tot + w_(i-1) * DF_i;
 I_tot = I_tot + (I_i * w_(i-1) * DF_i);
 }
 I_mean = I_tot / W_tot;

 This weighted average I_mean is compared to I_0, the size of current
 loss interval. If I_0 is greater than twice I_mean, then the new
 loss interval is considerably larger than the old ones, and the
 general discount factor DF is updated to decrease the relative
 weight on the older intervals, as follows:

Floyd et al. Expires: October 2008 [Page 33]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 if (I_0 > 2 * I_mean) {
 DF = 2 * I_mean/I_0;
 if (DF < THRESHOLD) {
 DF = THRESHOLD;
 }
 } else {
 DF = 1;
 }

 A nonzero value for THRESHOLD ensures that older loss intervals from
 an earlier time of high congestion are not discounted entirely. We
 recommend a THRESHOLD of 0.25. Note that with each new packet
 arrival, I_0 will increase further, and the discount factor DF will
 be updated.

 When a new loss event occurs, the current interval shifts from I_0
 to I_1, loss interval I_i shifts to interval I_(i+1), and the loss
 interval I_n is forgotten. The previous discount factor DF has to
 be incorporated into the discount array. Because DF_i carries the
 discount factor associated with loss interval I_i, the DF_i array
 has to be shifted as well. This is done as follows:

 for (i = 1 to n) {
 DF_i = DF * DF_i;
 }
 for (i = n-1 to 0 step -1) {
 DF_(i+1) = DF_i;
 }
 I_0 = 1;
 DF_0 = 1;
 DF = 1;

 This completes the description of the optional history discounting
 mechanism. We emphasize that this is an OPTIONAL mechanism whose
 sole purpose is to allow TFRC to respond somewhat more quickly to
 the sudden absence of congestion, as represented by a long current
 loss interval.

6. Data Receiver Protocol

 The receiver periodically sends feedback messages to the sender.
 Feedback packets SHOULD normally be sent at least once per RTT,
 unless the sender is sending at a rate of less than one packet per
 RTT, in which case a feedback packet SHOULD be send for every data
 packet received. A feedback packet SHOULD also be sent whenever a
 new loss event is detected without waiting for the end of an RTT,
 and whenever an out-of-order data packet is received that removes a

Floyd et al. Expires: October 2008 [Page 34]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 loss event from the history.

 If the sender is transmitting at a high rate (many packets per RTT)
 there may be some advantages to sending periodic feedback messages
 more than once per RTT as this allows faster response to changing
 RTT measurements, and more resilience to feedback packet loss.

 If the receiver was sending k feedback packets per RTT, for k>1,
 step (4) of Section 6.2 would be modified to set the feedback timer
 to expire after R_m/k seconds. However, each feedback packet would
 still report the receiver rate over the last RTT, not over a
 fraction of an RTT. In this document we do not specify the
 modifications that might be required for a receiver sending more
 than one feedback packet per RTT. We note that there is little gain
 from sending a large number of feedback messages per RTT.

6.1. Receiver Behavior When a Data Packet is Received

 When a data packet is received, the receiver performs the following
 steps:

 1) Add the packet to the packet history.

 2) Check if done: If the new packet results in the detection of a
 new loss event, or if no feedback packet was sent when the
 feedback timer last expired, go to step 3). Otherwise, no
 action need be performed (unless the optimization in the next
 paragraph is used), so exit the procedure.

 An OPTIONAL optimization might check to see if the arrival of
 the packet caused a hole in the packet history to be filled and
 consequently two loss intervals were merged into one. If this
 is the case, the receiver might also send feedback immediately.
 The effects of such an optimization are normally expected to be
 small.

 3) Calculate p: Let the previous value of p be p_prev. Calculate
 the new value of p as described in Section 5.

 4) Expire feedback timer: If p > p_prev, cause the feedback timer
 to expire, and perform the actions described in Section 6.2

 If p <= p_prev and no feedback packet was sent when the feedback
 timer last expired, cause the feedback timer to expire, and
 perform the actions described in Section 6.2. If p <= p_prev
 and a feedback packet was sent when the feedback timer last
 expired, no action need be performed.

Floyd et al. Expires: October 2008 [Page 35]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

6.2. Expiration of Feedback Timer

 When the feedback timer at the receiver expires, the action to be
 taken depends on whether data packets have been received since the
 last feedback was sent.

 For the m-th expiration of the feedback timer, let the maximum
 sequence number of a packet at the receiver so far be S_m, and the
 value of the RTT measurement included in packet S_m be R_m. As
 described in Section 3.2.1, R_m is the sender's most recent estimate
 of the round trip time, as reported in data packets. If data
 packets have been received since the previous feedback was sent, the
 receiver performs the following steps:

 1) Calculate the average loss event rate using the algorithm
 described in Section 5.

 2) Calculate the measured receive rate, X_recv, based on the
 packets received within the previous R_(m-1) seconds. This is
 performed whether the feedback timer expired at its normal time,
 or expired early due to a new lost or marked packet (i.e., step
 (3) in Section 6.1).

 In the typical case, when the receiver is sending only one
 feedback packet per round-trip time and the feedback timer did
 not expire early due to a new lost packet, then the time
 interval since the feedback timer last expired would be R_(m-1)
 seconds.

 We note that when the feedback timer expires early due to a new
 lost or marked packet, the time interval since the feedback
 timer last expired is likely to be smaller than R_(m-1) seconds.

 For ease of implementation, if the time interval since the
 feedback timer last expired is not R_(m-1) seconds, the receive
 rate MAY be calculated over a longer time interval, the time
 interval going back to the most recent feedback timer expiration
 that was at least R_(m-1) seconds ago.

 3) Prepare and send a feedback packet containing the information
 described in Section 3.2.2.

 4) Restart the feedback timer to expire after R_m seconds.

 Note that rule 2) above gives a minimum value for the measured
 receive rate X_recv of one packet per round-trip time. If the
 sender is limited to a sending rate of less than one packet per
 round-trip time, this will be due to the loss event rate, not from a

Floyd et al. Expires: October 2008 [Page 36]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 limit imposed by the measured receive rate at the receiver.

 If no data packets have been received since the last feedback was
 sent, then no feedback packet is sent, and the feedback timer is
 restarted to expire after R_m seconds.

6.3. Receiver Initialization

 The receiver is initialized by the first data packet that arrives at
 the receiver. Let the sequence number of this packet be i.

 When the first packet is received:

 o Set p=0.

 o Set X_recv = 0.

 o Prepare and send a feedback packet.

 o Set the feedback timer to expire after R_i seconds.

 If the first data packet does not contain an estimate R_i of the
 round-trip time, then the receiver sends a feedback packet for every
 arriving data packet, until a data packet arrives containing an
 estimate of the round-trip time.

 If the sender is using a coarse-grained timestamp that increments
 every quarter of a round-trip time, then a feedback timer is not
 needed, and the following procedure from RFC 4342 is used to
 determine when to send feedback messages.

 o Whenever the receiver sends a feedback message, the receiver
 sets a local variable last_counter to the greatest received
 value of the window counter since the last feedback message was
 sent, if any data packets have been received since the last
 feedback message was sent.

 o If the receiver receives a data packet with a window counter
 value greater than or equal to last_counter + 4, then the
 receiver sends a new feedback packet. ("Greater" and "greatest"
 are measured in circular window counter space.)

6.3.1. Initializing the Loss History after the First Loss Event

 This section describes the procedure that MUST be used for
 initializing the loss history after the first loss event.

https://datatracker.ietf.org/doc/html/rfc4342

Floyd et al. Expires: October 2008 [Page 37]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 The number of packets until the first loss can not be used to
 compute the allowed sending rate directly, as the sending rate
 changes rapidly during this time. TFRC assumes that the correct
 data rate after the first loss is half of the maximum sending rate
 before the loss occurred. TFRC approximates this target rate
 X_target by the maximum value in X_recv_set. (For slow-start, for a
 particular round-trip time, the sender's sending rate is generally
 twice the receiver's receive rate for data sent over the previous
 round-trip time.)

 After the first loss, instead of initializing the first loss
 interval to the number of packets sent until the first loss, the
 TFRC receiver calculates the loss interval that would be required to
 produce the data rate X_target, and uses this synthetic loss
 interval to seed the loss history mechanism.

 TFRC does this by finding some value p for which the throughput
 equation in Section 3.1 gives a sending rate within 5% of X_target,
 given the round-trip time R, and the first loss interval is then set
 to 1/p. If the receiver knows the segment size s used by the
 sender, then the receiver MAY use the throughput equation for X;
 otherwise, the receiver MAY measure the receive rate in packets per
 second instead of bytes per second for this purpose, and use the
 throughput equation for X_pps. (The 5% tolerance is introduced
 simply because the throughput equation is difficult to invert, and
 we want to reduce the costs of calculating p numerically.)

 Special care is needed for initializing the first loss interval when
 the first data packet is lost or marked. When the first data packet
 is lost in TCP, the TCP sender retransmits the packet after the
 retransmit timer expires. If TCP's first data packet is ECN-marked,
 the TCP sender resets the retransmit timer, and sends a new data
 packet only when the retransmit timer expires [RFC3168] (Section

6.1.2). For TFRC, if the first data packet is lost or ECN-marked,
 then the first loss interval consists of the null interval with no
 data packets. In this case, the loss interval length for this
 (null) loss interval SHOULD be set to give a similar sending rate to
 that of TCP, as specified in the paragraph below.

 When the first TFRC loss interval is null, meaning that the first
 data packet is lost or ECN-marked, in order to follow the behavior
 of TCP, TFRC wants the allowed sending rate to be 1 packet every two
 round-trip times, or equivalently, 0.5 packets per RTT. Thus, the
 TFRC receiver calculates the loss interval that would be required to
 produce the target rate X_target of 0.5/R packets per second, for
 the round-trip time R, and uses this synthetic loss interval for the
 first loss interval. The TFRC receiver uses 0.5/R packets per
 second as the minimum value for X_target when initializing the first

https://datatracker.ietf.org/doc/html/rfc3168

Floyd et al. Expires: October 2008 [Page 38]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 loss interval.

7. Sender-based Variants

 In a sender-based variant of TFRC, the receiver uses reliable
 delivery to send information about packet losses to the sender, and
 the sender computes the packet loss rate and the acceptable transmit
 rate.

 The main advantage of a sender-based variant of TFRC is that the
 sender does not have to trust the receiver's calculation of the
 packet loss rate. However, with the requirement of reliable
 delivery of loss information from the receiver to the sender, a
 sender-based TFRC would have much tighter constraints on the
 transport protocol in which it is embedded.

 In contrast, the receiver-based variant of TFRC specified in this
 document is robust to the loss of feedback packets, and therefore
 does not require the reliable delivery of feedback packets. It is
 also better suited for applications where it is desirable to offload
 work from the server to the client as much as possible.

RFC 4340 and RFC 4342 together specify DCCP's CCID 3, which can be
 used as a sender-based variant of TFRC. In CCID 3, each feedback
 packet from the receiver contains a Loss Intervals option, reporting
 the lengths of the most recent loss intervals. Feedback packets may
 also include the Ack Vector option, allowing the sender to determine
 exactly which packets were dropped or marked and to check the
 information reported in the Loss Intervals options. The Ack Vector
 option can also include ECN Nonce Echoes, allowing the sender to
 verify the receiver's report of having received an unmarked data
 packet. The Ack Vector option allows the sender to see for itself
 which data packets were lost or ECN-marked, to determine loss
 intervals, and to calculate the loss event rate. Section 9 of
 RFC 4342 discusses issues in the sender verifying information
 reported by the receiver.

8. Implementation Issues

 This document has specified the TFRC congestion control mechanism,
 for use by applications and transport protocols. This section
 mentions briefly some of the implementation issues.

8.1. Computing the Throughput Equation

 For t_RTO = 4*R and b = 1, the throughput equation in Section 3.1
 can be expressed as follows:

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342#section-9
https://datatracker.ietf.org/doc/html/rfc4342#section-9

Floyd et al. Expires: October 2008 [Page 39]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 s
 X_Bps = --------
 R * f(p)

 for

 f(p) = sqrt(2*p/3) + (12*sqrt(3*p/8) * p * (1+32*p^2)).

 A table lookup could be used for the function f(p).

 Many of the multiplications (e.g., q and 1-q for the round-trip time
 average, a factor of 4 for the timeout interval) are or could be by
 powers of two, and therefore could be implemented as simple shift
 operations.

8.2. Sender Behavior When a Feedback Packet is Received

 This section discusses implementation issues for sender behavior
 when a feedback packet is received, from Section 4.3.

8.2.1. Determining If an Interval Was a Data-limited Interval

 When a feedback packet is received, the sender has to determine if
 the entire interval covered by that feedback packet was a data-
 limited period. This section discusses one possible implementation
 for the sender to determine if the interval covered by a feedback
 packet was a data-limited period.

 If the feedback packets all report the timestamp of the last data
 packet received, then let t_new be the timestamp reported by this
 feedback packet. Because all feedback packets cover an interval of
 at least a round-trip time, it is sufficient for the sender to
 determine if there was any time in the period (t_old, t_new] when
 the sender was not data-limited, for R the sender's estimate of the
 round-trip time, and for t_old set to t_new - R. (This procedure
 estimates the interval covered by the feedback packet, rather than
 computing it exactly. This seems fine to us.)

 The pseudocode for determining if the sender was data-limited over
 the entire interval covered in a feedback packet is given below.
 The variables NotLimited1 and NotLimited2 both represent times when
 the sender was *not* data-limited.

 Initialization:
 NotLimited1 = NotLimited2 = t_new = t_next = 0;
 t_now = current time;

Floyd et al. Expires: October 2008 [Page 40]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 After sending a segment:
 If (sender has sent all it is allowed to send) {
 // Sender is not data-limited at this instant.
 If NotLimited1 <= t_new
 // Goal: NotLimited1 > t_new.
 NotLimited1 = t_now;
 Else if (NotLimited2 <= t_next)
 // Goal: NotLimited2 > t_next.
 NotLimited2 = t_now;
 }

 When a feedback packet is received, is this interval data-limited:
 t_new = timestamp reported in feedback packet.
 t_old = t_new - R. // local variable
 t_next = t_now;
 If ((t_old < NotLimited1 <= t_new) or
 (t_old < NotLimited2 <= t_new))
 This was not a data-limited interval;
 Else
 This was a data-limited interval.
 If (NotLimited1 <= t_new && NotLimited2 > t_new)
 NotLimited1 = NotLimited2;

 Transmission times refer to transmission of a segment or segments to
 the layer below.

 Between feedback packets, (t_old, t_new] gives the transmission time
 interval estimated to be covered by the most recent feedback packet,
 and t_next gives a time at least a round-trip time greater than
 t_new. The next feedback packet can be expected to cover roughly
 the interval (t_new, t_next] (unless the receiver sends the feedback
 packet early because it is reporting a new loss event). The goal is
 for NotLimited1 to save a not-data-limited time in (t_new, t_next],
 if there was one, and for NotLimited2 to save a not-data-limited
 time after t_next.

 When a feedback packet was received, if either NotLimited1 or
 NotLimited2 is in the time interval covered by the feedback packet,
 that the interval is not a data-limited interval; the sender was not
 data-limited at least once during that time interval. If neither
 NotLimited1 nor NotLimited2 is in the time interval covered by a
 feedback packet, then the sender is assumed to have been data-
 limited over that time interval.

 We note that this procedure is a heuristic, and in some cases the
 sender might not determine correctly if the sender was data-limited
 over the entire interval covered by the feedback packet. This
 heuristic does not address the possible complications of reordering.

Floyd et al. Expires: October 2008 [Page 41]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 That seems acceptable to us. In order to improve its accuracy in
 identifying if the entire interval covered by a feedback packet was
 a data-limited interval, the sender could save more NotLimited
 times.

 In some implementations of TFRC, the sender sends coarse-grained
 timestamps that increment every quarter of a round-trip time, and
 the feedback packet reports the greatest valid sequence number
 received so far instead of reporting the timestamp of the last
 packet received. In this case, the sender can maintain per-packet
 state to determine t_new (the time that the acknowledged packet was
 sent), or the sender can estimate t_new from its estimate of the
 round-trip time and the elapsed time t_delay reported by the
 feedback packet.

8.2.2. Maintaining X_recv_set

 To reduce the complexity of maintaining X_recv_set, it is sufficient
 to limit X_recv_set to at most N=3 elements. In this case, the
 procedure Update X_recv_set() would be modified as follows:

 Update X_recv_set():
 Add X_recv to X_recv_set;
 Delete from X_recv_set values older than
 two round-trip times.
 Keep only the most recent N values.

 Maintaining at most *two* elements in X_recv_set would be sufficient
 for the sender to save an old value of X_recv from before a data-
 limited period, and to allow the sender not to be limited by the
 first feedback packet after an idle period (reporting a receive rate
 of one packet per round-trip time). However, it is *possible* that
 maintaining at most two elements in X_recv_set would not give quite
 as good performance as maintaining at most three elements.
 Maintaining three elements in X_recv_set would allow X_recv_set to
 contain X_recv values from two successive feedback packets, plus a
 more recent X_recv value from a loss event.

8.3. Sending Packets Before their Nominal Send Time

 This section discusses one possible scheduling mechanism for a
 sender in an operating system with a coarse-grained timing
 granularity (from Section 4.6).

 Let t_gran be the scheduling timer granularity of the operating
 system. Let t_ipi be the inter-packet interval, as specified in

Section 4.6. If the operating system has a coarse timer granularity
 or otherwise cannot support short t_ipi intervals, then either the

Floyd et al. Expires: October 2008 [Page 42]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 TFRC sender will be restricted to a sending rate of at most 1 packet
 every t_gran seconds, or the TFRC sender must be allowed to send
 short bursts of packets. In addition to allowing the sender to
 accumulate sending credits for past unused send times, it can be
 useful to allow the sender to send a packet before its scheduled
 send time, as described in the section below.

 A parameter t_delta may be used to allow a packet to be sent before
 its nominal send time. Consider an application that becomes idle
 and requests re-scheduling for time t_i = t_(i-1) + t_ipi, for
 t_(i-1) the send time for the previous packet. When the application
 is re-scheduled, it checks the current time, t_now. If (t_now > t_i
 - t_delta) then packet i is sent. When the nominal send time, t_i,
 of the next packet is calculated, it may already be the case that
 t_now > t_i - t_delta. In such a case the packet would be sent
 immediately.

 In order to send at most one packet before its nominal send time,
 and never to send a packet more than a round-trip time before its
 nominal send time the parameter t_delta would be set as follows:

 t_delta = min(t_ipi, t_gran, rtt)/2;

 (The scheduling granularity t_gran is 10 ms on some older Unix
 systems.)

 As an example, consider a TFRC flow with an allowed sending rate X
 of 10 packets per round-trip time (PPR), a round-trip time of 100
 ms, a system with a scheduling granularity t_gran of 10 ms, and the
 ability to accumulate unused sending credits for a round-trip time.
 In this case, t_ipi is 1 ms. The TFRC sender would be allowed to
 send packets 0.5 ms before their nominal sending time, and would be
 allowed to save unused sending credits for 100 ms. The scheduling
 granularity of 10 ms would not significantly affect the performance
 of the connection.

 As a different example, consider a TFRC flow with a scheduling
 granularity greater than the round-trip time, for example, with a
 round-trip time of 0.1 ms and a system with a scheduling granularity
 of 1 ms, and with the ability to accumulate unused sending credits
 for a round-trip time. The TFRC sender would be allowed to save
 unused sending credits for 0.1 ms. If the scheduling granularity
 did not affect the sender's response to an incoming feedback
 packet, then the TFRC sender would be able to send an RTT of data
 (as determined by the allowed sending rate) each RTT, in response to
 incoming feedback packets. In this case, the coarse scheduling
 granularity would not significantly reduce the sending rate, but the
 sending rate would be bursty, with a round-trip time of data sent in

Floyd et al. Expires: October 2008 [Page 43]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 response to each feedback packet.

 However, performance would be different in this case if the
 operating system scheduling granularity affected the sender's
 response to feedback packets as well as the general scheduling of
 the sender, In this case the sender's performance would be severely
 limited by the scheduling granularity being greater than the round-
 trip time, with the sender able to send an RTT of data, at the
 allowed sending rate, at most once every 1 ms. This restriction of
 the sending rate is an unavoidable consequence of allowing
 burstiness of at most a round-trip time of data.

8.4. Calculation of the Average Loss Interval

 The calculation of the average loss interval in Section 5.4 involves
 multiplications by the weights w_0 to w_(n-1), which for n=8 are:

 1.0, 1.0, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2.

 With a minor loss of smoothness, it would be possible to use weights
 that were powers of two or sums of powers of two, e.g.,

 1.0, 1.0, 1.0, 1.0, 0.75, 0.5, 0.25, 0.25.

8.5. The Optional History Discounting Mechanism

 The optional history discounting mechanism described in Section 5.5
 is used in the calculation of the average loss rate. The history
 discounting mechanism is invoked only when there has been an
 unusually long interval with no packet losses. For a more efficient
 operation, the discount factor DF_i could be restricted to be a
 power of two.

9. Changes from RFC 3448

9.1. Overview of Changes

 This section summarizes the changes from RFC 3448. At a high level,
 the main change is to add mechanisms to address the case of a data-
 limited sender. This document also explicitly allows the TFRC
 sender to accumulate up to a round-trip time of unused send credits,
 and as a result to send a burst of packets if data arrives from the
 application in a burst after a data-limited period. This issue was
 not explicitly addressed in RFC 3448.

 This document changes RFC 3448 to incorporate TCP's higher initial
 sending rates from RFC 3390. This document also changes RFC 3448 to
 allow RFC 4243's use of a coarse-grained timestamp on data packets

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4243

Floyd et al. Expires: October 2008 [Page 44]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 instead of a more fine-grained timestamp.

 Other changes address corner cases involving slow-start, the
 response when the first data packet is dropped, and the like. This
 document also incorporates the items in the RFC 3448 Errata.

 This section is non-normative; the normative text is in the cited
 sections.

9.2. Changes in each Section

Section 4.1, estimating the average segment size: Section 4.1 was
 modified to give a specific algorithm that could be used for
 estimating the average segment size.

Section 4.2, update to the initial sending rate: In RFC 3448, the
 initial sending rate was two packets per round trip time. In this
 document, the initial sending rate can be as high as four packets
 per round trip time, following RFC 3390. The initial sending rate
 was changed to be in terms of the segment size s, not in terms of
 the MSS.

Section 4.2 now says that tld, the Time Last Doubled during slow-
 start, can be initialized to either 0 or to -1. Section 4.2 was
 also clarified to say that RTT measurements do not only come from
 feedback packets; they could also come from other places, such as
 the SYN exchange.

Section 4.3, response to feedback packets: Section 4.3 was modified
 to change the way that the receive rate is used in limiting the
 sender's allowed sending rate, by using the set of receive rate
 values of the last two round-trip times, and initializing the set of
 receive rate values by a large value.

 The larger initial sending rate in Section 4.2 is of little use if
 the receiver sends a feedback packet after the first packet is
 received, and the sender in response reduces the allowed sending
 rate to at most two packets per RTT, which would be twice the
 receive rate. Because of the change in the sender's processing of
 the receive rate, the sender now does not reduce the allowed sending
 rate to twice the reported receive rate in response to the first
 feedback packet.

 During a data-limited period, the sender saves the receive rate
 reported from just before the data-limited period, if it is larger
 than the receive rate during the data-limited period. The sender
 also reduces the saved values in X_recv_set in response to a loss
 during a data-limited period. Appendix C discusses this response

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3390

Floyd et al. Expires: October 2008 [Page 45]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 further.

Section 4.4, response to an idle period: Following Section 5.1 from
 [RFC4342], this document specifies that when the sending rate is
 reduced after an idle period that covers the period since the
 nofeedback timer was set, the allowed sending rate is not reduced
 below the initial sending rate. (In Section 4.4, the variable
 recover_rate is set to the initial sending rate.)

Section 4.4, correction from [RFC3448Err]. RFC 3448 had
 contradictory text about whether the sender halved its sending rate
 after *two* round-trip times without receiving a feedback report, or
 after *four* round-trip times. This document clarifies that the
 sender halves its sending rate after four round-trip times without
 receiving a feedback report [RFC3448Err].

Section 4.4, clarification for Slow-Start: Section 4.4 was clarified
 to specify that on the expiration of the nofeedback timer, if p = 0,
 X_Bps can not be used, because the sender does not yet have a value
 for X_Bps. Section 4.4 was also clarified to check the case when
 the sender does not yet have an RTT sample, but has sent a packet
 since the nofeedback timer was set.

Section 4.6: credits for unused send time:

Section 4.6 has been clarified to say that the TFRC sender gets to
 accumulate up to an RTT of credits for unused send time. Section

4.6 was also rewritten to clarify what is specification and what is
 implementation.

Section 5.4, clarification: Section 5.4 was modified to clarify the
 receiver's calculation of the average loss interval when the
 receiver has not yet seen n loss intervals.

Section 5.5, correction: Section 5.5 was corrected to say that the
 loss interval I_0 includes all transmitted packets, including lost
 and marked packets (as defined in Section 5.3 in the general
 definition of loss intervals.)

Section 5.5, correction from [RFC3448Err]: A line in Section 5.5 was
 changed from

 for (i = 1 to n) { DF_i = 1; }

 to

 for (i = 0 to n) { DF_i = 1; }

https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc3448

Floyd et al. Expires: October 2008 [Page 46]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 [RFC3448Err].

Section 5.5, history discounting: THRESHOLD, the lower bound on the
 history discounting parameter DF, has been changed from 0.5 to 0.25,
 to allow more history discounting when the current interval is long.

Section 6, multiple feedback packets: Section 6 now contains more
 discussion of procedures if the receiver sends multiple feedback
 packets each round-trip time.

Section 6.3, initialization of the feedback timer: Section 6.3 now
 specifies the receiver's initialization of the feedback timer if the
 first data packet received does not have an estimate of the round-
 trip time.

Section 6.3, a coarse-grained timestamp: Section 6.3 was modified to
 incorporate, as an option, a coarse-grained timestamp from the
 sender that increments every quarter of a round-trip time, instead
 of a more fine-grained timestamp. This follows RFC 4243.

Section 6.3.1, after the first loss event: Section 6.3.1 now says
 that for initializing the loss history after the first loss event,
 the receiver uses the maximum receive rate in X_recv_set, instead of
 the receive rate in the last round-trip time.

Section 6.3.1, if the first data packet is dropped: Section 6.3.1
 now contains a specification for initializing the loss history if
 the first data packet sent is lost or ECN-marked.

Section 7, sender-based variants: Section 7's discussion of sender-
 based variants has been expanded, with reference to RFC 4342.

10. Security Considerations

 TFRC is not a transport protocol in its own right, but a congestion
 control mechanism that is intended to be used in conjunction with a
 transport protocol. Therefore security primarily needs to be
 considered in the context of a specific transport protocol and its
 authentication mechanisms.

 Congestion control mechanisms can potentially be exploited to create
 denial of service. This may occur through spoofed feedback. Thus
 any transport protocol that uses TFRC should take care to ensure
 that feedback is only accepted from the receiver of the data. The
 precise mechanism to achieve this will however depend on the
 transport protocol itself.

https://datatracker.ietf.org/doc/html/rfc4243
https://datatracker.ietf.org/doc/html/rfc4342

Floyd et al. Expires: October 2008 [Page 47]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 In addition, congestion control mechanisms may potentially be
 manipulated by a greedy receiver that wishes to receive more than
 its fair share of network bandwidth. A receiver might do this by
 claiming to have received packets that in fact were lost due to
 congestion. Possible defenses against such a receiver would
 normally include some form of nonce that the receiver must feed back
 to the sender to prove receipt. However, the details of such a
 nonce would depend on the transport protocol, and in particular on
 whether the transport protocol is reliable or unreliable.

 We expect that protocols incorporating ECN with TFRC will also want
 to incorporate feedback from the receiver to the sender using the
 ECN nonce [RFC3540]. The ECN nonce is a modification to ECN that
 protects the sender from the accidental or malicious concealment of
 marked packets. Again, the details of such a nonce would depend on
 the transport protocol, and are not addressed in this document.

11. IANA Considerations

 There are no IANA actions required for this document.

12. Acknowledgments

 We would like to acknowledge feedback and discussions on equation-
 based congestion control with a wide range of people, including
 members of the Reliable Multicast Research Group, the Reliable
 Multicast Transport Working Group, and the End-to-End Research
 Group. We would like to thank Dado Colussi, Gorry Fairhurst, Ladan
 Gharai, Wim Heirman, Eddie Kohler, Ken Lofgren, Mike Luby, Ian
 McDonald, Vladimir Moltchanov, Colin Perkins, Michele R., Gerrit
 Renker, Arjuna Sathiaseelan, Vladica Stanisic, Randall Stewart,
 Eduardo Urzaiz, Shushan Wen, and Wendy Lee (lhh@zsu.edu.cn) for
 feedback on earlier versions of this document, and to thank Mark
 Allman for his extensive feedback from using [RFC3448] to produce a
 working implementation.

A. Terminology

 This document uses the following terms. Timer variables (e.g.,
 t_now, tld) are assumed to be in seconds, with a timer resolution of
 at least a millisecond.

 data-limited interval:
 An interval where the sender is data-limited (not sending as
 much as it is allowed to send) over the entire interval (Section

4.3).

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3448

Floyd et al. Expires: October 2008 [Page 48]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 DF: Discount factor for a loss interval (Section 5.5).

 initial_rate:
 Allowed initial sending rate.

 last_counter:
 Greatest received value of the window counter (Section 6.3).

 min_rate:
 Minimum transmit rate (Section 4.3).

 n: Number of loss intervals.

 NDUPACK:
 Number of dupacks for inferring loss (constant) (Section 5.1).

 nofeedback timer:
 Sender-side timer (Section 4).

 p: Estimated Loss Event Rate.

 p_prev:
 Previous value of p (Section 6.1).

 q: Filter constant for RTT (constant) (Section 4.3).

 q2: Filter constant for long-term RTT (constant) (Section 4.6).

 R: Estimated path round-trip time.

 R_m:
 A specific estimate of the path round-trip time (Sections 4.3,
 6).

 R_sample:
 Measured path RTT (Section 4.3).

 R_sqmean:
 Long-term estimate of the square root of the RTT (Section 4.6).

 recover_rate:
 Allowed rate for resuming after an idle period (Section 4.4).

 recv_limit;
 Limit on sending rate computed from X_recv_set (Section 4.3).

 s: Nominal packet size in bytes.

Floyd et al. Expires: October 2008 [Page 49]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 S: Sequence number.

 t_delay:
 Reported time delay between receipt of the last packet at the
 receiver and the generation of the feedback packet (Section

3.2.2).

 t_delta:
 Parameter for flexibility in send time (Section 8.3).

 t_gran:
 Scheduling timer granularity of the operating system (constant)
 (Section 8.3).

 t_ipi:
 Inter-packet interval for sending packets (Section 4.6).

 t_mbi:
 Maximum RTO value of TCP (constant) (Section 4.3).

 t_recvdata:
 Timestamp of the last data packet received (Section 3.2.2).

 timer_limit:
 Limit on the sending rate from the expiration of the nofeedback
 timer (Section 4.4).

 tld:
 Time Last Doubled (Section 4.2).

 t_now:
 Current time (Section 4.3).

 t_RTO:
 Estimated RTO of TCP (Section 4.3).

 X: Allowed transmit rate, as limited by the receive rate.

 X_Bps:
 Calculated sending rate in bytes per second (Section 3.1).

 X_pps:
 Calculated sending rate in packets per second (Section 3.1).

 X_inst:
 Instantaneous allowed transmit rate (Section 4.6).

Floyd et al. Expires: October 2008 [Page 50]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 X_recv:
 Estimated receive rate at the receiver (Section 3.2.2).

 X_recv_set:
 A small set of recent X_recv values (Section 4.3).

 X_target:
 The target sending rate after the first loss event (Section

6.3.1).

 W_init:
 TCP initial window (constant) (Section 4.2).

B. The Initial Value of the Nofeedback Timer

 Why is the initial value of TFRC's nofeedback timer set to two
 seconds, instead of the recommended initial value of three seconds
 for TCP's retransmit timer, from [RFC2988]? There is not any
 particular reason why TFRC's nofeedback timer should have the same
 initial value as TCP's retransmit timer. TCP's retransmit timer is
 used not only to reduce the sending rate in response to congestion,
 but also to retransmit a packet that is assumed to have been dropped
 in the network. In contrast, TFRC's nofeedback timer is only used
 to reduce the allowed sending rate, not to trigger the sending of a
 new packet. As a result, there is no danger to the network for the
 initial value of TFRC's nofeedback timer to be smaller than the
 recommended initial value for TCP's retransmit timer.

 Further, when the nofeedback timer has not yet expired, TFRC has a
 more slowly-responding congestion control mechanism than TCP, and
 TFRC's use of the receive rate for limiting the sending rate is
 somewhat less precise than TCP's use of windows and ack-clocking, so
 the nofeedback timer is a particularly important safety mechanism
 for TFRC. For all of these reasons, it is perfectly reasonable for
 TFRC's nofeedback timer to have a smaller initial value than that of
 TCP's retransmit timer.

C. Response to Idle or Data-limited Periods

 Future work could explore alternate responses to using the receive
 rate during a data-limited period, and to responding to a loss event
 during a data-limited period.

 In particular, an Experimental RFC [RFC2861] specifies Congestion
 Window Validation (CWV) for TCP. For this discussion, we use the
 term "Standard TCP" to refer to the TCP congestion control
 mechanisms in [RFC2581] and [RFC2581bis]. [RFC2861] specifies a
 different response to idle or data-limited periods than those of

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861

Floyd et al. Expires: October 2008 [Page 51]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 Standard TCP. With CWV, the TCP sender halves the congestion window
 after each RTO during an idle period, down to the initial window.
 Similarly, with CWV the TCP sender halves the congestion window
 half-way down to the flight size after each RTO during a data-
 limited period.

 This document already specifies a TFRC response to idle periods that
 is similar to that of TCP with Congestion Window Validation.
 However, this document does not specify a TFRC response to data-
 limited periods similar to that of CWV. Adding such a mechanism to
 TFRC would require a one-line change to step (4) of Section 4.3. In
 particular, the sender's response to a feedback packet could be
 changed from:

 If (the entire interval covered by the feedback packet
 was a data-limited interval) {
 If (the feedback packet reports a new loss event or an
 increase in the loss event rate p) {
 Halve entries in X_recv_set;
 X_recv = 0.85 * X_recv;
 Maximize X_recv_set();
 recv_limit = max (X_recv_set);
 } Else {
 Maximize X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 }
 }

 to:

 If (the entire interval covered by the feedback packet
 was a data-limited interval) {
 Multiply old entries in X_recv_set by 0.85;
 If (the feedback packet reports a new loss event or an
 increase in the loss event rate p) {
 Multiply new value X_recv by 0.85.
 }
 Maximize X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 }

 In particular, if the receive rate from before a data-limited period
 is saved in X_recv_set, then the change in step (4) above would
 multiply that receive rate by 0.85 each time that a feedback packet
 is received and the above code is executed. As a result, after four
 successive round-trip times of data-limited intervals, the receive
 rate from before the data-limited period would be reduced by 0.85^4

Floyd et al. Expires: October 2008 [Page 52]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 = 0.52. Thus, this one-line change to step (4) of Section 4.3 would
 result in the allowed sending rate being halved for each four
 roundtrip times in which the sender was data-limited. Because of
 the nature of X_recv_set, this mechanism would never reduce the
 allowed sending rate below twice the most recent receive rate.

 We note that in the suggested code above, with CWV-style behavior in
 response to data-limited intervals, we keep

 recv_limit = 2 * max (X_recv_set);

 instead of using

 recv_limit = max (X_recv_set);

 following loss events in data-limited intervals. This relaxed
 response to a loss event is allowed because the CWV-style behavior
 itself limits rapid fluctuations in the sending rate during data-
 limited periods.

C.1. Long Idle or Data-limited Periods

 Table 1 summarizes the response of Standard TCP [RFC2581], TCP with
 Congestion Window Validation [RFC2861], Standard TFRC [RFC3448], and
 Revised TFRC (this document) in response to long idle or data-
 limited periods. For the purposes of this section, we define a long
 period as a period of at least an RTO.

 Protocol Long idle periods Long data-limited periods
 -------------- -------------------- ----------------------
 Standard TCP: Window -> initial. No change in window.
 (Window not increased in
 data-limited periods.)

 TCP with CWV: Halve window Reduce window half way
 (not below initial cwnd). to used window.

 Standard TFRC: Halve rate Rate limited to
 (not below 2 pkts/rtt). twice receive rate.
 One RTT after sending pkt,
 rate is limited by X_recv.

 Revised TFRC: Halve rate Rate limited to twice
 (not below initial rate). max (current X_recv,
 receive rate before
 data-limited period).

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3448

Floyd et al. Expires: October 2008 [Page 53]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 Table 1: Response to long idle or data-limited periods.

 Standard TCP after long idle periods: For Standard TCP, [RFC2581]
 specifies that TCP SHOULD set the congestion window to no more than
 the initial window after an idle period of at least an RTO. (To be
 precise, RFC 2581 specifies that the TCP sender should set cwnd to
 the initial window if the sender has not sent data in an interval
 exceeding the retransmission timeout.)

 Standard TCP after long data-limited periods: Standard TCP [RFC2581]
 does not reduce TCP's congestion window after a data-limited period,
 when the congestion window is not fully used. Standard TCP in
 [RFC2581] uses the FlightSize, the amount of outstanding data in the
 network, only in setting the slow-start threshold after a retransmit
 timeout. Standard TCP is not limited by TCP's ack-clocking
 mechanism during a data-limited period.

 Standard TCP's lax response to a data-limited period is quite
 different from its stringent response to an idle period.

 TCP with Congestion Window Validation (CWV) after long idle periods:
 As an experimental alternative, [RFC2861] specifies a more moderate
 response to an idle period than that of Standard TCP, where during
 an idle period the TCP sender halves cwnd after each RTO, down to
 the initial cwnd.

 TCP with Congestion Window Validation after long data-limited
 periods: As an experimental alternative, [RFC2861] specifies a more
 stringent response to a data-limited period than that of Standard
 TCP, where after each RTO seconds of a data-limited period, the
 congestion window is reduced half way down to the window that is
 actually used.

 The response of TCP with CWV to an idle period is similar to its
 response to a data-limited period. TCP with CWV is less restrictive
 than Standard TCP in response to an idle period, and more
 restrictive than Standard TCP in response to a data-limited period.

 Standard TFRC after long idle periods: For Standard TFRC, [RFC3448]
 specifies that the allowed sending rate is halved after each RTO
 seconds of an idle period. The allowed sending rate is not reduced
 below two packets per RTT after idle periods. After an idle period,
 the first feedback packet received reports a receive rate of one
 packet per round-trip time, and this receive rate is used to limit
 the sending rate. Standard TFRC effectively slow-starts up from
 this allowed sending rate.

 Standard TFRC after long data-limited periods: [RFC3448] does not

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448

Floyd et al. Expires: October 2008 [Page 54]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 distinguish between data-limited and non-data-limited periods. As a
 consequence, the allowed sending rate is limited to at most twice
 the receive rate during and after a data-limited period. This is a
 very restrictive response, more restrictive than that of either
 Standard TCP or of TCP with CWV.

 Revised TFRC after long idle periods: For Revised TFRC, this
 document specifies that the allowed sending rate is halved after
 each RTO seconds of an idle period. The allowed sending rate is not
 reduced below the initial sending rate as the result of an idle
 period. The first feedback packet received after the idle period
 reports a receive rate of one packet per round-trip time. However,
 the Revised TFRC sender does not use this receive rate for limiting
 the sending rate. Thus, Revised TFRC differs from Standard TFRC in
 the lower limit used in the reduction of the sending rate, and in
 the better response to the first feedback packet received after the
 idle period.

 Revised TFRC after long data-limited periods: For Revised TFRC, this
 document distinguishes between data-limited and non-data-limited
 periods. As specified in Section 4.3, during a data-limited period
 Revised TFRC remembers the receive rate before the data-limited
 period began, and does not reduce the allowed sending rate below
 twice that receive rate. This is somewhat similar to the response
 of Standard TCP, and is quite different from the very restrictive
 response of Standard TFRC to a data-limited period. However, the
 response of Revised TFRC is not as conservative as the response of
 TCP with Congestion Window Validation, where the congestion window
 is gradually reduced down to the window actually used during a data-
 limited period.

 We note that for Standard TCP, the congestion window is generally
 not increased during a data-limited period (when the current
 congestion window is not being fully used). We note that there is
 no mechanism comparable to this in Revised TFRC.

 Recovery after idle or data-limited periods: When TCP reduces the
 congestion window after an idle or data-utilized period, TCP can set
 the slow-start threshold ssthresh to allow the TCP sender to slow-
 start back up towards its old sending rate when the idle or data-
 limited period is over. However in TFRC, even when the TFRC
 sender's sending rate is restricted by twice the previous receive
 rate, this results in the sender being able to double the sending
 rate from one round-trip time to the next, if permitted by the
 throughput equation. Thus, TFRC does not need a mechanism such as
 TCP's setting of ssthresh to allow a slow-start after an idle or
 data-limited period.

Floyd et al. Expires: October 2008 [Page 55]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 For future work, one avenue to explore would be the addition of
 Congestion Window Validation mechanisms for TFRC's response to data-
 limited periods. Currently, following Standard TCP, during data-
 limited periods Revised TFRC does not limit its allowed sending rate
 as a function of the receive rate.

C.2. Short Idle or Data-limited Periods

 Table 2 summarizes the response of Standard TCP [RFC2581], TCP with
 Congestion Window Validation [RFC2861], Standard TFRC [RFC3448], and
 Revised TFRC (this document) in response to short idle or data-
 limited periods. For the purposes of this section, we define a
 short period as a period of less than an RTT.

 Protocol Short idle periods Short data-limited periods
 -------------- -------------------- ----------------------
 Standard TCP: Send a burst up to cwnd. Send a burst up to cwnd.

 TCP with CWV: Send a burst up to cwnd. Send a burst up to cwnd.

 Standard TFRC: ? ?

 Revised TFRC: Send a burst Send a burst
 (up to an RTT of (up to an RTT of
 unused send credits). unused send credits).

 Table 2: Response to short idle or data-limited periods.

 Table 2 shows that Revised TFRC has a similar response to that of
 Standard TCP and of TCP with CWV to a short idle or data-limited
 period. For a short idle or data-limited period, TCP is limited
 only by the size of the unused congestion window, and Revised TFRC
 is limited only by the number of unused send credits (up to an RTT's
 worth). For Standard TFRC, [RFC3448] did not explicitly specify the
 behavior with respect to unused send credits.

C.3. Moderate Idle or Data-limited Periods

 Table 3 summarizes the response of Standard TCP [RFC2581], TCP with
 Congestion Window Validation [RFC2861], Standard TFRC [RFC3448], and
 Revised TFRC (this document) in response to moderate idle or data-
 limited periods. For the purposes of this section, we define a
 moderate period as a period greater than an RTT, but less than an
 RTO.

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3448

Floyd et al. Expires: October 2008 [Page 56]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 Protocol Moderate idle periods Moderate data-limited periods
 ------------- --------------------- -------------------------
 Standard TCP: Send a burst up to cwnd. Send a burst up to cwnd.

 TCP with CWV: Send a burst up to cwnd. Send a burst up to cwnd.

 Standard TFRC: ? Limited by X_recv.

 Revised TFRC: Send a burst Send a burst
 (up to an RTT of (up to an RTT of
 unused send credits). unused send credits).

 Table 3: Response to moderate idle or data-limited periods.

 Table 3 shows that Revised TFRC has a similar response to that of
 Standard TCP and of TCP with CWV to a moderate idle or data-limited
 period. For a moderate idle or data-limited period, TCP is limited
 only by the size of the unused congestion window. For a moderate
 idle period, Revised TFRC is limited only by the number of unused
 send credits (up to an RTT's worth). For a moderate data-limited
 period, Standard TFRC would be limited by X_recv from the most
 recent feedback packet. In contrast, Revised TFRC is not limited by
 the receive rate from data-limited periods that cover an entire
 feedback period of a round-trip time. For Standard TFRC, [RFC3448]
 did not explicitly specify the behavior with respect to unused send
 credits.

C.4. Losses During Data-Limited Periods

 This section discusses the response to a loss during a data-limited
 period.

 Protocol Response to a loss during a data-limited period
 ------------- ---
 Standard TCP: Set ssthresh, cwnd to FlightSize/2.

 TCP with CWV: Same as Standard TCP.

 Standard TFRC: Calculate X_Bps, send at most 2*X_recv.

 Revised TFRC: Calculate X_Bps, send at most recv_limit.
 In addition, modify X_recv_set.

 Table 4: Response to a loss during a data-limited period.

 In TCP [RFC2581], the response to a loss during a data-limited
 period is the same as the response to a loss at any other time in
 TCP. This response is to set the congestion window to half of the

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc2581

Floyd et al. Expires: October 2008 [Page 57]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 FlightSize, where the FlightSize is the actual amount of
 unacknowledged data. Thus, after a loss during a data-limited
 period, the TCP sender must halve its allowed sending rate, as it
 normally does in response to a loss.

 In Standard TFRC, the response to a loss during a data-limited
 period is also the same as the response to a loss at any other time
 in Standard TFRC. The sending rate is limited by X_Bps, from the
 throughput equation, and the sending rate is also limited by twice
 X_recv, the most recent receive rate. As a result, after a loss in
 a data-limited period, the sender can at most double its sending
 rate to twice X_recv, even if the throughput equation X_Bps would
 allow a sending rate much higher than that.

 In Revised TFRC, there have been changes to the use of the receive
 rate X_recv during data-limited intervals; the sender is limited to
 sending at most recv_limit, where the sender can remember the
 receive rate X_recv from just before the data-limited period. This
 allows the sender to more than double its sending rate during data-
 limited periods, up to the receive rate from before the data-limited
 period (if allowed by the throughput equation as given in X_Bps).
 This is similar to Standard TCP's practice of not reducing the
 window during data-limited periods (in the absence of loss).

 As with Standard TFRC, during a data-limited period the Revised TFRC
 sender is sending less than is allowed by the throughput equation
 X_Bps. After the loss event, the sender still might not want to be
 sending as much as allowed by the recalculated value of X_Bps that
 takes into account the new loss event. Revised TFRC adds an
 additional mechanism to gradually limit the sender's sending rate
 after losses during data-limited periods. Unlike TCP's response of
 setting cwnd to half the FlightSize, this additional mechanism in
 Revised TFRC uses TFRC's practice of using slowly-responding changes
 for both increases and decreases in the allowed sending rate.

 This is done in Revised TFRC (in step (4) of Section 4.3) by
 decreasing the entry in X_recv_set after a loss in a data-limited
 interval, and by allowing the sender to send at most max
 (X_recv_set), instead of at most twice max (X_recv_set), in the
 immediate round-trip time following the reported loss. Thus, the
 `price' for allowing the sender to send more than twice the most
 immediately reported value of X_recv during a data-limited interval
 is the introduction of an additional mechanism to reduce this
 allowed sending rate following losses in data-limited periods.

 In TFRC's response to a loss in a data-limited interval, we have
 considered the following examples.

Floyd et al. Expires: October 2008 [Page 58]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 Example 1, Losses *after* a Data-Limited Period: This example shows
 that losses after a data-limited period has ended are addressed by
 the throughput equation X_Bps.

 Stage 1: Not data-limited.
 Sending 100 packets per round-trip time (PPR).
 Stage 2: Data-limited, sending 10 PPR.
 Stage 3: Not data-limited.
 Sending 100 PPR again, as allowed by X_Bps.
 A packet loss in the first RTT of Stage 3.
 X_Bps is updated,
 Response of Revised TFRC: a slight reduction in the allowed sending
 rate, depending on the number of packets since the last loss event.

 Table 5: Example 1, Losses after a Data-Limited Period.

 For example 1, when there is a packet loss in the first RTT of
 Stage 3, this will be reflected in a modified value of X_Bps, and
 future loss events would result in future reductions of the
 throughput equation X_Bps. In particular, following TFRC's standard
 use of the throughput equation [FHPW00] (Section A.2), the allowed
 TFRC sending rate would be halved after something like five
 successive round-trip times with loss.

 Example 2, a Mildly Data-Limited Sender: This example considers
 losses in a data-limited period when, during the data-limited
 period, the sender is sending *almost* as much as it is allowed to
 send.

 Stage 1: Not data-limited. Sending 100 PPR.
 Stage 2: Data-limited, sending 99 PPR.
 A packet loss in Stage 2.
 Response of Revised TFRC: a slight reduction in the allowed sending
 rate, down to 85 PPR or less, depending on the number of packets
 since the last loss event.

 Table 6: Example 2, a Mildly Data-Limited Sender.

 Consider a Revised TFRC connection where the sender has been sending
 a hundred PPR, and then enters a data-limited period of sending only
 99 PPR, because of data limitations from the application. (That is,
 at every instance of time during the data-limited period, the sender
 could have sent one more packet). If there are losses in the data-
 limited period, the allowed sending rate is reduced to min(X_Bps,

Floyd et al. Expires: October 2008 [Page 59]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 recv_limit), where both the throughput equation X_Bps and the limit
 recv_limit force a slight reduction in the allowed sending rate.

 Example 3, a Single Packet Loss during a Data-Limited Period. This
 example considers the loss of a single packet during a data-limited
 period, after the sender has not sent a packet for two RTTs.

 Stage 1: Not data-limited. Sending 100 PPR.
 Stage 2: Data-limited, sending 10 PPR.
 Stage 3: Data-limited, sending no data for two RTTs.
 Stage 4: Data-limited, sending one packet, which is ECN-marked.
 Response of Revised TFRC: a reduction in the allowed sending
 rate, down to 50 PPR or less. For each loss event during
 the data-limited period, the `remembered' X_recv from before
 the data-limited period is effectively halved.

 Table 7: Example 3, a Single Packet Loss.

 Consider a Revised TFRC connection where the sender has been sending
 a hundred PPR, and then enters a data-limited period of sending only
 ten PPR, and then does not send any packets for two RTTs, and then
 sends a single packet, which is ECN-marked. In this case, with
 Revised TFRC, for each loss event during the data-limited period,
 the sender halves its `remembered' X_recv from before the data-
 limited period

 Example 4, Losses after Increasing the Sending Rate during a Data-
 Limited Period. This example considers losses when the sender
 significantly increases its sending rate during a data-limited
 period.

 Stage 1: Not data-limited. Sending 100 PPR.
 Stage 2: Data-limited, sending 1 PPR.
 Stage 3: Data-limited, sending 20 PPR.
 Several packets are lost in each RTT of Stage 3.
 During Stage 3, the sender would *like* to send 20 PPR.
 Response of Revised TFRC: For each loss event during
 the data-limited period, the `remembered' X_recv from before
 the data-limited period is effectively halved, and the most
 recent X_recv is reduced by 0.85.

 Table 8: Example 4, Losses after Increasing the Sending Rate.

 Consider a Revised TFRC connection where the sender has been sending

Floyd et al. Expires: October 2008 [Page 60]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 a hundred PPR, and then enters a data-limited period of sending only
 one PPR, and then, while still data-limited, increases its sending
 rate to twenty PPR, where it experiences a number of successive loss
 events.

 In this case, with Revised TFRC, for each loss event during the
 data-limited period, the sender halves its `remembered' X_recv from
 before the data-limited period, and the most recent X_recv is
 reduced by 0.85.

C.5. Other Patterns

 Other possible patterns to consider in evaluating Revised TFRC would
 be to compare the behavior of TCP, Standard TFRC, and Revised TFRC
 for connections with alternating busy and idle periods, alternating
 idle and data-limited periods, or with idle or data-limited periods
 during Slow-Start.

C.6. Evaluating TFRC's Response to Idle Periods

 In this section we focus on evaluating Revised TFRC's response to
 idle or data-limited periods.

 One drawback to Standard TFRC's strict response to idle or data-
 limited periods is that it could be seen as encouraging applications
 to pad their sending rate during idle or data-limited periods, by
 sending dummy data when there was no other data to send. Because
 Revised TFRC has a less strict response to data-limited periods than
 that of Standard TFRC, Revised TFRC also could be seen as giving
 applications less of an incentive to pad their sending rates during
 data-limited periods. Work in progress such as Faster Restart
 [KFS07] can also decrease an application's incentive to pad its
 sending rate, by allowing faster start-up after idle periods.
 Further research would be useful to understand in more detail the
 interaction between TCP or TFRC's congestion control mechanisms, and
 an application's incentive to pad its sending rate during idle or
 data-limited periods.

 TCP Congestion Window Validation, described in Appendix C.1 above,
 is an Experimental standard specifying that the TCP sender slowly
 reduces the congestion window during an idle or data-limited period
 [RFC2861]. While TFRC and Revised TFRC's responses to idle periods
 are roughly similar to those of TCP with Congestion Window
 Validation, Revised TFRC's response to data-limited periods is less
 conservative than those of TCP with Congestion Window Validation
 (and Standard TFRC's response to data-limited periods was
 considerably *more* conservative than those of Congestion Window
 Validation). Future work could include modifications to this

https://datatracker.ietf.org/doc/html/rfc2861

Floyd et al. Expires: October 2008 [Page 61]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 document so that the response of Revised TFRC to a data-limited
 period includes a slow reduction of the allowed sending rate;
 Section C specifies a possible mechanism for this. Such a
 modification would be particularly compelling if Congestion Window
 Validation became a Proposed Standard in the IETF for TCP.

Normative References

 [RFC3448] M. Handley, S. Floyd, J. Padhye, and J. Widmer, TCP
 Friendly Rate Control (TFRC): Protocol
 Specification, RFC 3448, January 2003.

Informational References

 [BRS99] Balakrishnan, H., Rahul, H., and Seshan, S., "An
 Integrated Congestion Management Architecture for
 Internet Hosts," Proc. ACM SIGCOMM, Cambridge, MA,
 September 1999.

 [CCID-4] Floyd, S., and E. Kohler, Profile for DCCP
 Congestion Control ID 4: the Small-Packet Variant of
 TFRC Congestion Control, Internet-draft draft-ietf-

dccp-ccid4-02.txt, work in progress, February 2007.

 [FHPW00] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
 "Equation-Based Congestion Control for Unicast
 Applications", August 2000, Proc SIGCOMM 2000.

 [FHPW00a] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
 "Equation-Based Congestion Control for Unicast
 Applications: the Extended Version", ICSI tech
 report TR-00-03, March 2000.

 [KFS07] E. Kohler, S. Floyd, and A. Sathiaseelan, Faster
 Restart for TCP Friendly Rate Control (TFRC),
 Internet-draft draft-ietf-dccp-tfrc-faster-

restart-05.txt, work-in-progress, November 2007.

 [FF99] Floyd, S., and K. Fall, Promoting the Use of End-to-
 End Congestion Control in the Internet, IEEE/ACM
 Transactions on Networking, August 1999.

 [PFTK98] Padhye, J. and Firoiu, V. and Towsley, D. and
 Kurose, J., "Modeling TCP Throughput: A Simple Model
 and its Empirical Validation", Proc ACM SIGCOMM
 1998.

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid4-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid4-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-05.txt

Floyd et al. Expires: October 2008 [Page 62]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 [RFC2119] S. Bradner, Key Words For Use in RFCs to Indicate
 Requirement Levels, RFC 2119.

 [RFC2140] J. Touch, "TCP Control Block Interdependence", RFC
2140, April 1997.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP
 Congestion Control", RFC 2581, April 1999.

 [RFC2581bis] Allman, M., Paxson, V., and W. Stevens, "TCP
 Congestion Control", internet-draft draft-ietf-tcpm-

rfc2581bis-03.txt, work in progress, September 2007.

 [RFC2861] M. Handley, J. Padhye, and S. Floyd, TCP Congestion
 Window Validation, RFC2861, June 2000.

 [RFC2988] V. Paxson and M. Allman, "Computing TCP's
 Retransmission Timer", RFC 2988, November 2000.

 [RFC3168] K. Ramakrishnan and S. Floyd, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing
 TCP's Initial Window", RFC 3390, October 2002.

 [RFC3448Err] RFC 3448 Errata, URL
 "http://www.icir.org/tfrc/rfc3448.errata".

 [RFC3540] Wetherall, D., Ely, D., and Spring, N., "Robust ECN
 Signaling with Nonces", RFC 3540, Experimental, June
 2003

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March
 2006.

 [RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for
 Datagram Congestion Control Protocol (DCCP)
 Congestion Control ID 3: TCP-Friendly Rate Control
 (TFRC)", RFC 4342, March 2006.

 [RFC4828] Floyd, S., and E. Kohler, TCP Friendly Rate Control
 (TFRC): the Small-Packet (SP) Variant, RFC 4828,
 Experimental, April 2007.

 [W00] Widmer, J., "Equation-Based Congestion Control",
 Diploma Thesis, University of Mannheim, February

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc2581bis-03.txt
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4828

Floyd et al. Expires: October 2008 [Page 63]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 2000. URL "http://www.icir.org/tfrc/".

Authors' Addresses

 Mark Handley,
 Department of Computer Science
 University College London
 Gower Street
 London WC1E 6BT
 UK
 EMail: M.Handley@cs.ucl.ac.uk

 Sally Floyd
 ICSI
 1947 Center St, Suite 600
 Berkeley, CA 94708
 Email: floyd@icir.org

 Jitendra Padhye
 Microsoft Research
 Email: padhye@microsoft.com

 Joerg Widmer
 DoCoMo Euro-Labs
 Landsberger Strasse 312
 80687 Munich
 Germany
 Email: widmer@acm.org

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL

https://datatracker.ietf.org/doc/html/bcp78

Floyd et al. Expires: October 2008 [Page 64]

INTERNET-DRAFT TFRC: Protocol Specification April 2008

 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Floyd et al. Expires: October 2008 [Page 65]

