
Internet Engineering Task Force E. Kohler
INTERNET-DRAFT UCLA
Intended status: Experimental S. Floyd
Expires: January 2009 ICIR
 A. Sathiaseelan
 University of Aberdeen
 14 July 2008

Faster Restart for TCP Friendly Rate Control (TFRC)
draft-ietf-dccp-tfrc-faster-restart-06.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 2009.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Kohler, et al. Expires: January 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Faster Restart for TFRC July 2008

Abstract

 TCP-Friendly Rate Control (TFRC) is a congestion control mechanism
 for unicast flows operating in a best-effort Internet environment.
 This document introduces Faster Restart, an optional mechanism for
 safely improving the behavior of interactive flows that use TFRC.
 Faster Restart is proposed for use with TFRC and with TFRC-SP, the
 Small Packet variant of TFRC. We present Faster Restart in general
 terms as a congestion control mechanism, and further discuss Faster
 Restart for Datagram Congestion Control Protocol (DCCP) Congestion
 Control IDs 3 and 4.

Kohler, et al. Expires: January 2009 [Page 2]

INTERNET-DRAFT Faster Restart for TFRC July 2008

Table of Contents

1. Introduction ..6
2. Conventions ..10
3. Faster Restart: Changes to TFRC11

3.1. Feedback Packets ..11
3.2. Nofeedback Timer ..15

4. Faster Restart Discussion15
4.1. Worst-Case Scenarios16

 4.2. Incentives for applications to send unnecessary packets
 during idle or data-limited periods16

4.3. Interoperability Issues17
 4.3.1. Interoperability Issues with CCID-3 and the RFC

4342 Errata ...17
4.4. Faster Restart for TFRC-SP18

5. Simulations of Faster Restart18
6. Implementation Issues ..19
7. Security Considerations ..19
8. IANA Considerations ..19
9. Thanks ...19

 Normative References ..19
 Informative References ..20

A. Appendix: Simulations ..21
 Authors' Addresses ..23
 Full Copyright Statement ..24
 Intellectual Property ...24

https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342

Kohler, et al. Expires: January 2009 [Page 3]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 NOTE TO RFC EDITOR: PLEASE DELETE THIS NOTE UPON PUBLICATION.

 Changes from draft-ietf-dccp-tfrc-faster-restart-05.txt:

 * Updated application-limited behavior for Revised TFRC
 in Table 1, to reflect changes to rfc3448bis.

 * Updated description of code in rfc3448bis to reflect
 changes in that document.

 Changes from draft-ietf-dccp-tfrc-faster-restart-04.txt:

 * Changed "RTO" to "NFT".
 Changed the targeted idle period to the configurable DelayTime.
 Feedback from Gerrit Renker.

 * Removed Section 4.1 on the receive rate, after it is made
 into an Errata for RFC 4342. Feedback from Gerrit Renker.

 * General editing from Gorry Fairhurst and Arjuna, and additional
 reporting on simulations.

 * Added a section on Interoperability Issues.

 * Specified CCID 3 and 4 impact in the introduction.

 Changes from draft-ietf-dccp-tfrc-faster-restart-03.txt:

 * Deleted ping packets, and the section about the implementation
 of ping packets in DCCP.

 * In Section 3.2, calls to
 "Update X_active_recv and X_fast_max;" and
 "Interpolate X_fast_max;"
 had been reversed accidentally. Put them back in the right order.

 * Changed Intended Status back to Experimental (where it started
 out).

 * General editing is response to feedback from Gorry.

 * Added simulation tests to the list in the section on simulations:
 (1) simulations
 with a worst-case scenario of high congestion, all flows using
 TFRC, all flows having various idle times, all flows using Faster
 Restart, and variable arrival rates for the TFRC flows (to create
 variable levels of congestion). And compare this to the same
 scenario with no flows using Faster Restart. (2) scenarios with

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-04.txt
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-03.txt

Kohler, et al. Expires: January 2009 [Page 4]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 transient changes from routing changes and from variable traffic.
 The goal is to explore worse-case scenarios showing off the worst
 aspects of Faster Restart.

 * Targeted an idle period of at most six minutes, not thirty
 minutes. Feedback from Gorry and Ian McDonald.

 * Added a section of whether Faster Restart encourages flows to
 pad their sending rate during idle periods.

 * Didn't implement suggestion from Lachlan Andrew to decay from
 quadrupling to doubling the sending rate gradually. The last
 more-than-doubling of the sending rate is probably not a
 quadrupling in any case, since the allowed sending rate is
 not increased due to quadrupling to more than X_fast_max.

 Changes from draft-ietf-dccp-tfrc-faster-restart-02.txt:

 * Deleted proposed response to dealing with X_recv for idle or
 data-limited periods; RFC3448bis now deals with this instead.

 * Deleted the Receive Rate Length option. Also
 removed all text about using the inflation factor to
 reduce X_recv_in based on the sender's idle time.

 * Moved TFRC changes and DCCP-specific changes to separate sections.

 * Revised draft to refer to RFC3448bis instead of to RFC3448.
 This included modifying sections on "Feedback Packets" and
 "Nofeedback Timer".

 * Said that CCID 3 could calculate the receive rate only
 for one RTT, rather than for longer, after an idle period.
 (When used with RFC3448bis, it shouldn't affect performance
 one way or another).

 Changes from draft-ietf-dccp-tfrc-faster-restart-01.txt:

 * Added a sentence to Abstract about DCCP.

 * Added some text to the Introduction,

 * Added sections on "Minimum Sending Rate", "Send Receive
 Rate Length Feature", "Nofeedback Timer", and "Simulations
 of Faster Restart".

 * Added an Appendix on "Simulations".

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-02.txt
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-01.txt

Kohler, et al. Expires: January 2009 [Page 5]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 Changes from draft-ietf-dccp-tfrc-faster-restart-00.txt:

 * Added mechanisms for dealing with a more general problem with
 idle periods. This includes a section of "Receive Rate
 Adjustment".

 END OF NOTE TO RFC EDITOR.

1. Introduction

 This document defines congestion control mechanisms that improve the
 performance of occasionally idle flows using TCP-Friendly Rate
 Control (TFRC) [RFC3448] [RFC3448bis]. A data-limited or idle flow
 uses less than its allowed sending rate for application-specific
 reasons, such as lack of data to send. The responses of Standard
 TFRC [RFC3448], and Revised TFRC [RFC3448bis] to long idle or data-
 limited periods are summarized in Table 1 below, and the responses of
 Standard TCP [RFC2581] and TCP with Congestion Window Validation
 [RFC2861] are described in Appendix C of [RFC3448bis]. All of these
 mechanisms allow a flow to recover from a long idle period by ramping
 up to the allowed sending rate or window. This document specifies
 mechanisms that allow TFRC to start at a higher sending rate after an
 idle period, and to ramp up faster to the old sending rate after an
 idle period.

 As this draft is being written, Standard TFRC is specified in
 [RFC3448], and TFRC is in the process of being revised, as Revised
 TFRC, in [RFC3448bis]. When [RFC3448bis] is approved as a Proposed
 Standard document, this draft will be revised, with the phrase
 "Standard TFRC" replaced by "Old TFRC", and other language changes as
 appropriate.

 For Standard TFRC as specified in [RFC3448], a TFRC flow may not send
 more than twice X_recv, the rate at which data was received at the
 receiver over the previous RTT. Thus in Standard TFRC the previous
 receive rate limits the sending rate of applications with highly
 variable sending rates, forcing the applications to ramp up, by
 doubling their sending rate each round-trip time, from the earlier
 data-limited rate to the sending rate allowed by the throughput
 equation. TFRC's nofeedback timer halves the allowed sending rate
 after each nofeedback timer interval (at least four round-trip times)
 in which no feedback is received. One result is that applications
 must slow-start after being idle for any significant length of time,
 in the absence of mechanisms such as Quick-Start [RFC4782] and Quick-
 Start for DCCP [GA08].

 For Revised TFRC as specified in [RFC3448bis], the previous receive
 rate is not used to limit the sending rate during data-limited

https://datatracker.ietf.org/doc/html/draft-ietf-dccp-tfrc-faster-restart-00.txt
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4782

Kohler, et al. Expires: January 2009 [Page 6]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 periods. Thus, unlike [RFC3448], in [RFC3448bis] applications with
 highly variable sending rates are not limited by the previous receive
 rates. However, [RFC3448bis] is like [RFC3448] in that the
 nofeedback timer is used to halve the allowed sending rate after each
 nofeedback timer interval in which no feedback is received. With
 [RFC3448] the allowed sending rate is not reduced below two packets
 per RTT during idle periods, and with [RFC3448bis] the allowed
 sending rate is not reduced below the allowed initial sending rate
 during idle periods.

 This behavior is safe, though conservative, for best-effort traffic
 in the network. A silent application stops receiving feedback about
 the condition of the current network path, and thus should not be
 able to send at an arbitrary rate. A data-limited application stops
 receiving feedback about whether current network conditions would
 support higher rates. However, this behavior also affects the
 perceived performance of interactive applications such as voice.
 Connections for interactive telephony and conference applications,
 for example, will usually have one party active at a time, with
 seamless switching between active parties. TFRC's reduction of the
 allowed sending rate, and slow-starting back to a higher sending
 rate, after every switch between parties could seriously degrade
 perceived performance. Some of the strategies suggested for coping
 with this problem, such as sending padding data during application
 idle periods, might have worse effects on the network than simply
 switching onto the desired rate with no slow-start.

 There is some justification for somewhat accelerating the slow start
 process after idle periods, as opposed to at the beginning of a
 connection. A flow that fairly achieves a sending rate of X has
 proved, at least, that some path between the endpoints can support
 that rate. The path might change, due to endpoint reset or routing
 adjustments; or many new connections might start up, significantly
 reducing the application's fair rate. However, it seems reasonable
 to allow an application to possibly contribute to limited transient
 congestion in times of change, in return for improving application
 responsiveness.

 This document suggests a relatively simple approach to this problem.
 Standard TFRC [RFC3448] specifies that the allowed sending rate is
 never reduced below two packets per RTT as the result of a nofeedback
 timer after an idle period. Following [RFC3390], CCID-3 [RFC4342]
 and Revised TFRC [RFC3448bis] specify that the allowed sending rate
 is never reduced below the TCP initial sending rate of two or four
 packets per RTT, depending on packet size, as the result of a
 nofeedback timer after an idle period. Faster Restart doubles this
 allowed sending rate after idle periods. Thus, the sending rate
 after an idle period is not reduced below a rate Y between four and

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc4342

Kohler, et al. Expires: January 2009 [Page 7]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 eight packets per RTT, depending on the packet size. The rate Y is
 restricted to at most 8760 bytes per RTT (which is twice TCP's
 maximum allowed initial window size).

 In addition, because flows already have some (possibly old)
 information about the path, Faster Restart allows flows to quadruple
 their sending rate in every congestion-free RTT, instead of doubling,
 upwards towards the previously achieved rate. When the TFRC sender
 detects congestion, the sender leaves Faster Restart and changes into
 congestion avoidance. These changes are summarized in the table
 below. In this document, "NFT" refers to the NoFeedback Timer
 interval for TFRC; this is roughly equivalent to the Retransmit
 TimeOut (RTO) interval for TCP.

Kohler, et al. Expires: January 2009 [Page 8]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 --
 - Standard TFRC -
 --
 Idle period:
 Halve allowed sending rate each NFT, not below two packets per RTT.
 After sending again, double the sending rate each RTT.
 Application-limited period:
 Send at most twice X_recv.
 As a result, at most double the sending rate each RTT.
 --

 --
 - Revised TFRC -
 --
 Idle period:
 Halve allowed sending rate each NFT, not below initial sending rate.
 After sending again, double the sending rate each RTT.
 Application-limited period:
 If no loss, send at most twice max (X_recv_set), including old values
 of X_recv going back to just before the data-limited interval was
 entered.
 If loss, reduce saved values of X_recv.
 --

 --
 - Revised TFRC with Faster Restart -
 --
 Idle period:
 Halve allowed sending rate each NFT, not below twice initial rate.
 (Specified in Section 3.2.)
 After sending again, quadruple the sending rate towards old rate.
 (Specified in Section 3.1.)
 Application-limited period:
 Sending rate not limited by X_recv.
 --

 Table 1: Behavior of TFRC, with and without Faster Restart.

 The congestion control mechanisms defined here are intended to apply
 to any implementations of TFRC, including that in DCCP's CCID 3 and
 CCID 4 [RFC4342], [CCID4]. These mechanisms change only CCID 3 and 4
 sender behavior and do not change DCCP packets in externally visible
 ways (except in that the sending rate will be higher after an idle
 period). This reduces interoperability concerns. Any DCCP CCID 3
 or 4 sender MAY therefore use Faster Restart algorithms at its
 discretion, without negotiation with the corresponding receiver.

https://datatracker.ietf.org/doc/html/rfc4342

Kohler, et al. Expires: January 2009 [Page 9]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 While we also believe that TCP could safely use a similar Faster
 Restart mechanism, we do not specify it here. Our assumption is that
 flows that are sensitive to restrictions to the sending rate after
 idle periods are more likely to use TFRC than to use TCP or TCP-like
 congestion control.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The Faster Restart mechanism refers to several existing TFRC state
 variables, including the following:

 R: The RTT estimate.

 X: The current allowed sending rate in bytes per second.

 p: The recent loss event rate.

 X_recv:
 The rate at which the receiver estimates that data was received
 since the last feedback report was sent.

 s: The packet size in bytes.

 Faster Restart uses the following variable from [RFC3448bis]:

 recv_limit:
 The limit on the sending rate that is computed from the receive
 rate.

 Faster Restart also introduces new state variables to TFRC, as
 follows:

 X_active_recv:
 The receiver's estimated receive rate reported during a recent
 active sending period. An active sending period is a period in
 which the sender has not experienced a loss event. X_active_recv
 is initialized to 0 until there has been an active sending period,
 and X_active_recv is reduced after a loss event.

 T_active_recv:
 The time at which X_active_recv was measured. T_active_recv is
 initialized to the start time of the connection.

https://datatracker.ietf.org/doc/html/rfc2119

Kohler, et al. Expires: January 2009 [Page 10]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 recover_rate:
 The minimum restart rate allowed by Faster Restart after an idle
 period. Note that Faster Restart flows can drop below this rate
 as the result of experienced congestion (e.g. actual loss
 feedback). Recover_rate is defined as follows:

 recover_rate = min(8*s, max(4*s, 8760 bytes))/R.

 Faster Restart also uses the following, which could be implemented as
 a temporary variable:

 X_fast_max:
 The rate at which the sender should stop quadrupling its sending
 rate, and return to at most doubling its sending rate.

 Other variables have values as described in [RFC3448] and
 [RFC3448bis].

3. Faster Restart: Changes to TFRC

3.1. Feedback Packets

 The Faster Restart algorithm replaces the lines in step (4) of
Section 4.3, "Sender Behavior When a Feedback Packet is Received", of

 [RFC3448bis] that specify the limitation on the sending rate
 calculated from the reported receive rates. [RFC3448bis] allows the
 sender to slow-start back up to the previous sending rate after an
 idle period, doubling its sending rate after each round-trip time.

 This document specifies a mechanism so that during recovery from an
 idle period, the TFRC sender can quadruple its sending rate each
 (congestion-free) round-trip time, until it reaches its old sending
 rate before the idle or data-limited period. This modification uses
 three new variables: X_active_recv specifies the maximum receive rate
 achieved before the idle period, T_active_recv specifies the time of
 the last update of X_active_recv, and X_fast_max specifies the
 adjusted rate at which the sender should stop quadrupling its sending
 rate and continue to its default behavior of doubling its sending
 rate.

 The procedure "Update X_active_recv and X_fast_max" below increases
 the two variables in response to increases in the reported receive
 rate and reduces them after a report of a lost packet or an
 indication of congestion (e.g. an ECN-marked packet).

https://datatracker.ietf.org/doc/html/rfc3448

Kohler, et al. Expires: January 2009 [Page 11]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 Update X_active_recv and X_fast_max:
 If (the feedback packet does not indicate a loss or mark,
 and X_recv >= X_fast_max)
 X_active_recv = X_fast_max = X_recv,
 T_active_recv = current time.
 Else if (the feedback packet DOES indicate a loss or mark,
 and X_recv < X_fast_max)
 X_active_recv = X_fast_max = X_recv/2,
 T_active_recv = current time.

 The parameter X_active_recv gives an upper bound on the rate
 achievable through Faster Restart, and is only modified by the
 "Update X_active_rate and X_fast_max" procedure. This modification
 is based on the contents of the feedback packet and the value of
 X_fast_max. X_active_recv is updated as the connection achieves
 higher congestion-free transmit rates. X_active_recv is reduced on
 congestion feedback, to prevent an inappropriate Faster Restart until
 a new stable active rate is achieved. Specifically, when congestion
 feedback is received at a low sending rate, the sender reduces
 X_active_recv to X_recv/2, allowing a limited Faster Restart up to a
 likely-safe rate.

 For some transport protocols using TFRC, the feedback packets might
 report the loss event rate, but not explicitly report lost or marked
 packets. For such protocols, the sender in the "Update X_active_rate
 and X_fast_max" procedure can infer that a feedback packet indicates
 a loss or mark by looking at the reported loss event rate. If the
 current or previous feedback packet reported an increase in the loss
 event rate, then the current feedback packet is assumed to indicate a
 loss or mark. (If the previous feedback packet reported an increase
 in the loss event rate, then a loss event began in the interval
 covered by that feedback packet. However, the loss event can cover
 up to a round-trip time of data, so the second half of the loss
 event, including additional lost or marked packets, could be covered
 by the second feedback packet.)

 The "Interpolate X_fast_max" procedure determines X_fast_max, the
 adjusted rate at which Faster Restart should stop. The procedure
 sets X_fast_max to something between zero and X_active_recv,
 depending on the time since X_active_recv was last updated. The
 procedure allows full Faster Restart up to the old sending rate
 X_active_recv after a short idle period, but requires more
 conservative behavior after a longer idle period. Thus, if at most
 DecayTime has elapsed since the last update of X_active_recv, for a
 default DecayTime of two minutes, then X_fast_max is set to
 X_active_recv. If 3*DecayTime or more has elapsed, X_fast_max is set
 to zero. Linear interpolation is used between these extremes.

Kohler, et al. Expires: January 2009 [Page 12]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 The default DecayTime of two minutes is chosen to strike a balance
 between the needs of applications, and the time intervals over which
 connections might reasonably quadruple back up to their old sending
 rates after idle periods. In terms of the needs of applications,
 models of voice traffic generally use average idle times between 0.5
 and two seconds [JS00] (Section 3). However, in terms of changes in
 path characteristics, Faster Restart does not assume that the
 previous sending rate is valid after an idle period; Faster Restart
 simply assumes that a connection may *quadruple* rather than *double*
 its sending rate up to the previous rate. Therefore, while an overly
 long DecayTime is not likely to lead to congestion collapse, it could
 result in unnecessary packet drops, and therefore in reduced
 performance for the application itself. Path congestion levels can
 change over time scales of round-trip times, which are generally
 between 10 and several hundred milliseconds; more dramatic changes in
 path characteristics (e.g., routing changes, changes in link
 bandwidth) happen less frequently. For now, the DecayTime may be a
 configurable parameter. Future work may shed more light on optimum
 values for DecayTime.

 Interpolate X_fast_max:
 // If achieved X_active_recv <= 1 minute ago,
 // set X_fast_max to X_active_recv;
 // If achieved X_active_recv >= 3 minutes ago,
 // set X_fast_max to zero;
 // If in between, interpolate.
 delta_T = now - T_active_recv;
 F = (6 min - min(max(delta_T, 2 min), 6 min)) / (2 min);
 X_fast_max = F * X_active_recv;

 The pseudocode above uses the temporary variables delta_T and F.

 Faster Restart replaces the following lines from step (4) of Section
4.3 of [RFC3448bis]:

Kohler, et al. Expires: January 2009 [Page 13]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 If (the entire interval covered by the feedback packet
 was a data-limited interval) {
 If (the feedback packet reports a new loss event or an
 increase in the loss event rate p) {
 Halve entries in X_recv_set;
 X_recv = 0.85 * X_recv;
 Maximize X_recv_set();
 recv_limit = max (X_recv_set);
 } Else {
 Maximize X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 }
 } Else { // typical behavior
 Update X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 }

 with the following:

 Interpolate X_fast_max;
 Update X_active_recv and X_fast_max;
 If (the entire interval covered by the feedback packet
 was a data-limited interval) {
 If (the feedback packet reports a new loss event or an
 increase in the loss event rate p) {
 Halve entries in X_recv_set;
 X_recv = 0.85 * X_recv;
 Maximize X_recv_set();
 recv_limit = max (X_recv_set);
 } Else {
 Maximize X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 If (recv_limit < X_fast_max)
 recv_limit = min (2*recv_limit, X_fast_max);
 }
 } Else { // typical behavior
 Update X_recv_set();
 recv_limit = 2 * max (X_recv_set);
 If (recv_limit < X_fast_max)
 recv_limit = min (2*recv_limit, X_fast_max);
 }

 In summary, when a feedback packet is received, as specified in
 [RFC3448bis], then the sender updates the round-trip time estimate
 and the NFT (NoFeedback Timer), and updates X_recv_set, the set of
 recent X_recv values, and then executes the procedure above.
 X_fast_max always represents the interpolated value from highest
 X_recv reported since the last loss event. However, because

Kohler, et al. Expires: January 2009 [Page 14]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 X_recv_set contains only X_recv values from the most recent two
 round-trip times, the calculated recv_limit could be less than
 X_fast_max. In this case, recv_limit is doubled, up to at most
 X_fast_max. Faster Restart's doubling of recv_limit allows the TFRC
 sender to quadruple its sending rate each round-trip time after an
 idle period.

3.2. Nofeedback Timer

 Section 4.4 of [RFC3448bis] specifies when the allowed sending rate
 is halved after the nofeedback timer expires. In particular,
 [RFC3448bis] specifies that if the sender has been idle since the
 nofeedback timer was set, then the allowed sending rate is not
 reduced below recover_rate, which in [RFC3448bis] is set to the
 initial_rate of W_init/R, for:

 W_init = min(4*s, max(2*s, 4380)),

 for segment size s. In contrast, this document sets recover_rate to
 twice the initial_rate, as follows:

 recover_rate = 2*W_init/R;

4. Faster Restart Discussion

 Standard TCP has historically dealt with idleness and data-limited
 flows either by keeping cwnd entirely open ("immediate start") or by
 entering slow-start, as recommended in RFC 2581 in response to an
 idle period. The first option is too liberal, the second too
 conservative. Clearly a short idle or data-limited period is not a
 new connection: the sending rate maintained before the idle or data-
 limited period shows that previously, the connection could fairly
 sustain some rate without adversely impacting other flows. However,
 longer idle periods are more problematic. Idle periods of many
 minutes would seem to require slow-start.

RFC 2861 [RFC2861] gives a moderate mechanism for TCP, where the
 congestion window is halved for every retransmit timeout interval
 that the sender has remained idle, down to the initial window, and
 the window is re-opened in slow-start when the idle period is over.
 TFRC in [RFC3448bis] roughly follows [RFC2861] for the response to an
 idle period. Unlike [RFC2861], however, [RFC3448bis] follows
 Standard TCP in its responses to a data-limited period, and does not
 reduce the allowed sending rate in response to data-limited periods.

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861

Kohler, et al. Expires: January 2009 [Page 15]

INTERNET-DRAFT Faster Restart for TFRC July 2008

4.1. Worst-Case Scenarios

 Faster Restart should be acceptable for TFRC if its worst-case
 scenarios are acceptable. Realistic worst-case scenarios might
 include the following scenarios:

 o Path changes: The path changes and the old rate is not acceptable
 on the new path. RTTs are shorter on the new path too, so Faster
 Restart takes bandwidth from other connections for multiple RTTs,
 not just one. (This can happen with TCP or with TFRC without
 Faster Restart, but Faster Restart could make this behavior more
 severe.)

 o Synchronized flows: Several connections enter Faster Restart
 simultaneously. If the path is congested, the extra load
 resulting from Faster Restart could be twice as bad as the extra
 load if the connections had simply slow-started from their allowed
 initial sending rate.

 o Many forms of burstiness: Variable-rate connections using Faster
 Restart share the congested link with short TCP or DCCP
 connections starting and stopping, with initial windows of three
 or four packets. The aggregate traffic could also include TCP
 connections with short quiescent periods (e.g., web browsing
 sessions using HTTP 1.1), or bursty higher-priority traffic. As a
 result of the bursty traffic, the aggregate arrival rate varies
 from one RTT to the next. The transient congestion will be
 particularly severe if the congested link is an access link
 instead of a backbone link; the level of statistical multiplexing
 on an access link may not be sufficiently high to "smooth out" the
 burstiness.

 o Wireless links: The network allocates capacity based on traffic
 conditions, as in some current wireless technologies, such as
 Bandwidth on Demand (BoD) links [RFC3819] where capacity is
 variable and dependent on several parameters other than network
 congestion. In this case, the old sending rate might not be
 acceptable after a change in capacity for the wireless link during
 an idle period.

 Further analysis is required to analyze the effects of these
 scenarios.

4.2. Incentives for applications to send unnecessary packets during
idle or data-limited periods

 How does Faster Restart affect an application's incentive to pad its
 sending rate by sending unnecessary packets during idle or data-

https://datatracker.ietf.org/doc/html/rfc3819

Kohler, et al. Expires: January 2009 [Page 16]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 limited periods? We would like to limit an application's incentive
 to pad its sending rate during idle or data-limited periods; if all
 applications were to pad their sending rates, it could reduce the
 available bandwidth, and degrade the performance for all flows on the
 congested link.

 With Standard TFRC as specified in [RFC3448], a data-limited TFRC
 flow may not send more than twice X_recv, the rate at which data was
 received at the receiver over the previous RTT. Thus, with Standard
 TFRC, one could argue that a variable-rate application over an
 uncongested path does have some incentive to pad its sending rate.

 With Revised TFRC as specified in [RFC3448bis], the allowed sending
 rate after an idle period is larger than the allowed sending rate
 with Standard TFRC. Further, with Revised TFRC the receive rate
 reported in feedback packets is not used to limit the sending rate
 during data-limited periods. Thus, with Revised TFRC an application
 has less incentive to pad its sending rate than with Standard TFRC.
 However, with Revised TFRC an application could have some incentive
 to pad its sending rate just enough to maintain the status of "data-
 limited" instead of "idle", by sending at least one packet every four
 round-trip times.

 By allowing TFRC to revert to its old sending rate more quickly after
 an idle period, Faster Restart could reduce an application's
 incentive to pad its sending rate.

4.3. Interoperability Issues

 Faster Restart is a sender-side only modification to TFRC, and is
 intended to work with any TFRC receiver using the same transport
 protocol. The current standard for TFRC is RFC 3448. After
 [RFC3448bis] is standardized, the authors of this document will
 verify that Faster Restart works with either an RFC3448 or an
 RFC3448bis receiver.

4.3.1. Interoperability Issues with CCID-3 and the RFC 4342 Errata

 For the particular case of TFRC as used in CCID-3 or CCID-4 in DCCP,
 there are currently two variants of CCID-3 receivers. For TFRC as
 specified in [RFC3448], the receiver reports the receive rate
 measured over the most recent round-trip time. In contrast, for
 CCID-3 as specified in [RFC4342], the receiver reports the receive
 rate measured over the interval since the last feedback packet was
 received. These two methods can differ for feedback packets sent
 after a loss event or after an idle period. To correct this, the RFC

4342 Errata [RFC4342Errat] now specifies that the receiver reports
 the receive rate measured over the most recent round-trip time, as in

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342

Kohler, et al. Expires: January 2009 [Page 17]

INTERNET-DRAFT Faster Restart for TFRC July 2008

RFC 3448.

 Because Faster Restart is being specified only for a sender using
 [RFC3448bis], and not for a sender using [RFC3448], Faster Restart in
 CCID-3 should interoperate with a CCID-3 receiver as specified in
 [RFC4342], with a CCID-3 receiver as specified in [RFC4342] and
 updated by the RFC 4342 Errata, or with a CCID-3 receiver as
 specified in [RFC4342] updated by both the RFC 4342 Errata and by
 [RFC3448bis]. In particular, with Faster Restart in CCID-3 (or
 CCID-4) with RFC3448bis, the sender's sending rate is not limited by
 the first feedback packet received after an idle period, so Faster
 Restart should perform well even with a CCID-3 (or CCID-4) receiver
 following RFC 4342 and not updated by the RFC 4342 Errata.

4.4. Faster Restart for TFRC-SP

 We note that Faster Restart with TFRC-SP [RFC4828] is considerably
 more restrained than Faster Restart with TFRC. In TFRC-SP, the
 sender is restricted to sending at most one packet every Min
 Interval.

5. Simulations of Faster Restart

 Some test case scenarios based on simulation analysis are described
 in Appendix A. These simulations follow the guidelines set in
 [RFC4828]. These are:

 1. Fairness to standard TCP and TFRC: The simulation tests examine
 whether flows that use Faster Restart allow TCP and TFRC flows can
 achieve their share of the path capacity.

 2. Fairness within Faster Restart: The simulation tests examine how
 multiple competing Faster Restart flows share the available
 capacity among them.

 3. Response to transient events: The simulation tests examine how a
 Faster Restart flow reacts to a sudden congestion event.

 4. Behavior in a range of environments: Tests assess a range of
 bandwidths, RTTs, and varying idle periods.

 A set of initial simulation results will be described in [S08]. We
 note some of the important results here.

 o Faster Restart does improve the performance of a flow after an
 idle period by faster restarting when compared to TFRC. The
 results indicate that the worst case packet delay distribution is
 small for Faster Restart than for TFRC.

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4828
https://datatracker.ietf.org/doc/html/rfc4828

Kohler, et al. Expires: January 2009 [Page 18]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 o The effect of Faster Restart restarting after an idle period seems
 to have an effect on other competing flows only when the Faster
 Restart flow has a high sending rate before it enters the idle
 period.

 o When the Faster Restart flows experience losses and hence reduce
 their rates to a lower rate prior to entering an idle period, the
 effect of faster restarting is similar to that of slow-start.

 A later version of this draft will provide more discussion on these
 results in the appendix and implications will be noted here.

6. Implementation Issues

 TBA

7. Security Considerations

 TRFC security considerations are discussed in [RFC3448]. DCCP
 security considerations are discussed in [RFC4340]. Faster Restart
 adds no additional security considerations.

8. IANA Considerations

 There are no IANA considerations.

9. Thanks

 We thank the DCCP Working Group for feedback and discussions; we
 particularly thank Gorry Fairhurst. We thank Vlad Balan and Gerrit
 Renker for pointing out problems with the mechanisms discussed in
 previous versions of the draft.

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3448] Handley, M., Floyd, S., Padhye, J., and J. Widmer,
 "TCP Friendly Rate Control (TFRC): Protocol
 Specification", RFC 3448, Proposed Standard, January
 2003.

 [RFC3448bis] Handley, M., Floyd, S., Padhye, J., and J. Widmer,
 "TCP Friendly Rate Control (TFRC): Protocol
 Specification", internet draft draft-ietf-dccp-

rfc3448bis-06.txt, work-in-progress, April 2008.

https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3448
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-rfc3448bis-06.txt

Kohler, et al. Expires: January 2009 [Page 19]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March
 2006.

 [RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for
 Datagram Congestion Control Protocol (DCCP) Congestion
 Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC

4342, March 2006.

Informative References

 [CCID4] Floyd, S., and E. Kohler, "Profile for Datagram
 Congestion Control Protocol (DCCP) Congestion ID 4:
 TCP-Friendly Rate Control for Small Packets (TFRC-
 SP)", Internet-Draft draft-ietf-dccp-ccid4-02.txt,
 work in progress, February 2008.

 [GA08] "Quick-Start for the Datagram Congestion Control
 Protocol (DCCP)", Internet-Draft draft-fairhurst-

tsvwg-dccp-qs-03.txt, work in progress, June 2008.

 [JS00] W. Jiang and H. Schulzrinne, Analysis of On-Off
 Patterns in VoIP and Their Effect on Voice Traffic
 Aggregation, Proceedings of the Ninth Conference on
 Computer Communications and Networks (ICCCN), October
 2000.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP
 Congestion Control", RFC 2581, April 1999.

 [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing
 TCP's Initial Window", RFC 3390, October 2002.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman,
 D., Ludwig, R., Mahdavi, J., Montenegro, G., Touch,
 J., and L. Wood, "Advice for Internet Subnetwork
 Designers", RFC 3819, July 2004.

 [RFC4342Errat] RFC Errata for RFC 4342, URL "http://www.rfc-
 editor.org/errata.php".

 [RFC4782] Floyd, S., Allman, M., Jain, A., and P. Sarolahti,
 "Quick-Start for TCP and IP", RFC 4782, June 2006.

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid4-02.txt
https://datatracker.ietf.org/doc/html/draft-fairhurst-tsvwg-dccp-qs-03.txt
https://datatracker.ietf.org/doc/html/draft-fairhurst-tsvwg-dccp-qs-03.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4342
https://datatracker.ietf.org/doc/html/rfc4782

Kohler, et al. Expires: January 2009 [Page 20]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 [RFC4828] Floyd, S., and E. Kohler, "TCP Friendly Rate Control
 (TFRC): the Small-Packet (SP) Variant", RFC 4828,
 April 2007.

 [S08] Sathiaseelan, A., Faster Restart - Analysis, URL
 www.erg.abdn.ac.uk/users/arjuna/faster-restart.pdf, to
 appear.

A. Appendix: Simulations

 This appendix describes a set of initial test case scenarios for
 simulation analysis of Faster Restart. The simulation results use
 the ns-2 simulator.

 Several types of flows are considered:

 o Bulk TCP Flows.

 o Interactive (short) TCP Flows.

 o TFRC Flows with and without Faster Restart.

 o TFRC-SP Flows with and without Faster Restart.

 The implications on other flows (e.g. using UDP) may be extrapolated
 from this.

 For these simulations, we consider two application rates.

 o Small media flows: These have a similar rate to voice over IP
 with a media bit rate of 64 Kbps (using segments of 160 bytes and
 a nominal transmit rate of 8 KBps).

 o Large media flows: These have a similar rate to medium quality
 video over IP with a media bit rate of 512 Kbps (using segments of
 size 1000 bytes and a nominal transmit rate of 64 KBps).

 The simulations will model the effect of an idle period in which the
 application does not attempt to send any data for a period of time,
 then resumes transmission. Various idle times are considered.

 The simulation scenarios include the following. These are intended
 to be illustrative, rather than exact models of the application
 behavior.

 o Performance of a long-lived (bulk) TCP flow (e.g. FTP) with TFRC
 flows (with and without Faster Restart): The test scenario would
 involve a single large FTP flow with varying number of large media

https://datatracker.ietf.org/doc/html/rfc4828

Kohler, et al. Expires: January 2009 [Page 21]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 flows. Each large media flow becomes idle for one second and then
 restarts. The FTP flow starts during the idle period. The
 throughput performance of the single FTP flow would be plotted for
 varying number of large media flows. Does the single FTP flow get
 at least 1/n share of the bandwidth, where TFRC flows decrease the
 bandwidth received by the TCP flow?

 o Performance of small TCP flows (HTTP) with TFRC flows with and
 without Faster Restart: The test scenario would involve a single
 large media flow which runs for ten seconds, is idle in the time
 interval [2, 3], and then restarts. At three seconds, a number of
 HTTP flows are started. The min, max and median of the
 request/response time of these HTTP flows would be plotted. Do
 the request/response times of these HTTP flows differ? If so, by
 how much?

 o High-congestion test: In a worst-case scenario with high
 congestion, all flows use TFRC, with a range of arrival times and
 idle times. The simulations are run both with and without Faster
 Restart. How does the use of Faster Restart affect the aggregate
 packet drop rate?

 o Transient changes: The first worst-case scenario with transient
 changes includes a routing change, where the new path has less
 bandwidth than the old path. The second scenario with transient
 changes includes transient congestion from a sudden increase in
 traffic. This increase in traffic could be from long-lived TCP
 traffic, or from higher-priority traffic, or from many new TFRC
 sessions. The transient congestion could be particularly severe
 if the congested link is an access link instead of a backbone
 link. The third scenario with transient changes could include a
 wireless link with variable bandwidth, as discussed earlier in

Section 4. A fourth scenario would involve a mobility event that
 results in an increase in the round-trip time. In all cases, the
 simulations are run both with and without Faster Restart. How
 does the use of Faster Restart affect the aggregate packet drop
 rate?

 o An ideal scenario showing the benefits of Faster Restart: A
 scenario with an uncongested network, just a few TFRC flows,
 comparing the per-packet delay distribution with and without
 Faster Restart. Without Faster Restart, there should be a few
 packets in each flow with very large delay times, from waiting at
 the sender until they can be sent.

 o A scenario showing the benefits (to the flow, not to competing
 traffic) of padding during idle periods: Are there any scenarios
 where Faster Restart *increases* a flow's incentives to pad its

Kohler, et al. Expires: January 2009 [Page 22]

INTERNET-DRAFT Faster Restart for TFRC July 2008

 sending rate during idle or under-utilized periods?

Authors' Addresses

 Eddie Kohler
 4531C Boelter Hall
 UCLA Computer Science Department
 Los Angeles, CA 90095
 USA

 Email: kohler@cs.ucla.edu

 Sally Floyd
 ICSI Center for Internet Research
 1947 Center Street, Suite 600
 Berkeley, CA 94704
 USA

 Email: floyd@icir.org

 Arjuna Sathiaseelan
 Electronics Research Group
 University of Aberdeen
 Aberdeen
 UK

 Email: arjuna@erg.abdn.ac.uk

Kohler, et al. Expires: January 2009 [Page 23]

INTERNET-DRAFT Faster Restart for TFRC July 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Kohler, et al. Expires: January 2009 [Page 24]

