
DECADE R. Alimi
Internet-Draft Google
Intended status: Informational Y. Yang
Expires: May 3, 2012 Yale University
 A. Rahman
 InterDigital Communications, LLC
 D. Kutscher
 NEC
 H. Liu
 Yale University
 October 31, 2011

DECADE Architecture
draft-ietf-decade-arch-04

Abstract

 Content Distribution Applications (e.g., P2P applications) are widely
 used on the Internet and make up a large portion of the traffic in
 many networks. One technique to improve the network efficiency of
 these applications is to introduce storage capabilities within the
 networks; this is the capability to be provided by DECADE (DECoupled
 Application Data Enroute). This document presents an architecture
 for DECADE, discusses the underlying principles, and identifies core
 components and protocols for introducing in-network storage for these
 applications.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Alimi, et al. Expires May 3, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft DECADE Architecture October 2011

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 3, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Alimi, et al. Expires May 3, 2012 [Page 2]

Internet-Draft DECADE Architecture October 2011

Table of Contents

1. Introduction . 5
2. Functional Entities . 6
2.1. DECADE Server . 6
2.2. DECADE Client . 6
2.3. DECADE Storage Provider 6
2.4. Content Provider Using DECADE 6
2.5. Content Consumer Using DECADE 7
2.6. Content Distribution Application 7

3. Protocol Flow . 7
3.1. Overview . 7
3.2. An Example . 9

4. Architectural Principles 9
4.1. Decoupled Control/Metadata and Data Planes 10
4.2. Immutable Data Objects 11
4.3. Data Object Identifiers 12
4.4. Explicit Control . 12

 4.5. Resource and Data Access Control through User
 Delegation . 12

5. System Components . 13
5.1. Content Distribution Application 14
5.2. DECADE Server . 16
5.3. Data Sequencing and Naming 18
5.4. Token-based Authentication and Resource Control 21
5.5. Discovery . 22

6. DECADE Protocols . 23
6.1. DECADE Resource Protocol (DRP) 23
6.2. Standard Data Transport (SDT) 26

7. Server-to-Server Protocols 29
7.1. Operational Overview 29

8. Potential Optimizations 30
8.1. Pipelining to Avoid Store-and-Forward Delays 30
8.2. Deduplication . 31

9. Security Considerations 32
10. IANA Considerations . 33
11. Acknowledgments . 33
12. References . 33
12.1. Normative References 33
12.2. Informative References 33

Appendix A. Appendix: Evaluation of Some Candidate Existing
 Protocols for DECADE DRP and SDT 34

A.1. HTTP . 35
A.2. WEBDAV . 37
A.3. CDMI . 40

Appendix B. In-Network Storage Components Mapped to DECADE
 Architecture . 42

B.1. Data Access Interface 43

Alimi, et al. Expires May 3, 2012 [Page 3]

Internet-Draft DECADE Architecture October 2011

B.2. Data Management Operations 43
B.3. Data Search Capability 43
B.4. Access Control Authorization 43
B.5. Resource Control Interface 43
B.6. Discovery Mechanism 43
B.7. Storage Mode . 44

 Authors' Addresses . 44

Alimi, et al. Expires May 3, 2012 [Page 4]

Internet-Draft DECADE Architecture October 2011

1. Introduction

 Content Distribution Applications are widely used on the Internet
 today to distribute data, and they contribute a large portion of the
 traffic in many networks. The DECADE architecture described in this
 document enables such applications to leverage in-network storage to
 achieve more efficient content distribution. Specifically, in many
 subscriber networks, it can be expensive to upgrade network equipment
 in the "last-mile", because it can involve replacing equipment and
 upgrading wiring at individual homes, businesses, and devices such as
 DSLAMs (Digital Subscriber Line Access Multiplexers) and CMTSs (Cable
 Modem Termination Systems) in remote locations. Therefore, it can be
 cheaper to upgrade the core infrastructure, which involves fewer
 components that are shared by many subscribers. See
 [I-D.ietf-decade-problem-statement] for a more complete discussion of
 the problem domain and general discussions of the capabilities to be
 provided by DECADE.

 This document presents an architecture for providing in-network
 storage that can be integrated into Content Distribution
 Applications. The primary focus is P2P-based content distribution,
 but the architecture may be useful to other applications with similar
 characteristics and requirements. See [I-D.ietf-decade-reqs] for a
 definition of the target applications supported by DECADE.

 The design philosophy of the DECADE architecture is to provide only
 the core functionalities that are needed for applications to make use
 of in-network storage. Focusing on only core functionalities, DECADE
 may be simpler and easier to support by service providers. If more
 complex functionalities are needed by a certain application or class
 of applications, it may be layered on top of DECADE.

 DECADE will leverage existing data transport and application-layer
 protocols. The design is to work with a small set of alternative
 IETF protocols. In this document, we use "data transport" to refer
 to a protocol that is used to read data from and write data into
 DECADE in-network storage.

 This document proceeds in two steps. First, it details the core
 architectural principles that we use to guide the DECADE design.
 Next, given these core principles, this document presents the core
 components of the DECADE architecture and identifies the usage of
 existing protocols and where there is a need for new protocol
 development.

 This document does not define any new protocol. Instead, when
 identifying the need for a new protocol, it presents an abstract
 design including the necessary functions of that protocol (including

Alimi, et al. Expires May 3, 2012 [Page 5]

Internet-Draft DECADE Architecture October 2011

 rationale) in order to guide future protocol development.

2. Functional Entities

 This section defines the functional entities involved in a DECADE
 system. Functional entities can be classified as follows:

 o A physical or logical component in the DECADE architecture: DECADE
 Client, DECADE Server, Content Distribution Application and
 Application End Point;

 o Operator of a physical or logical component in the DECADE
 architecture: DECADE Storage Provider; and

 o Source or sink of content distributed via the DECADE architecture:
 DECADE Content Provider, and DECADE Content Consumer.

2.1. DECADE Server

 A DECADE server stores DECADE data inside the network, and thereafter
 manages both the stored data and access to that data. To reinforce
 that these servers are responsible for storage of raw data, this
 document also refers to them as storage servers.

2.2. DECADE Client

 A DECADE client stores and retrieves data at DECADE Servers.

2.3. DECADE Storage Provider

 A DECADE storage provider deploys and/or manages DECADE storage
 server(s) within a network. A storage provider may also own or
 manage the network in which the DECADE servers are deployed, but this
 is not mandatory.

 A DECADE storage provider, possibly in cooperation with one or more
 network providers, determines deployment locations for DECADE servers
 and determines the available resources for each.

2.4. Content Provider Using DECADE

 A content provider using DECADE accesses DECADE storage servers (by
 way of a DECADE client) to upload and manage data. Such a content
 provider can access one or more storage servers. Such a content
 provider may be a single process or a distributed application (e.g.,
 in a P2P scenario), and may either be fixed or mobile.

Alimi, et al. Expires May 3, 2012 [Page 6]

Internet-Draft DECADE Architecture October 2011

2.5. Content Consumer Using DECADE

 A content consumer using DECADE accesses DECADE storage servers (by
 way of a DECADE client). A content consumer can access one or more
 DECADE storage servers. A content consumer may be a single process
 or a distributed application (e.g., in a P2P scenario), and may
 either be fixed or mobile. An instance of a distributed application,
 such as a P2P application, may both provide content to and consume
 content from DECADE storage servers.

2.6. Content Distribution Application

 A content distribution application (as a target application for
 DECADE as described in [I-D.ietf-decade-reqs]) is a distributed
 application designed for dissemination of a possibly-large data set
 to multiple consumers. Content Distribution Applications typically
 divide content into smaller blocks for dissemination.

 The term Application Developer refers to the developer of a
 particular Content Distribution Application.

2.6.1. Application End-Point

 An Application End-Point is an instance of a Content Distribution
 Application that makes use of DECADE server(s). A particular
 Application End-Point may be a DECADE Content Provider, a DECADE
 Content Consumer, or both. For example, an Application End-Point may
 be an instance of a video streaming client, or it may be the source
 providing the video to a set of clients.

 An Application End-Point need not be actively transferring data with
 other Application End-Points to interact with the DECADE storage
 system. That is, an End-Point may interact with the DECADE storage
 servers as an offline activity.

3. Protocol Flow

3.1. Overview

 The DECADE Architecture uses two protocols, as shown in Figure 1.
 First, the DECADE Resource Protocol is responsible for communication
 of access control and resource scheduling policies from DECADE Client
 to DECADE Server, as well as between DECADE Servers. The DECADE
 Architecture includes exactly one DRP for interoperability and a
 common format through which these policies can be communicated.

Alimi, et al. Expires May 3, 2012 [Page 7]

Internet-Draft DECADE Architecture October 2011

 Native Application
 .-------------. Protocol(s) .-------------.
 | Application | <------------------> | Application | | | | |
 | End-Point | | End-Point |
 | | | |
 | .--------. | | .--------. |
 | | DECADE | | | | DECADE | |
 | | Client | | | | Client | |
 | `--------' | | `--------' |
 `-------------' `-------------'
 | ^ | ^
 DECADE | | Standard | |
 Resource | | Data DRP | | SDT
 Protocol | | Transport | |
 (DRP) | | (SDT) | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 v V v V
 .=============. DRP .=============.
 | DECADE | <------------------> | DECADE |
 | Server | <------------------> | Server |
 `=============' SDT `============='

 Figure 1: Generic Protocol Flow

 Second, Standard Data Transport protocols (e.g., HTTP, WebDAV, or
 CDMI) are used to transfer data objects to and from a DECADE Server.
 The DECADE architecture may be used with multiple standard data
 transports.

 Decoupling the protocols in this way allows DECADE to directly
 utilize existing standard data transports, as well as allowing both
 DECADE and DRP to evolve independently from data transports.

 It is also important to note that the two protocols do not need to be
 separate on the wire. For example, DRP messages may be piggybacked
 within some extension fields provided by certain data transport
 protocols. In such a scenario, DRP is technically a data structure
 (transported by other protocols), but it can still be considered as a
 logical protocol that provides the services of configuring DECADE
 resource usage. Hence, this document considers SDT and DRP as two
 separate, logical functional components for clarity.

Alimi, et al. Expires May 3, 2012 [Page 8]

Internet-Draft DECADE Architecture October 2011

3.2. An Example

 Before discussing details of the architecture, this section provides
 an example data transfer scenario to illustrate how the DECADE
 Architecture can be applied.

 In this example, we assume that Application End-Point B (the
 receiver) is requesting a data object from Application End-Point A
 (the sender). Let S(A) denote A's DECADE storage server. There are
 multiple usage scenarios (by choice of the Content Distribution
 Application). For simplicity of introduction, we design the example
 to use only a single DECADE Server; Section 7 details a case when
 both A and B wish to employ DECADE Servers.

 When an Application End-Point wishes to use its DECADE storage
 server, it provides a token (see Section 6.1.2 for details) to the
 other Application End-Point. The token is sent using the Content
 Distribution Application's native protocol.

 The steps of the example are illustrated in Figure 2. First, B
 requests a data object from A using their native protocol. Next, A
 uses the DECADE Resource Protocol (DRP) to obtain a token from its
 DECADE storage server, S(A). A then provides the token to B (again,
 using their native protocol). Finally, B provides the token to S(A)
 via DRP, and requests and downloads the data object via a Standard
 Data Transport (SDT).

 .----------.
 ----------> | S(A) | <------
 2. Obtain / `----------' \ 4. Request and
 Token / \ Download Object
 (DRP) / \ (DRP + SDT)
 v 1. App request v
 .-------------. <--------------------------- .-------------.
 | End-Point A | | End-Point B |
 `-------------' ---------------------------> `-------------'
 3. App response (token)

 Figure 2: Download from Storage Server

4. Architectural Principles

 We identify the following key principles.

Alimi, et al. Expires May 3, 2012 [Page 9]

Internet-Draft DECADE Architecture October 2011

4.1. Decoupled Control/Metadata and Data Planes

 The DECADE infrastructure is intended to support multiple content
 distribution applications. A complete content distribution
 application implements a set of control and management functions
 including content search, indexing and collection, access control, ad
 insertion, replication, request routing, and QoS scheduling. An
 observation of DECADE is that different content distribution
 applications can have unique considerations designing the control and
 signaling functions:

 o Metadata Management Scheme: Traditional file systems provide a
 standard metadata abstraction: a recursive structure of
 directories to offer namespace management; each file is an opaque
 byte stream. In content distribution, applications may use
 different metadata management schemes. For example, one
 application may use a sequence of blocks (e.g., for file sharing),
 while another application may use a sequence of frames (with
 different sizes) indexed by time.

 o Resource Scheduling Algorithms: a major competitive advantage of
 many successful P2P systems is their substantial expertise in
 achieving highly efficient utilization of peer and infrastructural
 resources. For instance, many live P2P systems have their
 specific algorithms in constructing topologies to achieve low-
 latency, high-bandwidth streaming. They continue to fine-tune
 such algorithms.

 Given the diversity of control-plane functions, in-network storage
 should export basic mechanisms and allow as much flexibility as
 possible to the control planes to implement specific policies. This
 conforms to the end-to-end systems principle and allows innovation
 and satisfaction of specific business goals.

 Decoupling control plane and data plane is not new. For example,
 OpenFlow is an implementation of this principle for Internet routing,
 where the computation of the forwarding table and the application of
 the forwarding table are separated. Google File System
 [GoogleFileSystem] applies the principle to file system design, by
 utilizing the Master to handle the meta-data management, and the
 Chunk Servers to handle the data plane functions (i.e., read and
 write of chunks of data). NFSv4.1's pNFS extension [RFC5661] also
 implements this principle.

 Note that applications may have different Data Plane implementations
 in order to support particular requirements (e.g., low latency). In
 order to provide interoperability, the DECADE architecture does not
 intend to enable arbitrary data transport protocols. However, the

https://datatracker.ietf.org/doc/html/rfc5661

Alimi, et al. Expires May 3, 2012 [Page 10]

Internet-Draft DECADE Architecture October 2011

 architecture may allow for more-than-one data transport protocols to
 be used.

 Also note that although an application's existing control plane
 functions remain implemented within the application, the particular
 implementation may need to be adjusted to support DECADE.

4.2. Immutable Data Objects

 A property of bulk contents to be broadly distributed is that they
 typically are immutable -- once a piece of content is generated, it
 is typically not modified. It is not common that bulk contents such
 as video frames and images need to be modified after distribution.

 Many content distribution applications divide content objects into
 blocks for two reasons: (1) multipath: different blocks may be
 fetched from different content sources in parallel, and (2) faster
 recovery and verification: individual blocks may be recovered and
 verified. Typically, applications use a block size larger than a
 single packet in order to reduce control overhead.

 Common applications using the aforementioned data model include P2P
 streaming (live and video-on-demand) and P2P file-sharing. However,
 other additional types of applications may match this model.

 DECADE adopts a design in which immutable data objects may be stored
 at a storage server. Applications may consider existing blocks as
 DECADE data objects, or they may adjust block sizes before storing in
 a DECADE server.

 Focusing on immutable data blocks in the data plane can substantially
 simplify the data plane design, since consistency requirements can be
 relaxed. It also allows effective reuse of data blocks and de-
 duplication of redundant data.

 Depending on its specific requirements, an application may store data
 in DECADE servers such that each data object is completely self-
 contained (e.g., a complete, independently decodable video segment).
 An application may also divide data into chunks that require
 application level assembly. The DECADE architecture and protocols
 are agnostic to the nature of the data objects and do not specify a
 fixed size for them.

 Note that immutable content may still be deleted. Also note that
 immutable data blocks do not imply that contents cannot be modified.
 For example, a meta-data management function of the control plane may
 associate a name with a sequence of immutable blocks. If one of the
 blocks is modified, the meta-data management function changes the

Alimi, et al. Expires May 3, 2012 [Page 11]

Internet-Draft DECADE Architecture October 2011

 mapping of the name to a new sequence of immutable blocks.

 Throughout this document, all the data objects/blocks are referred as
 immutable data objects/blocks.

4.3. Data Object Identifiers

 Objects that are stored in a DECADE storage server can be accessed by
 DECADE content consumers by a resource identifier that has been
 assigned within a certain application context.

 Because a DECADE content consumer can access more than one storage
 server within a single application context, a data object that is
 replicated across different storage servers managed by a DECADE
 storage provider, can be accessed by a single identifier.

 Note that since data objects are immutable, it is possible to support
 persistent identifiers for data objects.

4.4. Explicit Control

 To support the functions of an application's control plane,
 applications must be able to know and control which data is stored at
 particular locations. Thus, in contrast with content caches,
 applications are given explicit control over the placement (selection
 of a DECADE server), deletion (or expiration policy), and access
 control for stored data.

 Consider deletion/expiration policy as a simple example. An
 application may require that a DECADE server store content for a
 relatively short period of time (e.g., for live-streaming data).
 Another application may need to store content for a longer duration
 (e.g., for video-on-demand).

4.5. Resource and Data Access Control through User Delegation

 DECADE provides a shared infrastructure to be used by multiple
 tenants of multiple content distribution applications. Thus, it
 needs to provide both resource and data access control.

4.5.1. Resource Allocation

 There are two primary interacting entities in the DECADE
 architecture. First, Storage Providers control where DECADE storage
 servers are provisioned and their total available resources. Second,
 Applications control data transfers amongst available DECADE servers
 and between DECADE servers and end-points. A form of isolation is
 required to enable concurrently-running Applications to each

Alimi, et al. Expires May 3, 2012 [Page 12]

Internet-Draft DECADE Architecture October 2011

 explicitly manage its own content and share of resources at the
 available servers.

 The Storage Provider delegates the management of the resources at a
 DECADE server to one or more applications. Applications are able to
 explicitly and independently manage their own shares of resources.

4.5.2. User Delegations

 Storage providers have the ability to explicitly manage the entities
 allowed to utilize the resources at a DECADE server. This capability
 is needed for reasons such as capacity-planning and legal
 considerations in certain deployment scenarios.

 To provide a scalable way to manage applications granted resources at
 a DECADE server, we consider an architecture that adds a layer of
 indirection. Instead of granting resources to an application, the
 DECADE server grants a share of the resources to a user. The user
 may in turn share the granted resources amongst multiple
 applications. The share of resources granted by a storage provider
 is called a User Delegation.

 As a simple example, a DECADE Server operated by an ISP may be
 configured to grant each ISP Subscriber 1.5 Mbps of bandwidth. The
 ISP Subscriber may in turn divide this share of resources amongst a
 video streaming application and file-sharing application which are
 running concurrently.

 In general, a User Delegation may be granted to an end-user (e.g., an
 ISP subscriber), a Content Provider, or an Application Provider. A
 particular instance of an application may make use of the storage
 resources:

 o granted to the end-user (with the end-user's permission),

 o granted to the Content Provider (with the Content Provider's
 permission), and/or

 o granted to the Application Provider.

5. System Components

 The primary focus of this document is the architectural principals
 and the system components that implement them. While certain system
 components might differ amongst implementations, the document details
 the major components and their overall roles in the architecture.

Alimi, et al. Expires May 3, 2012 [Page 13]

Internet-Draft DECADE Architecture October 2011

 To keep the scope narrow, we only discuss the primary components
 related to protocol development. Particular deployments may require
 additional components (e.g., monitoring and accounting at a DECADE
 server), but they are intentionally omitted from this document.

5.1. Content Distribution Application

 Content Distribution Applications have many functional components.
 For example, many P2P applications have components and algorithms to
 manage overlay topology management, piece selection, etc. In
 supporting DECADE, it may be advantageous for an application
 developer to consider DECADE in the implementation of these
 components. However, in this architecture document, we focus on the
 components directly employed to support DECADE.

 Figure 3 illustrates the components discussed in this section from
 the perspective of a single Application End-Point and their relation
 to DECADE.

Alimi, et al. Expires May 3, 2012 [Page 14]

Internet-Draft DECADE Architecture October 2011

 Native Protocol(s)
 (with other Application End-Points)
 .--------------------->
 |
 |
 .--.
 | Application End-Point |
 | .------------. .-------------------. |
 | | App-Layer | ... | App Data Assembly | |
 | | Algorithms | | Sequencing | |
 | `------------' `-------------------' |
 | |
 | .--. |
	DECADE Client													
	.-------------------------. .----------------------.													
		Resource Controller		Data Controller										
		.--------. .----------.		.--------. .-------.										
			Data		Resource				Data		Data			
			Access		Sharing				Sched.		Index			
			Policy		Policy									
		'--------' `----------'		`--------' `-------'										
	`-------------------------' `----------------------'													
		^												
`------------	-----------------	-------------------'												
 `-------------- | ----------------- | ---------------------'
 | |
 | DECADE | Standard
 | Resource | Data
 | Protocol | Transport
 | (DRP) | (SDT)
 v V

 Figure 3: Application Components

5.1.1. Data Assembly

 DECADE is primarily designed to support applications that can divide
 distributed contents into data objects. To accomplish this,
 applications include a component responsible for creating the
 individual data objects before distribution and then re-assembling
 data objects at the Content Consumer. We call this component
 Application Data Assembly. The specific implementation is entirely
 decided by the application.

 In producing and assembling the data objects, two important
 considerations are sequencing and naming. The DECADE architecture
 assumes that applications implement this functionality themselves.

Alimi, et al. Expires May 3, 2012 [Page 15]

Internet-Draft DECADE Architecture October 2011

 See Section 5.3 for further discussion.

5.1.2. Native Protocols

 Applications may still use existing protocols. In particular, an
 application may reuse existing protocols primarily for control/
 signaling. However, an application may still retain its existing
 data transport protocols, in addition to DECADE as the data transport
 protocol. This can be important for applications that are designed
 to be highly robust (e.g., if DECADE servers are unavailable).

5.1.3. DECADE Client

 An application may be modified to support DECADE. We call the layer
 providing the DECADE support to an application the DECADE Client. It
 is important to note that a DECADE Client need not be embedded into
 an application. It could be implemented alone, or could be
 integrated in other entities such as network devices themselves.

5.1.3.1. Resource Controller

 Applications may have different Resource Sharing Policies and Data
 Access Policies to control their resource and data in DECADE servers.
 These policies can be existing policies of applications (e.g., tit-
 for-tat) or custom policies adapted for DECADE. The specific
 implementation is decided by the application.

5.1.3.2. Data Controller

 DECADE is designed to decouple the control and the data transport of
 applications. Data transport between applications and DECADE servers
 uses standard data transport protocols. A Data Scheduling component
 schedules data transfers according to network conditions, available
 DECADE Servers, and/or available DECADE Server resources. The Data
 Index indicates data available at remote DECADE servers. The Data
 Index (or a subset of it) may be advertised to other Application End-
 Points. A common use case for this is to provide the ability to
 locate data amongst a distributed set of Application End-Points
 (i.e., a data search mechanism).

5.2. DECADE Server

 A DECADE Server stores data from Application End-Points, and provides
 control and access of those data to Application End-Points. Note
 that a DECADE Server is not necessarily a single physical machine, it
 could also be implemented as a cluster of machines.

Alimi, et al. Expires May 3, 2012 [Page 16]

Internet-Draft DECADE Architecture October 2011

 | |
 | DECADE | Standard
 | Resource | Data
 | Protocol | Transport
 | (DRP) | (SDT)
 | |
 .= | ================= | ======================.
 | | v | | |
 | | .----------------. |
 | |----> | Access Control | <--------. |
 | | `----------------' | |
 | | ^ | |
 | | | | |
 | | v | |
 | | .---------------------. | |
 | `-> | Resource Scheduling | <------| |
 | `---------------------' | |
 | ^ | |
 | | | |
 | v .------------. |
 | .-----------------. | User | | | |
 | | Data Store | | Delegation | |
 | `-----------------' | Management | |
 | DECADE Server `------------' |
 `=='

 Figure 4: DECADE Server Components

5.2.1. Access Control

 An Application End-Point can access its own data or other Application
 End-Point's data (provided sufficient authorization) in DECADE
 servers. Application End-Points may also authorize other End-Points
 to store data. If an access is authorized by an Application End-
 Point, the DECADE Server will provide access.

 Note that even if a request is authorized, it may still fail to
 complete due to insufficient resources by either the requesting
 Application End-Point, the providing Application End-Point, or the
 DECADE Server itself.

5.2.2. Resource Scheduling

 Applications may apply their existing resource sharing policies or
 use a custom policy for DECADE. DECADE servers perform resource
 scheduling according to the resource sharing policies indicated by
 Application End-Points as well as configured User Delegations.

Alimi, et al. Expires May 3, 2012 [Page 17]

Internet-Draft DECADE Architecture October 2011

5.2.3. Data Store

 Data from applications may be stored at a DECADE Server. Data can be
 deleted from storage either explicitly or automatically (e.g., after
 a TTL expiration). It may be possible to perform optimizations in
 certain cases, such as avoiding writing temporary data (e.g., live
 streaming) to persistent storage, if appropriate storage hints are
 supported by the SDT.

5.3. Data Sequencing and Naming

 In order to provide a simple and generic interface, the DECADE Server
 is only responsible for storing and retrieving individual data
 objects. Furthermore, DECADE uses its own simple naming scheme that
 provides uniqueness (with high probability) between data objects,
 even across multiple applications.

5.3.1. DECADE Data Object Naming Scheme

 The name of a data object is derived from the hash over the data
 object's content (the raw bytes), which is made possible by the fact
 that DECADE objects are immutable. This scheme multiple appealing
 properties:

 o Simple integrity verification

 o Unique names (with high probability)

 o Application independent, without a new IANA-maintained registry

 The DECADE naming scheme also includes a "type" field, the "type"
 identifier indicates that the name is the hash of the data object's
 content and the particular hashing algorithm used. This allows
 DECADE to evolve by either changing the hashing algorithm (e.g., if
 security vulnerabilities with an existing hashing algorithm are
 discovered), or moving to a different naming scheme altogether.

 The specific format of the name (e.g., encoding, hash algorithms,
 etc) is out of scope of this document, and left for protocol
 specification.

 Another advantage of this scheme is that a DECADE client knows the
 name of a data object before it is completely stored at the DECADE
 server. This allows for particular optimizations, such as
 advertising data object while the data object is being stored,
 removing store-and-forward delays. For example, a DECADE client A
 may simultaneously begin storing an object to a DECADE server, and
 advertise that the object is available to DECADE client B. If it is

Alimi, et al. Expires May 3, 2012 [Page 18]

Internet-Draft DECADE Architecture October 2011

 supported by the DECADE server, client B may begin downloading the
 object before A is finished storing the object.

 In certain scenarios (e.g., where a DECADE client has limited
 computational power), it may be advantageous to offload the
 computation of a data object's name to the DECADE Server. This
 possibility is not considered in the current architecture, but may be
 a topic for future extensions.

5.3.2. Application Usage

 Recall from Section 5.1.1 that an Application typically includes its
 own naming and sequencing scheme. It is important to note that the
 DECADE naming format does not attempt to replace any naming or
 sequencing of data objects already performed by an Application;
 instead, the DECADE naming is intended to apply only to data objects
 referenced at the DECADE layer.

 DECADE names are not necessarily correlated with the naming or
 sequencing used by the Application using a DECADE client. The DECADE
 client is expected to maintain a mapping from its own data objects
 and their names to the DECADE data objects and names. Furthermore,
 the DECADE naming scheme implies no sequencing or grouping of
 objects, even if this is done at the application layer.

 Not only does an Application retain its own naming scheme, it may
 also decide the sizes of data objects to be distributed via DECADE.
 This is desirable since sizes of data objects may impact Application
 performance (e.g., overhead vs. data distribution delay), and the
 particular tradeoff is application-dependent.

5.3.3. Application Usage Example

 To illustrate these properties, this section presents multiple
 examples.

5.3.3.1. Application with Fixed-Size Chunks

 Similar to the example in Section 5.1.1, consider an Application in
 which each individual application-layer segment of data is called a
 "chunk" and has a name of the form: "CONTENT_ID:SEQUENCE_NUMBER".
 Furthermore, assume that the application's native protocol uses
 chunks of size 16KB.

 Now, assume that this application wishes to make use of DECADE, and
 assume that it wishes to store data to DECADE servers in data objects
 of size 64KB. To accomplish this, it can map a sequence of 4 chunks
 into a single DECADE object, as shown in Figure 5.

Alimi, et al. Expires May 3, 2012 [Page 19]

Internet-Draft DECADE Architecture October 2011

 Application Chunks
 .---------.---------.---------.---------.---------.---------.--------
 | | | | | | |
 | Chunk_0 | Chunk_1 | Chunk_2 | Chunk_3 | Chunk_4 | Chunk_5 | Chunk_6
 | | | | | | |
 `---------`---------`---------`---------`---------`---------`--------

 DECADE Data Objects
 .---------------------------------------.----------------------------
 | |
 | Object_0 | Object_1
 | |
 `---------------------------------------`----------------------------

 Figure 5: Mapping Application Chunks to DECADE Data Objects

 In this example, the Application might maintain a logical mapping
 that is able to determine the name of a DECADE data object given the
 chunks contained within that data object. The name might be learned
 from either the original source, another endpoint with which the it
 is communicating, a tracker, etc.

 It is important to note that as long as the data contained within
 each sequence of chunks is unique, the corresponding DECADE data
 objects have unique names. This is desired, and happens
 automatically if particular Application segments the same stream of
 data in a different way, including different chunk size sizes or
 different padding schemes.

5.3.3.2. Application with Continuous Streaming Data

 Next, consider an Application whose native protocol retrieves a
 continuous data stream (e.g., an MPEG2 stream) instead of downloading
 and redistributing chunks of data. Such an application could segment
 the continuous data stream to produce either fixed-sized or variable-
 sized DECADE data objects.

 Figure 6 shows how a video streaming application might produce
 variable-sized DECADE data objects such that each DECADE data object
 contains 10 seconds of video data.

Alimi, et al. Expires May 3, 2012 [Page 20]

Internet-Draft DECADE Architecture October 2011

 Application's Video Stream
 .--
 |
 |
 |
 `--
 ^ ^ ^ ^ ^
 | | | | |
 0 Seconds 10 Seconds 20 Seconds 30 Seconds 40 Seconds
 0 B 400 KB 900 KB 1200 KB 1500 KB

 DECADE Data Objects
 .--------------.--------------.--------------.--------------.--------
Object_0	Object_1	Object_2	Object_3
(400 KB)	(500 KB)	(300 KB)	(300 KB)
 `--------------`--------------`--------------`--------------`--------

 Figure 6: Mapping a Continuous Data Stream to DECADE Data Objects

 Similar to the previous example, the Application might maintain a
 mapping that is able to determine the name of a DECADE data object
 given the time offset of the video chunk.

5.4. Token-based Authentication and Resource Control

 A primary use case for DECADE is a DECADE Client authorizing other
 DECADE Clients to store or retrieve data objects from its DECADE
 storage. To support this, DECADE uses a token-based authentication
 scheme.

 In particular, an entity trusted by a DECADE Client generates a
 digitally-signed token with particular properties (see Section 6.1.2
 for details). The DECADE Client distributes this token to other
 DECADE Clients which then use the token when sending requests to the
 DECADE Server. Upon receiving a token, the DECADE Server validates
 the signature and the operation being performed.

 This is a simple scheme, but has multiple important advantages over
 an alternate approach in which a DECADE Client explicitly manipulates
 an Access Control List (ACL) associated with each DECADE data object.
 In particular, it has the following advantages when applied to
 DECADE's target applications:

 o Authorization policies are implemented within the Application; an
 Application explicitly controls when tokens are generated and to

Alimi, et al. Expires May 3, 2012 [Page 21]

Internet-Draft DECADE Architecture October 2011

 whom they are distributed.

 o Fine-grained access and resource control can be applied to data
 objects; see Section 6.1.2 for the list of restrictions that can
 be enforced with a token.

 o There is no messaging between a DECADE Client and DECADE Server to
 manipulate data object permissions. This can simplify, in
 particular, Applications which share data objects with many
 dynamic peers and need to frequently adjust access control
 policies attached to DECADE data objects.

 o Tokens can provide anonymous access, in which a DECADE Server does
 not need to know the identity of each DECADE Client that accesses
 it. This enables a DECADE Client to send tokens to DECADE Clients
 in other administrative or security domains, and allow them to
 read or write data objects from its DECADE storage.

 It is important to note that, in addition to DECADE Clients applying
 access control policies to DECADE data objects, the DECADE Server may
 be configured to apply additional policies based on user, object,
 geographic location, etc. Defining such policies is out of scope for
 DECADE, but in such a case, a DECADE Client may be denied access even
 though it possess a valid token.

5.5. Discovery

 DECADE includes a discovery mechanism through which DECADE clients
 locate an appropriate DECADE Server. [I-D.ietf-decade-reqs] details
 specific requirements of the discovery mechanism; this section
 discusses how they relate to other principles outlined in this
 document.

 A discovery mechanism allows a DECADE client to determine an IP
 address or some other identifier that can be resolved to locate the
 server for which the client will be authorized to generate tokens
 (via DRP). (Note that the discovery mechanism may also result in an
 error if no such DECADE servers can be located.) After discovering
 one or more DECADE servers, a DECADE client may distribute load and
 requests across them (subject to resource limitations and policies of
 the DECADE servers themselves) according to the policies of the
 Application End-Point in which it is embedded.

 The particular protocol used for discovery is out of scope of this
 document, but any specification will re-use standard protocols
 wherever possible.

 It is important to note that the discovery mechanism outlined here

Alimi, et al. Expires May 3, 2012 [Page 22]

Internet-Draft DECADE Architecture October 2011

 does not provide the ability to locate arbitrary DECADE servers to
 which a DECADE client might obtain tokens from others. To do so
 requires application-level knowledge, and it is assumed that this
 functionality is implemented in the Content Distribution Application,
 or if desired and needed, as an extension to this DECADE
 architecture.

6. DECADE Protocols

 This section presents the DECADE Resource Protocol (DRP) and the
 Standard Data Transport (SDT) in terms of abstract protocol
 interactions that are intended to mapped to specific protocols. Note
 that while the protocols are logically separate, DRP is specified as
 being carried through extension fields within an SDT (e.g., HTTP
 headers).

 The DRP is the protocol used by a DECADE client to configure the
 resources and authorization used to satisfy requests (reading,
 writing, and management operations concerning DECADE objects) at a
 DECADE server. The SDT is used to send the operations to the DECADE
 server. Necessary DRP metadata is supplied using mechanisms in the
 SDT that are provided for extensibility (e.g., additional request
 parameters or extension headers).

6.1. DECADE Resource Protocol (DRP)

 DRP provides configuration of access control and resource sharing
 policies on DECADE servers. A content distribution application,
 e.g., a live P2P streaming session, MAY employ several DECADE
 servers, for instance, servers in different operator domains, and DRP
 allows one instance of such an application, e.g., an application
 endpoint, to apply access control and resource sharing policies on
 each of them.

6.1.1. Controlled Resources

 On a single DECADE server, the following resources may be managed:

 communication resources: DECADE servers have limited communication
 resources in terms of bandwidth (upload/download) but also in
 terms of number of connected clients (connections) at a time.

 storage resources: DECADE servers have limited storage resources.

Alimi, et al. Expires May 3, 2012 [Page 23]

Internet-Draft DECADE Architecture October 2011

6.1.2. Access and Resource Control Token

 A token includes the following fields:

 Permitted operations (e.g., read, write)

 Permitted objects (e.g., names of data objects that may be read or
 written)

 Permitted clients (e.g., as indicated by IP address or other
 identifier) that may use the token

 Expiration time

 Priority for bandwidth given to requested operation (e.g., a
 weight used in a weighted bandwidth sharing scheme)

 Amount of data that may be read or written

 The particular format for the token is out of scope of this document.

 The tokens are generated by a trusted entity at the request of a
 DECADE Client. It is out of scope of this document to identify which
 entity serves this purpose, but examples include the DECADE Client
 itself, a DECADE Server trusted by the DECADE Client, or another
 server managed by a Storage Provider trusted by the DECADE Client.

 Upon generating a token, a DECADE Client may distribute it to another
 DECADE Client (e.g., via their native Application protocol). The
 receiving DECADE Client may then connect to the sending DECADE
 Client's DECADE Server and perform any operation permitted by the
 token. The token must be sent along with the operation. The DECADE
 Server validates the token to identify the DECADE Client that issued
 it and whether the requested operation is permitted by the contents
 of the token. If the token is successfully validated, the DECADE
 Server applies the resource control policies indicated in the token
 while performing the operation.

 It is possible for DRP to allow tokens to apply to a batch of
 operations to reduce communication overhead required between DECADE
 Clients.

 DRP may also define tokens to include a unique identifier to allow a
 DECADE Server to detect when a token is used multiple times.

Alimi, et al. Expires May 3, 2012 [Page 24]

Internet-Draft DECADE Architecture October 2011

6.1.3. Status Information

 DRP provides a request service for status information that DECADE
 clients can use to request information from a DECADE server.

 status information per application context on a specific server:
 Access to such status information requires client authorization,
 i.e., DECADE clients need to be authorized to access status
 information for a specific application context. This
 authorization (and the mapping to application contexts) is based
 on the user delegation concept as described in Section 4.5. The
 following status information elements can be obtained:

 * list of associated objects (with properties)

 * resources used/available

 * list of servers to which objects have been distributed (in a
 certain time-frame)

 * list of clients to which objects have been distributed (in a
 certain time-frame)

 For the list of servers/clients to which objects have been
 distributed to, the DECADE server can decide on time bounds for
 which this information is stored and specify the corresponding
 time frame in the response to such requests. Some of this
 information can be used for accounting purposes, e.g., the list of
 clients to which objects have been distributed.

 access information per application context on a specific server:
 Access information can be provided for accounting purposes, for
 example, when application service providers are interested to
 maintain access statistics for resources and/or to perform
 accounting per user. Again, access to such information requires
 client authorization based on the user delegation concept as
 described in Section 4.5. The following access information
 elements can be requested:

 * what objects have been accessed how many times

 * access tokens that a server as seen for a given object

 The DECADE server can decide on time bounds for which this
 information is stored and specify the corresponding time frame in
 the response to such requests.

Alimi, et al. Expires May 3, 2012 [Page 25]

Internet-Draft DECADE Architecture October 2011

6.1.4. Object Attributes

 Objects that are stored on a DECADE server may have associated
 attributes (in addition to the object identifier and the actual
 content) that relate to the data storage and its management. These
 attributes may be used by the DECADE server (and possibly the
 underlying storage system) to perform specialized processing or
 handling for the data object, or to attach related DECADE server or
 storage-layer properties to the data object. These attributes have a
 scope local to a DECADE server. In particular, these attributes are
 not applied to a DECADE server or client to which a data object is
 copied.

 Depending on authorization, DECADE clients may get or set such
 attributes. This authorization (and the mapping to application
 contexts) is based on the user delegation concept as described in

Section 4.5. The DECADE architecture does not limit the set of
 permissible attributes, but rather specifies a set of baseline
 attributes that SHOULD be supported by implementations.

 Suggested attributes are the following:

 TTL: TTL of the object as an absolute time value

 object size: in bytes

 MIME type

 access statistics: how often the object has been accessed (and what
 tokens have been used)

 It is important to note that the Object Attributes defined here are
 distinct from application metadata (see Section 4.1). Application
 metadata is custom information that an application may wish to
 associate with a data object to understand its semantic meaning
 (e.g., whether it is video and/or audio, its playback length in time,
 or its index in a stream). If an application wishes to store such
 metadata persistently within DECADE, it can be stored within data
 objects themselves.

6.2. Standard Data Transport (SDT)

 A DECADE server provide a data access interface, and SDT is used to
 write objects to a server and to read (download) objects from a
 server. Semantically, SDT is a client-server protocol, i.e., the
 DECADE server always responds to client requests.

 An SDT used in DECADE SHOULD offer a transport mode that provides

Alimi, et al. Expires May 3, 2012 [Page 26]

Internet-Draft DECADE Architecture October 2011

 confidentiality and integrity.

6.2.1. Writing/Uploading Objects

 To write an object, a client first generates the object's name (see
Section 5.3), and then uploads the object to a DECADE server and

 supplies the generated name. The name can be used to access
 (download) the object later, e.g., the client can pass the name as a
 reference to other client that can then refer to the object.

 DECADE objects can be self-contained objects such as multimedia
 resources, files etc., but also chunks, such as chunks of a P2P
 distribution protocol that can be part of a containing object or a
 stream.

 A server MAY accept download requests for an object that is still
 being uploaded.

 The application that originates the objects MUST generate DECADE
 object names according to the naming specification in Section 5.3.
 The naming scheme provides that the name is unique. DECADE clients
 (as parts of application entities) upload a named object to a server,
 and a DECADE server MUST NOT change the name. It MUST be possible
 for downloading clients, to access the object using the original
 name. A DECADE server MAY verify the integrity and other security
 properties of uploaded objects.

 In the following we provide an abstract specification of the upload
 operation that we name 'PUT METHOD'. See Appendix A.1 for an example
 how this could be mapped to HTTP.

 Method PUT:

 Parameters:

 NAME: The naming of the object according to Section 5.3

 OBJECT: The object itself. The protocol MUST provide transparent
 binary object transport.

 Description: The PUT method is used by a DECADE client to upload an
 object with an associated name 'NAME' to a DECADE server.

 RESPONSES: The DECADE server MUST respond with one the following
 response messages:

Alimi, et al. Expires May 3, 2012 [Page 27]

Internet-Draft DECADE Architecture October 2011

 CREATED: The object has been uploaded successfully and is now
 available under the specified name.

 ERRORs:

 VALIDATION_FAILED: The contents of the data object received by
 the DECADE server did not match the provided name (i.e.,
 hash validation failed).

 PERMISSION_DENIED: The DECADE client lacked sufficient
 permission to store the object.

 Specifics regarding error handling, including additional error
 conditions, precedence for returned errors and its relation
 with server policy, are deferred to eventual protocol
 specification.

6.2.2. Downloading Objects

 A DECADE client can request named objects from a DECADE server. In
 the following, we provide an abstract specification of the download
 operation that we name 'GET METHOD'. See Appendix A.1 for an example
 how this could be mapped to HTTP.

 Method GET:

 Parameters:

 NAME: The naming of the object according to Section 5.3.

 Description: The GET method is used by a DECADE client to download
 an object with an associated name 'NAME' from a DECADE server.

 RESPONSES: The DECADE server MUST respond with one the following
 response messages:

 OK: The request has succeeded, and an entity corresponding to the
 requested resource is sent in the response.

 ERRORs:

 NOT_FOUND: The DECADE server has not found anything matching
 the request object name.

 PERMISSION_DENIED: The DECADE client lacked sufficient
 permission to read the object.

Alimi, et al. Expires May 3, 2012 [Page 28]

Internet-Draft DECADE Architecture October 2011

 NOT_AVAILABLE: The data object exists but is currently
 unavailable for download (e.g., due to server policy).

 Specifics regarding error handling, including additional error
 conditions (e.g. overload), precedence for returned errors and
 its relation with server policy, are defered to eventual
 protocol specification.

7. Server-to-Server Protocols

 An important feature of DECADE is the capability for one DECADE
 server to directly download objects from another DECADE server. This
 capability allows Applications to directly replicate data objects
 between servers without requiring end-hosts to use uplink capacity to
 upload data objects to a different DECADE server.

 To support this functionality, DECADE uses the DRP and SDT to support
 operations directly between servers. DECADE servers are not assumed
 to trust each other nor are configured to do so. All data operations
 are performed on behalf of DECADE clients via explicit instruction.
 Note, however, that the objects being processed do not necessarily
 have to originate or terminate at the DECADE client (i.e. the object
 may be limited to being exchanged between DECADE servers even if the
 instruction is triggered by the client). DECADE clients thus must be
 able to indicate to a DECADE server the following additional
 parameters:

 o which remote DECADE server(s) to access;

 o the operation to be performed (e.g. PUT, GET); and

 o Credentials indicating permission to perform the operation at the
 remote DECADE server.

 In this way, a DECADE server acts as a proxy for a DECADE client, and
 a DECADE client may instantiate requests via that proxy. The
 operations are performed as if the original requester had its own
 DECADE client co-located with the DECADE server. It is this mode of
 operation that provides substantial savings in uplink capacity. Note
 that this mode of operation may also be triggered by an
 administrative/management application outside the DECADE
 architecture.

7.1. Operational Overview

 DECADE's server-to-server support is focused on reading and writing
 data objects between DECADE servers. A DECADE GET or PUT request MAY

Alimi, et al. Expires May 3, 2012 [Page 29]

Internet-Draft DECADE Architecture October 2011

 supply the following additional parameters:

 REMOTE_SERVER: Address of the remote DECADE server. The format of
 the address is out-of-scope of this document.

 REMOTE_USER: The account at the remote server from which to retrieve
 the object (for a GET), or in which the object is to be stored
 (for a PUT).

 TOKEN: Credentials to be used at the remote server.

 These parameters are used by the DECADE server to instantiate a
 request to the specified remote server. It is assumed that the data
 object referred to at the remote server is the same as the original
 request. It is also assumed that the operation performed at the
 remote server is the same as the operation in the original request.
 Note that object attributes (see Section 6.1.4) may also be specified
 in the request to the remote server.

 Note that when a DECADE client invokes a request a DECADE server with
 these additional parameters, it is giving the DECADE server
 permission to act (proxy) on its behalf. Thus, it would be wise for
 the supplied token to have narrow privileges (e.g., limited to only
 the necessary data objects) or validity time (e.g., a small
 expiration time).

 In the case of a GET operation, the DECADE server is to retrieve the
 data object from the remote server using the specified credentials
 (via a GET request to the remote server), and then optionally return
 the object to a client. In the case of a PUT operation, the DECADE
 server is to store the object to the remote server using the
 specified credentials (via a PUT request to the remote server). The
 object may optionally be uploaded from the client or may already
 exist at the proxying server.

8. Potential Optimizations

 As suggestions for the protocol design and eventual implementations,
 we discuss particular optimizations that are enabled by the DECADE
 Architecture discussed in this document.

8.1. Pipelining to Avoid Store-and-Forward Delays

 A DECADE server may choose to not fully store an object before
 beginning to serve it. For example, when serving a GET request,
 instead of waiting for the complete data to arrive from a remote
 server or DECADE client, a DECADE server may forward received data

Alimi, et al. Expires May 3, 2012 [Page 30]

Internet-Draft DECADE Architecture October 2011

 bytes as they come in. This pipelining mode reduces store-and-
 forward delays, which could be substantial for large objects. A
 similar behavior could be used for PUT.

8.2. Deduplication

 A common concern amongst Storage Providers is the total volume of
 data that needs to be stored. An optimization frequently applied in
 existing storage systems is de-duplication, which attempts to avoid
 storing identical data multiple times. A DECADE Server
 implementation may internally perform de-duplication of data on disk.
 The DECADE architecture enables additional forms of de-duplication.

 Note that these techniques may impact protocol design. Discussions
 of whether or not they should be adopted is out of the scope of this
 document.

8.2.1. Traffic De-duplication

8.2.1.1. Rationale

 When a DECADE client (A) indicates its DECADE account on a DECADE
 server (S) to fetch an object from a remote entity (R) (a DECADE
 server or DECADE client) and if the object is already stored locally
 in S, S may perform Traffic De-duplication. This means that S does
 not download the object from R, in order to save network traffic. In
 particular, S performs a challenge to make sure that the remote
 entity R actually has the object and then replies with its local
 object copy directly.

8.2.1.2. An Example

 As shown in Figure 7, without Traffic De-duplication, unnecessary
 transfer of an object from R to S may happen, if the server S already
 has the object requested by A. If Traffic De-duplication is enabled,
 S only needs to challenge R to verify that it does have the data to
 avoid data-stealing attacks.

Alimi, et al. Expires May 3, 2012 [Page 31]

Internet-Draft DECADE Architecture October 2011

 A S R
 +----------+ obj req +------------+ obj req +----------+
 | DECADE |=========>| A's |==========>| Remote |
 | CLIENT |<=========| Account |<==========| Entity |
 +----------+ obj rsp +------------+ obj rsp +----------+

 (a) Without Traffic De-duplication

 A S R
 +----------+ obj req +------------+ challenge +----------+
 | DECADE |=========>| A's |---------->| Remote |
 | CLIENT |<=========| Account |<----------| Entity |
 +----------+ obj rsp +------------+ obj hash +----------+

 (b) With Traffic De-duplication

 Figure 7

8.2.1.3. HTTP Compatibility of Challenge

 How to integrate traffic de-duplication with HTTP is shown in
Appendix A.1.3.

8.2.2. Cross-Server Storage De-duplication

 The same object might be uploaded multiple times to different DECADE
 servers. For storage efficiency, storage providers may desire that a
 single object be stored on one or a few servers. They might
 implement an internal mechanism to achieve the goal, for example, by
 redirecting requests to proper servers. DECADE supports the
 redirection of DECADE client requests to support further cross-server
 storage de-duplication.

9. Security Considerations

 In general, the security considerations mentioned in
 [I-D.ietf-decade-problem-statement] apply to this document as well.

 In addition, it should be noted that the token-based approach
Section 5.4 provides authorization through token delegation. The

 strength of this authorization depends on several factors:

 1. the uniqueness of tokens: tokens should be constructed in a way
 that minimize the possibilities for collisions;

 2. validity of tokens: applications/users should not re-use tokens;
 and

Alimi, et al. Expires May 3, 2012 [Page 32]

Internet-Draft DECADE Architecture October 2011

 3. secrecy of tokens: if tokens are compromised to unauthorized
 entities, access control for the associated resources cannot be
 provided.

 Depending on the specific application, DECADE can be used to access
 confidential information. Hence DECADE implementations SHOULD
 provide a secure transport mode that allows for encryption.

10. IANA Considerations

 This document does not have any IANA considerations.

11. Acknowledgments

 We thank the following people for their contributions to this
 document:

 David Bryan

 Yingjie Gu

 David McDysan

 Borje Ohlman

 Haibin Song

 Martin Stiemerling

 Richard Woundy

 Ning Zong

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616

Alimi, et al. Expires May 3, 2012 [Page 33]

Internet-Draft DECADE Architecture October 2011

 [RFC3744] Clemm, G., Reschke, J., Sedlar, E., and J. Whitehead, "Web
 Distributed Authoring and Versioning (WebDAV)
 Access Control Protocol", RFC 3744, May 2004.

 [RFC4331] Korver, B. and L. Dusseault, "Quota and Size Properties fo
 r Distributed Authoring and Versioning (DAV) Collections",

RFC 4331, February 2006.

 [RFC4709] Reschke, J., "Mounting Web Distributed Authoring and
 Versioning (WebDAV) Servers", RFC 4709, October 2006.

 [RFC4918] Dusseault, L., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918, June 2007.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",

RFC 5661, January 2010.

 [RFC6392] Alimi, R., Rahman, A., and Y. Yang, "A Survey of In-
 Network Storage Systems", RFC 6392, October 2011.

 [I-D.ietf-decade-problem-statement]
 Song, H., Zong, N., Yang, Y., and R. Alimi, "DECoupled
 Application Data Enroute (DECADE) Problem Statement",

draft-ietf-decade-problem-statement-04 (work in progress),
 October 2011.

 [I-D.ietf-decade-reqs]
 Yingjie, G., Bryan, D., Yang, Y., and R. Alimi, "DECADE
 Requirements", draft-ietf-decade-reqs-04 (work in
 progress), September 2011.

 [GoogleStorageDevGuide]
 "Google Storage Developer Guide", <http://code.google.com/

apis/storage/docs/developer-guide.html>.

 [GoogleFileSystem]
 Ghemawat, S., Gobioff, H., and S. Leung, "The Google File
 System", SOSP 2003, October 2003.

 [CDMI] "CDMI", <http://www.snia.org/cdmi>.

Appendix A. Appendix: Evaluation of Some Candidate Existing Protocols
 for DECADE DRP and SDT

 In this section we evaluate how well the abstract protocol
 interactions specified in Section 6 for DECADE DRP and SDT can be

https://datatracker.ietf.org/doc/html/rfc3744
https://datatracker.ietf.org/doc/html/rfc4331
https://datatracker.ietf.org/doc/html/rfc4709
https://datatracker.ietf.org/doc/html/rfc4918
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc6392
https://datatracker.ietf.org/doc/html/draft-ietf-decade-problem-statement-04
https://datatracker.ietf.org/doc/html/draft-ietf-decade-reqs-04
http://code.google.com/apis/storage/docs/developer-guide.html
http://code.google.com/apis/storage/docs/developer-guide.html
http://www.snia.org/cdmi

Alimi, et al. Expires May 3, 2012 [Page 34]

Internet-Draft DECADE Architecture October 2011

 fulfilled by existing protocols such as HTTP, WEBDAV, and CDMI.

A.1. HTTP

 HTTP [RFC2616] is a key protocol for the Internet in general and
 especially for the World Wide Web. HTTP is a request-response
 protocol. A typical transaction involves a client (e.g. web browser)
 requesting content (resources) from a web server. Another example is
 when a client stores or deletes content from a server.

A.1.1. HTTP Support for DECADE Resource Protocol Primitives

 DRP provides configuration of access control and resource sharing
 policies on DECADE servers.

A.1.1.1. Access Control Primitives

 Access control requires mechanisms for defining the access policies
 for the server, and then checking the authorization of a user before
 it stores or retrieves content. HTTP supports a rudimentary access
 control via "HTTP Secure" (HTTPS). HTTPS is a combination of HTTP
 with SSL/TLS. The main use of HTTPS is to authenticate the server
 and encrypt all traffic between the client and the server. There is
 also a mode to support client authentication though this is less
 frequently used.

A.1.1.2. Communication Resource Controls Primitives

 Communication resources include bandwidth (upload/download) and
 number of simultaneous connected clients (connections). HTTP
 supports bandwidth control indirectly through "persistent" HTTP
 connections. Persistent HTTP connections allows a client to keep
 open the underlying TCP connection to the server to allow streaming
 and pipelining (multiple simultaneous requests for a given client).

 HTTP does not define protocol operation to allow limiting the
 communication resources to a client. However servers typically
 perform this function via implementation algorithms.

A.1.1.3. Storage Resource Control Primitives

 Storage resources include amount of memory and lifetime of storage.
 HTTP does not allow direct control of storage at the server end
 point. However HTTP supports caching at intermediate points such as
 a web proxy. For this purpose, HTTP defines cache control mechanisms
 that define how long and in what situations the intermediate point
 may store and use the content.

https://datatracker.ietf.org/doc/html/rfc2616

Alimi, et al. Expires May 3, 2012 [Page 35]

Internet-Draft DECADE Architecture October 2011

A.1.2. HTTP Support for DECADE Standard Data Transport Protocol
 Primitives

 SDT is used to write objects and read (download) objects from a
 DECADE server. The object can be either a self-contained object such
 as a multimedia file or a chunk from a P2P system.

A.1.2.1. Writing Primitives

 Writing involves uploading objects to the server. HTTP supports two
 methods of writing called PUT and POST. In HTTP the object is called
 a resource and is identified by a URI. PUT uploads a resource to a
 specific location on the server. POST, on the other hand, submits
 the object to the server and the server decides whether to update an
 existing resource or to create a new resource.

 For DECADE, the choice of whether to use PUT or POST will be
 influenced by which entity is responsible for the naming. If the
 client performs the naming, then PUT is appropriate. If the server
 performs the naming, then POST should be used (to allow the server to
 define the URI).

A.1.2.2. Downloading Primitives

 Downloading involves fetching of an object from the server. HTTP
 supports downloading through the GET and HEAD methods. GET fetches a
 specific resource as identified by the URL. HEAD is similar but only
 fetches the metadata ("header") associated with the resource but not
 the resource itself.

A.1.3. Traffic De-duplication Primitives

 To challenge a remote entity for an object, the DECADE server should
 provide a seed number, which is generated by the server randomly, and
 ask the remote entity to return a hash calculated from the seed
 number and the content of the object. The server may also specify
 the hash function which the remote entity should use. HTTP supports
 the challenge message through the GET methods. The message type
 ("challenge"), the seed number and the hash function name are put in
 URL. In the reply, the hash is sent in an ETAG header.

A.1.4. Other Operations

 HTTP supports deleting of content on the server through the DELETE
 method.

Alimi, et al. Expires May 3, 2012 [Page 36]

Internet-Draft DECADE Architecture October 2011

A.1.5. Conclusions

 HTTP can provide a rudimentary DRP and SDT for some aspects of
 DECADE, but will not be able to satisfy all the DECADE requirements.
 For example, HTTP does not provide a complete access control
 mechanism, nor does it support storage resource controls at the end
 point server.

 It is possible, however, to envision combining HTTP with a custom
 suite of other protocols to fulfill most of the DECADE requirements
 for DRP and SDT. For example, Google Storage for Developers is built
 using HTTP (with extensive proprietary extensions such as custom HTTP
 headers). Google Storage also uses OAUTH 2.0 (for access control) in
 combination with HTTP [GoogleStorageDevGuide].

A.2. WEBDAV

 WebDAV [RFC4918] is a protocol for enhanced Web content creation and
 management. It was developed as an extension to HTTP Appendix A.1.
 WebDAV supports traditional operations for reading/writing from
 storage, as well as more advanced features such as locking and
 namespace management which are important when multiple users
 collaborate to author or edit a set of documents. HTTP is a subset
 of WebDAV functionality. Therefore, all the points noted above in

Appendix A.1 apply implicitly to WebDAV as well.

A.2.1. WEBDAV Support for DECADE Resource Protocol Primitives

 DRP provides configuration of access control and resource sharing
 policies on DECADE servers.

A.2.1.1. Access Control Primitives

 Access control requires mechanisms for defining the access policies
 for the server, and then checking the authorization of a user before
 it stores or retrieves content. WebDAV has an Access Control
 Protocol defined in [RFC3744].

 The goal of WebDAV access control is to provide an interoperable
 mechanism for handling discretionary access control for content and
 metadata managed by WebDAV servers. WebDAV defines an Access Control
 List (ACL) per resource. An ACL contains a set of Access Control
 Entries (ACEs), where each ACE specifies a principal (i.e. user or
 group of users) and a set of privileges that are granted to that
 principal. When a principal tries to perform an operation on that
 resource, the server evaluates the ACEs in the ACL to determine if
 the principal has permission for that operation.

https://datatracker.ietf.org/doc/html/rfc4918
https://datatracker.ietf.org/doc/html/rfc3744

Alimi, et al. Expires May 3, 2012 [Page 37]

Internet-Draft DECADE Architecture October 2011

 WebDAV also requires that an authentication mechanism be available
 for the server to validate the identity of a principal. As a
 minimum, all WebDAV compliant implementations are required to support
 HTTP Digest Authentication.

A.2.1.2. Communication Resource Controls Primitives

 Communications resources include bandwidth (upload/download) and
 number of simultaneous connected clients (connections). WebDAV
 supports communication resource control as described in

Appendix A.1.1.2.

A.2.1.3. Storage Resource Control Primitives

 Storage resources include amount of memory and lifetime of storage.
 WebDAV supports the concept of properties (which are metadata for a
 resource). A property is either "live" or "dead". Live properties
 include cases where a) the value of a property is protected and
 maintained by the server, and b) the value of the property is
 maintained by the client, but the server performs syntax checking on
 submitted values. A dead property has its syntax and semantics
 enforced by the client; the server merely records the value of the
 property.

 WebDAV supports a list of standardized properties [RFC4918] that are
 useful for storage resource control. These include the self-
 explanatory "creationdate", and "getcontentlength" properties. There
 is also an operation called PROPFIND to retrieve all the properties
 defined for the requested URI.

 WebDAV also has a Quota and Size Properties mechanism defined in
 [RFC4331] that can be used for storage control. Specifically, two
 key properties are defined per resource: "quota-available-bytes" and
 "quota-used-bytes".

 WebDAV does not define protocol operation for storage resource
 control. However servers typically perform this function via
 implementation algorithms in conjunction with the storage related
 properties discussed above.

A.2.2. WebDAV Support for DECADE Standard Transport Protocol Primitives

 SDT is used to write objects and read (download) objects from a
 DECADE server. The object can be either a self-contained object such
 as a multimedia file or a chunk from a P2P system.

https://datatracker.ietf.org/doc/html/rfc4918
https://datatracker.ietf.org/doc/html/rfc4331

Alimi, et al. Expires May 3, 2012 [Page 38]

Internet-Draft DECADE Architecture October 2011

A.2.2.1. Writing Primitives

 Writing involves uploading objects to the server. WebDAV supports
 PUT and POST as described in Appendix A.1.2.1. WebDAV LOCK/UNLOCK
 functionality is not needed as DECADE assumes immutable data objects.
 Therefore, resources cannot be edited and so do not need to be
 locked. This approach should help to greatly simplify DECADE
 implementations as the LOCK/UNLOCK functionality is quite complex.

A.2.2.2. Downloading Primitives

 Downloading involves fetching of an object from the server. WebDAV
 supports GET and HEAD as described in Appendix A.1.2.2. WebDAV LOCK/
 UNLOCK functionality is not needed as DECADE assumes immutable data
 objects.

A.2.3. Other Operations

 WebDAV supports DELETE as described in Appendix A.1.4. In addition
 WebDAV supports COPY and MOVE methods. The COPY operation creates a
 duplicate of the source resource identified by the Request-URI, in
 the destination resource identified by the URI in the Destination
 header.

 The MOVE operation on a resource is the logical equivalent of a COPY,
 followed by consistency maintenance processing, followed by a delete
 of the source, where all three actions are performed in a single
 operation. The consistency maintenance step allows the server to
 perform updates caused by the move, such as updating all URLs, other
 than the Request-URI that identifies the source resource, to point to
 the new destination resource.

 WebDAV also supports the concept of "collections" of resources to
 support joint operations on related objects (e.g. file system
 directories) within a server's namespace. For example, GET and HEAD
 may be done on a single resource (as in HTTP) or on a collection.
 The MKCOL operation is used to create a new collection. DECADE may
 find the concept of collections to be useful if there is a need to
 support directory like structures in DECADE.

 WebDAV servers can be interfaced from an HTML-based user interface in
 a web browser. However, it is frequently desirable to be able to
 switch from an HTML-based view to a presentation provided by a native
 WebDAV client, directly supporting WebDAV features. The method to
 perform this in a platform-neutral mechanism is specified in the
 WebDAV protocol for "mounting WebDAV servers" [RFC4709]. This type
 of feature may also be attractive for DECADE clients.

https://datatracker.ietf.org/doc/html/rfc4709

Alimi, et al. Expires May 3, 2012 [Page 39]

Internet-Draft DECADE Architecture October 2011

A.2.4. Conclusions

 WebDAV has a rich array of features that can provide a good base for
 DRP and SDT for DECADE. An initial analysis finds that the following
 WebDAV features will be useful for DECADE:

 - access control

 - properties (and PROPFIND operation)

 - COPY/MOVE operations

 - collections

 - mounting WebDAV servers

 It is recommended that the following WebDAV features NOT be used for
 DECADE:

 - LOCK/UNLOCK

 Finally, some extensions to WebDAV may still be required to meet all
 DECADE requirements. For example, defining a new WebDAV "time-to-
 live" property may be useful for DECADE. Further analysis is
 required to fully define the potential extensions to WebDAV to meet
 all DECADE requirements.

A.3. CDMI

 The Cloud Data Management Interface (CDMI) specification defines a
 functional interface through which applications can store and manage
 data objects in a cloud storage environment. The CDMI interface for
 reading/writing data is based on standard HTTP requests, with CDMI-
 specific encodings using JavaScript Object Notation (JSON). CDMI is
 specified by the Storage Networking Industry Association (SNIA)
 [CDMI].

A.3.1. CDMI Support for DECADE Resource Protocol Primitives

 DRP provides configuration of access control and resource sharing
 policies on DECADE servers.

A.3.1.1. Access Control Primitives

 Access control includes mechanisms for defining the access policies
 for the server, and then checking the authorization of a user before
 it stores or retrieves content. CDMI defines an Access Control List
 (ACL) per data object, and thus supports access control (read and/or

Alimi, et al. Expires May 3, 2012 [Page 40]

Internet-Draft DECADE Architecture October 2011

 write) at the data object granularity. An ACL contains a set of
 Access Control Entries (ACEs), where each ACE specifies a principal
 (i.e. user or group of users) and a set of privileges that are
 granted to that principal.

 CDMI requires that an HTTP authentication mechanism be available for
 the server to validate the identity of a principal (client).
 Specifically, CDMI requires that either HTTP Basic Authentication or
 HTTP Digest Authentication be supported. CDMI recommends that HTTP
 over TLS (HTTPS) is supported to encrypt the data sent over the
 network.

A.3.1.2. Communication Resource Controls Primitives

 Communication resources include bandwidth (upload/download) and
 number of simultaneous connected clients (connections). CDMI
 supports two key data attributes which provide control over the
 communication resources to a client: "cdmi_max_throughput" and
 "cdmi_max_latency". These attributes are defined in the metadata for
 data objects and indicate the desired bandwidth or delay for
 transmission of the data object from the cloud server to the client.

A.3.1.3. Storage Resource Control Primitives

 Storage resources include amount of quantity and lifetime of storage.
 CDMI defines metadata for individual data objects and general storage
 system configuration which can be used for storage resource control.
 In particular, CDMI defines the following metadata fields:

 - cdmi_data_redundancy: desired number of copies to be
 maintained,

 - cdmi_geographic_placement: region where object is permitted to
 be stored,

 - cdmi_retention_period: time interval object is to be retained,
 and

 - cdmi_retention_autodelete: whether object should be auto
 deleted after retention period.

A.3.2. CDMI Support for DECADE Standard Transport Protocol Primitives

 SDT is used to write objects and read (download) objects from a
 DECADE server. The object can be either a self-contained object such
 as a multimedia file or a chunk from a P2P system.

Alimi, et al. Expires May 3, 2012 [Page 41]

Internet-Draft DECADE Architecture October 2011

A.3.2.1. Writing Primitives

 Writing involves uploading objects to the server. CDMI supports
 standard HTTP methods for PUT and POST as described in

Appendix A.1.2.1.

A.3.2.2. Downloading Primitives

 Downloading involves fetching of an object from the server. CDMI
 supports the standard HTTP GET method as described in

Appendix A.1.2.2.

A.3.3. Other Operations

 CDMI supports DELETE as described in Appendix A.1.4. CDMI also
 supports COPY and MOVE operations.

 CDMI supports the concept of containers of data objects to support
 joint operations on related objects. For example, GET may be done on
 a single data object or on an entire container.

 CDMI supports a global naming scheme. Every object stored within a
 CDMI system will have a globally unique object string identifier
 (ObjectID) assigned at creation time.

A.3.4. Conclusions

 CDMI has a rich array of features that can provide a good base for
 DRP and SDT for DECADE. An initial analysis finds that the following
 CDMI features may be useful for DECADE:

 - access control

 - storage resource control

 - communication resource control

 - COPY/MOVE operations

 - data containers

 - naming scheme

Appendix B. In-Network Storage Components Mapped to DECADE Architecture

 In this section we evaluate how the basic components of an in-network
 storage system identified in Section 3 of [RFC6392] map into the

https://datatracker.ietf.org/doc/html/rfc6392#section-3

Alimi, et al. Expires May 3, 2012 [Page 42]

Internet-Draft DECADE Architecture October 2011

 DECADE architecture.

 It is important to note that complex and/or application-specific
 behavior is delegated to applications instead of tuning the storage
 system wherever possible.

B.1. Data Access Interface

 Users can read and write objects of arbitrary size through the DECADE
 Client's Data Controller, making use of a standard data transport.

B.2. Data Management Operations

 Users can move or delete previously stored objects via the DECADE
 Client's Data Controller, making use of a standard data transport.

B.3. Data Search Capability

 Users can enumerate or search contents of DECADE servers to find
 objects matching desired criteria through services provided by the
 Content Distribution Application (e.g., buffer-map exchanges, a DHT,
 or peer-exchange). In doing so, End-Points may consult their local
 Data Index in the DECADE Client's Data Controller.

B.4. Access Control Authorization

 All methods of access control are supported: public-unrestricted,
 public-restricted and private. Access Control Policies are generated
 by a Content Distribution Application and provided to the DECADE
 Client's Resource Controller. The DECADE Server is responsible for
 implementing the access control checks.

B.5. Resource Control Interface

 Users can manage the resources (e.g. bandwidth) on the DECADE server
 that can be used by other Application End-Points. Resource Sharing
 Policies are generated by a Content Distribution Application and
 provided to the DECADE Client's Resource Controller. The DECADE
 Server is responsible for implementing the resource sharing policies.

B.6. Discovery Mechanism

 The particular protocol used for discovery is outside the scope of
 this document. However, options and considerations have been
 discussed in Section 5.5.

Alimi, et al. Expires May 3, 2012 [Page 43]

Internet-Draft DECADE Architecture October 2011

B.7. Storage Mode

 DECADE Servers provide an object-based storage mode. Immutable data
 objects may be stored at a DECADE server. Applications may consider
 existing blocks as DECADE data objects, or they may adjust block
 sizes before storing in a DECADE server.

Authors' Addresses

 Richard Alimi
 Google

 Email: ralimi@google.com

 Y. Richard Yang
 Yale University

 Email: yry@cs.yale.edu

 Akbar Rahman
 InterDigital Communications, LLC

 Email: akbar.rahman@interdigital.com

 Dirk Kutscher
 NEC

 Email: dirk.kutscher@neclab.eu

 Hongqiang Liu
 Yale University

 Email: hongqiang.liu@yale.edu

Alimi, et al. Expires May 3, 2012 [Page 44]

