
DECADE R. Alimi
Internet-Draft Google
Intended status: Informational A. Rahman
Expires: December 2, 2012 InterDigital Communications, LLC
 D. Kutscher
 NEC
 Y. Yang
 Yale University
 May 31, 2012

DECADE Architecture
draft-ietf-decade-arch-06

Abstract

 Content Distribution Applications (e.g., P2P applications) are widely
 used on the Internet and make up a large portion of the traffic in
 many networks. One technique to improve the network efficiency of
 these applications is to introduce storage capabilities within the
 networks; this is the capability provided by a DECADE (DECoupled
 Application Data Enroute) compatible system. This document presents
 an architecture, discusses the underlying principles, and identifies
 key functionalities required for introducing a DECADE-compatible in-
 network storage system. In addition, some examples are given to
 illustrate these concepts.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Alimi, et al. Expires December 2, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DECADE Architecture May 2012

 This Internet-Draft will expire on December 2, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Alimi, et al. Expires December 2, 2012 [Page 2]

Internet-Draft DECADE Architecture May 2012

Table of Contents

1. Introduction . 5
2. Terminology . 5
2.1. DECADE-compatible Client 5
2.2. DECADE-compatible Server 5
2.3. Content Provider . 6
2.4. Content Consumer . 6
2.5. Storage Provider . 6
2.6. Content Distribution Application 6
2.7. Application End-Point 6
2.8. Data Object . 6

3. Protocol Flow . 6
3.1. Overview . 7
3.2. An Example . 8

4. Architectural Principles 9
4.1. Decoupled Control/Metadata and Data Planes 9
4.2. Immutable Data Objects 10
4.3. Data Objects With Identifiers 10
4.4. Data Object Naming Scheme 11
4.5. Explicit Control . 12
4.6. Resource and Data Access Control 13

5. System Components . 14
5.1. Content Distribution Application 14
5.2. Server . 16
5.3. Data Sequencing and Naming 18
5.4. Token-based Authentication and Resource Control 20
5.5. Discovery . 21

6. DECADE Protocols . 22
6.1. DECADE Resource Protocol (DRP) 22
6.2. Standard Data Transfer (SDT) Protocol 25
6.3. Server-to-Server Protocols 26

7. Security Considerations 28
7.1. Threat: System Denial of Service Attacks 28
7.2. Threat: Protocol Security 29

8. IANA Considerations . 30
9. Acknowledgments . 30
10. References . 31
10.1. Normative References 31
10.2. Informative References 31

Appendix A. In-Network Storage Components Mapped to DECADE
 Architecture . 31

A.1. Data Access Interface 32
A.2. Data Management Operations 32
A.3. Data Search Capability 32
A.4. Access Control Authorization 32
A.5. Resource Control Interface 32
A.6. Discovery Mechanism 32

Alimi, et al. Expires December 2, 2012 [Page 3]

Internet-Draft DECADE Architecture May 2012

A.7. Storage Mode . 32
 Authors' Addresses . 33

Alimi, et al. Expires December 2, 2012 [Page 4]

Internet-Draft DECADE Architecture May 2012

1. Introduction

 Content Distribution Applications, such as Peer-to-Peer (P2P)
 applications, are widely used on the Internet to distribute data, and
 they contribute a large portion of the traffic in many networks. The
 DECADE-compatible architecture described in this document enables
 such applications to leverage in-network storage to achieve more
 efficient content distribution. Specifically, in many subscriber
 networks, it can be expensive to upgrade network equipment in the
 "last-mile", because it can involve replacing equipment and upgrading
 wiring at individual homes, businesses, and devices such as DSLAMs
 (Digital Subscriber Line Access Multiplexers) and CMTSs (Cable Modem
 Termination Systems) in remote locations. Therefore, it may be
 cheaper to upgrade the core infrastructure, which involves fewer
 components that are shared by many subscribers. See
 [I-D.ietf-decade-problem-statement] for a more complete discussion of
 the problem domain and general discussions of the capabilities to be
 provided by a DECADE-compatible system.

 This document presents an architecture for providing in-network
 storage that can be integrated into Content Distribution
 Applications. The primary focus is P2P-based content distribution,
 but the architecture may be useful to other applications with similar
 characteristics and requirements. See [I-D.ietf-decade-reqs] for a
 definition of the target applications supported by a DECADE-
 compatible system.

 The approach of this document is to define the core functionalities
 and protocol behaviour that are needed to support in-network storage
 in a DECADE-compatible system. The protocol themselves are not
 selected or designed in this document. Some illustrative examples
 are given to help the reader understand certain concepts. These
 examples are purely informational and are not meant to constrain
 future protocol design or selection.

2. Terminology

2.1. DECADE-compatible Client

 A DECADE-compatible client uploads and/or retrieves data from DECADE-
 compatible servers. We simply use the term "client" if there is no
 ambiguity.

2.2. DECADE-compatible Server

 A DECADE-compatible server stores data inside the network, and
 thereafter manages both the stored data and access to that data. We

Alimi, et al. Expires December 2, 2012 [Page 5]

Internet-Draft DECADE Architecture May 2012

 simply use the term "server" if there is no ambiguity.

2.3. Content Provider

 A client which owns (i.e. uploads and manages) storage at a DECADE-
 compatible server.

2.4. Content Consumer

 A client which has been granted permission to retrieve data from a
 DECADE-compatible server by a Content Provider.

2.5. Storage Provider

 A Storage Provider deploys and/or manages DECADE-compatible server(s)
 within a network.

2.6. Content Distribution Application

 A Content Distribution Application is an application (e.g., P2P)
 designed for dissemination of a large amounts of data to multiple
 consumers. Content Distribution Applications typically divide
 content into smaller blocks for dissemination.

 We consider Content Distribution Applications that include a DECADE-
 compatible client along with other application functionality (e.g.,
 P2P video streaming client).

2.7. Application End-Point

 An Application End-Point is an instance of a Content Distribution
 Application. A particular Application End-Point might be a Content
 Provider, a Content Consumer, or both. For example, an Application
 End-Point might be an instance of a video streaming client, or it
 might be the source providing the video to a set of clients.

2.8. Data Object

 A data object is the unit of data stored and retrieved from a DECADE-
 compatible server. The data object is a string of raw bytes. The
 server maintains metadata associated with each data object, but the
 metadata is not included in the data object.

3. Protocol Flow

Alimi, et al. Expires December 2, 2012 [Page 6]

Internet-Draft DECADE Architecture May 2012

3.1. Overview

 A DECADE-compatible system will support two logical protocols, as
 shown in Figure 1. First, the DECADE Resource Protocol (DRP) is
 responsible for communication of access control and resource
 scheduling policies between a client and a server, as well as between
 servers. A DECADE-compatible system will include exactly one DRP for
 interoperability and a common format through which these policies can
 be communicated.

 Native Application
 .-------------. Protocol(s) .-------------.
 | Application | <------------------> | Application | | | | |
 | End-Point | | End-Point |
 | | | |
 | .--------. | | .--------. |
 | | DECADE | | | | DECADE | |
 | | Client | | | | Client | |
 | `--------' | | `--------' |
 `-------------' `-------------'
 | ^ | ^
 DECADE | | Standard | |
 Resource | | Data DRP | | SDT
 Protocol | | Transfer | |
 (DRP) | | (SDT) | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 v V v V
 .=============. DRP .=============.
 | DECADE | <------------------> | DECADE |
 | Server | <------------------> | Server |
 `=============' SDT `============='

 Figure 1: Generic Protocol Flow

 Second, a Standard Data Transfer (SDT) protocol will be used to
 transfer data objects to and from a server. A DECADE-compatible
 system may support multiple SDT's. If there are multiple SDT's, a
 negotiation mechanism will be used to determine a suitable SDT
 between the client and server.

 The two protocols (DRP and SDT) will be either separate or combined
 on the wire. If they are combined, DRP messages can be piggy-backed
 within some extension fields provided by certain SDT protocols. In

Alimi, et al. Expires December 2, 2012 [Page 7]

Internet-Draft DECADE Architecture May 2012

 such a scenario, DRP is technically a data structure (transported by
 other protocols), but it can still be considered as a logical
 protocol that provides the services of configuring DECADE-compatible
 resource usage. If the protocols are physically separate on the
 wire, DRP can take the form of a separate control connection open
 between the a DECADE-compatible client and server. Hence, this
 document considers SDT and DRP as two separate, logical functional
 components for clarity. The abstract properties of the SDT and DRP
 are outlined below but the final selection of these protocols is
 outside the scope of this document.

3.2. An Example

 This section provides an example of steps in a data transfer scenario
 involving an in-network storage system. We assume that Application
 End-Point B (the receiver) is requesting a data object from
 Application End-Point A (the sender). Let S(A) denote the DECADE-
 compatible storage server to which A has access. There are multiple
 usage scenarios (by choice of the Content Distribution Application).
 For simplicity of introduction, we design this example to use only a
 single DECADE-compatible server.

 The steps of the example are illustrated in Figure 2. First, B
 requests a data object from A using their native application protocol
 (see Section 5.1.2). Next, A uses the DRP to obtain a token. There
 are multiple ways for A to obtain the token: compute locally, or
 request from its DECADE-compatible storage server, S(A). See

Section 6.1.2 for details. A then provides the token to B (again,
 using their native application protocol). Finally, B provides the
 token to S(A) via DRP, and requests and downloads the data object via
 a SDT.

 .----------.
 2. Obtain --------> | S(A) | <------
 Token / `----------' \ 4. Request and
 (DRP) / \ Download Object
 Locally / \ (DRP + SDT)
 or From / \
 S(A) v 1. App Request v
 .-------------. <--------------------------- .-------------.
 | Application | | Application |
 | End-Point A | | End-Point B |
 `-------------' ---------------------------> `-------------'
 3. App Response (token)

 Figure 2: Download from Storage Server

Alimi, et al. Expires December 2, 2012 [Page 8]

Internet-Draft DECADE Architecture May 2012

4. Architectural Principles

 We identify the following key principles that will be followed in any
 DECADE-compatible system:

4.1. Decoupled Control/Metadata and Data Planes

 A DECADE-compatible system SHOULD be able to support multiple Content
 Distribution Applications. A complete Content Distribution
 Application implements a set of "control plane" functions including
 content search, indexing and collection, access control, ad
 insertion, replication, request routing, and QoS scheduling.
 Different Content Distribution Applications will have unique
 considerations designing the control plane functions:

 o Metadata Management Scheme: Traditional file systems provide a
 standard metadata abstraction: a recursive structure of
 directories to offer namespace management; each file is an opaque
 byte stream. Content Distribution Applications may use different
 metadata management schemes. For example, one application might
 use a sequence of blocks (e.g., for file sharing), while another
 application might use a sequence of frames (with different sizes)
 indexed by time.

 o Resource Scheduling Algorithms: A major advantage of many
 successful P2P systems is their substantial expertise in achieving
 highly efficient utilization of peer and infrastructural
 resources. For instance, many streaming P2P systems have their
 specific algorithms in constructing topologies to achieve low-
 latency, high-bandwidth streaming. They continuously fine-tune
 such algorithms.

 Given the diversity of control plane functions, a DECADE-compatible
 system SHOULD allow as much flexibility as possible to the control
 plane to implement specific policies. This conforms to the end-to-
 end systems principle and allows innovation and satisfaction of
 specific performance goals.

 Decoupling control plane and data plane is not new. For example,
 OpenFlow [OpenFlow] is an implementation of this principle for
 Internet routing, where the computation of the forwarding table and
 the application of the forwarding table are separated. Google File
 System [GoogleFileSystem] applies the principle to file system
 design, by utilizing the Master to handle the meta-data management,
 and the Chunk servers to handle the data plane functions (i.e., read
 and write of chunks of data). NFSv4.1's pNFS extension [RFC5661]
 also implements this principle.

https://datatracker.ietf.org/doc/html/rfc5661

Alimi, et al. Expires December 2, 2012 [Page 9]

Internet-Draft DECADE Architecture May 2012

4.2. Immutable Data Objects

 A property of bulk content to be broadly distributed is that they
 typically are immutable -- once content is generated, it is typically
 not modified. It is not common that bulk content such as video
 frames and images need to be modified after distribution.

 Focusing on immutable data in the data plane can substantially
 simplify the data plane design, since consistency requirements can be
 relaxed. It also simplifies reuse of data and implementation of de-
 duplication.

 Depending on its specific requirements, an application may store
 immutable data objects in DECADE-compatible servers such that each
 data object is completely self-contained (e.g., a complete,
 independently decodable video segment). An application may also
 divide data into blocks that require application level assembly.
 Many Content Distribution Applications divide bulk content into
 blocks for multiple reasons, including (1) multipath: different
 blocks might be fetched from different sources in parallel; and (2)
 faster recovery and verification: individual blocks might be
 recovered and verified. Typically, applications use a block size
 larger than a single packet in order to reduce control overhead.

 A DECADE-compatible system SHOULD be agnostic to the nature of the
 data objects and SHOULD NOT specify a fixed size for them. Though a
 protocol specification based on this architecture MAY prescribe
 requirements on minimum and maximum sizes by compliant
 implementations. Applications may consider existing blocks as data
 objects, or they may adjust block sizes before storing in the DECADE-
 compatible server.

 Immutable data objects can still be deleted. Applications may
 support modification of existing data stored at a DECADE-compatible
 server through a combination of storing new data objects and deleting
 existing data objects. For example, a meta-data management function
 of the control plane might associate a name with a sequence of
 immutable blocks. If one of the blocks is modified, the meta-data
 management function changes the mapping of the name to a new sequence
 of immutable blocks.

 Throughout this document, all data objects/blocks are assumed to be
 immutable.

4.3. Data Objects With Identifiers

 An object that is stored in a DECADE-compatible storage server SHOULD
 be accessed by Content Consumers via a data object identifier.

Alimi, et al. Expires December 2, 2012 [Page 10]

Internet-Draft DECADE Architecture May 2012

 A Content Consumer may be able to access more than one storage
 server. A data object that is replicated across different storage
 servers managed by a DECADE-compatible Storage Provider MAY still be
 accessed by a single identifier.

 Since data objects are immutable, it SHALL be possible to support
 persistent identifiers for data objects.

 Data object identifiers for data objects SHOULD be created by Content
 Providers that upload the objects to servers.

4.4. Data Object Naming Scheme

 The DECADE architecture is based on data object identifiers as
 described above, and the assignment/derivation of the data object
 identifier to a data object depends on the data object naming scheme.
 The details of data naming schemes will be provided by future DECADE-
 compatible protocol/naming specifications. This document describes
 naming schemes on a semantic level and specific SDTs and DRPs SHOULD
 use specific representations.

 In particular, for some applications it is important that clients and
 servers SHOULD be able to validate the name-object binding for a data
 object, i.e., by verifying that a received object really corresponds
 to the name (identifier) that was used for requesting it (or that was
 provided by a sender). Data object identifiers can support name-
 object binding validation by providing message digests or so-called
 self-certifying naming information -- if a specific application has
 this requirement.

 A DECADE-compatible naming scheme follows the following general
 requirements:

 o Different name-object binding validation mechanisms MAY be
 supported;

 o Content Distribution Applications will decide what mechanism to
 use, or to not provide name-object validation (e.g., if
 authenticity and integrity can by ascertained by alternative
 means);

 o Applications MAY be able to construct unique names (with high
 probability) without requiring a registry or other forms of
 coordination; and

 o Names MAY be self-describing so that a receiving entity (Content
 Consumer) knows what hash function (for example) to use for
 validating name-object binding.

Alimi, et al. Expires December 2, 2012 [Page 11]

Internet-Draft DECADE Architecture May 2012

 Some Content Distribution Applications will derive the name of a data
 object from the hash over the data object, which is made possible by
 the fact that DECADE-compatible objects are immutable. But there
 maybe other applications such as live streaming where object/chunk
 names will not based on hashes but rather on an enumeration scheme.
 The naming scheme will also enable those applications to construct
 unique names.

 In order to enable the uniqueness, flexibility and self-describing
 properties, the naming scheme SHOULD provide the following name
 elements:

 o A "type" field that indicates the name-object validation function
 type (for example, "sha-256");

 o Cryptographic data (such as an object hash) that corresponds to
 the type information; and

 The naming scheme MAY additionally provide the following name
 elements:

 o Application or publisher information.

 The specific format of the name (e.g., encoding, hash algorithms,
 etc) is out of scope of this document, and is left for protocol
 specification.

 The DECADE-compatible naming scheme SHOULD be used in scenarios where
 a client knows the name of a data object before it is completely
 stored at the server. This allows for particular optimizations, such
 as advertising data object while the data object is being stored,
 removing store-and-forward delays. For example, a client A might
 simultaneously begin storing an object to a server, and advertise
 that the object is available to client B. If it is supported by the
 server, client B might begin downloading the object before A is
 finished storing the object.

 If object names are not based on hashes of the data objects
 themselves, names can also be used in scenarios where a client knows
 the name of a data object before it is locally created.

4.5. Explicit Control

 To support the functions of an application's control plane,
 applications SHOULD be able to know and coordinate which data is
 stored at particular servers. Thus, in contrast with traditional
 caches, applications are given explicit control over the placement
 (selection of a DECADE-compatible server), deletion (or expiration

Alimi, et al. Expires December 2, 2012 [Page 12]

Internet-Draft DECADE Architecture May 2012

 policy), and access control for stored data.

 Consider deletion/expiration policy as a simple example. An
 application might require that a server store data objects for a
 relatively short period of time (e.g., for live-streaming data).
 Another application might need to store data objects for a longer
 duration (e.g., for video-on-demand).

4.6. Resource and Data Access Control

 A DECADE-compatible system will provide a shared infrastructure to be
 used by multiple Content Consumers and Content Providers spanning
 multiple Content Distribution Applications. Thus, it needs to
 provide both resource and data access control.

4.6.1. Resource Allocation

 There are two primary interacting entities in a DECADE-compatible
 system. First, Storage Providers SHOULD coordinate where storage
 servers are provisioned and their total available resources. Second,
 Applications will coordinate data transfers amongst available servers
 and between servers and clients. A form of isolation is required to
 enable concurrently-running Applications to each explicitly manage
 its own data objects and share of resources at the available servers.

 The Storage Provider SHOULD delegate the management of the resources
 on a server to DECADE Content Providers. This means that Content
 Providers are able to explicitly and independently manage their own
 shares of resources on a server.

4.6.2. User Delegations

 Storage Providers will have the ability to explicitly manage the
 entities allowed to utilize the resources at a DECADE-compatible
 server. This capability is needed for reasons such as capacity-
 planning and legal considerations in certain deployment scenarios.

 The server SHOULD grant a share of the resources to a Content
 Provider or Content Consumer. The client can in turn share the
 granted resources amongst its multiple applications. The share of
 resources granted by a server is called a User Delegation.

 As a simple example, a DECADE-compatible server operated by an ISP
 might be configured to grant each ISP Subscriber 1.5 Mbit/s of
 bandwidth. The ISP Subscriber might in turn divide this share of
 resources amongst a video streaming application and file-sharing
 application which are running concurrently.

Alimi, et al. Expires December 2, 2012 [Page 13]

Internet-Draft DECADE Architecture May 2012

5. System Components

 The primary focus of this document is the architectural principles
 and the system components that implement them. While certain system
 components might differ amongst implementations, the document details
 the major components and their overall roles in the architecture.

 To keep the scope narrow, we only discuss the primary components
 related to protocol development. Particular deployments will require
 additional components (e.g., monitoring and accounting at a server),
 but they are intentionally omitted from this document.

5.1. Content Distribution Application

 Content Distribution Applications have many functional components.
 For example, many P2P applications have components and algorithms to
 manage overlay topology management, rate allocation, piece selection,
 etc. In this document, we focus on the components directly employed
 to support a DECADE-compatible system.

 Figure 3 illustrates the components discussed in this section from
 the perspective of a single Application End-Point.

Alimi, et al. Expires December 2, 2012 [Page 14]

Internet-Draft DECADE Architecture May 2012

 Native Protocol(s)
 (with other Application End-Points)
 .--------------------->
 |
 |
 .--.
 | Application End-Point |
 | .------------. .-------------------. |
 | | App-Layer | ... | App Data Assembly | |
 | | Algorithms | | Sequencing | |
 | `------------' `-------------------' |
 | |
 | .--. |
	DECADE Client													
	.-------------------------. .----------------------.													
		Resource Controller		Data Controller										
		.--------. .----------.		.--------. .-------.										
			Data		Resource				Data		Data			
			Access		Sharing				Sched.		Index			
			Policy		Policy									
		'--------' `----------'		`--------' `-------'										
	`-------------------------' `----------------------'													
		^												
`------------	-----------------	-------------------'												
 `-------------- | ----------------- | ---------------------'
 | |
 | DECADE | Standard
 | Resource | Data
 | Protocol | Transfer
 | (DRP) | (SDT)
 v V

 Figure 3: Application Components

5.1.1. Data Assembly

 A DECADE-compatible system is geared towards supporting applications
 that can divide distributed content into data objects. To accomplish
 this, applications can include a component responsible for creating
 the individual data objects before distribution and then re-
 assembling data objects at the Content Consumer. We call this
 component the Application Data Assembly.

 In producing and assembling the data objects, two important
 considerations are sequencing and naming. A DECADE-compatible system
 assumes that applications implement this functionality themselves.
 See Section 5.3 for further discussion.

Alimi, et al. Expires December 2, 2012 [Page 15]

Internet-Draft DECADE Architecture May 2012

5.1.2. Native Application Protocols

 In addition to the DECADE-compatible DRP/SDT, applications will also
 support their existing native application protocols (e.g., P2P
 control and data transfer protocols).

5.1.3. DECADE Client

 An application needs to be modified to support a DECADE-compatible
 system. The client provides the local support to an application, and
 can standalone, embedded into the application, or integrated in other
 entities such as network devices themselves.

5.1.3.1. Resource Controller

 Applications may have different Resource Sharing Policies and Data
 Access Policies to control their resource and data in DECADE-
 compatible servers. These policies may be existing policies of
 applications or custom policies. The specific implementation is
 decided by the application.

5.1.3.2. Data Controller

 A DECADE-compatible system decouples the control and the data
 transfer of applications. A Data Scheduling component schedules data
 transfers according to network conditions, available servers, and/or
 available server resources. The Data Index indicates data available
 at remote servers. The Data Index (or a subset of it) can be
 advertised to other clients. A common use case for this is to
 provide the ability to locate data amongst distributed Application
 End-Points (i.e., a data search mechanism such as a Distributed Hash
 Table).

5.2. Server

 Figure 4 illustrates the components discussed in a DECADE-compatible
 server. A server is not necessarily a single physical machine, it
 can also be implemented as a cluster of machines.

Alimi, et al. Expires December 2, 2012 [Page 16]

Internet-Draft DECADE Architecture May 2012

 | |
 | DECADE | Standard
 | Resource | Data
 | Protocol | Transfer
 | (DRP) | (SDT)
 | |
 .= | ================= | ======================.
 | | v | | |
 | | .----------------. |
 | |----> | Access Control | <--------. |
 | | `----------------' | |
 | | ^ | |
 | | | | |
 | | v | |
 | | .---------------------. | |
 | `-> | Resource Scheduling | <------| |
 | `---------------------' | |
 | ^ | |
 | | | |
 | v .------------. |
 | .-----------------. | User | | | |
 | | Data Store | | Delegation | |
 | `-----------------' | Management | |
 | DECADE Server `------------' |
 `=='

 Figure 4: DECADE Server Components

5.2.1. Access Control

 A client SHALL be able to access its own data or other client's data
 (provided sufficient authorization) in DECADE-compatible servers.
 Clients MAY also authorize other Clients to store data. If an access
 is authorized by a Client, the server SHOULD provide access. Even if
 a request is authorized, it MAY still fail to complete due to
 insufficient resources at the server.

5.2.2. Resource Scheduling

 Applications will apply resource sharing policies or use a custom
 policy. Servers perform resource scheduling according to the
 resource sharing policies indicated by Clients as well as configured
 User Delegations.

5.2.3. Data Store

 Data from applications will be stored at a DECADE-compatible server.
 Data SHOULD be deleted from storage either explicitly or

Alimi, et al. Expires December 2, 2012 [Page 17]

Internet-Draft DECADE Architecture May 2012

 automatically (e.g., after a TTL expiration). It SHOULD be possible
 to perform optimizations in certain cases, such as avoiding writing
 temporary data (e.g., live streaming) to persistent storage, if
 appropriate storage hints are supported by the SDT.

5.3. Data Sequencing and Naming

 In order to provide a simple and generic interface, the DECADE-
 compatible server will only be responsible for storing and retrieving
 individual data objects. Furthermore, a DECADE-compatible system
 will use its own naming scheme that provides uniqueness (with high
 probability) between data objects, even across multiple applications.

5.3.1. Data Object Naming Scheme

 Details of the naming scheme are discussed in Section 4.4.

5.3.2. Application Usage

 Recall from Section 5.1.1 that an Application typically includes its
 own naming and sequencing scheme. The DECADE-compatible naming
 format SHOULD NOT attempt to replace any naming or sequencing of data
 objects already performed by an Application; instead, the naming is
 intended to apply only to data objects referenced by DECADE-specific
 purposes.

 An Application using a DECADE-compatible client may use a naming and
 sequencing scheme independent of DECADE-compatible names. The
 DECADE-compatible client SHOULD maintain a mapping from its own data
 objects and their names to the DECADE-specific data objects and
 names.

5.3.3. Application Usage Example

 To illustrate these properties, this section presents multiple
 examples.

5.3.3.1. Application with Fixed-Size Chunks

 Similar to the example in Section 5.1.1, consider an Application in
 which each individual application-layer segment of data is called a
 "chunk" and has a name of the form: "CONTENT_ID:SEQUENCE_NUMBER".
 Furthermore, assume that the application's native protocol uses
 chunks of size 16 KiloByte (KB).

 Now, assume that this application wishes to store data in DECADE-
 compatible servers in data objects of size 64 KB. To accomplish
 this, it can map a sequence of 4 chunks into a single object, as

Alimi, et al. Expires December 2, 2012 [Page 18]

Internet-Draft DECADE Architecture May 2012

 shown in Figure 5.

 Application Chunks
 .---------.---------.---------.---------.---------.---------.--------
 | | | | | | |
 | Chunk_0 | Chunk_1 | Chunk_2 | Chunk_3 | Chunk_4 | Chunk_5 | Chunk_6
 | | | | | | |
 `---------`---------`---------`---------`---------`---------`--------

 DECADE Data Objects
 .---------------------------------------.----------------------------
 | |
 | Object_0 | Object_1
 | |
 `---------------------------------------`----------------------------

 Figure 5: Mapping Application Chunks to DECADE Data Objects

 In this example, the Application might maintain a logical mapping
 that is able to determine the name of a DECADE-compatible data object
 given the chunks contained within that data object. The name might
 be learned from either the original source, another End-Point with
 which the Application is communicating, a tracker, etc.

 As long as the data contained within each sequence of chunks is
 globally unique, the corresponding data objects have globally unique
 names. This is desired, and happens automatically if particular
 Application segments the same stream of data in a different way,
 including different chunk sizes or different padding schemes.

5.3.3.2. Application with Continuous Streaming Data

 Consider an Application whose native protocol retrieves a continuous
 data stream (e.g., an MPEG2 stream) instead of downloading and
 redistributing chunks of data. Such an application could segment the
 continuous data stream to produce either fixed-sized or variable-
 sized data objects.

 Figure 6 shows how a video streaming application might produce
 variable-sized data objects such that each data object contains 10
 seconds of video data.

Alimi, et al. Expires December 2, 2012 [Page 19]

Internet-Draft DECADE Architecture May 2012

 Application's Video Stream
 .--
 |
 |
 |
 `--
 ^ ^ ^ ^ ^
 | | | | |
 0 Seconds 10 Seconds 20 Seconds 30 Seconds 40 Seconds
 0 B 400 KB 900 KB 1200 KB 1500 KB

 DECADE Data Objects
 .--------------.--------------.--------------.--------------.--------
Object_0	Object_1	Object_2	Object_3
(400 KB)	(500 KB)	(300 KB)	(300 KB)
 `--------------`--------------`--------------`--------------`--------

 Figure 6: Mapping a Continuous Data Stream to DECADE Data Objects

 Similar to the previous example, the Application might maintain a
 mapping that is able to determine the name of a data object given the
 time offset of the video chunk.

5.4. Token-based Authentication and Resource Control

 A key feature of a DECADE-compatible system is that a client can
 authorize other Clients to store or retrieve data objects from the
 in-network storage. A token-based authentication scheme is used to
 accomplish this.

 Specifically, an entity trusted by a client generates a signed token
 with particular properties (see Section 6.1.2 for details). The
 client then distributes this token to other Clients which then use
 the token when sending requests to the DECADE-compatible server.
 Upon receiving a token, the server validates the signature and the
 operation being performed (e.g. PUT, GET).

 This is a simple scheme, but has some important advantages over an
 alternate approach in which a client explicitly manipulates an Access
 Control List (ACL) associated with each data object. In particular,
 it has the following advantages when applied to DECADE-compatible
 target applications:

 o Authorization policies are implemented within the Application; an
 Application explicitly controls when tokens are generated and to

Alimi, et al. Expires December 2, 2012 [Page 20]

Internet-Draft DECADE Architecture May 2012

 whom they are distributed.

 o Fine-grained access and resource control can be applied to data
 objects; see Section 6.1.2 for the list of restrictions that can
 be enforced with a token.

 o There is no messaging between a client and server to manipulate
 data object permissions. This can simplify, in particular,
 Applications which share data objects with many dynamic peers and
 need to frequently adjust access control policies attached to data
 objects.

 o Tokens can provide anonymous access, in which a server does not
 need to know the identity of each client that accesses it. This
 enables a client to send tokens to clients in other administrative
 or security domains, and allow them to read or write data objects
 from its storage.

 In addition to clients applying access control policies to data
 objects, the server MAY be configured to apply additional policies
 based on user, object, geographic location, etc. A client might thus
 be denied access even though it possess a valid token.

 Existing protocols (e.g., OAuth [RFC5849]) implement similar referral
 mechanisms using tokens. A protocol specification of this
 architecture SHOULD endeavor to use existing mechanisms wherever
 possible.

5.5. Discovery

 A DECADE-compatible system SHOULD include a discovery mechanism
 through which clients locate an appropriate server.
 [I-D.ietf-decade-reqs] details specific requirements of the discovery
 mechanism; this section discusses how they relate to other principles
 outlined in this document.

 A discovery mechanism SHOULD allow a client to determine an IP
 address or some other identifier that can be resolved to locate the
 server for which the client will be authorized to generate tokens
 (via DRP). (The discovery mechanism might also result in an error if
 no such servers can be located.) After discovering one or more
 servers, a client can distribute load and requests across them
 (subject to resource limitations and policies of the servers
 themselves) according to the policies of the Application End-Point in
 which it is embedded.

 The particular protocol used for discovery is out of scope of this
 document, but any specification SHOULD re-use standard protocols

https://datatracker.ietf.org/doc/html/rfc5849

Alimi, et al. Expires December 2, 2012 [Page 21]

Internet-Draft DECADE Architecture May 2012

 wherever possible.

 The discovery mechanism outlined here does not provide the ability to
 locate arbitrary DECADE-compatible servers to which a client might
 obtain tokens from others. To do so requires application-level
 knowledge, and it is assumed that this functionality is implemented
 in the Content Distribution Application.

6. DECADE Protocols

 This section presents the DRP and the SDT protocol in terms of
 abstract protocol interactions that are intended to be mapped to
 specific protocols. In general, the DRP/SDT functionality between a
 DECADE-compatible client-server are very similar to the DRP/SDT
 functionality between running between server-server. Any differences
 are highlighted below.

 The DRP will be the protocol used by a DECADE-compatible client to
 configure the resources and authorization used to satisfy requests
 (reading, writing, and management operations concerning objects) at a
 server. The SDT will be used to send the data to the server.

6.1. DECADE Resource Protocol (DRP)

 DRP will provide configuration of access control and resource sharing
 policies on DECADE-compatible servers. A Content Distribution
 Application, e.g., a live P2P streaming session, can have permission
 to manage data at several servers, for instance, servers in different
 operator domains, and DRP allows one instance of such an application,
 e.g., an Application End-Point, to apply access control and resource
 sharing policies on each of them.

6.1.1. Controlled Resources

 On a single DECADE-compatible server, the following resources SHOULD
 be managed:

 o Communication resources in terms of bandwidth (upload/download)
 and also in terms of number of connected clients (connections) at
 a time.

 o Storage resources.

Alimi, et al. Expires December 2, 2012 [Page 22]

Internet-Draft DECADE Architecture May 2012

6.1.2. Access and Resource Control Token

 A token SHOULD include the following information:

 o Permitted operations (e.g., read, write)

 o Permitted objects (e.g., names of data objects that might be read
 or written)

 o Expiration time

 o Priority for bandwidth given to requested operation (e.g., a
 weight used in a weighted bandwidth sharing scheme)

 o Amount of data that might be read or written

 The tokens SHOULD be generated by an entity trusted by both the
 DECADE-compatible client and server at the request of a DECADE-
 compatible client. For example this entity could be the client, a
 server trusted by the client, or another server managed by a Storage
 Provider trusted by the client. It is important for a server to
 trust the entity generating the tokens since each token may incur a
 resource cost on the server when used. Likewise, it is important for
 a client to trust the entity generating the tokens since the tokens
 grant access to the data stored at the server.

 Upon generating a token, a client MAY distribute it to another client
 (e.g., via their native application protocol). The receiving client
 MAY then connect to the sending client's server and perform any
 operation permitted by the token. The token SHOULD be sent along
 with the operation. The server SHOULD validate the token to identify
 the client that issued it and whether the requested operation is
 permitted by the contents of the token. If the token is successfully
 validated, the server SHOULD apply the resource control policies
 indicated in the token while performing the operation.

 Tokens SHOULD include a unique identifier to allow a server to detect
 when a token is used multiple times and reject the additional usage
 attempts. Since usage of a token incurs resource costs to a server
 (e.g., bandwidth and storage) and a Content Provider may have a
 limited budget (see Section 4.6), the a Content Provider should be
 able to indicate if a token may be used multiple times.

 It SHOULD be possible for DRP to allow tokens to apply to a batch of
 operations to reduce communication overhead required between clients.
 A request sent in this way explicitly denotes the objects to which it
 applies.

Alimi, et al. Expires December 2, 2012 [Page 23]

Internet-Draft DECADE Architecture May 2012

 It SHOULD be possible to revoke tokens after they are generated.
 This could be accomplished by supplying the server the unique
 identifiers of the tokens which are to be revoked.

6.1.3. Status Information

 DRP SHOULD provide a request service for status information that
 clients can use to request information from a server.

 Status information on a specific server: Access to such status
 information SHOULD require client authorization, i.e., clients
 need to be authorized to access the requested status information.
 This authorization is based on the user delegation concept as
 described in Section 4.6. The following status information
 elements SHOULD be obtained:

 * List of associated objects (with properties)

 * Resources used/available

 The following information elements MAY additionally be available:

 * List of servers to which objects have been distributed (in a
 certain time-frame)

 * List of clients to which objects have been distributed (in a
 certain time-frame)

 For the list of servers/clients to which objects have been
 distributed to, the server SHOULD be able to decide on time bounds
 for which this information is stored and specify the corresponding
 time frame in the response to such requests. Some of this
 information may be used for accounting purposes, e.g., the list of
 clients to which objects have been distributed.

 Access information on a specific server: Access information MAY be
 provided for accounting purposes, for example, when Content
 Providers are interested in access statistics for resources and/or
 to perform accounting per user. Again, access to such information
 requires client authorization SHOULD based on the delegation
 concept as described in Section 4.6. The following type of access
 information elements MAY be requested:

 * What objects have been accessed how many times

 * Access tokens that a server as seen for a given object

 The server SHOULD decide on time bounds for which this information

Alimi, et al. Expires December 2, 2012 [Page 24]

Internet-Draft DECADE Architecture May 2012

 is stored and specify the corresponding time frame in the response
 to such requests.

6.1.4. Object Attributes

 Objects that are stored on a DECADE-compatible server SHOULD have
 associated attributes (in addition to the object identifier and data
 object) that relate to the data storage and its management. These
 attributes may be used by the server (and possibly the underlying
 storage system) to perform specialized processing or handling for the
 data object, or to attach related server or storage-layer properties
 to the data object. These attributes have a scope local to a server.
 In particular, these attributes SHOULD NOT be applied to a server or
 client to which a data object is copied.

 Depending on authorization, clients SHOULD be permitted to get or set
 such attributes. This authorization is based on the delegation
 concept as described in Section 4.6. The architecture does not limit
 the set of permissible attributes, but rather specifies a set of
 baseline attributes that SHOULD be supported:

 Expiration Time: Time at which the object might be deleted

 Object size: In bytes

 Media type Labelling of type as per [RFC4288]

 Access statistics: How often the object has been accessed (and what
 tokens have been used)

 The Object Attributes defined here are distinct from application
 metadata (see Section 4.1). Application metadata is custom
 information that an application might wish to associate with a data
 object to understand its semantic meaning (e.g., whether it is video
 and/or audio, its playback length in time, or its index in a stream).
 If an application wishes to store such metadata persistently, it can
 be stored within data objects themselves.

6.2. Standard Data Transfer (SDT) Protocol

 A DECADE-compatible server will provide a data access interface, and
 the SDT will be used to write objects to a server and to read
 (download) objects from a server. Semantically, SDT is a client-
 server protocol, i.e., the server always responds to client requests.

https://datatracker.ietf.org/doc/html/rfc4288

Alimi, et al. Expires December 2, 2012 [Page 25]

Internet-Draft DECADE Architecture May 2012

6.2.1. Writing/Uploading Objects

 To write an object, a client first generates the object's name (see
Section 5.3), and then uploads the object to a server and supplies

 the generated name. The name can be used to access (download) the
 object later, e.g., the client can pass the name as a reference to
 other client that can then refer to the object.

 Objects can be self-contained objects such as multimedia resources,
 files etc., but also chunks, such as chunks of a P2P distribution
 protocol that can be part of a containing object or a stream.

 If supported, a server can accept download requests for an object
 that is still being uploaded.

 The application that originates the objects generates DECADE-
 compatible object names according to the naming specification in

Section 5.3. Clients (as parts of application entities) upload a
 named object to a server. If supported, a server can verify the
 integrity and other security properties of uploaded objects.

6.2.2. Downloading Objects

 A client can request named objects from a server. In a corresponding
 request message, a client specifies the object name and a suitable
 access and resource control token. The server checks the validity of
 the received token and its associated resource usage-related
 properties.

 If the named object exists on the server and then token has been
 validated, the server delivers the requested object in a response
 message.

 If the object cannot be delivered the server provides an
 corresponding status/reason information in a response message.

 Specifics regarding error handling, including additional error
 conditions (e.g. overload), precedence for returned errors and its
 relation with server policy, are deferred to eventual protocol
 specification.

6.3. Server-to-Server Protocols

 An important feature of a DECADE-compatible system is the capability
 for one server to directly download objects from another server.
 This capability allows Applications to directly replicate data
 objects between servers without requiring end-hosts to use uplink
 capacity to upload data objects to a different server.

Alimi, et al. Expires December 2, 2012 [Page 26]

Internet-Draft DECADE Architecture May 2012

 DRP and SDT will support operations directly between servers.
 Servers are not assumed to trust each other nor are configured to do
 so. All data operations are performed on behalf of clients via
 explicit instruction. However, the objects being processed do not
 necessarily have to originate or terminate at the client (i.e. the
 object might be limited to being exchanged between servers even if
 the instruction is triggered by the client). Clients thus will be
 able to indicate to a server the following additional parameters:

 o Which remote server(s) to access;

 o The operation to be performed (e.g. PUT, GET); and

 o The Content Provider at the remote server from which to retrieve
 the object (for a GET), or in which the object is to be stored
 (for a PUT).

 o Credentials indicating permission to perform the operation at the
 remote server.

 Server-to-server support is focused on reading and writing data
 objects between servers. The data object referred to at the remote
 server is the same as the original request. Object attributes (see

Section 6.1.4) might also be specified in the request to the remote
 server.

 In this way, a server acts as a proxy for a client, and a client can
 instantiate requests via that proxy. The operations will be
 performed as if the original requester had its own client co-located
 with the server. It is this mode of operation that provides
 substantial savings in uplink capacity. This mode of operation can
 also be triggered by an administrative/management application outside
 the architecture.

 When a client sends a request to a server with these additional
 parameters, it is giving the server permission to act (proxy) on its
 behalf. Thus, it would be prudent for the supplied token to have
 narrow privileges (e.g., limited to only the necessary data objects)
 or validity time (e.g., a small expiration time).

 In the case of a GET operation, the server is to retrieve the data
 object from the remote server using the specified credentials (via a
 GET request to the remote server), and then optionally return the
 object to a client. In the case of a PUT operation, the server is to
 store the object to the remote server using the specified credentials
 (via a PUT request to the remote server). The object might
 optionally be uploaded from the client or might already exist at the
 proxy server.

Alimi, et al. Expires December 2, 2012 [Page 27]

Internet-Draft DECADE Architecture May 2012

7. Security Considerations

 In general, the security considerations mentioned in
 [I-D.ietf-decade-problem-statement] apply to this document as well.

 A DECADE-compatible system provides a distributed storage service for
 content distribution and similar applications. The system consists
 of servers and clients that use these servers to upload data objects,
 to request distribution of data objects, and to download data
 objects. Such a system is employed in an overall application context
 -- for example in a P2P Content Distribution Application, and it is
 expected that DECADE-compatible clients take part in application-
 specific communication sessions.

 The security considerations here focus on threats related to the
 DECADE-compatible system and its communication services, i.e., the
 DRP/SDT protocols that have been described in an abstract fashion in
 this document.

7.1. Threat: System Denial of Service Attacks

 A DECADE-compatible network of servers might be used to distribute
 data objects from one client to a set of servers using the server-to-
 server communication feature that a client can request when uploading
 an object. Multiple clients uploading many objects at different
 servers at the same time and requesting server-to-server distribution
 for them could thus mount massive distributed denial of service
 (DDOS) attacks, overloading a network of servers.

 This threat is addressed by its access control and resource control
 framework. Servers can require Application End-Points to be
 authorized to store and to download objects, and Application End-
 Points can delegate authorization to other Application End-Points
 using the token mechanism.

 Of course the effective security of this approach depends on the
 strength of the token mechanism. See below for a discussion of this
 and related communication security threats.

 Denial of Service Attacks against a single server (directing many
 requests to that server) might still lead to considerable load for
 processing requests and invalidating tokens. A SDT therefore MUST
 provide a redirection mechanism as described as a requirement in
 [I-D.ietf-decade-reqs].

Alimi, et al. Expires December 2, 2012 [Page 28]

Internet-Draft DECADE Architecture May 2012

7.2. Threat: Protocol Security

7.2.1. Threat: Authorization Mechanisms Compromised

 A DECADE-compatible system does not require Application End-Points to
 authenticate in order to access a server for downloading objects,
 since authorization is not based on End-Point or user identities but
 on the delegation-based authorization mechanism. Hence, most
 protocol security threats are related to the authorization scheme.

 The security of the token mechanism depends on the strength of the
 token mechanism and on the secrecy of the tokens. A token can
 represent authorization to store a certain amount of data, to
 download certain objects, to download a certain amount of data per
 time etc. If it is possible for an attacker to guess, construct or
 simply obtain tokens, the integrity of the data maintained by the
 servers is compromised.

 This is a general security threat that applies to authorization
 delegation schemes. Specifications of existing delegation schemes
 such as OAuth [RFC5849] discuss these general threats in detail. We
 can say that the DRP has to specify appropriate algorithms for token
 generation. Moreover, authorization tokens should have a limited
 validity period that should be specified by the application. Token
 confidentiality should be provided by application protocols that
 carry tokens, and the SDT and DRP should provide secure
 (confidential) communication modes.

7.2.2. Threat: Object Spoofing

 In a DECADE-compatible system, an Application End-Point is referring
 other Application End-Points to servers to download a specified data
 objects. An attacker could "inject" a faked version of the object
 into this process, so that the downloading End-Point effectively
 receives a different object (compared to what the uploading End-Point
 provided). As result, the downloading End-Point believes that is has
 received an object that corresponds to the name it was provided
 earlier, whereas in fact it is a faked object. Corresponding attacks
 could be mounted against the application protocol (that is used for
 referring other End-Points to servers), servers themselves (and their
 storage sub-systems), and the SDT by which the object is uploaded,
 distributed and downloaded.

 A DECADE-compatible systems fundamental mechanism against object
 spoofing is name-object binding validation, i.e., the ability of a
 receiver to check whether the name he was provided and that he used
 to request an object, actually corresponds to the bits he received.
 As described above, this allows for different forms of name-object

https://datatracker.ietf.org/doc/html/rfc5849

Alimi, et al. Expires December 2, 2012 [Page 29]

Internet-Draft DECADE Architecture May 2012

 binding, for example using hashes of data objects, with different
 hash functions (different algorithms, different digest lengths). For
 those application scenarios where hashes of data objects are not
 applicable (for example live-streaming) other forms of name-object
 binding can be used (see Section 5.3). This flexibility also
 addresses cryptographic algorithm evolvability: hash functions might
 get deprecated, better alternatives might be invented etc., so that
 applications can choose appropriate mechanisms meeting their security
 requirements.

 DECADE-compatible servers MAY perform name-object binding validation
 on stored objects, but Application End-Points MUST NOT rely on that.
 In other forms: Application End-Points SHOULD perform name-object
 binding validation on received objects.

8. IANA Considerations

 This document does not have any IANA considerations.

9. Acknowledgments

 We thank the following people for their contributions to this
 document:

 David Bryan

 Hongqiang (Harry) Liu

 Yingjie Gu

 David McDysan

 Borje Ohlman

 Haibin Song

 Martin Stiemerling

 Richard Woundy

 Ning Zong

10. References

Alimi, et al. Expires December 2, 2012 [Page 30]

Internet-Draft DECADE Architecture May 2012

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",

RFC 5661, January 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [RFC6392] Alimi, R., Rahman, A., and Y. Yang, "A Survey of In-
 Network Storage Systems", RFC 6392, October 2011.

 [I-D.ietf-decade-problem-statement]
 Song, H., Zong, N., Yang, Y., and R. Alimi, "DECoupled
 Application Data Enroute (DECADE) Problem Statement",

draft-ietf-decade-problem-statement-06 (work in progress),
 May 2012.

 [I-D.ietf-decade-reqs]
 Yingjie, G., Bryan, D., Yang, Y., and R. Alimi, "DECADE
 Requirements", draft-ietf-decade-reqs-06 (work in
 progress), March 2012.

 [OpenFlow]
 "OpenFlow Organization", <http://www.openflow.org/>.

 [GoogleFileSystem]
 Ghemawat, S., Gobioff, H., and S. Leung, "The Google File
 System", SOSP 2003, October 2003.

Appendix A. In-Network Storage Components Mapped to DECADE Architecture

 In this section we evaluate how the basic components of an in-network
 storage system identified in Section 3 of [RFC6392] map into a
 DECADE-compatible system.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6392
https://datatracker.ietf.org/doc/html/draft-ietf-decade-problem-statement-06
https://datatracker.ietf.org/doc/html/draft-ietf-decade-reqs-06
http://www.openflow.org/
https://datatracker.ietf.org/doc/html/rfc6392#section-3

Alimi, et al. Expires December 2, 2012 [Page 31]

Internet-Draft DECADE Architecture May 2012

A.1. Data Access Interface

 Clients can read and write objects of arbitrary size through the
 client's Data Controller, making use of a SDT.

A.2. Data Management Operations

 Clients can move or delete previously stored objects via the client's
 Data Controller, making use of a SDT.

A.3. Data Search Capability

 Clients can enumerate or search contents of servers to find objects
 matching desired criteria through services provided by the Content
 Distribution Application (e.g., buffer-map exchanges, a DHT, or peer-
 exchange). In doing so, Application End-Points might consult their
 local Data Index in the client's Data Controller.

A.4. Access Control Authorization

 All methods of access control are supported: public-unrestricted,
 public-restricted and private. Access Control Policies are generated
 by a Content Distribution Application and provided to the client's
 Resource Controller. The server is responsible for implementing the
 access control checks.

A.5. Resource Control Interface

 Clients can manage the resources (e.g. bandwidth) on the DECADE
 server that can be used by other Application End-Points. Resource
 Sharing Policies are generated by a Content Distribution Application
 and provided to the client's Resource Controller. The server is
 responsible for implementing the resource sharing policies.

A.6. Discovery Mechanism

 The particular protocol used for discovery is outside the scope of
 this document. However, options and considerations have been
 discussed in Section 5.5.

A.7. Storage Mode

 Servers provide an object-based storage mode. Immutable data objects
 might be stored at a server. Applications might consider existing
 blocks as data objects, or they might adjust block sizes before
 storing in a server.

Alimi, et al. Expires December 2, 2012 [Page 32]

Internet-Draft DECADE Architecture May 2012

Authors' Addresses

 Richard Alimi
 Google

 Email: ralimi@google.com

 Akbar Rahman
 InterDigital Communications, LLC

 Email: akbar.rahman@interdigital.com

 Dirk Kutscher
 NEC

 Email: dirk.kutscher@neclab.eu

 Y. Richard Yang
 Yale University

 Email: yry@cs.yale.edu

Alimi, et al. Expires December 2, 2012 [Page 33]

