
DetNet N. Finn
Internet-Draft Huawei Technologies Co. Ltd
Intended status: Informational J-Y. Le Boudec
Expires: May 7, 2020 E. Mohammadpour
 EPFL
 J. Zhang
 Huawei Technologies Co. Ltd
 B. Varga
 J. Farkas
 Ericsson
 November 4, 2019

DetNet Bounded Latency
draft-ietf-detnet-bounded-latency-01

Abstract

 This document presents a timing model for Deterministic Networking
 (DetNet), so that existing and future standards can achieve the
 DetNet quality of service features of bounded latency and zero
 congestion loss. It defines requirements for resource reservation
 protocols or servers. It calls out queuing mechanisms, defined in
 other documents, that can provide the DetNet quality of service.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Finn, et al. Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft DetNet Bounded Latency November 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology and Definitions 3
3. DetNet bounded latency model 4
3.1. Flow creation . 4
3.1.1. Static flow latency calculation 4
3.1.2. Dynamic flow latency calculation 5

3.2. Relay node model . 6
4. Computing End-to-end Delay Bounds 8
4.1. Non-queuing delay bound 8
4.2. Queuing delay bound 9
4.2.1. Per-flow queuing mechanisms 9
4.2.2. Per-class queuing mechanisms 9

4.3. Ingress considerations 10
4.4. Interspersed non-DetNet transit nodes 11

5. Achieving zero congestion loss 11
6. Queuing techniques . 13
6.1. Queuing data model 13
6.2. Preemption . 15
6.3. Time-scheduled queuing 15
6.4. Credit-Based Shaper with Asynchronous Traffic Shaping . . 16
6.4.1. Delay Bound Calculation 18
6.4.2. Flow Admission 19

6.5. IntServ . 20
6.6. Cyclic Queuing and Forwarding 23
6.6.1. CQF timing sequence 24
6.6.2. CQF latency calculation 24

7. References . 25
7.1. Normative References 25
7.2. Informative References 26

 Authors' Addresses . 27

1. Introduction

 The ability for IETF Deterministic Networking (DetNet) or IEEE 802.1
 Time-Sensitive Networking (TSN, [IEEE8021TSN]) to provide the DetNet
 services of bounded latency and zero congestion loss depends upon A)

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Finn, et al. Expires May 7, 2020 [Page 2]

Internet-Draft DetNet Bounded Latency November 2019

 configuring and allocating network resources for the exclusive use of
 DetNet/TSN flows; B) identifying, in the data plane, the resources to
 be utilized by any given packet, and C) the detailed behavior of
 those resources, especially transmission queue selection, so that
 latency bounds can be reliably assured. Thus, DetNet is an example
 of an IntServ Guaranteed Quality of Service [RFC2212]

 As explained in [I-D.ietf-detnet-architecture], DetNet flows are
 characterized by 1) a maximum bandwidth, guaranteed either by the
 transmitter or by strict input metering; and 2) a requirement for a
 guaranteed worst-case end-to-end latency. That latency guarantee, in
 turn, provides the opportunity for the network to supply enough
 buffer space to guarantee zero congestion loss.

 To be of use to the applications identified in [RFC8578], it must be
 possible to calculate, before the transmission of a DetNet flow
 commences, both the worst-case end-to-end network latency, and the
 amount of buffer space required at each hop to ensure against
 congestion loss.

 This document references specific queuing mechanisms, defined in
 other documents, that can be used to control packet transmission at
 each output port and achieve the DetNet qualities of service. This
 document presents a timing model for sources, destinations, and the
 DetNet transit nodes that relay packets that is applicable to all of
 those referenced queuing mechanisms.

 Using the model presented in this document, it should be possible for
 an implementor, user, or standards development organization to select
 a particular set of queuing mechanisms for each device in a DetNet
 network, and to select a resource reservation algorithm for that
 network, so that those elements can work together to provide the
 DetNet service.

 This document does not specify any resource reservation protocol or
 server. It does not describe all of the requirements for that
 protocol or server. It does describe requirements for such resource
 reservation methods, and for queuing mechanisms that, if met, will
 enable them to work together.

2. Terminology and Definitions

 This document uses the terms defined in
 [I-D.ietf-detnet-architecture].

https://datatracker.ietf.org/doc/html/rfc2212
https://datatracker.ietf.org/doc/html/rfc8578

Finn, et al. Expires May 7, 2020 [Page 3]

Internet-Draft DetNet Bounded Latency November 2019

3. DetNet bounded latency model

3.1. Flow creation

 This document assumes that following paradigm is used for
 provisioning DetNet flows:

 1. Perform any configuration required by the DetNet transit nodes in
 the network for the classes of service to be offered, including
 one or more classes of DetNet service. This configuration is
 done beforehand, and not tied to any particular flow.

 2. Characterize the new DetNet flow, particularly in terms of
 required bandwidth.

 3. Establish the path that the DetNet flow will take through the
 network from the source to the destination(s). This can be a
 point-to-point or a point-to-multipoint path.

 4. Select one of the DetNet classes of service for the DetNet flow.

 5. Compute the worst-case end-to-end latency for the DetNet flow,
 using one of the methods, below (Section 3.1.1, Section 3.1.2).
 In the process, determine whether sufficient resources are
 available for that flow to guarantee the required latency and to
 provide zero congestion loss.

 6. Assuming that the resources are available, commit those resources
 to the flow. This may or may not require adjusting the
 parameters that control the filtering and/or queuing mechanisms
 at each hop along the flow's path.

 This paradigm can be implemented using peer-to-peer protocols or
 using a central server. In some situations, a lack of resources can
 require backtracking and recursing through this list.

 Issues such as un-provisioning a DetNet flow in favor of another,
 when resources are scarce, are not considered, here. Also not
 addressed is the question of how to choose the path to be taken by a
 DetNet flow.

3.1.1. Static flow latency calculation

 The static problem:
 Given a network and a set of DetNet flows, compute an end-to-
 end latency bound (if computable) for each flow, and compute
 the resources, particularly buffer space, required in each
 DetNet transit node to achieve zero congestion loss.

Finn, et al. Expires May 7, 2020 [Page 4]

Internet-Draft DetNet Bounded Latency November 2019

 In this calculation, all of the DetNet flows are known before the
 calculation commences. This problem is of interest to relatively
 static networks, or static parts of larger networks. It gives the
 best possible worst-case behavior. The calculations can be extended
 to provide global optimizations, such as altering the path of one
 DetNet flow in order to make resources available to another DetNet
 flow with tighter constraints.

 The static flow calculation is not limited only to static networks;
 the entire calculation for all flows can be repeated each time a new
 DetNet flow is created or deleted. If some already-established flow
 would be pushed beyond its latency requirements by the new flow, then
 the new flow can be refused, or some other suitable action taken.

 This calculation may be more difficult to perform than that of the
 dynamic calculation (Section 3.1.2), because the flows passing
 through one port on a DetNet transit node affect each others'
 latency. The effects can even be circular, from Flow A to B to C and
 back to A. On the other hand, the static calculation can often
 accommodate queuing methods, such as transmission selection by strict
 priority, that are unsuitable for the dynamic calculation.

3.1.2. Dynamic flow latency calculation

 The dynamic problem:
 Given a network whose maximum capacity for DetNet flows is
 bounded by a set of static configuration parameters applied
 to the DetNet transit nodes, and given just one DetNet flow,
 compute the worst-case end-to-end latency that can be
 experienced by that flow, no matter what other DetNet flows
 (within the network's configured parameters) might be created
 or deleted in the future. Also, compute the resources,
 particularly buffer space, required in each DetNet transit
 node to achieve zero congestion loss.

 This calculation is dynamic, in the sense that flows can be added or
 deleted at any time, with a minimum of computation effort, and
 without affecting the guarantees already given to other flows.

 The choice of queuing methods is critical to the applicability of the
 dynamic calculation. Some queuing methods (e.g. CQF, Section 6.6)
 make it easy to configure bounds on the network's capacity, and to
 make independent calculations for each flow. [[E:The rest of this
 paragraph should be changed.]] Other queuing methods (e.g.,
 transmission selection by strict priority), make this calculation
 impossible, because the worst case for one flow cannot be computed
 without complete knowledge of all other flows. Other queuing methods
 (e.g. the credit-based shaper defined in [IEEE8021Q] section 8.6.8.2)

Finn, et al. Expires May 7, 2020 [Page 5]

Internet-Draft DetNet Bounded Latency November 2019

 can be used for dynamic flow creation, but yield poorer latency and
 buffer space guarantees than when that same queuing method is used
 for static flow creation (Section 3.1.1).

 [[E:proposed replacement: Some other queuing methods (e.g. strict
 priority with the credit-based shaper defined in [IEEE8021Q] section

8.6.8.2) can be used for dynamic flow creation, but yield poorer
 latency and buffer space guarantees than when that same queuing
 method is used for static flow creation (Section 3.1.1).]]

3.2. Relay node model

 A model for the operation of a DetNet transit node is required, in
 order to define the latency and buffer calculations. In Figure 1 we
 see a breakdown of the per-hop latency experienced by a packet
 passing through a DetNet transit node, in terms that are suitable for
 computing both hop-by-hop latency and per-hop buffer requirements.

 DetNet transit node A DetNet transit node B
 +-------------------------+ +------------------------+
 | Queuing | | Queuing |
 | Regulator subsystem | | Regulator subsystem |
 | +-+-+-+-+ +-+-+-+-+ | | +-+-+-+-+ +-+-+-+-+ |
 -->+ | | | | | | | | | + +------>+ | | | | | | | | | + +--->
 | +-+-+-+-+ +-+-+-+-+ | | +-+-+-+-+ +-+-+-+-+ |
 | | | |
 +-------------------------+ +------------------------+
 |<->|<------>|<------->|<->|<---->|<->|<------>|<------>|<->|<--
 2,3 4 5 6 1 2,3 4 5 6 1 2,3
 1: Output delay 4: Processing delay
 2: Link delay 5: Regulation delay
 3: Preemption delay 6: Queuing delay.

 Figure 1: Timing model for DetNet or TSN

 In Figure 1, we see two DetNet transit nodes (typically, bridges or
 routers), with a wired link between them. In this model, the only
 queues, that we deal with explicitly, are attached to the output
 port; other queues are modeled as variations in the other delay
 times. (E.g., an input queue could be modeled as either a variation
 in the link delay [2] or the processing delay [4].) There are six
 delays that a packet can experience from hop to hop.

 1. Output delay
 The time taken from the selection of a packet for output from a
 queue to the transmission of the first bit of the packet on the
 physical link. If the queue is directly attached to the physical
 port, output delay can be a constant. But, in many

Finn, et al. Expires May 7, 2020 [Page 6]

Internet-Draft DetNet Bounded Latency November 2019

 implementations, the queuing mechanism in a forwarding ASIC is
 separated from a multi-port MAC/PHY, in a second ASIC, by a
 multiplexed connection. This causes variations in the output
 delay that are hard for the forwarding node to predict or control.

 2. Link delay
 The time taken from the transmission of the first bit of the
 packet to the reception of the last bit, assuming that the
 transmission is not suspended by a preemption event. This delay
 has two components, the first-bit-out to first-bit-in delay and
 the first-bit-in to last-bit-in delay that varies with packet
 size. The former is typically measured by the Precision Time
 Protocol and is constant (see [I-D.ietf-detnet-architecture]).
 However, a virtual "link" could exhibit a variable link delay.

 3. Preemption delay
 If the packet is interrupted in order to transmit another packet
 or packets, (e.g. [IEEE8023] clause 99 frame preemption) an
 arbitrary delay can result.

 4. Processing delay
 This delay covers the time from the reception of the last bit of
 the packet to the time the packet is enqueued in the regulator
 (Queuing subsystem, if there is no regulation). This delay can be
 variable, and depends on the details of the operation of the
 forwarding node.

 5. Regulator delay
 This is the time spent from the insertion of the last bit of a
 packet into a regulation queue until the time the packet is
 declared eligible according to its regulation constraints. We
 assume that this time can be calculated based on the details of
 regulation policy. If there is no regulation, this time is zero.

 6. Queuing subsystem delay
 This is the time spent for a packet from being declared eligible
 until being selected for output on the next link. We assume that
 this time is calculable based on the details of the queuing
 mechanism. If there is no regulation, this time is from the
 insertion of the packet into a queue until it is selected for
 output on the next link.

 Not shown in Figure 1 are the other output queues that we presume are
 also attached to that same output port as the queue shown, and
 against which this shown queue competes for transmission
 opportunities.

Finn, et al. Expires May 7, 2020 [Page 7]

Internet-Draft DetNet Bounded Latency November 2019

 The initial and final measurement point in this analysis (that is,
 the definition of a "hop") is the point at which a packet is selected
 for output. In general, any queue selection method that is suitable
 for use in a DetNet network includes a detailed specification as to
 exactly when packets are selected for transmission. Any variations
 in any of the delay times 1-4 result in a need for additional buffers
 in the queue. If all delays 1-4 are constant, then any variation in
 the time at which packets are inserted into a queue depends entirely
 on the timing of packet selection in the previous node. If the
 delays 1-4 are not constant, then additional buffers are required in
 the queue to absorb these variations. Thus:

 o Variations in output delay (1) require buffers to absorb that
 variation in the next hop, so the output delay variations of the
 previous hop (on each input port) must be known in order to
 calculate the buffer space required on this hop.

 o Variations in processing delay (4) require additional output
 buffers in the queues of that same DetNet transit node. Depending
 on the details of the queueing subsystem delay (6) calculations,
 these variations need not be visible outside the DetNet transit
 node.

4. Computing End-to-end Delay Bounds

4.1. Non-queuing delay bound

 End-to-end delay bounds can be computed using the delay model in
Section 3.2. Here, it is important to be aware that for several

 queuing mechanisms, the end-to-end delay bound is less than the sum
 of the per-hop delay bounds. An end-to-end delay bound for one
 DetNet flow can be computed as

 end_to_end_delay_bound = non_queuing_delay_bound +
 queuing_delay_bound

 The two terms in the above formula are computed as follows.

 First, at the h-th hop along the path of this DetNet flow, obtain an
 upperbound per-hop_non_queuing_delay_bound[h] on the sum of the
 bounds over the delays 1,2,3,4 of Figure 1. These upper bounds are
 expected to depend on the specific technology of the DetNet transit
 node at the h-th hop but not on the T-SPEC of this DetNet flow. Then
 set non_queuing_delay_bound = the sum of per-
 hop_non_queuing_delay_bound[h] over all hops h.

 Second, compute queuing_delay_bound as an upper bound to the sum of
 the queuing delays along the path. The value of queuing_delay_bound

Finn, et al. Expires May 7, 2020 [Page 8]

Internet-Draft DetNet Bounded Latency November 2019

 depends on the T-SPEC of this flow and possibly of other flows in the
 network, as well as the specifics of the queuing mechanisms deployed
 along the path of this flow. The computation of queuing_delay_bound
 is described in Section 4.2 as a separate section.

4.2. Queuing delay bound

 For several queuing mechanisms, queuing_delay_bound is less than the
 sum of upper bounds on the queuing delays (5,6) at every hop. This
 occurs with (1) per-flow queuing, and (2) per-class queuing with
 regulators, as explained in Section 4.2.1, Section 4.2.2, and

Section 6.

 For other queuing mechanisms the only available value of
 queuing_delay_bound is the sum of the per-hop queuing delay bounds.
 In such cases, the computation of per-hop queuing delay bounds must
 account for the fact that the T-SPEC of a DetNet flow is no longer
 satisfied at the ingress of a hop, since burstiness increases as one
 flow traverses one DetNet transit node.

4.2.1. Per-flow queuing mechanisms

 With such mechanisms, each flow uses a separate queue inside every
 node. The service for each queue is abstracted with a guaranteed
 rate and a latency. For every flow, a per-node delay bound as well
 as an end-to-end delay bound can be computed from the traffic
 specification of this flow at its source and from the values of rates
 and latencies at all nodes along its path. The per-flow queuing is
 used in IntServ. Details of calculation for IntServ are described in

Section 6.5.

4.2.2. Per-class queuing mechanisms

 With such mechanisms, the flows that have the same class share the
 same queue. A practical example is the credit-based shaper defined
 in section 8.6.8.2 of [IEEE8021Q]. One key issue in this context is
 how to deal with the burstiness cascade: individual flows that share
 a resource dedicated to a class may see their burstiness increase,
 which may in turn cause increased burstiness to other flows
 downstream of this resource. Computing delay upper bounds for such
 cases is difficult, and in some conditions impossible
 [charny2000delay][bennett2002delay]. Also, when bounds are obtained,
 they depend on the complete configuration, and must be recomputed
 when one flow is added. (The dynamic calculation, Section 3.1.2.)

 A solution to deal with this issue is to reshape the flows at every
 hop. This can be done with per-flow regulators (e.g. leaky bucket
 shapers), but this requires per-flow queuing and defeats the purpose

Finn, et al. Expires May 7, 2020 [Page 9]

Internet-Draft DetNet Bounded Latency November 2019

 of per-class queuing. An alternative is the interleaved regulator,
 which reshapes individual flows without per-flow queuing
 ([Specht2016UBS], [IEEE8021Qcr]). With an interleaved regulator, the
 packet at the head of the queue is regulated based on its (flow)
 regulation constraints; it is released at the earliest time at which
 this is possible without violating the constraint. One key feature
 of per-flow or interleaved regulator is that, it does not increase
 worst-case latency bounds [le_boudec_theory_2018]. Specifically,
 when an interleaved regulator is appended to a FIFO subsystem, it
 does not increase the worst-case delay of the latter.

 Figure 2 shows an example of a network with 5 nodes, per-class
 queuing mechanism and interleaved regulators as in Figure 1. An end-
 to-end delay bound for flow f, traversing nodes 1 to 5, is calculated
 as follows:

 end_to_end_latency_bound_of_flow_f = C12 + C23 + C34 + S4

 In the above formula, Cij is a bound on the delay of the queuing
 subsystem in node i and interleaved regulator of node j, and S4 is a
 bound on the delay of the queuing subsystem in node 4 for flow f. In
 fact, using the delay definitions in Section 3.2, Cij is a bound on
 sum of the delays 1,2,3,6 of node i and 4,5 of node j. Similarly, S4
 is a bound on sum of the delays 1,2,3,6 of node 4. A practical
 example of queuing model and delay calculation is presented

Section 6.4.

 f
 ----------------------------->
 +---+ +---+ +---+ +---+ +---+
 | 1 |---| 2 |---| 3 |---| 4 |---| 5 |
 +---+ +---+ +---+ +---+ +---+
 __C12_/__C23_/__C34_/_S4_/

 Figure 2: End-to-end delay computation example

 REMARK: The end-to-end delay bound calculation provided here gives a
 much better upper bound in comparison with end-to-end delay bound
 computation by adding the delay bounds of each node in the path of a
 flow [TSNwithATS].

4.3. Ingress considerations

 A sender can be a DetNet node which uses exactly the same queuing
 methods as its adjacent DetNet transit node, so that the delay and
 buffer bounds calculations at the first hop are indistinguishable
 from those at a later hop within the DetNet domain. On the other
 hand, the sender may be DetNet unaware, in which case some

Finn, et al. Expires May 7, 2020 [Page 10]

Internet-Draft DetNet Bounded Latency November 2019

 conditioning of the flow may be necessary at the ingress DetNet
 transit node.

 This ingress conditioning typically consists of a FIFO with an output
 regulator that is compatible with the queuing employed by the DetNet
 transit node on its output port(s). For some queuing methods, simply
 requires added extra buffer space in the queuing subsystem. Ingress
 conditioning requirements for different queuing methods are mentioned
 in the sections, below, describing those queuing methods.

4.4. Interspersed non-DetNet transit nodes

 It is sometimes desirable to build a network that has both DetNet
 aware transit nodes and DetNet non-aware transit nodes, and for a
 DetNet flow to traverse an island of non-DetNet transit nodes, while
 still allowing the network to offer delay and congestion loss
 guarantees. This is possible under certain conditions.

 In general, when passing through a non-DetNet island, the island
 causes delay variation in excess of what would be caused by DetNet
 nodes. That is, the DetNet flow is "lumpier" after traversing the
 non-DetNet island. DetNet guarantees for delay and buffer
 requirements can still be calculated and met if and only if the
 following are true:

 1. The latency variation across the non-DetNet island must be
 bounded and calculable.

 2. An ingress conditioning function (Section 4.3) may be required at
 the re-entry to the DetNet-aware domain. This will, at least,
 require some extra buffering to accommodate the additional delay
 variation, and thus further increases the delay bound.

 The ingress conditioning is exactly the same problem as that of a
 sender at the edge of the DetNet domain. The requirement for bounds
 on the latency variation across the non-DetNet island is typically
 the most difficult to achieve. Without such a bound, it is obvious
 that DetNet cannot deliver its guarantees, so a non-DetNet island
 that cannot offer bounded latency variation cannot be used to carry a
 DetNet flow.

5. Achieving zero congestion loss

 When the input rate to an output queue exceeds the output rate for a
 sufficient length of time, the queue must overflow. This is
 congestion loss, and this is what deterministic networking seeks to
 avoid.

Finn, et al. Expires May 7, 2020 [Page 11]

Internet-Draft DetNet Bounded Latency November 2019

 To avoid congestion losses, an upper bound on the backlog present in
 the regulator and queuing subsystem of Figure 1 must be computed
 during resource reservation. This bound depends on the set of flows
 that use these queues, the details of the specific queuing mechanism
 and an upper bound on the processing delay (4). The queue must
 contain the packet in transmission plus all other packets that are
 waiting to be selected for output.

 A conservative backlog bound, that applies to all systems, can be
 derived as follows.

 The backlog bound is counted in data units (bytes, or words of
 multiple bytes) that are relevant for buffer allocation. For every
 class we need one buffer space for the packet in transmission, plus
 space for the packets that are waiting to be selected for output.
 Excluding transmission and preemption times, the packets are waiting
 in the queue since reception of the last bit, for a duration equal to
 the processing delay (4) plus the queuing delays (5,6).

 Let

 o total_in_rate be the sum of the line rates of all input ports that
 send traffic of any class to this output port. The value of
 total_in_rate is in data units (e.g. bytes) per second.

 o nb_input_ports be the number input ports that send traffic of any
 class to this output port

 o max_packet_length be the maximum packet size for packets of any
 class that may be sent to this output port. This is counted in
 data units.

 o max_delay456 be an upper bound, in seconds, on the sum of the
 processing delay (4) and the queuing delays (5,6) for a packet of
 any class at this output port.

 Then a bound on the backlog of traffic of all classes in the queue at
 this output port is

 [[E: The formula is not right; why do we need nb_classes to compute
 backlog bound?]]

 backlog_bound = (nb_classes + nb_input_ports) *
 max_packet_length + total_in_rate* max_delay456

 [[E: proposed general backlog bound:]]

Finn, et al. Expires May 7, 2020 [Page 12]

Internet-Draft DetNet Bounded Latency November 2019

 backlog_bound = nb_input_ports * max_packet_length +
 total_in_rate* max_delay456

6. Queuing techniques

6.1. Queuing data model

 Sophisticated queuing mechanisms are available in Layer 3 (L3, see,
 e.g., [RFC7806] for an overview). In general, we assume that "Layer
 3" queues, shapers, meters, etc., are precisely the "regulators"
 shown in Figure 1. The "queuing subsystems" in this figure are not
 the province solely of bridges; they are an essential part of any
 DetNet transit node. As illustrated by numerous implementation
 examples, some of the "Layer 3" mechanisms described in documents
 such as [RFC7806] are often integrated, in an implementation, with
 the "Layer 2" mechanisms also implemented in the same node. An
 integrated model is needed in order to successfully predict the
 interactions among the different queuing mechanisms needed in a
 network carrying both DetNet flows and non-DetNet flows.

 Figure 3 shows the general model for the flow of packets through the
 queues of a DetNet transit node. Packets are assigned to a class of
 service. The classes of service are mapped to some number of
 regulator queues. Only DetNet/TSN packets pass through regulators.
 Queues compete for the selection of packets to be passed to queues in
 the queuing subsystem. Packets again are selected for output from
 the queuing subsystem.

https://datatracker.ietf.org/doc/html/rfc7806
https://datatracker.ietf.org/doc/html/rfc7806

Finn, et al. Expires May 7, 2020 [Page 13]

Internet-Draft DetNet Bounded Latency November 2019

 |
 +--------------------------------V----------------------------------+
 | Class of Service Assignment |
 +--+------+----------+---------+-----------+-----+-------+-------+--+
 | | | | | | | |
 +--V-+ +--V-+ +--V--+ +--V--+ +--V--+ | | |
Flow		Flow		Flow		Flow		Flow			
0		1	...	i		i+1	...	n			
reg		reg		reg		reg		reg			
 +--+-+ +--+-+ +--+--+ +--+--+ +--+--+ | | |
 | | | | | | | |
 +--V------V----------V--+ +--V-----------V--+ | | |
 | Trans. selection | | Trans. select. | | | |
 +----------+------------+ +-----+-----------+ | | |
 | | | | |
 +--V--+ +--V--+ +--V--+ +--V--+ +--V--+
 | out | | out | | out | | out | | out |
 |queue| |queue| |queue| |queue| |queue|
 | 1 | | 2 | | 3 | | 4 | | 5 |
 +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
 | | | | |
 +----------V----------------------V--------------V-------V-------V--+
 | Transmission selection |
 +----------+----------------------+--------------+-------+-------+--+
 | | | | |
 V V V V V
 DetNet/TSN queue DetNet/TSN queue non-DetNet/TSN queues

 Figure 3: IEEE 802.1Q Queuing Model: Data flow

 Some relevant mechanisms are hidden in this figure, and are performed
 in the queue boxes:

 o Discarding packets because a queue is full.

 o Discarding packets marked "yellow" by a metering function, in
 preference to discarding "green" packets.

 Ideally, neither of these actions are performed on DetNet packets.
 Full queues for DetNet packets should occur only when a flow is
 misbehaving, and the DetNet QoS does not include "yellow" service for
 packets in excess of committed rate.

 The Class of Service Assignment function can be quite complex, even
 in a bridge [IEEE8021Q], since the introduction of per-stream
 filtering and policing ([IEEE8021Q] clause 8.6.5.1). In addition to
 the Layer 2 priority expressed in the 802.1Q VLAN tag, a DetNet

Finn, et al. Expires May 7, 2020 [Page 14]

Internet-Draft DetNet Bounded Latency November 2019

 transit node can utilize any of the following information to assign a
 packet to a particular class of service (queue):

 o Input port.

 o Selector based on a rotating schedule that starts at regular,
 time-synchronized intervals and has nanosecond precision.

 o MAC addresses, VLAN ID, IP addresses, Layer 4 port numbers, DSCP.
 ([I-D.ietf-detnet-ip], [I-D.ietf-detnet-mpls]) (Work items are
 expected to add MPC and other indicators.)

 o The Class of Service Assignment function can contain metering and
 policing functions.

 o MPLS and/or pseudowire ([RFC6658]) labels.

 The "Transmission selection" function decides which queue is to
 transfer its oldest packet to the output port when a transmission
 opportunity arises.

6.2. Preemption

 In [IEEE8021Q] and [IEEE8023], the transmission of a frame can be
 interrupted by one or more "express" frames, and then the interrupted
 frame can continue transmission. This frame preemption is modeled as
 consisting of two MAC/PHY stacks, one for packets that can be
 interrupted, and one for packets that can interrupt the interruptible
 packets. The Class of Service (queue) determines which packets are
 which. Only one layer of preemption is supported -- a transmitter
 cannot have more than one interrupted frame in progress. DetNet
 flows typically pass through the interrupting MAC. Best-effort
 queues pass through the interruptible MAC, and can thus be preempted.

6.3. Time-scheduled queuing

 In [IEEE8021Q], the notion of time-scheduling queue gates is
 described in section 8.6.8.4. Below every output queue (the lower
 row of queues in Figure 3) is a gate that permits or denies the queue
 to present data for transmission selection. The gates are controlled
 by a rotating schedule that can be locked to a clock that is
 synchronized with other DetNet transit nodes. The DetNet class of
 service can be supplied by queuing mechanisms based on time, rather
 than the regulator model in Figure 3. Generally speaking, this time-
 aware scheduling can be used as a layer 2 time division multiplexing
 (TDM) technique.

https://datatracker.ietf.org/doc/html/rfc6658

Finn, et al. Expires May 7, 2020 [Page 15]

Internet-Draft DetNet Bounded Latency November 2019

 Consider the static configuration of a deterministic network. To
 provide end-to-end latency guaranteed service, network nodes can
 support time-based behavior, which is determined by gate control list
 (GCL). GCL defines the gate operation, in open or closed state, with
 associated timing for each traffic class queue. A time slice with
 gate state "open" is called transmission window. The time-based
 traffic scheduling must be coordinated among the DetNet transit nodes
 along the path from sender to receiver, to control the transmission
 of time-sensitive traffic.

 Ideally all network devices are time synchronized and static GCL
 configurations on all devices along the routed path are coordinated
 to ensure that length of transmission window fits the assigned
 frames, and no two time windows for DetNet traffic on the same port
 overlap. (DetNet flows' windows can overlap with best-effort
 windows, so that unused DetNet bandwidth is available to best-effort
 traffic.) The processing delay, link delay and output delay in
 transmitting are considered in GCL computation. Transmission window
 for a certain flow may require that a time offset on consecutive hops
 be selected to reduce queueing delay as much as possible. In this
 case, TSN/DetNet frames transmit at the assigned transmission window
 at every node through the routed path, with zero congestion loss and
 bounded end-to-end latency. Then, the worst-case end-to-end latency
 of the flow can be derived from GCL configuration. For a TSN or
 DetNet frame, denote the transmission window on last hop closes at
 gate_close_time_last_hop. Assuming talker supports scheduled traffic
 behavior, it starts the transmission at gate_open_time_on_talker.
 Then worst case end-to-end delay of this flow is bounded by
 gate_close_time_last_hop - gate_open_time_on_talker +
 link_delay_last_hop.

 It should be noted that scheduled traffic service relies on a
 synchronized network and coordinated GCL configuration. Synthesis of
 GCL on multiple nodes in network is a scheduling problem considering
 all TSN/DetNet flows traversing the network, which is a non-
 deterministic polynomial-time hard (NP-hard) problem. Also, at this
 writing, scheduled traffic service supports no more than eight
 traffic classes, typically using up to seven priority classes and at
 least one best effort class.

6.4. Credit-Based Shaper with Asynchronous Traffic Shaping

 In the cosidered queuing model, there are four types of flows,
 namely, control-data traffic (CDT), class A, class B, and best effort
 (BE) in decreasing order of priority. Flows of classes A and B are
 together referred to AVB flows. This model is a subset of Time-
 Sensitive Networking as described next.

Finn, et al. Expires May 7, 2020 [Page 16]

Internet-Draft DetNet Bounded Latency November 2019

 Based on the timing model described in Figure 1, the contention
 occurs only at the output port of a relay node; therefore, the focus
 of the rest of this subsection is on the regulator and queuing
 subsystem in the output port of a relay node. The output port
 performs per-class scheduling with eight classes (queuing
 subsystems): one for CDT, one for class A traffic, one for class B
 traffic, and five for BE traffic denoted as BE0-BE4. The queuing
 policy for each queuing subsystem is FIFO. In addition, each node
 output port also performs per-flow regulation for AVB flows using an
 interleaved regulator (IR), called Asynchronous Traffic Shaper
 [IEEE8021Qcr]. Thus, at each output port of a node, there is one
 interleaved regulator per-input port and per-class; the interleaved
 regulator is mapped to the regulator depicted in Figure 1. The
 detailed picture of scheduling and regulation architecture at a node
 output port is given by Figure 4. The packets received at a node
 input port for a given class are enqueued in the respective
 interleaved regulator at the output port. Then, the packets from all
 the flows, including CDT and BE flows, are enqueued in queuing
 subsytem; there is no regulator for such classes.

 +--+ +--+ +--+ +--+
 | | | | | | | |
 |IR| |IR| |IR| |IR|
 | | | | | | | |
 +-++XXX++-+ +-++XXX++-+
 | | | |
 | | | |
 +---+ +-v-XXX-v-+ +-v-XXX-v-+ +-----+ +-----+ +-----+ +-----+ +-----+
						Class		Class		Class		Class		Class
CDT		Class A		Class B		BE4		BE3		BE2		BE1		BE0
 +-+-+ +----+----+ +----+----+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
 | | | | | | | | | |
 | +-v-+ +-v-+ | | | | |
 | |CBS| |CBS| | | | | |
 | +-+-+ +-+-+ | | | | |
 | | | | | | | |
 +-v--------v-----------v---------v-------V-------v-------v-------v--+
 | Strict Priority selection |
 +--------------------------------+----------------------------------+
 |
 V

 Figure 4: The architecture of an output port inside a relay node with
 interleaved regulators (IRs) and credit-based shaper (CBS)

Finn, et al. Expires May 7, 2020 [Page 17]

Internet-Draft DetNet Bounded Latency November 2019

 Each of the queuing subsystems for class A and B, contains Credit-
 Based Shaper (CBS). The CBS serves a packet from a class according
 to the available credit for that class. The credit for each class A
 or B increases based on the idle slope, and decreases based on the
 send slope, both of which are parameters of the CBS (Section 8.6.8.2
 of [IEEE8021Q]). The CDT and BE0-BE4 flows are served by separate
 queuing subsystems. Then, packets from all flows are served by a
 transmission selection subsystem that serves packets from each class
 based on its priority. All subsystems are non-preemptive.
 Guarantees for AVB traffic can be provided only if CDT traffic is
 bounded; it is assumed that the CDT traffic has leaky bucket arrival
 curve with two parameters r_h as rate and b_h as bucket size, i.e.,
 the amount of bits entering a node within a time interval t is
 bounded by r_h t + b_h.

 Additionally, it is assumed that the AVB flows are also regulated at
 their source according to leaky bucket arrival curve. At the source,
 the traffic satisfies its regulation constraint, i.e. the delay due
 to interleaved regulator at source is ignored.

 At each DetNet transit node implementing an interleaved regulator,
 packets of multiple flows are processed in one FIFO queue; the packet
 at the head of the queue is regulated based on its leaky bucket
 parameters; it is released at the earliest time at which this is
 possible without violating the constraint. The regulation parameters
 for a flow (leaky bucket rate and bucket size) are the same at its
 source and at all DetNet transit nodes along its path.

6.4.1. Delay Bound Calculation

 A delay bound of the queuing subsystem ([4] in Figure 1) for an AVB
 flow of class A or B can be computed if the following condition
 holds:

 sum of leaky bucket rates of all flows of this class at this
 transit node <= R, where R is given below for every class.

 If the condition holds, the delay bounds for a flow of class X (A or
 B) is d_X and calculated as:

 d_X = T_X + (b_t_X-L_min_X)/R_X - L_min_X/c

 where L_min_X is the minimum packet lengths of class X (A or B); c is
 the output link transmission rate; b_t_X is the sum of the b term
 (bucket size) for all the flows of the class X. Parameters R_X and
 T_X are calculated as follows for class A and class B, separately:

 If the flow is of class A:

Finn, et al. Expires May 7, 2020 [Page 18]

Internet-Draft DetNet Bounded Latency November 2019

 R_A = I_A (c-r_h)/ c

 T_A = L_nA + b_h + r_h L_n/c)/(c-r_h)

 where L_nA is the maximum packet length of class B and BE packets;
 L_n is the maximum packet length of classes A,B, and BE.

 If the flow is of class B:

 R_B = I_B (c-r_h)/ c

 T_B = (L_BE + L_A + L_nA I_A/(c_h-I_A) + b_h + r_h L_n/c)/(c-r_h)

 where L_A is the maximum packet length of class A; L_BE is the
 maximum packet length of class BE.

 Then, an end-to-end delay bound of class X (A or B)is calculated by
 the formula Section 4.2.2, where for Cij:

 Cij = d_X

 More information of delay analysis in such a DetNet transit node is
 described in [TSNwithATS].

6.4.2. Flow Admission

 The delay bound calculation requires some information about each
 node. For each node, it is required to know the idle slope of CBS
 for each class A and B (I_A and I_B), as well as the transmission
 rate of the output link (c). Besides, it is necessary to have the
 information on each class, i.e. maximum packet length of classes A,
 B, and BE. Moreover, the leaky bucket parameters of CDT (r_h,b_h)
 should be known. To admit a flow/flows, their delay requirements
 should be guaranteed not to be violated. As described in

Section 3.1, the two problems, static and dynamic, are addressed
 separately. In either of the problems, the rate and delay should be
 guaranteed. Thus,

 The static admission control:
 The leaky bucket parameters of all flows are known,
 therefore, for each flow f, a delay bound can be calculated.
 The computed delay bound for every flow should not be more
 than its delay requirement. Moreover, the sum of the rate of
 each flow (r_f) should not be more than the rate allocated to
 each class (R). If these two conditions hold, the
 configuration is declared admissible.

 The dynamic admission control:

Finn, et al. Expires May 7, 2020 [Page 19]

Internet-Draft DetNet Bounded Latency November 2019

 For dynamic admission control, we allocate to every node and
 class A or B, static value for rate (R) and maximum
 burstiness (b_t). In addition, for every node and every
 class A and B, two counters are maintained:

 R_acc is equal to the sum of the leaky-bucket rates of all
 flows of this class already admitted at this node; At all
 times, we must have:

 R_acc <=R, (Eq. 1)

 b_acc is equal to the sum of the bucket sizes of all flows
 of this class already admitted at this node; At all times,
 we must have:

 b_acc <=b_t. (Eq. 2)

 A new flow is admitted at this node, if Eqs. (1) and (2)
 continue to be satisfied after adding its leaky bucket rate
 and bucket size to R_acc and b_acc. A flow is admitted in
 the network, if it is admitted at all nodes along its path.
 When this happens, all variables R_acc and b_acc along its
 path must be incremented to reflect the addition of the flow.
 Similarly, when a flow leaves the network, all variables
 R_acc and b_acc along its path must be decremented to reflect
 the removal of the flow.

 The choice of the static values of R and b_t at all nodes and classes
 must be done in a prior configuration phase; R controls the bandwidth
 allocated to this class at this node, b_t affects the delay bound and
 the buffer requirement. R must satisfy the constraints given in
 Annex L.1 of [IEEE8021Q].

6.5. IntServ

 Integrated service (IntServ) is an architecture that specifies the
 elements to guarantee quality of service (QoS) on networks. [[E: The
 rest of this paragraph is better not to be placed here; these should
 be mentioned (is mentioned) in the introduction.]] To satisfied
 guaranteed service, a flow must conform to a traffic specification
 (T-spec), and reservation is made along a path, only if routers are
 able to guarantee the required bandwidth and buffer.

Finn, et al. Expires May 7, 2020 [Page 20]

Internet-Draft DetNet Bounded Latency November 2019

 [[E: The information about arrival and service curves can be shorter
 with less detail. I put a proposed text after description of
 these.]]

 Consider the traffic model which conforms to token bucket regulator
 (r, b), with

 o Token bucket depth (b).

 o Token bucket rate (r).

 The traffic specification can be described as an arrival curve:

 alpha(t) = b + rt

 This token bucket regulator requires that, during any time window t,
 the number of bit for the flow is limited by alpha(t) = b + rt.

 If resource reservation on a path is applied, IntServ model of a
 router can be described as a rate-latency service curve beta(t).

 beta(t) = max(0, R(t-T))

 It describes that bits might have to wait up to T before being served
 with a rate greater or equal to R.

 [[E: proposed text:

 The flow, at the source, has a leaky bucket arrival curve with two
 parameters r as rate and b as bucket size, i.e., the amount of bits
 entering a node within a time interval t is bounded by r t + b.

 If a resource reservation on a path is applied, a node provides a
 guaranteed rate R and maximum service latency of T. This can be
 interpreted in a way that the bits might have to wait up to T before
 being served with a rate greater or equal to R.]]

 It should be noted that the guaranteed service rate R is a portion of
 link's bandwidth. The selection of R is related to the specification
 of flows traversing through the current node. For example, in strict
 priority policy, considering a flow with priority i, its guaranteed
 rate is R=c-sum(r_j), j<i, where c is the link bandwidth, r_j is the
 token bucket rate for a flow j with priority higher than flow i. The
 choice of T is also related to the specification of all the flows
 traversing this node. For example, in a generalized processor
 sharing (GPS) node, T = L / R + L_max/c, where L is the maximum
 packet size for the flow, L_max is the maximum packet size in the
 node across all flows. Other choice of R and T are also supported,

Finn, et al. Expires May 7, 2020 [Page 21]

Internet-Draft DetNet Bounded Latency November 2019

 according to the specific scheduling of the node and flows traversing
 this node.

 As mentioned previously in this section, a delay bound and a buffer
 size bound can be easily obtained by comparing arrival curve and
 service curve. Backlog bound, or buffer bound, is the maximum
 vertical derivation between curves alpha(t) and beta(t), which is
 v=b+rT. Delay bound is the maximum horizontal derivation between
 curves alpha(t) and beta(t), which is h = T+b/R. Graphical
 illustration of the IntServ model is shown in Figure 5.

 + bit . *
 | . *
 | . *
 | *
 | * .
 | * .
 | * | . .. Service curve
 *-----h-|---. ** Arrival curve
 | v . h Delay_bound
 | | . v Backlog_bound
 | |.
 +-------.--------------------+ time

 Figure 5: Computation of backlog bound and delay bound. Note that
 arrival and service curves are not necessary to be linear.

 The output bound, or the next-hop arrival curve, is alpha_out(t) = b
 + rT + rt, where burstiness of the flow is increased by rT, compared
 with the arrival curve.

 We can calculate the end-to-end delay bound for a path including N
 nodes, among which the i-th node offers service curve beta_i(t),

 beta_i(t) = max(0, R_i(t-T_i)), i=1,...,N

 By concatenating these IntServ nodes, an end-to-end service curve can
 be computed as

 beta_e2e (t) = max(0, R_e2e(t-T_e2e))

 where

 R_e2e = min(R_1,..., R_N)

 T_e2e = T_1 + ... + T_N

Finn, et al. Expires May 7, 2020 [Page 22]

Internet-Draft DetNet Bounded Latency November 2019

 Similarly, delay bound, backlog bound and output bound can be
 computed by using the original arrival curve alpha(t) and
 concatenated service curve beta_e2e(t).

6.6. Cyclic Queuing and Forwarding

 Annex T of [IEEE8021Q] describes Cyclic Queuing and Forwarding (CQF),
 which provides bounded latency and zero congestion loss using the
 time-scheduled gates of [IEEE8021Q] section 8.6.8.4. For a given
 DetNet class of service, a set of two or three buffers is provided at
 the output queue layer of Figure 3. A cycle time T_c is configured
 for each class c, and all of the buffer sets in a class swap buffers
 simultaneously throughout the DetNet domain at that cycle rate, all
 in phase.

 0 time --> 0.7 1 (units of T_c) 2 3
 DetNet transit node A out port 1
 | a <-DT->| b | c | d
 +------------+------+-------------------+-------------------+--------
 _____ _____
 _____ _____ queue-to-queue delay = 1.3 T_c
 _____ _____
 _____ _____ DetNet transit node B
 _ _ queue assignment, in
 | | |<-DT->| port 2 to out 3 |
 -------+-------------------+------------+------+-------------------+-
 0.3 time--> 1.3 2.0 2.3 3.3

 window to transfer
 to buffer c ---> VVVVVVVVVVVV
 if dead time not window to transfer
 excessive VVVVVVVVVVVVVVVVVVV <--- to buffer d
 DetNet transit node B out port 3
 | a | b | c | d
 +-------------------+-------------------+-------------------+--------
 0 time--> 1 2 3

 Figure 6: CQF timing diagram

 Figure 6 shows two DetNet transit nodes A and B, including three
 timelines for:

 1. The output queues on port 1 in node A.

 2. The input gate function ([IEEE8021Q], 8.6.5.1) that assigns
 packets received on port 1 of transit node B to output queues on
 port 2 of transit node B.

Finn, et al. Expires May 7, 2020 [Page 23]

Internet-Draft DetNet Bounded Latency November 2019

 3. The output queues on port 2 of node B.

 In this figure, the output ports on the two nodes are synchronized,
 and a new buffer starts transmitting at each tick, shown as 0, 1, 2,
 ... The output times shown for timelines 1 and 3 are the times at
 which packets are selected for output, which is the start point of
 the output time (1) of Figure 1. The queue assignments times on
 timeline 3 take place at the beginning of the queuing delay (6) of
 Figure 1. Time-based CQF, as described here, does not require any
 regulator queues. In the shown in the figure, the total time [[E:
 what is meant by total time? Does it mean a delay bound is 1.3
 T_C?]] for delays (1) through (6) of Figure 1, is 1.3T_c. Of course,
 any value is possible.

6.6.1. CQF timing sequence

 In general, as shown in Figure 6, the windows for buffer assignment
 do not align perfectly with the windows for buffer transmission. The
 input gates (the center timeline in Figure 6) must switch from using
 one buffer to using another buffer in sync with the (delayed)
 received data, at times offset by the dead time from the output
 buffer switching (the bottom timeline in Figure 6).

 If the dead time DT in Figure 6 is not excessive, then it is feasible
 to subtract the dead time from the cycle time Tc, and use the
 remainder as the input window. In the example in Figure 6, packets
 from node A buffer a can be transferred from the input port to node
 B's buffer "c" during the window shown by the upper row "VVVV...".
 Input must cease by time = 2.0, because that is when transit node B
 starts transmitting the contents of buffer c. In this case, only two
 output buffers are in use, one filling and one outputting.

 If the dead time is too large (e.g., if the delays placed the middle
 timeline's switching points at n+0.9, instead of n+0.3), three
 buffers are used by node B. This case is shown by the lower row
 "VVVV..." in Figure 6. In this case, node B places the data received
 from node A buffer a into node B buffer d between the times 1.3 and
 2.3 in Figure 6. Buffer b starts outputting at time = 2.0, while
 buffer d is filling. Thus, three buffers are in use, one filling,
 one waiting, and one emptying.

6.6.2. CQF latency calculation

 The per-hop latency is trivially determined by the wire delay and the
 queuing delay. Since the wire delay is either absorbed into the
 queueing delay (dead time is small and two buffers are used) or
 padded out to a whole cycle time T_c (three buffers are used) the

Finn, et al. Expires May 7, 2020 [Page 24]

Internet-Draft DetNet Bounded Latency November 2019

 per-hop latency is always an integral number of cycle times T_c, with
 a latency variation at the output of the final hop of T_c.

 Ingress conditioning (Section 4.3) may be required if the source of a
 DetNet flow does not, itself, employ CQF.

 Note that there are no per-flow parameters in the CQF technique.
 Therefore, there is no requirement for per-hop configuration when a
 new DetNet flow is added to a network, except perhaps for ingress
 checks to see that the transmitter does not exceed the contracted
 bandwidth.

7. References

7.1. Normative References

 [I-D.ietf-detnet-architecture]
 Finn, N., Thubert, P., Varga, B., and J. Farkas,
 "Deterministic Networking Architecture", draft-ietf-

detnet-architecture-08 (work in progress), September 2018.

 [I-D.ietf-detnet-ip]
 Varga, B., Farkas, J., Berger, L., Fedyk, D., Malis, A.,
 Bryant, S., and J. Korhonen, "DetNet Data Plane: IP",

draft-ietf-detnet-ip-00 (work in progress), May 2019.

 [I-D.ietf-detnet-mpls]
 Varga, B., Farkas, J., Berger, L., Fedyk, D., Malis, A.,
 Bryant, S., and J. Korhonen, "DetNet Data Plane: MPLS",

draft-ietf-detnet-mpls-00 (work in progress), May 2019.

 [RFC2212] Shenker, S., Partridge, C., and R. Guerin, "Specification
 of Guaranteed Quality of Service", RFC 2212,
 DOI 10.17487/RFC2212, September 1997,
 <https://www.rfc-editor.org/info/rfc2212>.

 [RFC6658] Bryant, S., Ed., Martini, L., Swallow, G., and A. Malis,
 "Packet Pseudowire Encapsulation over an MPLS PSN",

RFC 6658, DOI 10.17487/RFC6658, July 2012,
 <https://www.rfc-editor.org/info/rfc6658>.

 [RFC7806] Baker, F. and R. Pan, "On Queuing, Marking, and Dropping",
RFC 7806, DOI 10.17487/RFC7806, April 2016,

 <https://www.rfc-editor.org/info/rfc7806>.

 [RFC8578] Grossman, E., Ed., "Deterministic Networking Use Cases",
RFC 8578, DOI 10.17487/RFC8578, May 2019,

 <https://www.rfc-editor.org/info/rfc8578>.

https://datatracker.ietf.org/doc/html/draft-ietf-detnet-architecture-08
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-architecture-08
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-ip-00
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-mpls-00
https://datatracker.ietf.org/doc/html/rfc2212
https://www.rfc-editor.org/info/rfc2212
https://datatracker.ietf.org/doc/html/rfc6658
https://www.rfc-editor.org/info/rfc6658
https://datatracker.ietf.org/doc/html/rfc7806
https://www.rfc-editor.org/info/rfc7806
https://datatracker.ietf.org/doc/html/rfc8578
https://www.rfc-editor.org/info/rfc8578

Finn, et al. Expires May 7, 2020 [Page 25]

Internet-Draft DetNet Bounded Latency November 2019

7.2. Informative References

 [bennett2002delay]
 J.C.R. Bennett, K. Benson, A. Charny, W.F. Courtney, and
 J.-Y. Le Boudec, "Delay Jitter Bounds and Packet Scale
 Rate Guarantee for Expedited Forwarding",
 <https://dl.acm.org/citation.cfm?id=581870>.

 [charny2000delay]
 A. Charny and J.-Y. Le Boudec, "Delay Bounds in a Network
 with Aggregate Scheduling", <https://link.springer.com/

chapter/10.1007/3-540-39939-9_1>.

 [IEEE8021Q]
 IEEE 802.1, "IEEE Std 802.1Q-2018: IEEE Standard for Local
 and metropolitan area networks - Bridges and Bridged
 Networks", 2018,
 <http://ieeexplore.ieee.org/document/8403927>.

 [IEEE8021Qcr]
 IEEE 802.1, "IEEE P802.1Qcr: IEEE Draft Standard for Local
 and metropolitan area networks - Bridges and Bridged
 Networks - Amendment: Asynchronous Traffic Shaping", 2017,
 <http://www.ieee802.org/1/files/private/cr-drafts/>.

 [IEEE8021TSN]
 IEEE 802.1, "IEEE 802.1 Time-Sensitive Networking (TSN)
 Task Group", <http://www.ieee802.org/1/>.

 [IEEE8023]
 IEEE 802.3, "IEEE Std 802.3-2018: IEEE Standard for
 Ethernet", 2018,
 <http://ieeexplore.ieee.org/document/8457469>.

 [le_boudec_theory_2018]
 J.-Y. Le Boudec, "A Theory of Traffic Regulators for
 Deterministic Networks with Application to Interleaved
 Regulators", <http://arxiv.org/abs/1801.08477/>.

 [NetCalBook]
 Le Boudec, Jean-Yves, and Patrick Thiran, "Network
 calculus: a theory of deterministic queuing systems for
 the internet", 2001, <https://arxiv.org/abs/1804.10608/>.

 [Specht2016UBS]
 J. Specht and S. Samii, "Urgency-Based Scheduler for Time-
 Sensitive Switched Ethernet Networks",
 <https://ieeexplore.ieee.org/abstract/document/7557870>.

https://dl.acm.org/citation.cfm?id=581870
https://link.springer.com/chapter/10.1007/3-540-39939-9_1
https://link.springer.com/chapter/10.1007/3-540-39939-9_1
http://ieeexplore.ieee.org/document/8403927
http://www.ieee802.org/1/files/private/cr-drafts/
http://www.ieee802.org/1/
http://ieeexplore.ieee.org/document/8457469
http://arxiv.org/abs/1801.08477/
https://arxiv.org/abs/1804.10608/
https://ieeexplore.ieee.org/abstract/document/7557870

Finn, et al. Expires May 7, 2020 [Page 26]

Internet-Draft DetNet Bounded Latency November 2019

 [TSNwithATS]
 E. Mohammadpour, E. Stai, M. Mohiuddin, and J.-Y. Le
 Boudec, "End-to-end Latency and Backlog Bounds in Time-
 Sensitive Networking with Credit Based Shapers and
 Asynchronous Traffic Shaping",
 <https://arxiv.org/abs/1804.10608/>.

Authors' Addresses

 Norman Finn
 Huawei Technologies Co. Ltd
 3101 Rio Way
 Spring Valley, California 91977
 US

 Phone: +1 925 980 6430
 Email: nfinn@nfinnconsulting.com

 Jean-Yves Le Boudec
 EPFL
 IC Station 14
 Lausanne EPFL 1015
 Switzerland

 Email: jean-yves.leboudec@epfl.ch

 Ehsan Mohammadpour
 EPFL
 IC Station 14
 Lausanne EPFL 1015
 Switzerland

 Email: ehsan.mohammadpour@epfl.ch

 Jiayi Zhang
 Huawei Technologies Co. Ltd
 Q22, No.156 Beiqing Road
 Beijing 100095
 China

 Email: zhangjiayi11@huawei.com

https://arxiv.org/abs/1804.10608/

Finn, et al. Expires May 7, 2020 [Page 27]

Internet-Draft DetNet Bounded Latency November 2019

 Balazs Varga
 Ericsson
 Konyves Kalman krt. 11/B
 Budapest 1097
 Hungary

 Email: balazs.a.varga@ericsson.com

 Janos Farkas
 Ericsson
 Konyves Kalman krt. 11/B
 Budapest 1097
 Hungary

 Email: janos.farkas@ericsson.com

Finn, et al. Expires May 7, 2020 [Page 28]

