
INTERNET-DRAFT J. Bound
DHC Working Group Digital Equipment Corp
Obsoletes: draft-ietf-dhc-dhcpv6-01.txt July 95

Dynamic Host Configuration Protocol for IPv6

draft-ietf-dhc-dhcpv6-02.txt

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

Abstract

 DHCPv6 is an Internet application protocol that uses a Client/Server
 model to communicate between hosts. DHCPv6 executes over the UDP
 [RFC-768] transport protocol, and the Internet Protocol Version 6
 (IPv6) [IPv6-SPEC]. DHCPv6 is an IPv6 specification for a statefull
 implementation of address autoconfiguration as referenced in IPv6
 Stateless Address Configuration [IPv6-ADDRCONF]. DHCPv6 supports
 mechanisms to autoconfigure host IPv6 addresseses, autoregister host
 names dynamically in the Domain Name System (DNS), and specifies the
 format to add future Configuration Parameter options to the protocol
 for extensibility.

 The work on this protocol will take place in the Dynamic Host
 Configuration (DHC) Working group. One may join the Working Group
 mail list by sending mail to host-conf-request@sol.eg.bucknell.edu.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt
https://datatracker.ietf.org/doc/html/rfc768

Expires December 1995 [Page 1]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

Table of Contents:

1. Introduction..3
1.1 Requirements..3
2. Terminology and Definitions.................................5
2.1 IPv6 Terminology..5
2.2 DHCPv6 Terminology..6
3. Protocol Design Model.......................................8
3.1 Related Work in IPv6..8
3.2 Design Goals..9
3.3 Request/Response Model.....................................10
3.4 Leased Address Model.......................................11
3.5 DNS Host Name Autoregistration Model.......................12
3.6 Defining Optional Configuration-Data.......................13
4. Datagram and Data Formats..................................14
4.1 Datagram...14
4.2 Data Formats...14
5. Client/Server Processing...................................16
5.1 Client Transmission..16
5.2 Server Transmission..16
5.3 Client/Server Bindings.....................................17
5.4 Client Requests..17
5.5 Server Response..18
5.6 Client Confirmations/Rejections............................19
6. Relay-Agent Processing.....................................19
Draft ***Open Issues***..21
Change History...22
Acknowledgements...23
References...23
Authors' Addresses...24

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 2]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

1. Introduction

 DHCPv6 is an Internet application protocol that uses a Client/Server
 model to communicate between hosts. DHCPv6 executes over the UDP
 [RFC-768] transport protocol, and the Internet Protocol Version 6
 (IPv6) [IPv6-SPEC]. DHCPv6 is an IPv6 specification for a statefull
 implementation of address autoconfiguration as referenced in IPv6
 Stateless Address Configuration [IPv6-ADDRCONF]. DHCPv6 supports
 mechanisms to autoconfigure host IPv6 addresseses, autoregister host
 names dynamically in the Domain Name System (DNS), and specifies the
 format to add future Configuration Parameter options to the protocol
 for extensibility.

 The IPv6 new version of the Internet Protocol, is being developed
 with 128bit addresses. The IPv6 addressing architecture [IPv6-ADDR]
 and stateless address configuration [IPv6-ADDRCONF] specifications
 provide new functionality not present in the Internet Protocol
 version 4 (IPv4), which provide inherent benefits to autoconfigure
 IPv6 addresses for host nodes. In addition the IETF DNS Working
 Group has work in progress to support Dynamic Updates to DNS [DYN-
 UPD], which can be used by a node to add, delete, and change host
 names dynamically.

 DHCPv6 uses the enhancements in IPv6 and DNS to define an efficient
 protocol, and is not required to support any IPv4 protocol for
 backward compatibility. DHCPv6 does use many of the architectural
 principles in DHCP for IPv4 (DHCPv4) [DHCP-v4]. It is not within the
 scope of this document to compare and contrast DHCPv4 with DHCPv6.

1.1 Requirements

 Throughout this document, the words that are used to define the
 significance of the particular requirements are capitalized. These
 words are:

 o "MUST"

 This word or the adjective "REQUIRED" means that the item is an
 absolute requirement of this specification.

 o "MUST NOT"

 This phrase means the item is an absolute prohibition of this
 specification.

 o "SHOULD"

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt
https://datatracker.ietf.org/doc/html/rfc768

 This word or the adjective "RECOMMENDED" means that there may
 exist valid reasons in particular circumstances to ignore this
 item, but the full impliciations should be understood and the case
 carefully weighed before choosing a different course.

 o "SHOULD NOT"

 This phrase means that there may exist valid reasons in particular
 circumstances when the listed behavior is acceptable or even

Expires December 1995 [Page 3]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 useful, but the full implications should be understood and the
 case carefully weighted before implementing any behavior described
 with this label.

 o "MAY"

 This word or the adjective "OPTIONAL" means that this item is
 truly optional. One vendor may choose to include the item because
 a particular marketplace requires it or because it enhances the
 product, for example, another vendor may omit the same item.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 4]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

2. Terminology and Definitions

 Terminology and Definitions are critical to the understanding of any
 IETF specification. This Section will provide the terms and
 definitions used throughout this specification. Relevant IPv6
 specification [IPv6-SPEC], IPv6 Addressing Architecture [IPv6-ADDR],
 and IPv6 Statelss Address Configuration [IPv6-ADDRCONF] terminology
 will be provided, then the DHCPv6 terminology.

2.1 IPv6 Terminology

 node: A device that implements IPv6.

 router: A node that forwards IPv6 packets not explicitly addressed to
 itself.

 host: Any node that is not a router.

 link: A communication facility or medium over which nodes can
 communicate at the link layer, i.e., the layer immediately below
 IPv6. Examples are Ethernets (simple or bridged); PPP links, X.25,
 Frame Relay, or ATM networks; and internet (or higher) layer
 "tunnels", such as tunnels over IPv4 or IPv6 itself.

 neighbors: Nodes attached to the same link.

 interface: A nodes's attachment to the link.

 address: An IPv6 layer identifier for an interface or a set of
 interfaces.

 packet: An IPv6 header plus payload.

 link MTU: The maximum transmission unit, i.e., maximum packet size in
 octets, that can be conveyed in one piece over a link.

 path MTU: The minimum link MTU of all the links in a path between a
 source node and a destination node.

 unicast address: An identifier for a single interface. A packet sent
 to a unicast address is delivered to the interface identified by that
 address.

 multicast address: An identifier for a set of interfaces (typically
 belonging to different nodes). A packet sent to a multicast address
 is delivered to all interfaces identified by that address.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 link-local address: The link-local address is for use on a single
 link. On initialization of an interface, a host forms a link-local
 address by concatenating a well-known link-local prefix to a token
 that is unique per link. For example, in the case of a host attached
 to a link that uses IEEE 802 addresses, the token is an IEEE 802
 address associated with the interface.

 validation-lifetime: This is the address lifetime for a single
 address provided to a host. The validation-timer is in absolute time

Expires December 1995 [Page 5]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 and in seconds (e.g. 3 hours would have the value 10800).

 deprecation-liftetime: This is the lifetime for a single address the
 host uses to begin the deprecation of an address prior to the
 validation-lifetime expiring, so that the host can determine if the
 address can receive a new validation-lifetime. The deprecation-
 lifetime is in absolute time and in seconds (e.g. 3 hours would have
 the value 10800). The deprecation-lifetime MUST be no greater than
 the validation-lifetime.

 deprecated-address: This is a single address that is in the
 deprecated state on a host because the deprecation-lifetime period
 has expired.

 invalid-address: This is a single address whose validation-lifetime
 has expired.

2.2 DHCPv6 Terminology

 configuration-type: Configuration Type defines an optional
 configuration parameter in the DHCPv6 protocol.

 configuration-data: Configuration Data is information a host can use
 to configure a host on a network, so that the host can interoperate
 with other hosts on a network. Configuration Data will vary in
 length depending on the configuration type.

 client: A Client is a host that initiates requests on a link to
 obtain: addresses, DNS host name processing, or configuration-data.

 server: A Server is a host that responds to requests from clients on
 a link to provide: addresses, DNS host name processing, or
 configuration-data.

 relay-agent: A Relay-Agent is a router that listens on the link for
 clients requests, and then forwards the request to a server on the
 network. The server will respond back to the Relay-Agent, who will
 forward the reply to the client on the Relay-Agents link.

 message-type: The Message-Type defines the DHCPv6 protocol operation
 for this packet.

 message-code: The Message-Code defines a notification for a message-
 type from a client or server.

 name-length: The Name-Length defines the length of the host name
 provided by a client or a server for DNS Autoregistration of host

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 names.

 interface-token: The Interface-Token is specified by the client and
 is a unique opaque identifer for a clients interface, and must be
 accessbile after a client reboots (e.g. IEEE 802 MAC address).

 address-count: The address-count is specified by the client with any
 request sent to a server, and represents the number of addresses the
 client has received from a server for a specified interface-token.

Expires December 1995 [Page 6]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 client-address: The Client-Address is the field in the DHCPv6
 protocol that contains the address for the clients interface-token.

 server-address: The Server-Address is the field in the DHCPv6
 protocol that contains the address of the server responding to the
 clients request.

 gateway-address: The Gateway-Address is the field in the DHCPv6
 protocol that contains the relay-agents address, so a server, that
 may be multiple relay-agent hops away from the orginal relay-agent,
 can respond directly to the relay-agent that forwarded the request,
 by extracting the Gateway- Address to be used as the server packets
 destination address.

 client-link-address: The client-link-address is the field in the
 DHCPv6 protocol the relay-agents use to save the clients source
 address in the IPv6 header, so they can respond back to the server on
 the link.

 transaction-ID: The Transaction-ID is specified by the client as an
 opaque transaction identifier, which uniquely identifies the current
 operation between the client and the server. The server may utilize
 this transaction identifier in order to detect duplicate transactions
 and to provide context between messages in a multi-message exchange
 with a client who has multiple requests for the same interface-token.

 host-name: The Host-Name is the name to be associated with an
 address. If the name-length is zero then the Host-Name is not
 present in the DHCPv6 request or response.

 binding: The Binding in DHCPv6 is a N-tuple that a client and server
 MUST maintain in DHCPv6 for each completed transaction, where N is
 the number of configuration-data identifiers for a client. An
 implementation MUST support at least a 4-tuple Binding consisting of
 the clients interface-token, address, validation-lifetime, and
 deprecation-lifetime for that address. An example of a completed
 transaction in DHCPv6 is when the client requests an address for an
 interface-token and receives an address and lease for that token. It
 is implementation defined if greater than a 4-tuple Binding is
 supported by an implementation, and is not prohibited by this
 specification.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 7]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

3. Protocol Design Model

 This section is provided for implementors to understand the DHCPv6
 protocol design model from an architectural perspective. It provides
 related work in IPv6 that influenced the protocol design and the
 design goals. The request/response protocol model is discussed and
 the objective of this model in the design. The leased address
 strategy and purpose is discussed. The objective of the
 autoregistration for DNS Host Names is discussed and the capabilities
 that are possible in this specification. The client/server model is
 discussed to prepare an implementor for the client/server processing
 provided later in the specification. Then the configuration options
 are defined and how they are used to build additional extensible
 configuration-data for DHCPv6.

3.1 Related Work in IPv6

 The related work in IPv6 that would best serve an implementor to
 study is the IPv6 Specification [IPv6-SPEC], the IPv6 Addressing
 Architecture [IPv6-ADDR], IPv6 Stateless Address Configuration
 [IPv6-ADDRCONF], IPv6 Neighbor Discovery Processing [IPv6-ND], and
 Dynamic Updates to DNS [DYN-UPD]. These specifications afford DHCPv6
 to build upon the IPv6 work to provide both robust statefull
 autoconfiguration and autoregistration of DNS Host Names. In
 addition related work for DHCP for IPv4 is directly related to
 DHCPv6.

 The IPv6 Specification provides the base architecture and design of
 IPv6. A key point for DHCPv6 implementors to understand is that IPv6
 requires that every link in the internet have an MTU of 576 octets or
 greater (in IPv4 the requirement is 68 octets). This means that a
 UDP datagram of 536 octets will always pass through an internet (less
 40 octets for the IPv6 header), as long as there are no options prior
 to the UDP datagram in the packet. But, IPv6 does not support
 fragmentation at routers and fragmentation must take place end-to-end
 between hosts. If a DHCPv6 implementation needs to send a packet
 greater than 536 octets it can either fragment the UDP datagram in
 UDP or use Path MTU Discovery [IPv6-SPEC] to determine the size of
 the packet that will traverse a network path. It is implementation
 defined how this is accomplished in DHCPv6.

 The IPv6 Addressing Architecture Specification provides the address
 scope that can be used in an IPv6 implementation, and the various
 configuration architecture guidelines for network designers of the
 IPv6 address space. Two advantages of IPv6 is that multicast
 addressing is well defined and nodes can create link-local addresses

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 during initialization of the nodes environment. This means that a
 host immediately can ascertain an IPv6 address at initialization for
 an interface, before communicating in any manner on the link. The
 host can then use a well-known multicast address to begin
 communications to discover neighbors on the link, or as will be
 discussed later in the specification locate a DHCPv6 server or
 relay-agent.

 The IPv6 Stateless Address Configuration Specification (addrconf)

Expires December 1995 [Page 8]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 defines how a host can autoconfigure addresses based on neighbor
 discovery router advertisements, and the use of a validation-lifetime
 and a deprecation-lifetime for addresses. In addition the addrconf
 specification defines the protocol interaction for a host to begin
 stateless or statefull autoconfiguration. DHCPv6 is one vehicle to
 perform statefull autoconfiguration. Compatibility with addrconf is
 a design goal of DHCPv6 where possible.

 IPv6 Neighbor Discovery (ND) is the node discovery protocol in IPv6
 (replaces and enhances functions of IPv4 ARP Model). To truly
 understand IPv6 and addrconf it is strongly recommended that
 implementors understand IPv6 ND.

 Dynamic Updates to DNS is a specification that supports the dynamic
 update of DNS records for both IPv4 and IPv6. This will be discussed
 further later in this section of the specification. An implementor
 cannot implement DHCPv6 without understanding Dyanmic Updates to DNS.

3.2 Design Goals

 The following list gives general design goals for DHCPv6. Most
 DHCPv4 Design Goals [DHCP-v4] are kept in this specification.

 DHCPv6 should be a mechanism rather than a policy. DHCPv6 must
 allow local system administrators control over configuration
 parameters where desired; e.g., local system administrators should
 be able to enforce local policies concerning allocation and access
 to local resources where desired.

 Hosts should require no manual configuration. Each host should be
 able to discover appropriate local configuration parameters
 without user intervention and incorporate those parameters into
 its own configuration.

 Networks should require no hand configuration for individual
 hosts. Under normal circumstances, the network manager should not
 have to enter any per-host configuration parameters.

 DHCPv6 should not require a server on each link. To allow for
 scale and economy, DHCPv6 must work across relay agents.

 A DHCPv6 client must be prepared to receive multiple responses to
 a request for configuration parameters. Some installations may
 include multiple, overlapping DHCPv6 servers to enhance
 reliability and increase performance.

 DHCPv6 must coexist with statically configured, non-participating

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 hosts and with existing network protocol implementations.

 DHCPv6 should as much as possible be compatible with IPv6
 Stateless Address Configuration.

 DHCPv6 servers should be able to support Dynamic Updates to DNS
 [DYN-UPD].

 It is NOT a design goal of DHCPv6 to specify a server to server

Expires December 1995 [Page 9]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 protocol.

 It is NOT a design goal of DHCPv6 to specify how a server
 configuration database is maintained or determined.

 The following list gives design goals specific to the transmission of
 the network layer parameters.

 Guarantee that any specific network address will not be in use by
 more than one host at a time.

 Guarantee that client addresses that are not provided by DHCPv6
 will not be added to a servers configuration database or the
 servers binding for a clients interface-token.

 Retain host configuration across host reboot. A client should,
 whenever possible, be assigned the same configuration-data in
 response to each request.

 Retain host configuration across server reboots, and, whenever
 possible, a host should be assigned the same configuration
 parameters despite restarts of the DHCPv6 mechanism,

 Allow automatic assignment of configuration parameters to new
 hosts to avoid hand configuration for new hosts.

 Support fixed or permanent allocation of configuration parameters
 to specific hosts.

 Clients must not assume that addresses are updated to the DNS,
 unless the server provides a host-name with an address to a
 client.

3.3 Request/Response Model

 DHCPv6 uses a message type to define whether the packet orginated
 from a DHCPv6 Server or Client.

 The message types are as follows:

 01 - client-configuration-request
 02 - client-confirm-response
 03 - client-reject-response
 04 - server-configuration-response

 Request/Response Model States

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 1. Request (client)
 2. Response with configuration-data or error found (server).
 3. Confirmation Response or reject (client).

 The time out period for a client or server to wait for a response
 MUST NOT exceed 3 minutes. When a client or server times out waiting
 for a response to a packet sent, the implementation MUST NOT commit
 any binding based on the configuration-data sent in the packet. It
 is implementation defined if the client or server packet is

Expires December 1995 [Page 10]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 retransmitted.

3.4 Leased Address Model

 An address returned to a client has a validation-lifetime and
 deprecation-lifetime. The lifetimes represent the lease for a single
 address for a client. The server MUST provide a validation-lifetime
 and SHOULD provide a deprecation-lifetime to a client in a server
 response packet to a clients request for an address.

 The client may suggest a value for the lifetimes in an address
 request to a server, or leave them as zero. The client MUST use the
 lifetimes provided by the server response if the values are different
 than the lifetimes requested by the client.

 The DHCPv6 philosophy is that the client has the responsibility to
 renew a lease for an address that is about to expire, or request a
 new address or the same address before the lease actually expires.
 If the client does not request a new lease for an address, the server
 MUST assume the client does not want a new lease for that address,
 and the server MAY provide that address to another client requesting
 an address.

 If the the client has a deprecation-lifetime for an address the
 processing of the lease SHOULD be as follows:

 When the deprecation-lifetime of an address expires, the clients
 address becomes a deprecated-address. A deprecated address SHOULD
 NOT be used as a source address in new communications. However, a
 deprecated-address SHOULD continue to be used as a source address
 if it is in use in existing communications. Implementors of
 DHCPv6 SHOULD coordinate the use of the validation-lifetime and
 deprecation-lifetime for layers below the DHCPv6 application layer
 with their implementation of IPv6 Stateless Address Configuration
 [IPv6-ADDRCONF].

 An address is a deprecated-address until its invalidation-lifetime
 expires at which point the address becomes an invalid-address. An
 invalid-address MUST NOT be used as a source address in outgoing
 communications, and MUST NOT be recognized as a valid destination
 address in incoming communications.

 If the clients deprecation-lifetime is zero for an address the
 processing for the lease SHOULD be as follows:

 There is no concept of a deprecated-address for a client if the
 deprecation-lifetime is zero when provided to the client in a

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 server response. The address for the client is valid until the
 validation-lifetime expires at which point the address becomes an
 invalid-address. An invalid-address MUST NOT be used as a source
 address in outgoing communications, and MUST NOT be recognized as
 a valid destination address in incoming communications.

Expires December 1995 [Page 11]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

3.5 DNS Host Name Autoregistration Model

 DHCPv6 supports the autoregistration of DNS Host names and providing
 DNS Host Names with addresses for clients. Autoregistration is
 supported by the presence of the name field in DHCPv6, which the
 client may provide to the server in a request. In addition a server
 may provide a DNS Host Name with an IPv6 address to a client in a
 response.

 If the name-length field is zero, there is no name field contained in
 the packet.

 DHCPv6 only specifies the name-field, and not the actual protocol or
 primitives to interact with DNS. The functions that the server uses
 to interact with the DNS to provide autoregistration is defined in
 Dynamic Updates to DNS [DYN-UPD]. DHCPv6 servers SHOULD support
 Dynamic Updates to DNS.

 If the client provides a Host Name (HN) or a Fully Qualified Domain
 Name (FQDN) [RFC 1034&1035]:

 The server SHOULD perform a DNS query for the HN or FQDN IPv6 DNS
 AAAA resource record [IPv6-DNS]:

 If the name is found and the address does not match the clients
 address for the name provided by the client, the server SHOULD add
 this address to the DNS name record (multiple addresses are
 supported for names at this time in DNS and the client may want to
 use the same name for multiple addresses on an interface).

 If the name is not found the client supplied name SHOULD be added
 to the DNS.

 In either condition above the server MUST add the associated DNS
 inverse address mapping as an IP6.INT domain PTR record [IPv6-DNS]
 for this clients address and name.

 If the server returns a name after updating the DNS it MUST return
 a FQDN to the client.

 If the client does not request a HN or FQDN from a server, the server
 MAY provide, in its response with the address to a client, a FQDN the
 client can use for that address. The server MUST NOT provide a
 client with a server generated FQDN, unless the associated IPv6 AAAA
 record and IP6.INT domain PTR record exists in the DNS.

 When a clients address invalidation-lifetime expires on the server,
 the server SHOULD delete the clients IPv6 AAAA record and IP6.INT
 domain PTR record from the DNS.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 12]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

3.6 Defining Optional Configuration-Data

 Optional configuration-data MUST be specified for DHCPv6 as follows
 and aligned on an integer multiple of 8 octets:

 option-type: 1 Octet

 This field permits 254 options for DHCPv6 and will represent the
 tag for the option. The values of 0 and 1 are used for pad
 options discussed below.

 option-length: 2 Octets

 This field specifies the length of the configuration-data not
 including the the option-type and and option-length fields.

 option-data: Variable number of Octets

 The option-data is the configuration-data that immediately follows
 the option-length field.

 If the server does not support an option-type requested it MUST
 return the option-type and the option-length set to zero in the
 response to the client.

 A server implementation MUST start any options after the first option
 returned to a client on an integer multiple of 8 octets. This is an
 architectural REQUIREMENT, and the client when parsing options can
 assume the next option, if it exists will begin on the next integer
 multiple of 8 octets boundary.

 This specification does not define any options. DHCPv6 options are
 defined in XXXXXXXXX. It is permissible for options to also create
 new message-types and message-codes as required.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 13]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

4. Datagram and Data Formats

4.1 Datagram

 DHCPv6 Datagram

 0 8 16 24 31
 +-+
 | msg-type | msg-code | name-lgth | addr-count |
 +-+
 | transaction-ID |
 +-+
 | interface-token |
 | (8 Octets) |
 +-+
 | client-address |
 | (16 Octets) |
 +-+
 | server-address |
 | (16 Octets) |
 +-+
 | gateway-address |
 | (16 Octets) |
 +-+
 | client-link-address |
 | (16 Octets) |
 +-+
 | validation-lifetime |
 +-+
 | deprecation-lifetime |
 +-+
 | host-name |
 | (variable octets 0-255) |
 +-+
 | option-type | option-lgth | option-data (variable octets) |
 +-+

4.2 Data Formats

 All fields in the datagram MUST be initialized to binary zeroes
 by both the client and server messages unless otherwise noted
 in Section 5. Client and Server processing of messages.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 msg-type : 1 Octet integer value (message-type)

 Value Description

 1 - Client request for configuration data.
 2 - Server response with configuration data.
 3 - Client confirmation of server response.
 4 - Client rejection of server response.

Expires December 1995 [Page 14]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 msg-code : 1 Octet integer value (message-code)

 Value Description

 1 - Server Response - Client address-count is in error.
 2 - Server Response - Dynamic Updates to DNS not supported.

 name-lgth : 1 Octet integer value (name-length)

 addr-count : 1 Octet integer value (address-count)

 transaction-ID : 4 Octets integer value

 interface-token : 4 Octets integer value

 client-address : 16 Octets address

 server-address : 16 Octets address

 gateway-address : 16 Octets address

 client-link-address : 16 Octets address

 validation-lifetime : 4 Octets integer value

 deprecation-lifetime : 4 Octets integer value

 host-name : 0-255 Octets character(s) value(s)

 option-type : 1 Octet integer value

 option-length : 1 Octet integer value

 option-data : Variable Octets variant value(s)

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 15]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

5. Client/Server Processing

5.1 Client Transmission

 UDP DHCPv6 Server Port 546 MUST be used by the client to send UDP
 datagrams to the server.

 If the client knows its address it MUST be put in the source address
 field of the IPv6 Header. Otherwise the clients link-local address
 MUST be used as the source address field in the IPv6 Header [IPv6-
 ADDRCONF].

 If the client knows the address of the server on its link it MUST put
 that address in the destination address field of the IPv6 Header.
 Otherwise the client MUST put the DHCP Server/Relay-Agent well-known
 multicast address FF02:0:0:0:0:0:1:0 using link-local scope [IPv6-
 ADDR] as the destination address field in the IPv6 Header.

 The client MUST set msg-type to 1 to transmit a request to the
 server.

 The client MUST set msg type to 3 to confirm the acceptance of packet
 from a server response.

 The client MUST set msg type to 4 to reject a packet from a server
 response.

 The client MUST use UDP DHCPv6 Client Port 546 as the UDP port to
 accept server responses in an implementation.

5.2 Server Transmission

 UDP DHCPv6 Client Port 546 MUST be used by the server to send UDP
 datagrams to the client.

 A server, on the same link as the client, MUST use the source address
 in the IPv6 Header from the client as the destination address in the
 servers response packet. Servers not on the same link are discussed
 in Section 6 Relay-Agent Processing.

 The server MUST set msg type to 2 to transmit a response to a client.

 The server MUST use UDP DHCPv6 Server Port 547 as the UDP port to
 accept client requests in an implementation.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 The server MUST join the DHCP Server/Relay-Agent mulicast group
 well-known multicast address FF02:0:0:0:0:0:1:0 using link-local
 scope [IPv6-ADDR], to listen for client requests, that do not know
 the address of a server on the clients link.

Expires December 1995 [Page 16]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

5.3 Client/Server Bindings

 Client and server bindings MUST be maintained at least as a 4-tuple
 consisting of the clients interface-token, address, validation-
 lifetime, and deprecation-lifetime in an implementaiton. It is
 critical for the interoperability of DHCPv6 that the clients bindings
 remain consistent with the servers bindings across reboots.

 When a client sends a request it MUST enter in the addr-count field
 the number of addresses that it has for a particular interface-token
 in the clients bindings.

 When the server receives the client request, it MUST verify that the
 addr-count field provided by the client matches the number of
 addresses the server has for that clients binding, for the
 interface-token provided by the client. If the server has a
 different addr-count than the client for a particular interface
 token, the server MUST send a response to the client setting msg-code
 to 1 informing the client addr-count at the server is not in synch
 with the client.

 Once the client receives a response with a msg-code set to 1 it MUST
 set addr-count to zero on subsequent requests to the server, for that
 interface-token.

 When a server receives a request from a client and the addr-count is
 set to zero, but the client has a binding for that interface-token,
 the server MUST reissue the configuration-data in those bindings to
 the client.

5.4 Client Requests

 The client sets the following fields for a request for
 configuration-data:

 msg-type: Set to 1.

 name-lgth: Set to the length of the host-name if provided.

 addr-count: Set to the number of addresses the client has for the
 interface-token specified in this request.

 transaction-ID: Set to a unqiue integer value.

 interface-token: Set to a unqiue opaque identifier.

 client-address: Set ONLY if the client is requesting a host name

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 for a particular address, else not set.

 validation-lifetime: Set to the value the client would like the
 server to use, else not set.

 deprecation-lifetime: Set to the value the client would like the
 server to use, else not set.

 host-name: Set only if name-lgth is greater than zero otherwise

Expires December 1995 [Page 17]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 this field is not present.

 option-type: Set to a future option request for configuration-
 data, otherwise the field is not present. Multiple option-types
 may be set adjacent to each other.

5.5 Server Response

 The server sets the following fields for a response to a client for
 configuration-data:

 msg-type: Set to 2.

 msg-code: Set to 1 if addr-count not equal to servers bindings for
 the clients specified interface-token. Set to 2 if the server
 cannot support Dynamic Updates to DNS because the client requested
 a host-name for an address provided, or from the servers set of
 addresses.

 If the server determines that addr-count is not equal to its
 bindings it stops all other DHCPv6 processing, hence, the
 server would not be in the situation of setting msg-code to
 both 1 and 2. The server sets msg-code to 1 and MUST put all
 other values supplied by the clients request in the response
 packet except the msg-type and msg-code fields.

 Processing of msg-code set to 1 for the client and server is
 done as specified in 5.3 Client/Server Bindings.

 name-lgth: Set to the length of the host-name if present.

 addr-count: Set to the same value specified by the client.

 transaction-ID: Set to the same value specified by the client.

 interface-token: Set to the same value specified by the client.

 client-address: If the client-address from the request packet is
 zero the server sets the client-address to the next available
 address for this interface-token. If there is a client-address in
 the request packet the client is requesting a host-name for this
 address, and the server MUST return the address provided by the
 client if the server supports Dynmic Updates to DNS, and has
 updated the DNS with a host-name for that address.

 server-address: The server MUST set this field to its address in
 all response packets.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 validation-lifetime: The server sets this address to the
 validation-lifetime of the servers configuration database. It is
 implementation defined if the server will use the validiation-
 lifetime if specified by a client request packet.

 deprecation-lifetime: The server sets this address to the
 deprecation-lifetime of the servers configuration database. It is
 implementation defined if the server will use the deprecation-

Expires December 1995 [Page 18]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 lifetime if specified by a client request packet.

 host-name: The server returns a hostname or msg-code set to 2, if
 the name-lgth field is greater than zero. Processing of host-name
 is specified in Section 3.5 DNS Host Name Autoregistration Model.

 option-type: The server returns the same option-types specified by
 the client requests.

 option-lgth: The server returns the length of the configuration-
 data or zeroes if the option is not supported.

 option-data: The server returns the configuration-data requested
 by the client.

5.6 Client Confirmations/Rejections

 The client sets the following fields for a confirmation or rejection
 after receiving configuration-data from the server. configuration-
 data:

 msg-type: Set to 3 if the client is confirming a servers response.
 Set to 4 if the client is rejecting a servers response.

 When the server receives a rejection msg-type 4 from a client
 the server MUST assume the client is using another server. The
 server then MUST remove any bindings for that client it may
 have created, and MUST delete any DNS HN or FQDN records it may
 have added on behalf of the client.

 transaction-ID: Same value as specified in the servers response.

 interface-token: Same value as specified in the servers response.

 client-address: Same value as specified in the servers response.

6. Relay-Agent Processing

 The relay-agent MUST use UDP DHCPv6 Server Port 547 as the UDP port
 to accept client responses in an implementation.

 The relay-agent MUST join the DHCP Server/Relay-Agent mulicast group
 well-known multicast address FF02:0:0:0:0:0:1:0 using link-local
 scope [IPv6-ADDR], to listen for client requests.

 When a DHCPv6 Relay-Agent hears a request from a DHCPv6 Client it

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

 MUST:

 If the gateway-address is NOT zero then the relay-agent MUST:

 Put the relay-agents IPv6 address in the gateway-address field
 of the clients request packet.

 Put the the source address from the IPv6 Header of the clients

Expires December 1995 [Page 19]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 request packet in the client-link-address.

 All relay-agents MUST:

 Put their relay-agent address as the source address for the
 IPv6 Header.

 Put the next relay-agent or known server address as the
 destination address in the IPv6 Header.

 Forward the packet to the to the next hop relay-agent or known
 server.

 When the remote server receives the client request from the relay-
 agent it will know its a remote client request (not on the servers
 link), because there is a gateway-address in the request. So servers
 MUST test the gateway-address is not zero, to determine if the
 clients request is from a remote link.

 The server responds as specified in 5.5 Server Response, but uses the
 gateway-address as the destination address in the IPv6 Header.

 When the relay-agent receives the remote servers response, it MUST
 forward the packet to the client, by using the client-link-address as
 the source address for the IPv6 Header.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 20]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

Draft ***Open Issues***

 1. The present model uses UDP with a client request, server
 response, and then client confirmation or rejection. The server will
 set state or remove state based on this model. There is always the
 possibility of the classic transactional error when the client-to-
 server response is not received by the server, or the client assumes
 the server received the response and it did not (see the draft).

 This can be greatly alleviated by using TCP instead of UDP for the
 transaction. This would have great benefits such as:

 1. Guranteed virtual link, hence if the transaction completes
 the server and client know immediately upon return to the
 application.

 2. PATH MTU Discovery for TCP is inherent in an implementation
 and the DHCPv6 application does not have to adjust for IPv6
 fragmentation model.

 We can also use UDP to locate servers and TCP for the transaction.

 2. Dynamic Updates to DNS need careful review for clarity and what
 is required for just host name processing in DHCPv6.

 3. We need to determine the integration required with IPv6 Stateless
 Address Configuration when both stateless and statefull is being used
 by a client host.

 4. In the Design Goals section should the MUSTs, SHOULDs, etc be
 capitalized and REQUIRED? Its not in DHCPv4?

 5. Charlie Perkins will be doing our option spec for DHCPv6. We need
 to make sure it synchs up with this spec.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 21]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

Change History

 Changes from March 95 to July 95 Drafts:

 Used integer values instead of bit values for type and code
 fields.

 Used message-type and message-code fields and rely on looking at
 the fields in the datagram instead of multiple over-lapping
 request/response codes.

 Added address-count field processing to be specified by the client
 as opposed to the server, and the processing for when client and
 server address-counts become disjoint.

 Added Requirements wording for MUST, SHOULD, MAY, etc.

 Added Design Goals section.

 Re-Defined transaction-ID and interface-token.

 Added Client/Server Binding definition and processing section to
 handle those bindings.

 Added more terminology, definitions, and rationale.

 Added model to support Dynamic Updates to DNS for Host Names.

 Reduced the request/response model to 3 packets by not doing a
 server confirm to a clients confirm to a servers response.

 Added model to support like lifetime fields for lease management
 to coordinate with IPv6 Stateless Address Configuration.

 Added model and processing definitions for future DHCPv6 Options
 Specification.

 Added gateway-address and client-link-address for relay-agent
 processing.

 Removed excessive use of the acroynym DHCPv6 for section titles
 and when referencing clients and servers.

 Added Draft ***Open Issues*** Section for review by the DHC
 Working Group.

 Added Change History.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt

Expires December 1995 [Page 22]

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

Acknowledgements

 The DHC Working Group for their time and input into the
 specification. A special thanks for the consistent input, ideas, and
 review by Ralph Droms, Thomas Narten, Jack Mccann, and Charlie
 Perkins. A big warm and extended thanks to Sue Thomson, Yakov
 Rehkter, and Phil Wells, who spent many hours in person and on the
 phone with the author to get the work done.

 Sue Thomson and Yakov Rehkter were co-authors on the first
 specification, and with the author have since March 1994 kept a
 consistent view and belief that autoregistration MUST be part of the
 Next Generation Internet Protocol version 6 and integrated into
 autoconfiguration.

 The author would also like to thank Steve Deering and Bob Hinden, who
 have consistently taken the time to discuss the more complex parts of
 the IPv6 specifications.

 The author MUST also thank his employer for the opportunity to work
 on DHCPv6 and IPv6 in general.

References

 [IPv6-SPEC]
 S. Deering and R. Hinden, "Internet Protocol Version 6
 [IPv6] Specification" Internet Draft, June 1995
 <draft-ietf-ipngwg-ipv6-spec-02.txt>

 [IPv6-ADDR]
 R. Hinden, S. Deering, Editors, "IP Version 6 Addressing
 Architecture"
 Internet Draft, June 1995
 <draft-ietf-ipngwg-ipv6-addr-arch-03.txt>

 [IPv6-ADDRCONF]
 S. Thomson, "IPv6 Stateless Address Configuration"
 Internet Draft, June 1995 <draft-ietf-addrconf-ipv6-auto-02.txt>

 [IPv6-ND]
 T. Narten, E. Nordmark, and W. A. Simpson, "IPv6 Neighbor
 Discovery"
 Internet Draft, June 1995
 <draft-ietf-ipngwg-discovery-00.txt>

 [IPv6-DNS]
 S. Thompson and C. Huitema, "DNS Extensions to support IP

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-ipv6-spec-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-ipv6-addr-arch-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-addrconf-ipv6-auto-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-discovery-00.txt

 version 6", Internet Draft, March 1995
 <draft-ietf-ipngwg-dns-00.txt>

 [RFC-1034]
 P. Mockapetris, "Domain Names - implementation and specification"
 STD-13, 11/01/87

Expires December 1995 [Page 23]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-dns-00.txt

INETERNET-DRAFT draft-ietf-dhc-dhcpv6-02.txt July 1995

 [RFC-1035]
 P. Mockapetris, "Domain Names - concepts and facilities"
 STD-13, 11/01/87

 [DYN-UPD]
 S. Thomson, Y. Rekhter, J. Bound, "Dynamic Updates in the Domain
 Name System (DNS)" Internet Draft, March 1995
 <draft-ietf-dnsind-dynDNS-01.txt>

 [RFC-768]
 J. Postel, "User Datagram Protocol"
 STD-6, 08/28/80.

 [DHCP-v4]
 R. Droms, "Dynamic Host Configuration Protocol"

RFC 1541 Proposed Standard, October 1993

Authors' Addresses

 Jim Bound
 Digital Equipment Corporation
 110 Spitbrook Road, ZKO3-3/U14
 Nashua, NH 03062
 Phone: (603) 881-0400
 Email: bound@zk3.dec.com

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-dynDNS-01.txt
https://datatracker.ietf.org/doc/html/rfc1541

Expires December 1995 [Page 24]

