
Dynamic Host Configuration (DHC) T. Mrugalski
Internet-Draft ISC
Intended status: Standards Track K. Kinnear
Expires: January 16, 2014 Cisco
 July 15, 2013

DHCPv6 Failover Design
draft-ietf-dhc-dhcpv6-failover-design-03

Abstract

 DHCPv6 defined in [RFC3315] does not offer server redundancy. This
 document defines a design for DHCPv6 failover, a mechanism for
 running two servers on the same network with capability for either
 server to take over clients' leases in case of server failure or
 network partition. This is a DHCPv6 Failover design document, it is
 not protocol specification document. It is a second document in a
 planned series of three documents. DHCPv6 failover requirements are
 specified in [I-D.ietf-dhc-dhcpv6-failover-requirements]. A protocol
 specification document is planned to follow this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 16, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Mrugalski & Kinnear Expires January 16, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DHCPv6 Failover Design July 2013

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Requirements Language . 3
2. Glossary . 3
3. Introduction . 5
3.1. Design Requirements 6
3.2. Features out of Scope: Load Balancing 6

4. Protocol Overview . 6
4.1. Failover State Machine Overview 8
4.2. Messages . 10

5. Connection Management . 11
5.1. Creating Connections 11
5.2. Endpoint Identification 13

6. Resource Allocation . 13
6.1. Proportional Allocation 14
6.2. Independent Allocation 16
6.3. Choosing Allocation Algorithm 17

7. Information model . 18
8. Failover Mechanisms . 22
8.1. Time Skew . 22
8.2. Time expression . 23
8.3. Lazy updates . 23
8.4. MCLT concept . 23
8.4.1. MCLT example . 25

8.5. Unreachability detection 26
8.6. Re-allocating Leases 26
8.7. Sending Binding Update 27
8.8. Receiving Binding Update 29
8.9. Conflict Resolution 30
8.10. Acknowledging Reception 32

9. Endpoint States . 32
9.1. State Machine Operation 32
9.2. State Machine Initialization 35
9.3. STARTUP State . 35
9.3.1. Operation in STARTUP State 36
9.3.2. Transition Out of STARTUP State 36

9.4. PARTNER-DOWN State 38
9.4.1. Operation in PARTNER-DOWN State 38
9.4.2. Transition Out of PARTNER-DOWN State 39

9.5. RECOVER State . 40
9.5.1. Operation in RECOVER State 40
9.5.2. Transition Out of RECOVER State 40

Mrugalski & Kinnear Expires January 16, 2014 [Page 2]

Internet-Draft DHCPv6 Failover Design July 2013

9.6. RECOVER-WAIT State 41
9.6.1. Operation in RECOVER-WAIT State 41
9.6.2. Transition Out of RECOVER-WAIT State 42

9.7. RECOVER-DONE State 42
9.7.1. Operation in RECOVER-DONE State 42
9.7.2. Transition Out of RECOVER-DONE State 42

9.8. NORMAL State . 43
9.8.1. Operation in NORMAL State 43
9.8.2. Transition Out of NORMAL State 44

9.9. COMMUNICATIONS-INTERRUPTED State 44
9.9.1. Operation in COMMUNICATIONS-INTERRUPTED State 45

 9.9.2. Transition Out of COMMUNICATIONS-INTERRUPTED State . 45
9.10. POTENTIAL-CONFLICT State 47
9.10.1. Operation in POTENTIAL-CONFLICT State 47
9.10.2. Transition Out of POTENTIAL-CONFLICT State 47

9.11. RESOLUTION-INTERRUPTED State 49
9.11.1. Operation in RESOLUTION-INTERRUPTED State 49
9.11.2. Transition Out of RESOLUTION-INTERRUPTED State . . . 49

9.12. CONFLICT-DONE State 49
9.12.1. Operation in CONFLICT-DONE State 50
9.12.2. Transition Out of CONFLICT-DONE State 50

10. Proposed extensions . 50
10.1. Active-active mode 50

11. Dynamic DNS Considerations 51
11.1. Relationship between failover and dynamic DNS update . . 51
11.2. Exchanging DDNS Information 52
11.3. Adding RRs to the DNS 54
11.4. Deleting RRs from the DNS 55
11.5. Name Assignment with No Update of DNS 55

12. Reservations and failover 56
13. Security Considerations 57
14. IANA Considerations . 58
15. Acknowledgements . 58
16. References . 58
16.1. Normative References 58
16.2. Informative References 58

 Authors' Addresses . 59

1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Glossary

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Mrugalski & Kinnear Expires January 16, 2014 [Page 3]

Internet-Draft DHCPv6 Failover Design July 2013

 This is a supplemental glossary that should be combined with
 definitions in Section 3 of
 [I-D.ietf-dhc-dhcpv6-failover-requirements].

 o auto-partner-down - a capability where a failover server will move
 from COMMUNICATIONS-INTERRUPTED state to PARTNER-DOWN state
 automatically, without operator intervention.

 o Failover endpoint - The failover protocol allows for there to be a
 unique failover 'endpoint' for each failover relationship in which
 a failover server participates. The failover relationship is
 defined by a relationship name, and includes the failover partner
 IP address, the role this server takes with respect to that
 partner (primary or secondary), and the prefixes associated with
 that relationship. Note that a single prefix can only be
 associated with a single failover relationship. This failover
 endpoint can take actions and hold unique states. Typically,
 there is one failover endpoint per partner (server), although
 there may be more. 'Server' and 'failover endpoint' are
 synonymous only if the server participates in only one failover
 relationship. However, for the sake of simplicity 'Server' is
 used throughout the document to refer to a failover endpoint
 unless to do so would be confusing.

 o Failover communication - all messages exchanged between partners.

 o Independent Allocation - an allocation algorithm that splits the
 available pool of resources between the primary and secondary
 servers that is particularly well suited for vast pools (i.e. when
 available resources are not expected to deplete). See Section 6.2
 for details.

 o Partner - name of the other DHCPv6 server that participates in
 failover relationship. When the role (primary or secondary) is
 not important, the other server is referred to as a "failover
 partner" or simply partner.

 o Primary Server - First out of two DHCPv6 servers that participate
 in a failover relationship. In active-passive mode this is the
 server that handles most of the client traffic. Its failover
 partner is referred to as secondary server.

 o Proportional Allocation - an allocation algorithm that splits the
 available resources (addresses or prefixes) between the primary
 and secondary servers and maintains proportions between available
 resources on both. It is particularly well suited for more
 limited resources. See Section 6.1 for details.

Mrugalski & Kinnear Expires January 16, 2014 [Page 4]

Internet-Draft DHCPv6 Failover Design July 2013

 o Resource - Any type of resource that is managed by DHCPv6.
 Currently there are two types of such resources defined: a non-
 temporary IPv6 address and an IPv6 prefix. Due to the nature of
 temporary addresses, they are not covered by the failover
 mechanism. Other resource types may be defined in the future.

 o Responsive - A server that is responsive, will respond to DHCPv6
 client requests.

 o Secondary Server - Second of out two DHCPv6 servers that
 participate in a failover relationship. Its failover partner is
 referred to as primary server. In active-passive mode this server
 typically does not handle client traffic and acts as a backup.

 o Server - A DHCPv6 server that implements DHCPv6 failover.
 'Server' and 'failover endpoint' are synonymous only if the server
 participates in only one failover relationship.

 o Unresponsive - A server that is unresponsive will not respond to
 DHCPv6 client requests.

3. Introduction

 The failover protocol design provides a means for cooperating DHCPv6
 servers to work together to provide a DHCPv6 service with
 availability that is increased beyond that which could be provided by
 a single DHCPv6 server operating alone. It is designed to protect
 DHCPv6 clients against server unreachability, including server
 failure and network partition. It is possible to deploy exactly two
 servers that are able to continue providing a lease on an IPv6
 address [RFC3315] or on an IPv6 prefix [RFC3633] without the DHCPv6
 client experiencing lease expiration or a reassignment of a lease to
 a different IPv6 address in the event of failure by one or the other
 of the two servers.

 This protocol defines active-passive mode, sometimes also called a
 hot standby model. This means that during normal operation one
 server is active (i.e. actively responds to clients' requests) while
 the second is passive (i.e. it does receive clients' requests, but
 does not respond to them and only maintains a copy of lease database
 and is ready to take over incoming queries in case of primary server
 failure). Active-active mode (i.e. both servers actively handling
 clients' requests) is currently not supported for the sake of
 simplicity. Such a mode is likely to be defined as an exension at a
 later time and will probably be based on
 [I-D.ietf-dhc-dhcpv6-load-balancing].

https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3633

Mrugalski & Kinnear Expires January 16, 2014 [Page 5]

Internet-Draft DHCPv6 Failover Design July 2013

 The failover protocol is designed to provide lease stability for
 leases with lease times beyond a short period. Due in part to the
 additional overhead required as well as requirements to handle time
 skew between failover partners (See Section 8.1), failover is not
 suitable for leases shorter than 30 seconds. The DHCPv6 Failover
 protocol MUST NOT be used for leases shorter than 30 seconds.

 This design attempts to fulfill all DHCPv6 failover requirements
 defined in [I-D.ietf-dhc-dhcpv6-failover-requirements].

3.1. Design Requirements

 The following requirements are not related to failover mechanism in
 general, but rather to this particular design.

 1. Minimize Asymmetry - while there are two distinct roles in
 failover (primary and secondary server), the differences between
 those two roles should be as small as possible. This will yield
 a simpler design as well as a simpler implementation of that
 design.

3.2. Features out of Scope: Load Balancing

 While it is tempting to extend DHCPv6 failover mechanism to also
 offer load balancing, as DHCPv4 failover did, this design does not do
 that. Here is the reasoning for this decision. In general case (not
 related to failover) load balancing solutions are used when each
 server is not able to handle total incoming traffic. However, by the
 very definition, DHCPv6 failover is supposed to assume service
 availability despite failure of one server. That leads to conclusion
 that each server must be able to handle whole traffic. Therefore in
 properly provisioned setup, load balancing is not needed.

 It is likely that active-active mode that is essentially a load
 balancing will be defined as an extension in the near future.

4. Protocol Overview

 The DHCPv6 Failover Protocol is defined as a communication between
 failover partners with all associated algorithms and mechanisms.
 Failover communication is conducted over a TCP connection established
 between the partners. The protocol reuses the framing format
 specified in Section 5.1 of DHCPv6 Bulk Leasequery [RFC5460], but
 uses different message types. New failover-specific message types
 are listed in Section 4.2. All information is sent over the
 connection as typical DHCPv6 messages that convey DHCPv6 options,
 following format defined in Section 22.1 of [RFC3315].

https://datatracker.ietf.org/doc/html/rfc5460
https://datatracker.ietf.org/doc/html/rfc3315#section-22.1

Mrugalski & Kinnear Expires January 16, 2014 [Page 6]

Internet-Draft DHCPv6 Failover Design July 2013

 After initialization, the primary server establishes a TCP connection
 with its partner. The primary server sends a CONNECT message with
 initial parameters. Secondary server responds with CONNECTACK.

 If the primary server cannot immediately establish a connection with
 its partner, it will continue to attempt to establish a connection.
 See Section 5.1 for details.

 Depending on the failover state of each partner, they MUST initiate
 one of the binding update procedures. Each server MAY send an UPDREQ
 message to request its partner to send all updates that have not been
 sent yet (this case applies when the partner has an existing database
 and wants to update it). Alternatively, a server MAY choose to send
 an UPDREQALL message to request a full lease database transmission
 including all leases (this case applies in case of booting up new
 server after installation, corruption or complete loss of database,
 or other catastrophic failure).

 Servers exchange lease information by using BNDUPD messages.
 Depending on the local and remote state of a lease, a server may
 either accept or reject the update. Reception of lease update
 information is confirmed by responding with a BNDACK message with
 appropriate status. The majority of the messages sent over a
 failover TCP connection consists of BNDUPD and BNDACK messages.

 A subset of available resources (addresses or prefixes) is reserved
 for secondary server use. This is required for handling a case where
 both servers are able to communicate with clients, but unable to
 communicate with each other. After the initial connection is
 established, the secondary server requests a pool of available
 addresses by sending a POOLREQ message. The primary server assigns
 addresses to the secondary by sending a series of BNDUPD messages.
 When this process is complete, the primary server sends a POOLRESP
 message to the secondary server. The secondary server may initiate
 such pool request at any time when in communication with primary
 server.

 Failover servers use a lazy update mechanism to update their failover
 partner about changes to their lease state database. After a server
 performs any modifications to its lease state database (assign a new
 lease, extend, release or expire existing lease), it sends its
 response to the client's request first (performing the "regular"
 DHCPv6 operation) and then informs its failover partner using a
 BNDUPD message. This BNDUPD message SHOULD be sent soon after the
 response is sent to the DHCPv6 client, but there is no specific
 requirement of a minimum time in which to do so.

Mrugalski & Kinnear Expires January 16, 2014 [Page 7]

Internet-Draft DHCPv6 Failover Design July 2013

 The major problem with lazy update mechanism is the case when the
 server crashes after sending a response to client, but before sending
 the lazy update to its partner (or when communication between
 partners is interrupted). To solve this problem, the concept known
 as the Maximum Client Lead Time (initially designed for DHCPv4
 failover) is used. The MCLT is the maximum amount of time that one
 server can extend a lease for a client's binding beyond the time
 known by its failover partner. See Section 8.4 for detailed
 desciption how the MCLT affects assigned lease times.

 Servers verify each others availability by periodically exchanging
 CONTACT messages. See Section 8.5 for discussion about detecting a
 partner's unreachability.

 A server that is being shut down transmits a DISCONNECT message,
 closes the connection with its failover partner and stops operation.
 A Server SHOULD transmit any pending lease updates before
 transmitting DISCONNECT message.

4.1. Failover State Machine Overview

 The following section provides a simplified description of all
 states. For the sake of clarity and simplicity, it omits important
 details. For complete description, see Section 9. In case of a
 disagreement between the simplified and complete description, please
 follow Section 9.

 Each server MUST be in one of the well defines states. In each state
 a server may be either responsive (responds to clients' queries) or
 unresponsive (clients' queries are ignored).

 A server starts its operation in short-lived STARTUP state. A server
 determines its partner reachability and state and sets its own state
 based on that determination. It typically returns back to the state
 it was in before shutdown, though the details can be complicated.
 See Section 9.3.2.

 During typical operation when servers maintain communication, both
 are in NORMAL state. In that state only the primary responds to
 clients' requests. A secondary server is unresponsive.

 If a server discovers that its partner is no longer reachable, it
 goes to COMMUNICATIONS-INTERRUPTED state. A server must be extra
 cautious as it can't distingush if its partner is down or just
 communication between servers is interrupted. Since communication
 between partners is not possible, a server must act on the assumtion
 that its partner is up. A failover server must follow a defined
 procedure, in particular, it MUST NOT extend any lease more than the

Mrugalski & Kinnear Expires January 16, 2014 [Page 8]

Internet-Draft DHCPv6 Failover Design July 2013

 MCLT beyond its partner's knowledge of the lease expiration time.
 This imposes an additional burden on the server, in that clients will
 return to the server for lease renewals more frequently than they
 would otherwise. Therefore it is not recommended to operate for
 prolonged periods in this state. Once communication is
 reestablished, a server may go into NORMAL, POTENTIAL-CONFLICT or
 PARTNER-DOWN state. It may also stay in COMMUNICATIONS-INTERRUPTED
 state if certain conditions are met.

 Once a server is switched into PARTNER-DOWN (when auto-partner-down
 is used or as a result of administrative action), it can extend
 leases, regardless of the original server that initially granted the
 lease. In that state server handles leases from its own pool, but
 once its own pool is depleted is also able to serve pool from its
 downed partner. MCLT restrictions no longer apply. Operation in
 this mode is less demanding for the server that remains operational,
 than in COMMUNICATIONS-INTERRUPTED state, but PARTNER-DOWN does not
 offer any kind of redundancy. Even when in PARTNER-DOWN state, a
 failover server continues to attempt to connect with its failover
 partner.

 A server switches into RECOVER state when any of a variety of
 conditions are encountered:

 o When a backup server contacts its failover partner for the first
 time.

 o When either server discovers that its failover partner has
 contacted it before but it has no local record of this contact.
 If the record of previous contact is held in the lease-state
 database, then this situation implies that the server has lost its
 lease state database.

 o When its failover partner is in PARTNER-DOWN state.

 Any of these conditions signal that the server needs to refresh its
 lease-state database from its partner. Once this operation is
 complete, it switches to RECOVER-WAIT and later to RECOVER-DONE. See

Section 9.6.2.

Mrugalski & Kinnear Expires January 16, 2014 [Page 9]

Internet-Draft DHCPv6 Failover Design July 2013

 Once servers reestablish connection, they discover each others'
 state. Depending on the conditions, they may return to NORMAL or
 move to POTENTINAL-CONFLICT if the partner is in a state that doesn't
 allow a simple re-integration of the server's lease state databases.
 It is a goal of this protocol to minimize the possibility that
 POTENTIAL-CONFLICT state is ever entered. Servers running in
 POTENTIAL-CONFLICT do not respond to clients' requests and work only
 on resolving potential conflicts. Once outstanding lease updates are
 exchanged, servers move to CONFLICT-DONE or NORMAL states.

 Servers that are recovering from potential conflicts and loose
 communication, switch to RESOLUTION-INTERRUPTED.

 A server that is being shut down sends a DISCONNECT message. See
Section 4.2. A server that receives a DISCONNECT message moves into

 COMMUNICATIONS-INTERRUPTED state.

4.2. Messages

 The failover protocol is centered around the message exchanges used
 by one server to update its partner and respond to received updates.
 It should be noted that no specific formats or message type values
 are assigned in this document. Appropriate implementation details
 will be specified in a separate protocol specification document. The
 following list enumerates these messages:

 o BNDUPD - The binding update message is used to send the binding
 lease changes to the partner. One message may contain one or more
 lease updates. The partner is expected to respond with a BNDACK
 message.

 o BNDACK - The binding acknowledgement is used for confirmation of
 the received BNDUPD message. It may contain a positive or
 negative response (e.g. due to detected lease conflict).

 o POOLREQ - The Pool Request message is used by one server
 (typically secondary) to request allocation of resources
 (addresses or prefixes) from its partner. The partner responds
 with POOLRESP.

 o POOLRESP - The Pool Response message is used by one server
 (typically primary) to repond to its partner's request for
 resources allocation. One POOLRESP message may contain more than
 one pool.

 o UPDREQ - The update request message is used by one server to
 request that its partner send all binding database changes that
 has not been sent and confirmed already. Requested partner is

Mrugalski & Kinnear Expires January 16, 2014 [Page 10]

Internet-Draft DHCPv6 Failover Design July 2013

 expected to respond with zero or more BNDUPD messages, followed by
 UPDDONE that signals end of updates.

 o UPDREQALL - The update request all is used by one server to
 request that all binding database information be sent in order to
 recover from a total loss of its binding database by the
 requesting server. Requested server responds with zero or more
 BNDUPD messages, followed by UPDDONE that signal end of updates.

 o UPDDONE - The update done message is used by the responding server
 to indicate that all requested updates have been sent by the
 responding server and acked by the requesting server.

 o CONNECT - The connect message is used by the primary server to
 establish a high level connection with the other server, and to
 transmit several important configuration data items between the
 servers. The partner is expected to confirm by responding with
 CONNECTACK message.

 o CONNECTACK - The connect acknowledgement message is used by the
 secondary server to respond to a CONNECT message from the primary
 server.

 o DISCONNECT - The disconnect message is used by either server when
 closing a connection and shutting down. No response is required
 for this message.

 o STATE - The state message is used by either server to inform its
 partner about a change of failover state. In some cases it may be
 used to also inform the partner about current state, e.g. after
 connection is established in COMMUNICATIONS-INTERRUPTED or
 PARTNER-DOWN states.

 o CONTACT - The contact message is used by either server to ensure
 that the other server continues to see the connection as opera-
 tional. It MUST be transmitted periodically over every esta-
 blished connection if other message traffic is not flowing, and it
 MAY be sent at any time.

5. Connection Management

5.1. Creating Connections

 Every primary server implementing the failover protocol SHOULD
 attempt to connect to all of its partners periodically, where the
 period is implementation dependent and SHOULD be configurable. In
 the event that a connection has been rejected by a CONNECTACK message
 with a reject-reason option contained in it or a DISCONNECT message,

Mrugalski & Kinnear Expires January 16, 2014 [Page 11]

Internet-Draft DHCPv6 Failover Design July 2013

 a server SHOULD reduce the frequency with which it attempts to
 connect to that server but it SHOULD continue to attempt to connect
 periodically.

 Every secondary server implementing the failover protocol SHOULD
 listen for connection attempts from the primary server.

 When a connection attempt succeeds, the primary server which has
 initiated the connection attempt MUST send a CONNECT message down the
 connection.

 When a connection attempt is received, the only information that the
 receiving server has is the IP address of the partner initiating a
 connection. If it has any relationships with the connecting server
 for which it is a seconary server, it should just await the CONNECT
 message to determine which relationship this connection is to serve.

 If it has no secondary relationships with the connecting server, it
 SHOULD drop the connection. The goal is to limit the resources
 expended dealing with attempts to create a spurious failover
 connection.

 To summarize -- a primary server MUST use a connection that it has
 initiated in order to send a CONNECT message. Every server that is a
 secondary server in a relationship simply listens for connection
 attempts from the primary server.

 Once a connection is established, the primary server MUST send a
 CONNECT message across the connection. A secondary server MUST wait
 for the CONNECT message from a primary server. If the secondary
 server doesn't receive a CONNECT message from the primary server in
 an installation dependent amount of time, it MAY drop the connection.

 Every CONNECT message includes a TLS-request option, and if the
 CONNECTACK message does not reject the CONNECT message and the TLS-
 reply option says TLS MUST be used, then the servers will immediately
 enter into TLS negotiation.

 Once TLS negotiation is complete, the primary server MUST resend the
 CONNECT message on the newly secured TLS connection and then wait for
 the CONNECTACK message in response. The TLS-request and TLS-reply
 options MUST NOT appear in either this second CONNECT or its
 associated CONNECTACK message as they had in the first messages.

 The second message sent over a new connection (either a bare TCP
 connection or a connection utilizing TLS) is a STATE message. Upon
 the receipt of this message, the receiver can consider communications
 up.

Mrugalski & Kinnear Expires January 16, 2014 [Page 12]

Internet-Draft DHCPv6 Failover Design July 2013

5.2. Endpoint Identification

 The proper operation of the failover protocol requires more than the
 transmission of messages between one server and the other. Each
 endpoint might seem to be a single DHCPv6 server, but in fact there
 are situations where additional flexibility in configuration is
 useful. A failover endpoint is always associated with a set of
 DHCPv6 prefixes that are configured on the DHCPv6 server where the
 endpoint appears. A DHCPv6 prefix MUST NOT be associated with more
 than one failover endpoint.

 The failover protocol SHOULD be configured with one failover
 relationship between each pair of failover servers. In this case
 there is one failover endpoint for that relationship on each failover
 partner. This failover relationship MUST have a unique name.

 There is typically little need for additional relationships between
 any two servers but there MAY be more than one failover relationship
 between two servers -- however each MUST have a unique relationship
 name.

 Any failover endpoint can take actions and hold unique states.

 This document frequently describes the behavior of the protocol in
 terms of primary and secondary servers, not primary and secondary
 failover endpoints. However, it is important to remember that every
 'server' described in this document is in reality a failover endpoint
 that resides in a particular process, and that several failover end-
 points may reside in the same server process.

 It is not the case that there is a unique failover endpoint for each
 prefix that participates in a failover relationship. On one server,
 there is (typically) one failover endpoint per partner, regardless of
 how many prefixes are managed by that combination of partner and
 role. Conversely, on a particular server, any given prefix will be
 associated with exactly one failover endpoint.

 When a connection is received from the partner, the unique failover
 endpoint to which the message is directed is determined solely by the
 IP address of the partner, the relationship-name, and the role of the
 receiving server.

6. Resource Allocation

 Currently there are two allocation algorithms defined for resources
 (addresses or prefixes). Additional allocation schemes may be
 defined as future extensions.

Mrugalski & Kinnear Expires January 16, 2014 [Page 13]

Internet-Draft DHCPv6 Failover Design July 2013

 1. Proportional Allocation - This allocation algorithm is a direct
 application of the algorithm defined in [dhcpv4-failover] to
 DHCPv6. Remaining available resources are split between the
 primary and secondary servers in a configured proportion.
 Released resources are always returned to the primary server.
 Primary and secondary servers may initiate a rebalancing
 procedure when disparity between resources available to each
 server reaches a preconfigured threshold. Only resources that
 are not leased to any clients are "owned" by one of the servers.
 This algorithm is particularly well suited for scenarios where
 amount of available resources is limited, as may be the case with
 prefix delegation. See Section 6.1 for details.

 2. Independent Allocation - This allocation algorithm assumes that
 available resources are split between primary and secondary
 servers as well. In this case, however, resources are assigned
 to a specific server for all time, regardless if they are
 available or currently used. This algorithm is much simpler than
 proportional allocation, because resource imbalance doesn't have
 to be checked and there is no rebalancing for independent
 allocation. This algorithm is particularly well suited for
 scenarios where the there is an abundance of available resources
 which is typically the case for DHCPv6 address allocation. See

Section 6.2 for details.

6.1. Proportional Allocation

 In this allocation scheme, each server has its own pool of available
 resources. Remaining available resources are split between the
 primary and secondary servers in a configured proportion. Note that
 a resource is not "owned" by a particular server throughout its
 entire lifetime. Only a resource which is available is "owned" by a
 particular server -- once it has been leased to a client, it is not
 owned by either failover partner. When it finally becomes available
 again, it will be owned initially by the primary server, and it may
 or may not be allocated to the secondary server by the primary
 server.

 The flow of a resource is as follows: initially a resource is owned
 by the primary server. It may be allocated to the secondary server
 if it is available, and then it is owned by the secondary server.
 Either server can allocate available resources which they own to
 clients, in which case they cease to own them. When the client
 releases the resource or the lease on it expires, it will again
 become available and will be owned by the primary.

 A resource will not become owned by the server which allocated it
 initially when it is released or the lease expires because, in

Mrugalski & Kinnear Expires January 16, 2014 [Page 14]

Internet-Draft DHCPv6 Failover Design July 2013

 general, that server will have had to replenish its pool of available
 resources well in advance of any likely lease expirations. Thus,
 having a particular resource cycle back to the secondary might well
 put the secondary more out of balance with respect to the primary
 instead of enhancing the balance of available addresses or prefixes
 between them.

 Pools governed by proportional allocation are used for allocation
 when the server is in all states, except PARTNER-DOWN. In PARTNER-
 DOWN state the healthy partner can allocate from either pool (both
 its own and its partner's). This allocation and maintenance of these
 address pools is an area of some sensitivity, since the goal is to
 maintain a more or less constant ratio of available addresses between
 the two servers.

 The initial allocation when the servers first integrate is triggered
 by the POOLREQ message from the secondary to the primary. This is
 followed by the POOLRESP message where the primary tells the
 secondary how many resources it allocated to the secondary. Then,
 the primary sends the allocated resources to the secondary via BNDUPD
 messages. The POOLREQ/POOLRESP message is a trigger to the primary
 to perform a scan of its database and to ensure that the secondary
 has enough resources (based on some configured ratio).

 The primary server SHOULD examine some or all of its database from
 time to time to determine if resources should be shifted between the
 primary and secondary (in either direction). The POOLREQ/POOLRESP
 message exchange allows the secondary server to explicitly request
 that the primary server examine the entirety of its database to
 ensure that the secondary has the approprite resources available.

 Servers frequently have several kinds of resources available on a
 particular network segment. The failover protocol assumes that both
 primary and secondary servers are configured in such a way that each
 knows the type and number of resources on every network segment
 participating in the failover protocol. The primary server is
 responsible for allocating the secondary server the correct
 proportion of available resources of each kind, and the secondary
 server MUST be configured in such a way that it can tell the kind of
 every resource based solely on the IP or prefix address itself.

 The resources are delegated to the secondary using the BNDUPD message
 with a state of FREE_BACKUP, which indicates the resource is now
 available for allocation by the secondary. Once the message is sent,
 the primary MUST NOT use these resources for allocation to DHCPv6
 clients.

Mrugalski & Kinnear Expires January 16, 2014 [Page 15]

Internet-Draft DHCPv6 Failover Design July 2013

 Available resources can be delegated back to the primary server in
 certain cases. BNDUPD will contain state FREE for leases that were
 previously in FREE_BACKUP state.

 The POOLREQ/POOLRESP message exchange initiated by the secondary is
 valid at any time both partners remain in contact, and the primary
 server SHOULD, whenever it receives the POOLREQ message, scan its
 database of prefixes and determine if the secondary needs more
 resources from any of the prefixes.

 In order to support a reasonably dynamic balance of the resources
 between the failover partners, the primary server needs to do
 additional work to ensure that the secondary server has as many
 resources as it needs (but that it doesn't have more than it needs).

 The primary server SHOULD examine the balance of available resources
 between the primary and secondary for a particular prefix whenever
 the number of available resources for either the primary or secondary
 changes by more than a configured limit. The primary server SHOULD
 adjust the available resource balance as required to ensure the
 configured resource balance, excepting that the primary server SHOULD
 employ some threshold mechanism to such a balance adjustment in order
 to minimize the overhead of maintaining this balance.

 An example of a threshold approach is: do not attempt to re-balance
 the prefixes on the primary and secondary until the out of balance
 value exceeds a configured value.

 The primary server can, at any time, send an available resource to
 the secondary using a BNDUPD with the state BACKUP. The primary
 server can attempt to take an available resource away from the
 secondary by sending a BNDUPD with the state FREE. If the secondary
 accepts the BNDUPD, then the resource is now available to the primary
 and not available to the secondary. Of course, the secondary MUST
 reject that BNDUPD if it has already used that resource for a DHCP
 client.

6.2. Independent Allocation

 In this allocation scheme, available resources are permanently (until
 server configuration changes) split between servers. Available
 resources are split between the primary and secondary servers as part
 of initial connection establishment. Once resources are allocated to
 each server, there is no need to reassign them. The resource
 allocation is algorithmic in nature, and does not require a message
 exchange for each resources allocated. This algorithm is simpler
 than proportional allocation since it requires similar initial
 communication, but does not require a rebalancing mechanism. It

Mrugalski & Kinnear Expires January 16, 2014 [Page 16]

Internet-Draft DHCPv6 Failover Design July 2013

 assumes that the pool assigned to each server will never deplete.
 That is often a reasonable assumption for IPv6 addresses (e.g.
 servers are often assigned a /64 pool that contains many more
 addresses than existing electronic devices on Earth). This
 allocation mechanism SHOULD be used for IPv6 addresses, unless the
 configured address pool is small or is otherwise administratively
 limited.

 Once each server is assigned a resource pool during initial
 connection establishment, it may allocate assigned resources to
 clients. Once a client releases a resource or its lease is expired,
 the returned resource returns to pool for the server that leased it.
 Resources never changes servers.

 Resources using the independent allocation approach are ignored when
 a server processes a POOLREQ message.

 During COMMUNICATION-INTERRUPTED events, a partner MAY continue
 extending existing leases when requested by clients. A healthy
 partner MUST NOT lease resources that were assigned to its downed
 partner and later released by a client unless it is in PARTNER-DOWN
 state. Server SHOULD use its own pool first before starting new
 assignements from its downed partner's pool. As the assumption is
 that independent allocation should be used only when available
 resources are vast and not expected to be fully used at any given
 time, it is very unlikely that the server will ever need to use its
 downed partner pools. This makes a recovery even after prolonged
 down-time much easier.

6.3. Choosing Allocation Algorithm

 All implementations MUST support proportional allocation algorithm
 and SHOULD support independent allocation. If the implementation
 implements both and lets the user choose between them, the default
 algorithm used SHOULD be proportional allocation algorithm.

 Proportional allocation mechanism is more flexible as it can
 dynamically rebalance available resources between servers. That
 balance includes additional burden for the servers and generates more
 traffic between servers. Proportional algorithm can be considered
 more efficient at managing available resources, compared to
 idenpendent. That is important aspect when working in a network that
 is nearing address and/or prefix depletion.

Mrugalski & Kinnear Expires January 16, 2014 [Page 17]

Internet-Draft DHCPv6 Failover Design July 2013

 Independent allocation can be used when the number of available
 resources are large and there is no realistic danger of running out
 of resources. Use of the independent allocation makes communication
 between partners simpler. It also makes recovery easier and
 potential conflict less likely to appear.

 Typically independent allocation is used for IPv6 addresses, because
 even for /64 pools a server will never run out of addresses to
 assign, so there is no need to rebalance. For the prefix delegation
 mechanism, available resources are typically much smaller, so there
 is a danger of running out of prefixes. Therefore typically
 proportional allocation will be used for prefix delegations.
 Independent allocation still may be used, but the implication must be
 well understood. For example in a network that delegates /64
 prefixes out out /48 prefix (so there can be up to 65536 prefixes
 delegated) and a 1000 requesting routers, it is safe to use
 independent allocation.

 It should be stressed out that independent allocation algorithm
 SHOULD NOT be used when number of resources is limited and there is a
 realistic danger of depleting resources. If this recommendation is
 violated, it may lead to a case, when one server denies clients due
 to pool depletion despite the fact the the other partner still have
 many resources available.

 With independent allocation it is very unlikely to remaining healthy
 server to allocate resources from its unavailable partner's pool.
 That makes recovery easier and any potential conflicts are less
 likely to appear.

7. Information model

 In most DHCP servers a resource (an IP address or a prefix) can take
 on several different binding-status values, sometimes also called
 lease states. While no two DHCP server implementations probably have
 exactly the same possible binding-status values, [RFC3315] enforces
 some commonality among the general semantics of the binding-status
 values used by various DHCP server implementations.

 In order to transmit binding database updates between one server and
 another using the failover protocol, some common denominator binding-
 status values must be defined. It is not expected that these values
 correspond with any actual implementation of the DHCP protocol in a
 DHCP server, but rather that the binding-status values defined in
 this document should be a common denominator of those in use by many
 DHCP server implementations.

https://datatracker.ietf.org/doc/html/rfc3315

Mrugalski & Kinnear Expires January 16, 2014 [Page 18]

Internet-Draft DHCPv6 Failover Design July 2013

 The lease binding-status values defined for the failover protocol are
 listed below. Unless otherwise noted below, there MAY be client
 information associated with each of these binding-status value.

 ACTIVE -- The lease is assigned to a client. Client identification
 data MUST appear.

 EXPIRED -- indicates that a client's binding on a given lease has
 expired. When the partner acks the BNDUPD of an expired lease,
 the server sets its internal state to FREE*. Client identification
 SHOULD appear.

 RELEASED -- indicates that a client sent in RELEASE message. When
 the partner acks the BNDUPD of a released lease, the server sets
 its internal state to FREE*. Client identification SHOULD appear.

 FREE* -- Once a lease is expired or released, its state becomes
 FREE*. Depending on which algorithm and which pool was used to
 allocate a given lease, FREE* may either mean FREE or FREE_BACKUP.
 Implementations do not have to implement this FREE* state, but may
 choose to switch to the destination state directly. For a clarity
 of representation, this transitional FREE* state is treated as a
 separate state.

 FREE -- Is used when a DHCP server needs to communicate that a
 resource is unused by any client, but it was not just released,
 expired or reset by a network administrator. When the partner
 acks the BNDUPD of a FREE lease, the server marks the lease as
 available for assignment by the primary server. Note that on a
 secondary server running in PARTNER-DOWN state, after waiting the
 MCLT, the resource MAY be allocated to a client by the secondary
 server if proportional algorithm is used. Client identification
 MAY appear.

 FREE_BACKUP -- indicates that this resource can be allocated by the
 secondary server to a client at any time. Note that the primary
 server running in PARTNER-DOWN state, after waiting the MCLT, the
 resource MAY be allocated to a client by the primary server if
 proportional algorithm was used. Client identification MAY
 appear.

 ABANDONED -- indicates that a lease is considered unusable by the
 DHCP system. The primary reason for entering such state is
 reception of DECLINE message for said lease. Client
 identification MUST NOT appear.

 RESET -- indicates that this resource was previously abandoned, but
 was made available by operator command. This is a distinct state

Mrugalski & Kinnear Expires January 16, 2014 [Page 19]

Internet-Draft DHCPv6 Failover Design July 2013

 so that the reason that the resource became FREE can be
 determined. Client identification MAY appear.

 The lease state machine has been presented in Figure 1. Most states
 are stationary, i.e. the lease stays in a given state until exernal
 event triggers transition to another state. The only transitive
 state is FREE*. One it is reached, the the state machine immediately
 transitions to either FREE or FREE_BACKUP state.

 +---------+
 /------------->| ACTIVE |<--------------\
 | +---------+ |
 | | | | |
 | /--(8)--/ (3) \--(9)-\ |
 | | | | |
 | V V V |
 | +-------+ +--------+ +---------+ |
 | |EXPIRED| |RELEASED| |ABANDONED| |
 | +-------+ +--------+ +---------+ |
 | | | | | |
 | | | (10) |
 | | | V |
 | | | +---------+ |
 | | | | RESET | |
 | | | +---------+ |
 | | | | |
 | \--(4)--\ (4) /--(4)--/ |
 | | | | |
 (1) V V V (2)
 | /---------\ |
 | | FREE* | |
 | \---------/ |
 | | | |
 | /-(5)--/ \-(6)-\ |
 | | | |
 | V V |
 | +-------+ +-----------+ |
 \----| FREE |<--(7)-->|FREE_BACKUP|-----/
 +-------+ +-----------+

 FREE* transition

 Figure 1: Lease State Machine

 Transitions between states are results of the following events:

 1. Primary server allocates a lease.

Mrugalski & Kinnear Expires January 16, 2014 [Page 20]

Internet-Draft DHCPv6 Failover Design July 2013

 2. Secondary server allocates a lease.

 3. Client sends RELEASE and the lease is released.

 4. Partner acknowledges state change. This transition MAY also
 occur if the server is in PARTNER-DOWN state and the MCLT has
 passed since the entry in RELEASED, EXPIRED, or RESET states.

 5. The lease belongs to a pool that is governed by the
 proportional allocation, or independent allocation is used and
 this lease belongs to primary server pool.

 6. The lease belongs to a pool that is governed by the
 independent allocation and the lease belongs to the secondary
 server.

 7. Pool rebalance event occurs (POOLREQ/POOLRESP messages are
 exchanged). Addresses (or prefixes) belonging to the primary
 server can be assigned to the secondary server pool (transition
 from FREE to FREE_BACKUP) or vice versa.

 8. The lease has expired.

 9. DECLINE message is received or a lease is deemed unusable for
 other reasons.

 10. An administrative action is taken to recover an abandoned
 lease back to usable state. This transition MAY occur due to an
 implementation specific handling on ABANDONED resource. One
 possible example of such use is a Neighbor Discovery or ICMP Echo
 check if the address is still in use.

 The resource that is no longer in use (due to expiration or release),
 becomes FREE*. Depending of what allocation algorithm is used, the
 resource that is no longer is use, returns to primary (FREE) or
 secondary pool (FREE_BACKUP). The conditions for specific
 transitions are depicted in Figure 2.

 +---------------+---------+-----------+
 | \ Pool owner| | |
 | \-------\ | Primary | Secondary |
 |Algorithm \ | | |
 +---------------+---------+-----------+
 | Proportional | FREE | FREE |
 | Independent | FREE |FREE_BACKUP|
 +---------------+---------+-----------+

 Figure 2: FREE* State Transitions

Mrugalski & Kinnear Expires January 16, 2014 [Page 21]

Internet-Draft DHCPv6 Failover Design July 2013

 In case of servers operating in active-passive mode, while a majority
 of the resources are owned by the primary server, the secondary
 server will need a portion of the resources to serve new clients
 while operating in COMMUNICATION-INTERRUPTED state and also in
 PARTNER-DOWN state before it can take over the entire address pool
 (after the expiry of MCLT).

 The secondary server connot simply take over the entire resource pool
 immediately, since we have to handle the case where both servers are
 able to communicate with DHCP clients, but unable to communicate with
 each other.

 The size of the resource pool allocated to the secondary is specified
 as a percentage of the currently available resources. Thus, as the
 number of available resources changes on the primary server, the
 number of resources available to the secondary server MUST also
 change, although the frequency of the changes made to the secondary
 server's pool of address resources SHOULD be low enough to not use
 significant processing power or network bandwidth.

 The required size of this private pool allocated to the secondary
 server is based only on the arrival rate of new DHCP clients and the
 length of expected downtime of the primary server, and is not
 directly influenced by the total number of DHCP clients supported by
 the server pair.

8. Failover Mechanisms

 This section lays out an overview of the communication between
 partners and other mechanisms required for failover operation. As
 this is a design document, not a protocol specification, high level
 ideas are presented without implementation specific details (e.g. on-
 wire protocol formats).

8.1. Time Skew

 Partners exchange information about known lease states. To reliably
 compare a known lease state with an update received from a partner,
 servers must be able to reliably compare the times stored in the
 known lease state with the times received in the update. Although a
 simple approach would be to require both partners to use synchronized
 time, e.g. by using NTP, such a service may not always be available
 in some scenarios that failover expects to cover. Therefore a
 mechanism to measure and track relative time differences between
 servers is necessary. To do so, each message MUST contain
 information about the time of the transmission in the time context of
 the transmitter. The transmitting server MUST set this as close to
 the actual transmission as possible. The receiving partner MUST

Mrugalski & Kinnear Expires January 16, 2014 [Page 22]

Internet-Draft DHCPv6 Failover Design July 2013

 store its own timestamp of reception as close to the actual reception
 as possible. The received timestamp information is then compared
 with local timestamp.

 To account for packet delay variation (jitter), the measured
 difference is not used directly, but rather the moving average of
 last TIME_SKEW_PKTS_AVG packets time difference is calculated. This
 averaged value is referred to as the time skew. Note that the time
 skew algorithm allows cooperation between clients with completely
 desynchronized clocks as well as those whose desynchronization itself
 is not constant.

8.2. Time expression

 Timestamps are expressed as number of seconds since midnight (UTC),
 January 1, 2000, modulo 2^32. Note: that is the same approach as
 used in creation of DUID-LLT (see Section 9.2 of [RFC3315]).

 Time differences are expressed in seconds and are signed.

8.3. Lazy updates

 Lazy update refers to the requirement placed on a server implementing
 a failover protocol to update its failover partner whenever the
 binding database changes. A failover protocol which didn't support
 lazy update would require the failover partner update to complete
 before a DHCPv6 server could respond to a DHCPv6 client request.
 Such approach is often referred to as 'lockstep' and is the opposite
 of lazy updates. The lazy update mechanism allows a server to
 allocate a new or extend an existing lease and then update its
 failover partner as time permits.

 Although the lazy update mechanism does not introduce additional
 delays in server response times, it introduces other difficulties.
 The key problem with lazy update is that when a server fails after
 updating a client with a particular lease time and before updating
 its partner, the partner will believe that a lease has expired even
 though the client still retains a valid lease on that address or
 prefix.

8.4. MCLT concept

https://datatracker.ietf.org/doc/html/rfc3315#section-9.2

Mrugalski & Kinnear Expires January 16, 2014 [Page 23]

Internet-Draft DHCPv6 Failover Design July 2013

 In order to handle problem introduced by lazy updates (see
Section 8.3), a period of time known as the "Maximum Client Lead

 Time" (MCLT) is defined and must be known to both the primary and
 secondary servers. Proper use of this time interval places an upper
 bound on the difference allowed between the lease time provided to a
 DHCPv6 client by a server and the lease time known by that server's
 failover partner.

 The MCLT is typically much less than the lease time that a server has
 been configured to offer a client, and so some strategy must exist to
 allow a server to offer the configured lease time to a client.
 During a lazy update the updating server typically updates its
 partner with a potential expiration time which is longer than the
 lease time previously given to the client and which is longer than
 the lease time that the server has been configured to give a client.
 This allows that server to give a longer lease time to the client the
 next time the client renews its lease, since the time that it will
 give to the client will not exceed the MCLT beyond the potential
 expiration time acknowledged by its partner.

 The fundamental relationship on which much of the correctness of this
 protocol depends is that the lease expiration time known to a DHCPv6
 client MUST NOT be greater by more than the MCLT beyond the potential
 expiration time known to that server's failover partner.

 The remainder of this section makes the above fundamental
 relationship more explicit.

 This protocol requires a DHCPv6 server to deal with several different
 lease intervals and places specific restrictions on their
 relationships. The purpose of these restrictions is to allow the
 other server in the pair to be able to make certain assumptions in
 the absence of an ability to communicate between servers.

 The different times are:

 desired valid lifetime:
 The desired valid lifetime is the lease interval that a DHCPv6
 server would like to give to a DHCPv6 client in the absence of any
 restrictions imposed by the failover protocol. Its determination
 is outside of the scope of this protocol. Typically this is the
 result of external configuration of a DHCPv6 server.

 actual valid lifetime:
 The actual valid lifetime is the lease interval that a DHCPv6
 server gives out to a DHCPv6 client. It may be shorter than the
 desired valid lifetime (as explained below).

Mrugalski & Kinnear Expires January 16, 2014 [Page 24]

Internet-Draft DHCPv6 Failover Design July 2013

 potential valid lifetime:
 The potential valid lifetime is the potential lease expiration
 interval the local server tells to its partner in a BNDUPD
 message.

 acknowledged potential valid lifetime:
 The acknowledged potential valid lifetime is the potential lease
 interval the partner server has most recently acknowledged in a
 BNDACK message.

8.4.1. MCLT example

 The following example demonstrates the MCLT concept in practice. The
 values used are arbitrarily chosen are and not a recommendation for
 actual values. The MCLT in this case is 1 hour. The desired valid
 lifetime is 3 days, and its renewal time is half the valid lifetime.

 When a server makes an offer for a new lease on an IP address to a
 DHCPv6 client, it determines the desired valid lifetime (in this
 case, 3 days). It then examines the acknowledged potential valid
 lifetime (which in this case is zero) and determines the remainder of
 the time left to run, which is also zero. It adds the MCLT to this
 value. Since the actual valid lifetime cannot be allowed to exceed
 the remainder of the current acknowledged potential valid lifetime
 plus the MCLT, the offer made to the client is for the remainder of
 the current acknowledged potential valid lifetime (i.e. zero) plus
 the MCLT. Thus, the actual valid lifetime is 1 hour.

 Once the server has sent the REPLY to the DHCPv6 client, it will
 update its failover partner with the lease information. However, the
 desired potential valid lifetime will be composed of one half of the
 current actual valid lifetime added to the desired valid lifetime.
 Thus, the failover partner is updated with a BNDUPD with a potential
 valid lifetime of 3 days + 1/2 hour.

 When the primary server receives a BNDACK to its update of the
 secondary server's (partner's) potential valid lifetime, it records
 that as the acknowledged potential valid lifetime. A server MUST NOT
 send a BNDACK in response to a BNDUPD message until it is sure that
 the information in the BNDUPD message has been updated in its lease
 database. Thus, the primary server in this case can be sure that the
 secondary server has recorded the potential lease interval in its
 stable storage when the primary server receives a BNDACK message from
 the secondary server.

 When the DHCPv6 client attempts to renew at T1 (approximately one
 half an hour from the start of the lease), the primary server again
 determines the desired valid lifetime, which is still 3 days. It

Mrugalski & Kinnear Expires January 16, 2014 [Page 25]

Internet-Draft DHCPv6 Failover Design July 2013

 then compares this with the original acknowledged potential valid
 lifetime (3 days + 1/2 hour) and adjusts for the time passed since
 the secondary was last updated (1/2 hour). Thus the time remaining
 of the acknowledged potential valid interval is 3 days. Adding the
 MCLT to this yields 3 days plus 1 hour, which is more than the
 desired valid lifetime of 3 days. So the client is renewed for the
 desired valid lifetime -- 3 days.

 When the primary DHCPv6 server updates the secondary DHCPv6 server
 after the DHCPv6 client's renewal REPLY is complete, it will
 calculate the desired potential valid lifetime as the T1 fraction of
 the actual client valid lifetime (1/2 of 3 days this time = 1.5
 days). To this it will add the desired client valid lifetime of 3
 days, yielding a total desired potential valid lifetime of 4.5 days.
 In this way, the primary attempts to have the secondary always "lead"
 the client in its understanding of the client's valid lifetime so as
 to be able to always offer the client the desired client valid
 lifetime.

 Once the initial actual client valid lifetime of the MCLT is past,
 the protocol operates effectively like the DHCPv6 protocol does today
 in its behavior concerning valid lifetimes. However, the guarantee
 that the actual client valid lifetime will never exceed the remaining
 acknowledged partner server potential valid lifetime by more than the
 MCLT allows full recovery from a variety of failures.

8.5. Unreachability detection

 Each partner MUST maintain a FO_SEND timer for each failover
 connection. The FO_SEND timer is reset every time any message is
 transmitted. If the timer reaches the FO_SEND_MAX value, a CONTACT
 message is transmitted and timer is reset. The CONTACT message may
 be transmitted at any time. Implementation MAY use additional
 mechanisms to detect partner unreachability.

 Implementors are advised to keep in mind that the timer based CONTACT
 message mechanism is not perfect and may not detect some failures.
 In particular, if the partner is using one interface to reach clients
 ("downlink") and another to reach its partner ("uplink"), it is
 possible that communication with the clients will break, yet the
 mechanism will still claim full reachability. For that reason it is
 beneficial to share the same interface for client traffic and
 communication with the failover partner. That approach may have
 drawbacks in some network topologies.

8.6. Re-allocating Leases

Mrugalski & Kinnear Expires January 16, 2014 [Page 26]

Internet-Draft DHCPv6 Failover Design July 2013

 When in PARTNER-DOWN state there is a waiting period after which a
 resource can be re-allocated to another client. For resources which
 are available when the server enters PARTNER-DOWN state, the period
 is the MCLT from the entry into PARTNER-DOWN state. For resources
 which are not available when the server enters PARTNER-DOWN state,
 the period is the MCLT after the later of the following times: the
 potential valid lifetime, the most recently transmitted potential
 valid lifetime, the most recently received acknowledged potential
 valid lifetime, and the most recently transmitted acknowledged
 potential valid lifetime. If this time would be earlier than the
 current time plus the MCLT, then the time the server entered PARTNER-
 DOWN state plus the maximum-client-lead-time is used.

 In any other state, a server cannot reallocate a resource from one
 client to another without first notifying its partner (through a
 BNDUPD message) and receiving acknowledgement (through a BNDACK mes-
 sage) that its partner is aware that that first client is not using
 the resource.

 This could be modeled in the following way. Though this specific
 implementation is in no way required, it may serve to better illus-
 trate the concept.

 An "available" resource on a server may be allocated to any client.
 A resource which was leased to a client and which expired or was
 released by that client would take on a new state, EXPIRED or
 RELEASED respectively. The partner server would then be notified
 that this resource was EXPIRED or RELEASED through a BNDUPD. When
 the sending server received the BNDACK for that resource showing it
 was FREE, it would move the resource from EXPIRED or RELEASED to
 FREE, and it would be available for allocation by the primary server
 to any clients.

 A server MAY reallocate a resource in the EXPIRED or RELEASED state
 to the same client with no restrictions provided it has not sent a
 BNDUPD message to its partner. This situation would exist if the
 lease expired or was released after the transition into PARTNER-DOWN
 state, for instance.

8.7. Sending Binding Update

Mrugalski & Kinnear Expires January 16, 2014 [Page 27]

Internet-Draft DHCPv6 Failover Design July 2013

 This and the following section is written as though every BNDUPD
 message contains only a single binding update transaction in order to
 reduce the complexity of the discussion. Note that while a server
 MAY generate BNDUPD messages with multiple binding update
 transactions, every server MUST be able to process a BNDUPD message
 which contains multiple binding update transactions and generate the
 corresponding BNDACK messages with status for multiple binding update
 transactions.

 Each server updates its failover partner about recent changes in
 lease states. Each update MUST include at least the following
 information:

 1. resource type - non-temporary address or a prefix. Resource
 type can be indicated by the container that conveys the actual
 resource (e.g. an IA_NA option indicates non-temporary IPv6
 address);

 2. resource information - the actual address or prefix. That is
 conveyed using the appropriate option, e.g. an IAADDR for an
 address or an IAPREFIX for a prefix;

 3. valid life time requested by client*;

 4. valid life time sent to client*;

 5. IAID - Identity Association used by the client, while obtaining
 a given lease. (Note1: one client may use many IAIDs
 simulatenously. Note2: IAID for IA, TA and PD are orthogonal
 number spaces.)*;

 6. Next Expected Client Transmission - time interval since Client
 Last Transmission Time, when a response from a client is
 expected*;

 7. potential valid life time - a lifetime that the server is
 willing to set if there were no MCLT/failover restrictions
 imposed*;

 8. preferred life time sent to client - the actual value sent back
 to the client*;

 9. CLTT - Client Last Transaction Time, a timestamp of the last
 received transmission from a client*;

 10. Client DUID*.

Mrugalski & Kinnear Expires January 16, 2014 [Page 28]

Internet-Draft DHCPv6 Failover Design July 2013

 Items marked with asterisk MUST appear only if the lease is/was
 associated with a client. Otherwise it MUST NOT appear, e.g. for
 updates from FREE to FREE_BACKUP state. Server MUST reject updates
 that does not include any of the aforementioned information.

 The BNDUPD message MAY contain additional information related to the
 updated lease. The additional information MAY include, but is not
 limited to:

 1. assigned FQDN name, defined in [RFC4704];

 2. Options Requested by the client, i.e. content of the ORO;

 3. Remote-ID, defined in [RFC4649];

 4. Relay-ID, defined in [RFC5460], section 5.4.1;

 5. Link-layer address [RFC6939];

 6. Any other options the updating partner deems useful.

 Receiving partner MAY store received additional information, but it
 MAY choose to ignore them as well. Some information may be useful,
 so it is a good idea to keep or update it. One reason is FQDN
 information. A server SHOULD be prepared to clean up DNS information
 once the lease expires or is released. See Section Section 11 for
 detailed discussion about Dynamic DNS. Another reason the partner
 may be interested in keeping additional data is a better support for
 leasequery [RFC5007] or bulk leasequery [RFC5460], which features
 queries based on Relay-ID, by link address and by Remote-ID.

8.8. Receiving Binding Update

 When a server receives a BNDUPD message, it needs to decide how to
 process the binding update transaction it contains and whether that
 transaction represents a conflict of any sort. The conflict
 resolution process MUST be used on the receipt of every BNDUPD
 message, not just those that are received while in POTENTIAL-CONFLICT
 state, in order to increase the robustness of the protocol.

 There are three sorts of conflicts:

 1. Two clients, one resource - This is the duplicate resource
 allocation conflict. There two different clients each allocated
 the same resource. See Section 8.9.

 2. Two resources, one client conflict - This conflict exists when a
 client on one server is associated with a one resource, and on

https://datatracker.ietf.org/doc/html/rfc4704
https://datatracker.ietf.org/doc/html/rfc4649
https://datatracker.ietf.org/doc/html/rfc5460#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc6939
https://datatracker.ietf.org/doc/html/rfc5007
https://datatracker.ietf.org/doc/html/rfc5460

Mrugalski & Kinnear Expires January 16, 2014 [Page 29]

Internet-Draft DHCPv6 Failover Design July 2013

 the other server with a different resource in the same or related
 subnet. This does not refer to the case where a single client
 has resources in multiple different subnets or administrative
 domains (i.e. a mobile client that changed its location), but
 rather the case where on the same subnet the client has a lease
 on one IP address in one server and on a different IP address on
 the other server.

 This conflict may or may not be a problem for a given DHCP server
 implementation and policy. If implementations and policies
 allow, both resources can be assigned to a given client. In the
 event that a DHCP server requires that a DHCP client have only
 one outstanding lease of a given type, the conflict MUST be
 resolved by accepting the lease which has the latest CLTT.

 It should be further clarified that DHCPv6 protocol makes
 assignments based on (client DUID, resource type, iaid) triplet.
 The possibility of using different IAIDs was omitted in this
 paragraph for clarity. If one client is assigned multiple
 resources of the same type, but with different IAIDs, there is no
 conflict. Also, iaid values for different resource types are
 orthogonal, i.e. IA_NA with iaid=1 is different than IA_PD with
 iaid=1 and there is no conflict.

 3. binding-status conflict - This is normal conflict, where one
 server is updating the other with newer information. See

Section 8.9 for details of how to resolve these conflicts.

8.9. Conflict Resolution

 The server receiving a lease update from its partner must evaluate
 the received lease information to see if it is consistent with
 already known state and decide which information - the previously
 known or that just received - is "better". The server should take
 into consideration the following aspects: if the lease is already
 assigned to a specific client, who had contact with client recently,
 start time of the lease, etc.

 When analyzing a BNDUPD message from a partner server, if there is
 insufficient information in the BNDUPD to process it, then reject the
 BNDUPD with reject-reason "Missing binding information".

 If the resource in the BNDUPD is not a resource associated with the
 failover endpoint which received the BNDUPD message, then reject it
 with reject-reason "Illegal IP address or prefix (not part of any
 address or prefix pool)".

Mrugalski & Kinnear Expires January 16, 2014 [Page 30]

Internet-Draft DHCPv6 Failover Design July 2013

 Every BNDUPD message SHOULD contain a client-last-transaction-time
 option, which MUST, if it appears, be the time that the server last
 interacted with the DHCP client. It MUST NOT be, for instance, the
 time that the lease on an IP address expired. If there has been no
 interaction with the DHCP client in question (or there is no DHCP
 client presently associated with this resource), then there will be
 no client-last-transaction-time option in the BNDUPD message.

 The list in Figure 3 presents the conflict resolution outcome. To
 "accept" BNDUPD means to update the server's bindings database with
 the information contained in the BNDUDP and once the update is
 complete, send a BNDACK message corresponding to the BNDUPD message.
 To "reject" a BNDUPD means to lease the server's binding database
 unchangeg and to respond to the BNDUPD with BNDACK with a rejest-
 reason option included.

 When interpreting the information in the following table (Figure 3),
 for those rules that are listed with "time" -- if a BNDUPD doesn't
 have a client-last-transaction-time value, then it MUST NOT be
 considered later than the client-last-transaction-time in the
 receiving server's binding. If the BNDUPD contains a client-last-
 transaction-time value and the receiving server's binding does not,
 then the client-last-transaction-time value in the BNDUPD MUST be
 considered later than the server's.

 binding-status in received BNDUPD.
 binding-status
 in receiving FREE RESET
 server ACTIVE EXPIRED RELEASED FREE_BACKUP ABANDONED

 ACTIVE accept(5) time(2) time(1) time(2) accept
 EXPIRED time(1) accept accept accept accept
 RELEASED time(1) time(1) accept accept accept
 FREE/FREE_BACKUP accept accept accept accept accept
 RESET time(3) accept accept accept accept
 ABANDONED reject(4) reject(4) reject(4) reject(4) accept

 Figure 3: Conflict Resolution

 time(1): If the client-last-transaction-time in the BNDUPD is later
 than the client-last-transaction-time in the receiving server's
 binding, accept it, else reject it.

 time(2): If the current time is later than the receiving server's
 lease-expiration-time, accept it, else reject it.

Mrugalski & Kinnear Expires January 16, 2014 [Page 31]

Internet-Draft DHCPv6 Failover Design July 2013

 time(3): If the client-last-transaction-time in the BNDUPD is later
 than the start-time-of-state in the receiving server's binding,
 accept it, else reject it.

 (1,2,3): If rejecting, use reject reason "Outdated binding
 information".

 (4): Use reject reason "Less critical binding information".

 (5): If the clients in a BNDUPD message and in a receiving server's
 binding differ, then if the receiving server is a secondary accept
 it, else reject it with a reject reason of "Fatal conflict exists:
 address in use by other client".

 The lease update may be accepted or rejected. Rejection SHOULD NOT
 change the flag in a lease that says that it should be transmitted to
 the failover partner. If this flag is set, then it should be
 transmitted, but if it is not already set, the rejection of a lease
 state update SHOULD NOT trigger an automatic update of the failover
 partner sending the rejected update. The potential for update storms
 is too great, and in the unusual case where the servers simply can't
 agree, that disagreement is better than an update storm.

8.10. Acknowledging Reception

 Upon acceptance of a binding lease, server must notify its partner
 that it updated its database. Server SHOULD NOT send BNDACK before
 its database is updated. BNDACK MUST contain at lease minimum set of
 information required to unabiguously identify BNDUDP.

9. Endpoint States

9.1. State Machine Operation

 Each server (or, more accurately, failover endpoint) can take on a
 variety of failover states. These states play a crucial role in
 determining the actions that a server will perform when processing a
 request from a DHCPv6 client as well as dealing with changing
 external conditions (e.g., loss of connection to a failover partner).

 The failover state in which a server is running controls the
 following behaviors:

 o Responsiveness -- the server is either responsive to DHCPv6 client
 requests or it is not.

Mrugalski & Kinnear Expires January 16, 2014 [Page 32]

Internet-Draft DHCPv6 Failover Design July 2013

 o Allocation Pool -- which pool of addresses (or prefixes) can be
 used for advertisement on receipt of a SOLICIT or allocation on
 receipt of a REQUEST message.

 o MCLT -- ensure that valid lifetimes are not beyond what the
 partner has acked plus the MCLT (or not).

 A server will transition from one failover state to another based on
 the specific values held by the following state variables:

 o Current failover state.

 o Communications status (OK or not OK).

 o Partner's failover state (if known).

 Several events can cause the transition from one failover state to
 another.

 o Change in communications status (OK or not OK);

 o Change in partner's failover state;

 o Explicit administrative action;

 o Receipt of particular messages;

 o Expiration of timers.

 Whenever either of the last two of the above state variables changes
 state, the state machine is invoked, which may then trigger a change
 in the current failove state. Thus, whenever the communications
 status changes, the state machine processing is invoked. This may or
 may not result in a change in the current failover state.

 Whenever a server transitions to a new failover state, the new state
 MUST be communicated to its failover partner in a STATE message if
 the communications status is OK. In addition, whenever a server
 makes a transition into a new state, it MUST record the new state,
 its current understanding of its partner's state, and the time at
 which it entered the new state in stable storage.

 The following state transition diagram gives a condensed view of the
 state machine. If there is a difference between the words describing
 a particular state and the diagram below, the words should be
 considered authoritative.

Mrugalski & Kinnear Expires January 16, 2014 [Page 33]

Internet-Draft DHCPv6 Failover Design July 2013

 In the state transition diagram below, the "+" or "-" in the upper
 right corner of each state is a notation about whether communication
 is ongoing with the other server.

 +---------------+ V +--------------+
 | RECOVER -|+| | | STARTUP - |
 |(unresponsive) | +->+(unresponsive)|
 +------+--------+ +--------------+
 +-Comm. OK +-----------------+
 | Other State: | PARTNER DOWN - +<---------------------+
 | RESOLUTION-INTER. | (responsive) | ^
 All POTENTIAL- +----+------------+ |
 Others CONFLICT------------ | --------+ |
 | CONFLICT-DONE Comm. OK | +--------------+ |
 UPDREQ or Other State: | +--+ RESOLUTION - | |
 UPDREQALL | | | | | INTERRUPTED | |
 Rcv UPDDONE RECOVER All | | | (responsive) | |
 | +---------------+ | Others | | +------------+-+ |
 +->+RECOVER-WAIT +-| RECOVER | | | ^ | |
 |(unresponsive) | WAIT or | | Comm. | Ext. |
 +-----------+---+ DONE | | OK Comm. Cmd---->+
 Comm.---+ Wait MCLT | V V V Failed |
 Changed | V +---+ +---+-----+--+-+ | |
 | +---+----------++ | | POTENTIAL + +-------+ |
 | |RECOVER-DONE +-| Wait | CONFLICT +------+ |
 +->+(unresponsive) | for |(unresponsive)| Primary |
 +------+--------+ Other +>+----+--------++ resolve Comm. |
 Comm. OK State: | | ^ conflict Changed|
 +---Other State:-+ RECOVER | Secondary | V V | |
		DONE	resolve	++----------+---++		
All Others: POTENT.		conflict		CONFLICT-DONE-	+	
Wait for CONFLICT--	-----+			(responsive)		
Other State: V V	+------+---------+					
NORMAL or RECOVER ++------------+---+	Other State: NORMAL					
	DONE	NORMAL + +<--------------+				
+--+----------+-->+ (balanced) +-------External Command-->+						
^ ^ +--------+--------+						
Wait for Comm. OK Comm. Failed						
Other Other		External				
State: State:		Command				
RECOVER-DONE NORMAL Start Safe Comm. OK or						
	COMM. INT. Period Timer Other State: Safe					
Comm. OK.	V All Others Period					
Other State:	+---------+--------+	expiration				
RECOVER +--+ COMMUNICATIONS - +----+						
+-------------+ INTERRUPTED						
 RECOVER | (responsive) +------------------------->+

Mrugalski & Kinnear Expires January 16, 2014 [Page 34]

Internet-Draft DHCPv6 Failover Design July 2013

 RECOVER-WAIT--------->+------------------+

 Figure 4: Failover Endpoint State Machine

9.2. State Machine Initialization

 The state machine is characterized by storage (in stable storage) of
 at least the following information:

 o Current failover state.

 o Previous failover state.

 o Start time of current failover state.

 o Partner's failover state.

 o Start time of partner's failover state.

 o Time most recent packet received from partner.

 The state machine is initialized by reading these data items from
 stable storage and restoring their values from the information saved.
 If there is no information in stable storage concerning these items,
 then they should be initialized as follows:

 o Current failover state: Primary: PARTNER-DOWN, Secondary: RECOVER

 o Previous failover state: None.

 o Start time of current failover state: Current time.

 o Partner's failover state: None until reception of STATE message.

 o Start time of partner's failover state: None until reception of
 STATE message.

 o Time most recent packet received from partner: None until packet
 received.

9.3. STARTUP State

 The STARTUP state affords an opportunity for a server to probe its
 partner server, before starting to service DHCP clients. When in the
 STARTUP state, a server attempts to learn its partner's state and
 determine (using that information if it is available) what state it
 should enter.

Mrugalski & Kinnear Expires January 16, 2014 [Page 35]

Internet-Draft DHCPv6 Failover Design July 2013

 The STARTUP state is not shown with any specific state transitions in
 the state machine diagram (Figure 4) because the processing during
 the STARTUP state can cause the server to transition to any of the
 other states, so that specific state transition arcs would only
 obscure other information.

9.3.1. Operation in STARTUP State

 The server MUST NOT be responsive in STARTUP state.

 Whenever a STATE message is sent to the partner while in STARTUP
 state the STARTUP flag MUST be set in the message and the previously
 recorded failover state MUST be placed in the server-state option.

9.3.2. Transition Out of STARTUP State

 The following algorithm is followed every time the server initializes
 itself, and enters STARTUP state.

 Step 1:

 If there is any record in stable storage of a previous failover state
 for this server, set PREVIOUS-STATE to the last recorded value in
 stable storage, and go to Step 2.

 If there is no record of any previous failover state in stable
 storage for this server, then set the PREVIOUS-STATE to RECOVER and
 set the TIME-OF-FAILURE to 0. This will allow two servers which
 already have lease information to synchronize themselves prior to
 operating.

 In some cases, an existing server will be commissioned as a failover
 server and brought back into operation where its partner is not yet
 available. In this case, the newly commissioned failover server will
 not operate until its partner comes online -- but it has operational
 responsibilities as a DHCP server nonetheless. To properly handle
 this situation, a server SHOULD be configurable in such a way as to
 move directly into PARTNER-DOWN state after the startup period
 expires if it has been unable to contact its partner during the
 startup period.

 Step 2:

 Implementations will differ in the ways that they deal with the state
 machine for failover endpoint states. In many cases, state
 transitions will occur when communications goes from "OK" to failoed,
 or from failed to "OK", and some implementations will implement a
 portion of their state machine processing based on these changes.

Mrugalski & Kinnear Expires January 16, 2014 [Page 36]

Internet-Draft DHCPv6 Failover Design July 2013

 In these cases, during startup, if the previous state is one where
 communications was "OK", then set the previous state to the state
 that is the result of the communications failed state transition when
 in that state (if such transition exists -- some states don't have a
 communications failed state transition, since they allow both
 communications OK and failed).

 Step 3:

 Start the STARTUP state timer. The time that a server remains in the
 STARTUP state (absent any communications with its partner) is
 implementation dependent but SHOULD be short. It SHOULD be long
 enough for a TCP connection to be created to a heavily loaded partner
 across a slow network.

 Step 4:

 Attempt to create a TCP connection to the failover partner.

 Step 5:

 Wait for "communications OK".

 When and if communications become "okay", clear the STARTUP flag, and
 set the current state to the PREVIOUS-STATE.

 If the partner is in PARTNER-DOWN state, and if the time at which it
 entered PARTNER-DOWN state (as received in the start-time-of-state
 option in the STATE message) is later than the last recorded time of
 operation of this server, then set CURRENT-STATE to RECOVER. If the
 time at which it entered PARTNER-DOWN state is earlier than the last
 recorded time of operation of this server, then set CURRENT-STATE to
 POTENTIAL-CONFLICT.

 Then, transition to the current state and take the "communications
 OK" state transition based on the current state of this server and
 the partner.

 Step 6:

 If the startup time expires the server SHOULD transition to the
 PREVIOUS-STATE.

Mrugalski & Kinnear Expires January 16, 2014 [Page 37]

Internet-Draft DHCPv6 Failover Design July 2013

9.4. PARTNER-DOWN State

 PARTNER-DOWN state is a state either server can enter. When in this
 state, the server assumes that it is the only server operating and
 serving the client base. If one server is in PARTNER-DOWN state, the
 other server MUST NOT be operating.

 A server can enter PARTNER-DOWN state either as a result of operator
 intervention (when an operator determines that the server's partner
 is, indeed, down), or as a result of the auto-partner-down capability
 where PARTNER-DOWN state is entered automatically after a server has
 been in COMMUNICATIONS-INTERRUPTED state for a pre-determined period
 of time.

9.4.1. Operation in PARTNER-DOWN State

 The server MUST be responsive in PARTNER-DOWN state, regardess if it
 is primary or secondary.

 It will allow renewal of all outstanding leases on addresses or
 prefixes. For those resources for which the server is using
 proportional allocation, it will allocate resources from its own
 pool, and after a fixed period of time (the MCLT interval) has
 elapsed from entry into PARTNER-DOWN state, it may allocate IP
 addresses from the set of all available pools. Server SHOULD fully
 deplete its own pool, before starting allocations from its downed
 partner.

 Any resource tagged as available for allocation by the other server
 (at entry to PARTNER-DOWN state) MUST NOT be allocated to a new
 client until the MCLT beyond the entry into PARTNER-DOWN state has
 elapsed.

 A server in PARTNER-DOWN state MUST NOT allocate a resource to a DHCP
 client different from that to which it was allocated at the entrance
 to PARTNER-DOWN state until the MCLT beyond the maximum of the
 following times: client expiration time, most recently transmitted
 potential-expiration-time, most recently received ack of potential-
 expiration-time from the partner, and most recently acked potential-
 expiration-time to the partner. If this time would be earlier than
 the current time plus the maximum-client-lead-time, then the time the
 server entered PARTNER-DOWN state plus the maximum-client-lead-time
 is used.

 The server is not restricted by the MCLT when offering lease times
 while in PARTNER-DOWN state.

Mrugalski & Kinnear Expires January 16, 2014 [Page 38]

Internet-Draft DHCPv6 Failover Design July 2013

 In the unlikely case, when there are two servers operating in a
 PARTNER-DOWN state, there is a chance of duplicate leases assigned.
 This leads to a POTENTIAL-CONFLICT (unresponsive) state when they re-
 establish contact. The duplicate lease issue can be postponed to a
 large extent by the server granting new leases first from its own
 pool. Therefore the server operating in PARTNER-DOWN state MUST use
 its own pool first for new leases before assigning any leases from
 its downed partner pool.

9.4.2. Transition Out of PARTNER-DOWN State

 When a server in PARTNER-DOWN state succeeds in establishing a con-
 nection to its partner, its actions are conditional on the state and
 flags received in the STATE message from the other server as part of
 the process of establishing the connection.

 If the STARTUP bit is set in the server-flags option of a received
 STATE message, a server in PARTNER-DOWN state MUST NOT take any state
 transitions based on reestablishing communications. Essentially, if
 a server is in PARTNER-DOWN state, it ignores all STATE messages from
 its partner that have the STARTUP bit set in the server-flags option
 of the STATE message.

 If the STARTUP bit is not set in the server-flags option of a STATE
 message received from its partner, then a server in PARTNER-DOWN
 state takes the following actions based on the state of the partner
 as received in a STATE message (either immediately after establishing
 communications or at any time later when a new state is received)

 If the partner is in:

 NORMAL, COMMUNICATIONS-INTERRUPTED, PARTNER-DOWN, POTENTIAL-CONFLICT,
 RESOLUTION-INTERRUPTED, or CONFLICT-DONE state

 transition to POTENTIAL-CONFLICT state

 If the partner is in:

 RECOVER, RECOVER-WAIT state

 stay in PARTNER-DOWN state

 If the partner is in:

 RECOVER-DONE state

 transition into NORMAL state

Mrugalski & Kinnear Expires January 16, 2014 [Page 39]

Internet-Draft DHCPv6 Failover Design July 2013

9.5. RECOVER State

 This state indicates that the server has no information in its stable
 storage or that it is re-integrating with a server in PARTNER-DOWN
 state after it has been down. A server in this state MUST attempt to
 refresh its stable storage from the other server.

9.5.1. Operation in RECOVER State

 The server MUST NOT be responsive in RECOVER state.

 A server in RECOVER state will attempt to reestablish communications
 with the other server.

9.5.2. Transition Out of RECOVER State

 If the other server is in POTENTIAL-CONFLICT, RESOLUTION-INTERRUPTED,
 or CONFLICT-DONE state when communications are reestablished, then
 the server in RECOVER state will move to POTENTIAL-CONFLICT state
 itself.

 If the other server is in any other state, then the server in RECOVER
 state will request an update of missing binding information by
 sending an UPDREQ message. If the server has determined that it has
 lost its stable storage because it has no record of ever having
 talked to its partner, while its partner does have a record of
 communicating with it, it MUST send an UPDREQALL message, otherwise
 it MUST send an UPDREQ message.

 It will wait for an UPDDONE message, and upon receipt of that message
 it will transition to RECOVER-WAIT state.

 If communications fails during the reception of the results of the
 UPDREQ or UPDREQALL message, the server will remain in RECOVER state,
 and will re-issue the UPDREQ or UPDREQALL when communications are re-
 established.

 If an UPDDONE message isn't received within an implementation
 dependent amount of time, and no BNDUPD messages are being received,
 the connection SHOULD be dropped.

 A B
 Server Server

 | |
 RECOVER PARTNER-DOWN
 | |
 | >--UPDREQ--------------------> |

Mrugalski & Kinnear Expires January 16, 2014 [Page 40]

Internet-Draft DHCPv6 Failover Design July 2013

 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |

 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |
 | |
 | <--------------------UPDDONE--< |
 | |
 RECOVER-WAIT |
 | |
 | >--STATE-(RECOVER-WAIT)------> |
 | |
 | |
 Wait MCLT from last known |
 time of failover operation |
 | |
 RECOVER-DONE |
 | |
 | >--STATE-(RECOVER-DONE)------> |
 | NORMAL
 | <-------------(NORMAL)-STATE--< |
 NORMAL |
 | >---- State-(NORMAL)---------------> |
 | |
 | |

 Figure 5: Transition out of RECOVER state

 If, at any time while a server is in RECOVER state communications
 fails, the server will stay in RECOVER state. When communications
 are restored, it will restart the process of transitioning out of
 RECOVER state.

9.6. RECOVER-WAIT State

 This state indicates that the server has done an UPDREQ or UPDREQALL
 and has received the UPDDONE message indicating that it has received
 all outstanding binding update information. In the RECOVER-WAIT
 state the server will wait for the MCLT in order to ensure that any
 processing that this server might have done prior to losing its
 stable storage will not cause future difficulties.

9.6.1. Operation in RECOVER-WAIT State

 The server MUST NOT be responsive in RECOVER-WAIT state.

Mrugalski & Kinnear Expires January 16, 2014 [Page 41]

Internet-Draft DHCPv6 Failover Design July 2013

9.6.2. Transition Out of RECOVER-WAIT State

 Upon entry to RECOVER-WAIT state the server MUST start a timer whose
 expiration is set to a time equal to the time the server went down
 (if known) or the time the server started (if the down-time is
 unknown) plus the maximum-client-lead-time. When this timer expires,
 the server will transition into RECOVER-DONE state.

 This is to allow any IP addresses that were allocated by this server
 prior to loss of its client binding information in stable storage to
 contact the other server or to time out.

 If this is the first time this server has run failover -- as
 determined by the information received from the partner, not
 necessarily only as determined by this server's stable storage (as
 that may have been lost), then the waiting time discussed above may
 be skipped, and the server MAY transition immediately to RECOVER-DONE
 state.

 If the server has never before run failover, then there is no need to
 wait in this state -- but, again, to determine if this server has run
 failover it is vital that the information provided by the partner be
 utilized, since the stable storage of this server may have been lost.

 If communications fails while a server is in RECOVER-WAIT state, it
 has no effect on the operation of this state. The server SHOULD
 continue to operate its timer, and the timer expires during the
 period where communications with the other server have failed, then
 the server SHOULD transition to RECOVER-DONE state. This is rare --
 failover state transitions are not usually made while communications
 are interrupted, but in this case there is no reason to inhibit the
 timer.

9.7. RECOVER-DONE State

 This state exists to allow an interlocked transition for one server
 from RECOVER state and another server from PARTNER-DOWN or
 COMMUNICATIONS-INTERRUPTED state into NORMAL state.

9.7.1. Operation in RECOVER-DONE State

 A server in RECOVER-DONE state MUST respond only to RENEW, REBIND,
 CONFIRM and INFORMATION-REQUEST client messages.

9.7.2. Transition Out of RECOVER-DONE State

Mrugalski & Kinnear Expires January 16, 2014 [Page 42]

Internet-Draft DHCPv6 Failover Design July 2013

 When a server in RECOVER-DONE state determines that its partner
 server has entered NORMAL or RECOVER-DONE state, then it will
 transition into NORMAL state.

 If communication fails while in RECOVER-DONE state, a server will
 stay in RECOVER-DONE state.

9.8. NORMAL State

 NORMAL state is the state used by a server when it is communicating
 with the other server, and any required resynchronization has been
 performed. While some bindings database synchronization is performed
 in NORMAL state, potential conflicts are resolved prior to entry into
 NORMAL state as is binding database data loss.

 When entering NORMAL state, a server will send to the other server
 all currently unacknowledged binding updates as BNDUPD messages.

 When the above process is complete, if the server entering NORMAL
 state is a secondary server, then it will request resources
 (addresses and/or prefixes) for allocation using the POOLREQ message.

9.8.1. Operation in NORMAL State

 Primary server is responsive in NORMAL state. Secondary is
 unresponsive in NORMAL state.

 When in NORMAL state a primary server will operate in the following
 manner:

 Lease time calculations
 As discussed in Section 8.4, the lease interval given to a DHCP
 client can never be more than the MCLT greater than the most
 recently received potential-expiration-time from the failover
 partner or the current time, whichever is later.

 As long as a server adheres to this constraint, the specifics of
 the lease interval that it gives to a DHCP client or the value of
 the potential-expiration-time sent to its failover partner are
 implementation dependent.

 Lazy update of partner server
 After sending an REPLY that includes lease update to a client, the
 server servicing a DHCP client request attempts to update its
 partner with the new binding information. Server transmits both
 desired valid lifetime and actual valid lifetime.

 Reallocation of resources between clients

Mrugalski & Kinnear Expires January 16, 2014 [Page 43]

Internet-Draft DHCPv6 Failover Design July 2013

 Whenever a client binding is released or expires, a BNDUPD message
 must be sent to the partner, setting the binding state to RELEASED
 or EXPIRED. However, until a BNDACK is received for this message,
 the resource cannot be allocated to another client. It cannot be
 allocated to the same client again if a BNDUPD was sent, otherwise
 it can. See Section 8.6 for details.

 In NORMAL state, each server receives binding updates from its
 partner server in BNDUPD messages. It records these in its client
 binding database in stable storage and then sends a corresponding
 BNDACK message to its partner server.

9.8.2. Transition Out of NORMAL State

 If an external command is received by a server in NORMAL state
 informing it that its partner is down, then transition into PARTNER-
 DOWN state. Generally, this would be an unusual situation, where
 some external agency knew the partner server was down. Using the
 command in this case would be appropriate if the polling interval and
 timeout were long.

 If a server in NORMAL state fails to receive acks to messages sent to
 its partner for an implementation dependent period of time, it MAY
 move into COMMUNICATIONS-INTERRUPTED state. This situation might
 occur if the partner server was capable of maintaining the TCP con-
 nection between the server and also capable of sending a CONTACT mes-
 sage periodically, but was (for some reason) incapable of pro-
 cessing BNDUPD messages.

 If the communications is determined to not be "ok" (as defined in
Section 8.5), then transition into COMMUNICATIONS-INTERRUPTED state.

 If a server in NORMAL state receives any messages from its partner
 where the partner has changed state from that expected by the server
 in NORMAL state, then the server should transition into
 COMMUNICATIONS-INTERRUPTED state and take the appropriate state tran-
 sition from there. For example, it would be expected for the partner
 to transition from POTENTIAL-CONFLICT into NORMAL state, but not for
 the partner to transition from NORMAL into POTENTIAL-CONFLICT state.

 If a server in NORMAL state receives a DISCONNECT message from its
 partner, the server should transition into COMMUNICATIONS-INTERRUPTED
 state.

9.9. COMMUNICATIONS-INTERRUPTED State

 A server goes into COMMUNICATIONS-INTERRUPTED state whenever it is
 unable to communicate with its partner. Primary and secondary

Mrugalski & Kinnear Expires January 16, 2014 [Page 44]

Internet-Draft DHCPv6 Failover Design July 2013

 servers cycle automatically (without administrative intervention)
 between NORMAL and COMMUNICATIONS-INTERRUPTED state as the network
 connection between them fails and recovers, or as the partner server
 cycles between operational and non-operational. No duplicate
 resource allocation can occur while the servers cycle between these
 states.

 When a server enters COMMUNICATIONS-INTERRUPTED state, if it has been
 configured to support an automatic transition out of COMMUNICATIONS-
 INTERRUPTED state and into PARTNER-DOWN state (i.e., a "safe period"
 has been configured, see section TODO), then a timer MUST be started
 for the length of the configured safe period.

 A server transitioning into the COMMUNICATIONS-INTERRUPTED state from
 the NORMAL state SHOULD raise some alarm condition to alert
 administrative staff to a potential problem in the DHCP subsystem.

9.9.1. Operation in COMMUNICATIONS-INTERRUPTED State

 In this state a server MUST respond to all DHCP client requests.
 When allocating new leases, each server allocates from its own pool,
 where the primary MUST allocate only FREE resources (addresses or
 prefixes), and the secondary MUST allocate only FREE_BACKUP resources
 (addresses or prefixes). When responding to RENEW messages, each
 server will allow continued renewal of a DHCP client's current lease
 on an IP address or prefix irrespective of whether that lease was
 given out by the receiving server or not, although the renewal period
 MUST NOT exceed the maximum client lead time (MCLT) beyond the latest
 of: 1) the potential valid lifetime already acknowledged by the other
 server, or 2) the actual valid lifetime sent to the DHCPv6 client, or
 3) the potential valid lifetime received from the partner server.

 However, since the server cannot communicate with its partner in this
 state, the acknowledged potential valid lifetime will not be updated
 in any new bindings. This is likely to eventually cause the actual
 valid lifetimes to be the current time plus the MCLT (unless this is
 greater than the desired-client-lease-time).

 The server should continue to try to establish a connection with its
 partner.

9.9.2. Transition Out of COMMUNICATIONS-INTERRUPTED State

 If the safe period timer expires while a server is in the
 COMMUNICATIONS-INTERRUPTED state, it will transition immediately into
 PARTNER-DOWN state.

Mrugalski & Kinnear Expires January 16, 2014 [Page 45]

Internet-Draft DHCPv6 Failover Design July 2013

 If an external command is received by a server in COMMUNICATIONS-
 INTERRUPTED state informing it that its partner is down, it will
 transition immediately into PARTNER-DOWN state.

 If communications is restored with the other server, then the server
 in COMMUNICATIONS-INTERRUPTED state will transition into another
 state based on the state of the partner:

 o NORMAL or COMMUNICATIONS-INTERRUPTED: Transition into the NORMAL
 state.

 o RECOVER: Stay in COMMUNICATIONS-INTERRUPTED state.

 o RECOVER-DONE: Transition into NORMAL state.

 o PARTNER-DOWN, POTENTIAL-CONFLICT, CONFLICT-DONE, or RESOLUTION-
 INTERRUPTED: Transition into POTENTIAL-CONFLICT state.

 The following figure illustrates the transition from NORMAL to
 COMMUNICATIONS-INTERRUPTED state and then back to NORMAL state again.

 Primary Secondary
 Server Server

 NORMAL NORMAL
 | >--CONTACT-------------------> |
 | <--------------------CONTACT--< |
 | [TCP connection broken] |
 COMMUNICATIONS : COMMUNICATIONS
 INTERRUPTED : INTERRUPTED
 | [attempt new TCP connection] |
 | [connection succeeds] |
 | |
 | >--CONNECT-------------------> |
 | <-----------------CONNECTACK--< |
 | NORMAL
 | <-------------------STATE-----< |
 NORMAL |
 | >--STATE---------------------> |
 |
 | >--BNDUPD--------------------> |
 | <---------------------BNDACK--< |
 | |
 | <---------------------BNDUPD--< |
 | >------BNDACK----------------> |

 | |
 | <--------------------POOLREQ--< |

Mrugalski & Kinnear Expires January 16, 2014 [Page 46]

Internet-Draft DHCPv6 Failover Design July 2013

 | >--POOLRESP-(2)--------------> |
 | |
 | >--BNDUPD-(#1)---------------> |
 | <---------------------BNDACK--< |
 | |
 | <--------------------POOLREQ--< |
 | >--POOLRESP-(0)--------------> |
 | |
 | >--BNDUPD-(#2)---------------> |
 | <---------------------BNDACK--< |
 | |

 Figure 6: Transition from NORMAL to COMMUNICATIONS-INTERRUPTED and
 back (example with 2 addresses allocated to secondary)

9.10. POTENTIAL-CONFLICT State

 This state indicates that the two servers are attempting to
 reintegrate with each other, but at least one of them was running in
 a state that did not guarantee automatic reintegration would be
 possible. In POTENTIAL-CONFLICT state the servers may determine that
 the same resource has been offered and accepted by two different
 clients.

 It is a goal of this protocol to minimize the possibility that
 POTENTIAL-CONFLICT state is ever entered.

 When a primary server enters POTENTIAL-CONFLICT state it should
 request that the secondary send it all updates of which it is
 currently unaware by sending an UPDREQ message to the secondary
 server.

 A secondary server entering POTENTIAL-CONFLICT state will wait for
 the primary to send it an UPDREQ message.

9.10.1. Operation in POTENTIAL-CONFLICT State

 Any server in POTENTIAL-CONFLICT state MUST NOT process any incoming
 DHCP requests.

9.10.2. Transition Out of POTENTIAL-CONFLICT State

 If communications fails with the partner while in POTENTIAL-CONFLICT
 state, then the server will transition to RESOLUTION-INTERRUPTED
 state.

 Whenever either server receives an UPDDONE message from its partner
 while in POTENTIAL-CONFLICT state, it MUST transition to a new state.

Mrugalski & Kinnear Expires January 16, 2014 [Page 47]

Internet-Draft DHCPv6 Failover Design July 2013

 The primary MUST transition to CONFLICT-DONE state, and the secondary
 MUST transition to NORMAL state. This will cause the primary server
 to leave POTENTIAL-CONFLICT state prior to the secondary, since the
 primary sends an UPDREQ message and receives an UPDDONE before the
 secondary sends an UPDREQ message and receives its UPDDONE message.

 When a secondary server receives an indication that the primary
 server has made a transition from POTENTIAL-CONFLICT to CONFLICT-DONE
 state, it SHOULD send an UPDREQ message to the primary server.

 Primary Secondary
 Server Server

 | |
 POTENTIAL-CONFLICT POTENTIAL-CONFLICT
 | |
 | >--UPDREQ--------------------> |
 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |

 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |
 | |
 | <--------------------UPDDONE--< |
 CONFLICT-DONE |
 | >--STATE--(CONFLICT-DONE)----> |
 | <---------------------UPDREQ--< |
 | |
 | >--BNDUPD--------------------> |
 | <---------------------BNDACK--< |

 | >--BNDUPD--------------------> |
 | <---------------------BNDACK--< |
 | |
 | >--UPDDONE-------------------> |
 | NORMAL
 | <------------STATE--(NORMAL)--< |
 NORMAL |
 | >--STATE--(NORMAL)-----------> |
 | |
 | <--------------------POOLREQ--< |
 | >------POOLRESP-(n)----------> |
 | addresses |

 Figure 7: Transition out of POTENTIAL-CONFLICT

Mrugalski & Kinnear Expires January 16, 2014 [Page 48]

Internet-Draft DHCPv6 Failover Design July 2013

9.11. RESOLUTION-INTERRUPTED State

 This state indicates that the two servers were attempting to
 reintegrate with each other in POTENTIAL-CONFLICT state, but
 communications failed prior to completion of re-integration.

 If the servers remained in POTENTIAL-CONFLICT while communications
 was interrupted, neither server would be responsive to DHCP client
 requests, and if one server had crashed, then there might be no
 server able to process DHCP requests.

 When a server enters RESOLUTION-INTERRUPTED state it SHOULD raise an
 alarm condition to alert administrative staff of a problem in the
 DHCP subsystem.

9.11.1. Operation in RESOLUTION-INTERRUPTED State

 In this state a server MUST respond to all DHCP client requests.
 When allocating new resources (addresses or prefixes), each server
 SHOULD allocate from its own pool (if that can be determined), where
 the primary SHOULD allocate only FREE resources, and the secondary
 SHOULD allocate only BACKUP resources. When responding to renewal
 requests, each server will allow continued renewal of a DHCP client's
 current lease independent of whether that lease was given out by the
 receiving server or not, although the renewal period MUST NOT exceed
 the maximum client lead time (MCLT) beyond the latest of: 1) the
 potential valid lifetime already acknowledged by the other server or
 2) the lease-expiration-time or 3) potential valid lifetime received
 from the partner server.

 However, since the server cannot communicate with its partner in this
 state, the acknowledged potential valid lifetime will not be updated
 in any new bindings.

9.11.2. Transition Out of RESOLUTION-INTERRUPTED State

 If an external command is received by a server in RESOLUTION-
 INTERRUPTED state informing it that its partner is down, it will
 transition immediately into PARTNER-DOWN state.

 If communications is restored with the other server, then the server
 in RESOLUTION-INTERRUPTED state will transition into POTENTIAL-
 CONFLICT state.

9.12. CONFLICT-DONE State

 This state indicates that during the process where the two servers
 are attempting to re-integrate with each other, the primary server

Mrugalski & Kinnear Expires January 16, 2014 [Page 49]

Internet-Draft DHCPv6 Failover Design July 2013

 has received all of the updates from the secondary server. It make a
 transition into CONFLICT-DONE state in order that it may be totally
 responsive to the client load. There is no operational difference
 between CONFLICT-DONE and NORMAL for primary as in both states it
 responds to all clients' requests. The distinction between CONFLICT-
 DONE and NORMAL states will be more apparent when load balancing
 extension will be defined.

9.12.1. Operation in CONFLICT-DONE State

 A primary server in CONFLICT-DONE state is fully responsive to all
 DHCP clients (similar to the situation in COMMUNICATIONS-INTERRUPTED
 state).

 If communications fails, remain in CONFLICT-DONE state. If
 communications becomes OK, remain in CONFLICT-DONE state until the
 conditions for transition out become satisfied.

9.12.2. Transition Out of CONFLICT-DONE State

 If communications fails with the partner while in CONFLICT-DONE
 state, then the server will remain in CONFLICT-DONE state.

 When a primary server determines that the secondary server has made a
 transition into NORMAL state, the primary server will also transition
 into NORMAL state.

10. Proposed extensions

 The following section discusses possible extensions to the proposed
 failover mechanism. Listed extensions must be sufficiently simple to
 not further complicate failover protocol. Any proposals that are
 considered complex will be defined as stand-alone extensions in
 separate documents.

10.1. Active-active mode

 A very simple way to achieve active-active mode is to remove the
 restriction that seconary server MUST NOT respond to SOLICIT and
 REQUEST messages. Instead it could respond, but MUST have lower
 preference than primary server. Clients discovering available
 servers will receive ADVERTISE messages from both servers, but are
 expected to select the primary server as it has higher preference
 value configured. The following REQUEST message will be directed to
 primary server.

 Discussion: Do DHCPv6 clients actually do this? DHCPv4 clients were
 rumored to wait for a "while" to accept the best offer, but to a

Mrugalski & Kinnear Expires January 16, 2014 [Page 50]

Internet-Draft DHCPv6 Failover Design July 2013

 first approximation, they all take the first offer they receive that
 is even acceptable.

 The benefit of this approach, compared to the "basic" active--passive
 solution is that there is no delay between primary failure and the
 moment when secondary starts serving requests.

11. Dynamic DNS Considerations

 DHCP servers (and clients) can use DNS Dynamic Updates as described
 in RFC 2136 [RFC2136] to maintain DNS name-mappings as they maintain
 DHCP leases. Many different administrative models for DHCP-DNS
 integration are possible. Descriptions of several of these models,
 and guidelines that DHCP servers and clients should follow in
 carrying them out, are laid out in RFC 4704 [RFC4704].

 The nature of the failover protocol introduces some issues concerning
 dynamic DNS updates that are not part of non-failover environments.
 This section describes these issues, and defines the information
 which failover partners should exchange in order to ensure consistent
 behavior. The presence of this section should not be interpreted as
 requiring an implementation of the DHCPv6 failover protocol to also
 support DDNS updates.

 The purpose of this discussion is to clarify the areas where the
 failover and DHCP-DDNS protocols intersect for the benefit of
 implementations which support both protocols, not to introduce a new
 requirement into the DHCPv6 failover protocol. Thus, a DHCPv6 server
 which implements the failover protocol MAY also support dynamic DNS
 updates, but if it does support dynamic DNS updates it SHOULD utilize
 the techniques described here in order to correctly distribute them
 between the failover partners. See RFC 4704 [RFC4704] as well as RFC

4703 [RFC4703] for information on how DHCPv6 servers deal with
 potential conflicts when updating DNS even without failover.

 From the standpoint of the failover protocol, there is no reason why
 a server which is utilizing the DDNS protocol to update a DNS server
 should not be a partner with a server which is not utilizing the DDNS
 protocol to update a DNS server. However, a server which is not able
 to support DDNS or is not configured to support DDNS SHOULD output a
 warning message when it receives BNDUPD messages which indicate that
 its failover partner is configured to support the DDNS protocol to
 update a DNS server. An implementation MAY consider this an error
 and refuse to operate, or it MAY choose to operate anyway, having
 warned the user of the problem in some way.

11.1. Relationship between failover and dynamic DNS update

https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc4704
https://datatracker.ietf.org/doc/html/rfc4704
https://datatracker.ietf.org/doc/html/rfc4704
https://datatracker.ietf.org/doc/html/rfc4704
https://datatracker.ietf.org/doc/html/rfc4703
https://datatracker.ietf.org/doc/html/rfc4703
https://datatracker.ietf.org/doc/html/rfc4703

Mrugalski & Kinnear Expires January 16, 2014 [Page 51]

Internet-Draft DHCPv6 Failover Design July 2013

 The failover protocol describes the conditions under which each
 failover server may renew a lease to its current DHCP client, and
 describes the conditions under which it may grant a lease to a new
 DHCP client. An analogous set of conditions determines when a
 failover server should initiate a DDNS update, and when it should
 attempt to remove records from the DNS. The failover protocol's
 conditions are based on the desired external behavior: avoiding
 duplicate address and prefix assignments; allowing clients to
 continue using leases which they obtained from one failover partner
 even if they can only communicate with the other partner; allowing
 the secondary DHCP server to grant new leases even if it is unable to
 communicate with the primary server. The desired external DDNS
 behavior for DHCP failover servers is similar to that described above
 for the failover protocol itself:

 1. Allow timely DDNS updates from the server which grants a lease to
 a client. Recognize that there is often a DDNS update lifecycle
 which parallels the DHCP lease lifecycle. This is likely to
 include the addition of records when the lease is granted, and
 the removal of DNS records when the leased resource is
 subsequently made available for allocation to a different client.

 2. Communicate enough information between the two failover servers
 to allow one to complete the DDNS update 'lifecycle' even if the
 other server originally granted the lease.

 3. Avoid redundant or overlapping DDNS updates, where both failover
 servers are attempting to perform DDNS updates for the same
 lease-client binding.

 4. Avoid situations where one partner is attempting to add RRs
 related to a lease binding while the other partner is attempting
 to remove RRs related to the same lease binding.

 While DHCP servers configured for DDNS typically perform these
 operations on both the AAAA and the PTR resource records, this is not
 required. It is entirely possible that a DHCP server could be
 configured to only update the DNS with PTR records, and the DHCPv6
 clients could be responsible for updating the DNS with their own AAAA
 records. In this case, the discussions here would apply only to the
 PTR records.

11.2. Exchanging DDNS Information

 In order for either server to be able to complete a DDNS update, or
 to remove DNS records which were added by its partner, both servers
 need to know the FQDN associated with the lease-client binding. In
 addition, to properly handle DDNS updates, additional information is

Mrugalski & Kinnear Expires January 16, 2014 [Page 52]

Internet-Draft DHCPv6 Failover Design July 2013

 required. All of the following information needs to be transmitted
 between the failover partners:

 1. The FQDN that the client requested be associated with the
 resource. If the client doesn't request a particular FQDN and
 one is synthesized by the failover server or if the failover
 server is configured to replace a client requested FQDN with a
 different FQDN, then the server generated value would be used.

 2. The FQDN that was actually placed in the DNS for this lease. It
 may differ from the client requested FQDN due to some form of
 disambiguation or other DHCP server configuration (as described
 above).

 3. The status of and DDNS operations in progress or completed.

 4. Information sufficient to allow the failover partner to remove
 the FQDN from the DNS should that become necessary.

 These data items are the minimum necessary set to reliably allow two
 failover partners to successfully share the responsibility to keep
 the DNS up to date with the resources allocated to clients.

 This information would typically be included in BNDUPD messages sent
 from one failover partner to the other. Failover servers MAY choose
 not to include this information in BNDUPD messages if there has been
 no change in the status of any DDNS update related to the lease.

 The partner server receiving BNDUPD messages containing the DDNS
 information SHOULD compare the status informatin and the FQDN with
 the current DDNS information it has associated with the lease
 binding, and update its notion of the DDNS status accordingly.

 Some implementations will instead choose to send a BNDUPD without
 waiting for the DDNS update to complete, and then will send a second
 BNDUPD once the DDNS update is complete. Other implementations will
 delay sending the partner a BNDUPD until the DDNS update has been
 acknowledged by the DNS server, or until some time-limit has elapsed,
 in order to avoid sending a second BNDUPD.

 The FQDN option contains the FQDN that will be associated with the
 AAAA RR (if the server is performing an AAAA RR update for the
 client). The PTR RR can be generated automatically from the IP
 address or prefix value. The FQDN may be composed in any of several
 ways, depending on server configuration and the information provided
 by the client in its DHCP messages. The client may supply a hostname
 which it would like the server to use in forming the FQDN, or it may
 supply the entire FQDN. The server may be configured to attempt to

Mrugalski & Kinnear Expires January 16, 2014 [Page 53]

Internet-Draft DHCPv6 Failover Design July 2013

 use the information the client supplies, it may be configured with an
 FQDN to use for the client, or it may be configured to synthesize an
 FQDN.

 Since the server interacting with the client may not have completed
 the DDNS update at the time it sends the first BNDUPD about the lease
 binding, there may be cases where the FQDN in later BNDUPD messages
 does not match the FQDN included in earlier messages. For example,
 the responsive server may be configured to handle situations where
 two or more DHCP client FQDNs are identical by modifying the most-
 specific label in the FQDNs of some of the clients in an attempt to
 generate unique FQDNs for them (a process sometimes called
 "disambiguation"). Alternatively, at sites which use some or all of
 the information which clients supply to form the FQDN, it's possible
 that a client's configuration may be changed so that it begins to
 supply new data. The server interacting with the client may react by
 removing the DNS records which it originally added for the client,
 and replacing them with records that refer to the client's new FQDN.
 In such cases, the server SHOULD include the actual FQDN that was
 used in subsequent DDNS options in any BNDUPD messages exchanged
 between the failover partners. This server SHOULD include relevant
 information in its BNDUPD messages. This information may be
 necessary in order to allow the non-responsive partner to detect
 client configuration changes that change the hostname or FQDN data
 which the client includes in its DHCP requests.

11.3. Adding RRs to the DNS

 A failover server which is going to perform DDNS updates SHOULD
 initiate the DDNS update when it grants a new lease to a client. The
 server which did not grant the lease SHOULD NOT initiate a DDNS
 update when it receives the BNDUPD after the lease has been granted.
 The failover protocol ensures that only one of the partners will
 grant a lease to any individual client, so it follows that this
 requirement will prevent both partners from initiating updates
 simultaneously. The server initiating the update SHOULD follow the
 protocol in RFC 4704 [RFC4704]. The server may be configured to
 perform a AAAA RR update on behalf of its clients, or not.
 Ordinarily, a failover server will not initiate DDNS updates when it
 renews leases. In two cases, however, a failover server MAY initiate
 a DDNS update when it renews a lease to its existing client:

 1. When the lease was granted before the server was configured to
 perform DDNS updates, the server MAY be configured to perform
 updates when it next renews existing leases. The server which
 granted the lease is the server which should initiate the DDNS
 update.

https://datatracker.ietf.org/doc/html/rfc4704
https://datatracker.ietf.org/doc/html/rfc4704

Mrugalski & Kinnear Expires January 16, 2014 [Page 54]

Internet-Draft DHCPv6 Failover Design July 2013

 2. If a server is in PARTNER-DOWN state, it can conclude that its
 partner is no longer attempting to perform an update for the
 existing client. If the remaining server has not recorded that
 an update for the binding has been successfully completed, the
 server MAY initiate a DDNS update. It MAY initiate this update
 immediately upon entry to PARTNER-DOWN state, it may perform this
 in the background, or it MAY initiate this update upon next
 hearing from the DHCP client.

11.4. Deleting RRs from the DNS

 The failover server which makes a resource FREE SHOULD initiate any
 DDNS deletes, if it has recorded that DNS records were added on
 behalf of the client.

 A server not in PARTNER-DOWN state "makes a resource FREE" when it
 initiates a BNDUPD with a binding-status of FREE, FREE_BACKUP,
 EXPIRED, or RELEASED. Its partner confirms this status by acking
 that BNDUPD, and upon receipt of the BNDACK the server has "made the
 resource FREE". Conversely, a server in PARTNER-DOWN state "makes a
 resource FREE" when it sets the binding-status to FREE, since in
 PARTNER-DOWN state no communications is required with the partner.

 It is at this point that it should initiate the DDNS operations to
 delete RRs from the DDNS. Its partner SHOULD NOT initiate DDNS
 deletes for DNS records related to the lease binding as part of
 sending the BNDACK message. The partner MAY have issued BNDUPD
 messages with a binding-status of FREE, EXPIRED, or RELEASED
 previously, but the other server will have rejected these BNDUPD
 messages.

 The failover protocol ensures that only one of the two partner
 servers will be able to make a resource FREE. The server making the
 resource FREE may be doing so while it is in NORMAL communication
 with its partner, or it may be in PARTNER-DOWN state. If a server is
 in PARTNER-DOWN state, it may be performing DDNS deletes for RRs
 which its partner added originally. This allows a single remaining
 partner server to assume responsibility for all of the DDNS activity
 which the two servers were undertaking.

 Another implication of this approach is that no DDNS RR deletes will
 be performed while either server is in COMMUNICATIONS-INTERRUPTED
 state, since no resource are moved into the FREE state during that
 period.

11.5. Name Assignment with No Update of DNS

Mrugalski & Kinnear Expires January 16, 2014 [Page 55]

Internet-Draft DHCPv6 Failover Design July 2013

 In some cases, a DHCP server is configured to return a name to the
 DHCPv6 client but not enter that name into the DNS. This is
 typically a name that it has discovered or generated from information
 it has received from the client. In this case this name information
 SHOULD be communicated to the failover partner, if only to ensure
 that they will return the same name in the event the partner becomes
 the server to which the DHCPv6 client begins to interact.

12. Reservations and failover

 Some DHCP servers support a capability to offer specific
 preconfigured resources to DHCP clients. These are real DHCP
 clients, they do the entire DHCP protocol, but these servers always
 offer the client a specific pre-configured resource, one they offer
 that resource to no other clients. Such a capability has several
 names, but it is sometimes called a "reservation", in that the
 resource is reserved for a particular DHCP client.

 In a situation where there are two DHCP servers serving the same
 subnet without using failover, the two DHCP server's need to have
 disjoint resource pools, but identical reservations for the DHCP
 clients.

 In a failover context, both servers need to be configured with the
 proper reservations in an identical manner, but if we stop there
 problems can occur around the edge conditions where reservations are
 made for resource that has already been leased to a different client.
 Different servers handle this conflict in different ways, but the
 goal of the failover protocol is to allow correct operation with any
 server's approach to the normal processing of the DHCP protocol.

 The general solution with regards to reservations is as follows.
 Whenever a reserved resource becomes FREE (i.e., when first
 configured or whenever a client frees it or it expires or is reset),
 the primary server MUST show that resource as FREE (and thus
 available for its own allocation) and it MUST send it to the
 secondary server in a BNDUPD with a flag set showing that it is
 reserved and with a status of BACKUP.

 Note that this implies that a reserved resource goes through the
 normal state changes from FREE to ACTIVE (and possibly back to FREE).
 The failover protocol supports this approach to reservations, i.e.,
 where the resource undergoes the normal state changes of any
 resource, but it can only be offered to the client for which it is
 reserved.

 From the above, it follows that a reservation soley on the secondary
 will not necessarily allow the secondary to offer that address to

Mrugalski & Kinnear Expires January 16, 2014 [Page 56]

Internet-Draft DHCPv6 Failover Design July 2013

 client to whom it is reserved. The reservation must also appear on
 the primary as well for the secondary to be able to offer the
 resource to the client to which is is reserved.

 When the reservation on a resource is cancelled, if the resource is
 currently FREE and the server is the primary, or BACKUP and the
 server is the secondary, the server MUST send a BNDUPD to the other
 server with the binding-status FREE and an indication that the
 resource is no longer reserved.

13. Security Considerations

 DHCPv6 failover is an extension of a standard DHCPv6 protocol, so all
 security considerations from [RFC3315], Section 23 and [RFC3633],
 Section 15 related to the server apply.

 As traffic exchange between clients and server is not encrypted, an
 attacker than penetrated the network and is able to intercept
 traffic, will not gain any additional information by also sniffing
 communication between partners.

 An attacker that is able to impersonate one partner can efficiently
 perform a denial of service attack on the remaining uncompromised
 server. Several techniques may be used: pretending that conflict
 resolution is required, requesting rebalance, claming that a valid
 lease was released or declined etc. For that reason the
 communication between servers SHOULD support failover connections
 over TLS, as explained in Section Section 5.1. Such secure
 connection SHOULD be optional and configurable by the administrator.

 A server MUST NOT operate in PARTNER-DOWN if its partner is up.
 Network administrator is expected to switch remaining active server
 to PARTNER-DOWN state only if he or she is sure that the other server
 is indeed down. Failing to obey this requirement will result in both
 servers likely assigning duplicate leases to different clients.
 Implementors should take that into consideration if they decide to
 implement timer-based transition to PARTNER-DOWN state.

 Running a network protected by DHCPv6 failover requires more
 resources than running without it. In particular some of the
 resources are allocated to the secondary server and they are not
 usable in a normal (i.e. non failures) operation. While limiting
 this pool may be preferable from resource utilisation perspective, it
 must be reasonably large pool, so the secondary may take over once
 primary becomes unavailable.

 TODO: Security considerations section contains loose notes and will
 be transformed into consistent text once the core design solidifies.

https://datatracker.ietf.org/doc/html/rfc3315#section-23
https://datatracker.ietf.org/doc/html/rfc3633#section-15
https://datatracker.ietf.org/doc/html/rfc3633#section-15

Mrugalski & Kinnear Expires January 16, 2014 [Page 57]

Internet-Draft DHCPv6 Failover Design July 2013

14. IANA Considerations

 IANA is not requested to perform any actions at this time.

15. Acknowledgements

 This document extensively uses concepts, definitions and other parts
 of [dhcpv4-failover] document. Authors would like to thank Shawn
 Routher, Greg Rabil, and Bernie Volz for their significant
 involvement and contributions. Authors would like to thank Marcin
 Siodelski for his thorough review and VithalPrasad Gaitonde for his
 insightful comments.

 This work has been partially supported by Department of Computer
 Communications (a division of Gdansk University of Technology) and
 the Polish Ministry of Science and Higher Education under the
 European Regional Development Fund, Grant No. POIG.01.01.02-00-045/
 09-00 (Future Internet Engineering Project).

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 December 2003.

 [RFC4703] Stapp, M. and B. Volz, "Resolution of Fully Qualified
 Domain Name (FQDN) Conflicts among Dynamic Host
 Configuration Protocol (DHCP) Clients", RFC 4703, October
 2006.

 [RFC4704] Volz, B., "The Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN)
 Option", RFC 4704, October 2006.

 [RFC6939] Halwasia, G., Bhandari, S., and W. Dec, "Client Link-Layer
 Address Option in DHCPv6", RFC 6939, May 2013.

16.2. Informative References

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3633
https://datatracker.ietf.org/doc/html/rfc4703
https://datatracker.ietf.org/doc/html/rfc4704
https://datatracker.ietf.org/doc/html/rfc6939

Mrugalski & Kinnear Expires January 16, 2014 [Page 58]

Internet-Draft DHCPv6 Failover Design July 2013

 [I-D.ietf-dhc-dhcpv6-failover-requirements]
 Mrugalski, T. and K. Kinnear, "DHCPv6 Failover
 Requirements", draft-ietf-dhc-dhcpv6-failover-

requirements-06 (work in progress), July 2013.

 [I-D.ietf-dhc-dhcpv6-load-balancing]
 Kostur, A., "DHC Load Balancing Algorithm for DHCPv6",

draft-ietf-dhc-dhcpv6-load-balancing-00 (work in
 progress), December 2012.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, April 1997.

 [RFC4649] Volz, B., "Dynamic Host Configuration Protocol for IPv6
 (DHCPv6) Relay Agent Remote-ID Option", RFC 4649, August
 2006.

 [RFC5007] Brzozowski, J., Kinnear, K., Volz, B., and S. Zeng,
 "DHCPv6 Leasequery", RFC 5007, September 2007.

 [RFC5460] Stapp, M., "DHCPv6 Bulk Leasequery", RFC 5460, February
 2009.

 [dhcpv4-failover]
 Droms, R., Kinnear, K., Stapp, M., Volz, B., Gonczi, S.,
 Rabil, G., Dooley, M., and A. Kapur, "DHCP Failover
 Protocol", draft-ietf-dhc-failover-12 (work in progress),
 March 2003.

Authors' Addresses

 Tomasz Mrugalski
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City, CA 94063
 USA

 Phone: +1 650 423 1345
 Email: tomasz.mrugalski@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-failover-requirements-06
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-failover-requirements-06
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcpv6-load-balancing-00
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc4649
https://datatracker.ietf.org/doc/html/rfc5007
https://datatracker.ietf.org/doc/html/rfc5460
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-failover-12

Mrugalski & Kinnear Expires January 16, 2014 [Page 59]

Internet-Draft DHCPv6 Failover Design July 2013

 Kim Kinnear
 Cisco Systems, Inc.
 1414 Massachusetts Ave.
 Boxborough, Massachusetts 01719
 USA

 Phone: +1 (978) 936-0000
 Email: kkinnear@cisco.com

Mrugalski & Kinnear Expires January 16, 2014 [Page 60]

