
Network Working Group Ralph Droms
INTERNET DRAFT Kim Kinnear
 Mark Stapp
 Cisco Systems

 Bernie Volz
 Ericsson

 Steve Gonczi
 Relicore

 Greg Rabil
 Mike Dooley
 Arun Kapur
 Lucent Technologies

 November 2002
 Expires May 2003

DHCP Failover Protocol
<draft-ietf-dhc-failover-11.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Droms, et. al. Expires May 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-failover-11.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft DHCP Failover Protocol November 2002

Abstract

 DHCP [RFC 2131] allows for multiple servers to be operating on a
 single network. Some sites are interested in running multiple
 servers in such a way so as to provide redundancy in case of server
 failure. In order for this to work reliably, the cooperating primary
 and secondary servers must maintain a consistent database of the
 lease information. This implies that servers will need to coordinate
 any and all lease activity so that this information is synchronized
 in case of failover.

 This document defines a protocol to provide such synchronization
 between two servers. One server is designated the "primary" server,
 the other is the "secondary" server. This document also describes a
 way to integrate the failover protocol with the DHCP load balancing
 approach.

Table of Contents

1. Introduction... 4
2. Terminology.. 5
2.1. Requirements terminology................................... 5
2.2. DHCP and failover terminology.............................. 5
3. Background and External Requirements......................... 9
3.1. Key aspects of the DHCP protocol........................... 9
3.2. BOOTP relay agent implementation........................... 11

 3.3. What does it mean if a server can't communicate with its partner? 12
3.4. Challenging scenarios for a Failover protocol.............. 13
3.5. Using TCP to detect partner server failure................. 14
4. Design Goals... 15
4.1. Design goals for this protocol............................. 15
4.2. Limitations of this protocol............................... 17
5. Protocol Overview.. 17
5.1. Messages and States.. 17
5.2. Fundamental guarantees..................................... 20
5.3. Load balancing... 27
5.4. IP address allocations between servers..................... 28
5.5. Operating in NORMAL state.................................. 30
5.6. Operating in COMMUNICATIONS-INTERRUPTED state.............. 31
5.7. Operating in PARTNER-DOWN state............................ 31
5.8. Operating in RECOVER state................................. 31
5.9. Operating in STARTUP state................................. 31
5.10. Time synchronization between servers...................... 32

https://datatracker.ietf.org/doc/html/rfc2131

Droms, et. al. Expires May 2003 [Page 2]

Internet Draft DHCP Failover Protocol November 2002

5.11. IP address binding-status................................. 32
5.12. DNS dynamic update considerations......................... 36
5.13. Reservations and failover................................. 41
5.14. Dynamic BOOTP and failover................................ 42
5.15. Guidelines for selecting MCLT............................. 43

 5.16. What is sent in response to an UPDREQ or UPDREQALL message? 43
 5.17. How do you determine that your partner is "up to date" for 45

6. Common Message Format.. 45
6.1. Message header format...................................... 46
6.2. Common option format....................................... 48

 6.3. Batching multiple binding update transactions in one BNDUPD mes- 49
7. Protocol Messages.. 51
7.1. BNDUPD message [3]... 51
7.2. BNDACK message [4]... 62
7.3. UPDREQ message [9]... 65
7.4. UPDREQALL message [7]...................................... 66
7.5. UPDDONE message [8].. 67
7.6. POOLREQ message [1].. 68
7.7. POOLRESP message [2]....................................... 69
7.8. CONNECT message [5].. 70
7.9. CONNECTACK message [6]..................................... 74
7.10. STATE message [10].. 78
7.11. CONTACT message [11]...................................... 79
7.12. DISCONNECT message [12]................................... 80
8. Connection Management.. 81
8.1. Connection granularity..................................... 81
8.2. Creating the TCP connection................................ 81

 8.3. Using the TCP connection for determining communications status 83
8.4. Using the TCP connection for binding data.................. 85
8.5. Using the TCP connection for control messages.............. 85
8.6. Losing the TCP connection.................................. 85
9. Failover Endpoint States..................................... 86
9.1. Server Initialization...................................... 86
9.2. Server State Transitions................................... 86
9.3. STARTUP state.. 90
9.4. PARTNER-DOWN state... 93
9.5. RECOVER state.. 95
9.6. RECOVER-WAIT state... 97
9.7. RECOVER-DONE state... 98
9.9. COMMUNICATIONS-INTERRUPTED State........................... 101
9.10. POTENTIAL-CONFLICT state.................................. 105
9.11. RESOLUTION-INTERRUPTED state.............................. 107
9.12. CONFLICT-DONE state....................................... 108
9.13. PAUSED state.. 108
9.14. SHUTDOWN state.. 109
10. Safe Period... 110
11. Security.. 111

Droms, et. al. Expires May 2003 [Page 3]

Internet Draft DHCP Failover Protocol November 2002

11.1. Simple shared secret...................................... 112
11.2. TLS... 113
12. Failover Options.. 113
12.1. addresses-transferred..................................... 114
12.2. assigned-IP-address....................................... 114
12.3. binding-status.. 114
12.4. client-identifier... 115
12.5. client-hardware-address................................... 115
12.6. client-last-transaction-time.............................. 115
12.7. client-reply-options...................................... 116
12.8. client-request-options.................................... 116
12.9. DDNS.. 117
12.10. delayed-service-parameter................................ 118
12.11. hash-bucket-assignment................................... 118
12.12. IP-flags... 119
12.13. lease-expiration-time.................................... 120
12.14. max-unacked-bndupd....................................... 120
12.15. MCLT... 120
12.16. message.. 121
12.17. message-digest... 121
12.18. potential-expiration-time................................ 122
12.19. receive-timer.. 122
12.20. protocol-version... 122
12.21. reject-reason.. 123
12.22. relationship-name.. 124
12.23. server-flags... 124
12.24. server-state... 125
12.25. start-time-of-state...................................... 125
12.26. TLS-reply.. 126
12.27. TLS-request.. 126
12.28. vendor-class-identifier.................................. 126
12.29. vendor-specific-options.................................. 127
13. IANA Considerations... 127
14. Acknowledgments... 127
15. References.. 129
16. Author's information.. 131
17. Full Copyright Statement.................................... 132

1. Introduction

 DHCP [RFC 2131] allows for multiple servers to be operating on a sin-
 gle network. Some sites are interested in running multiple servers
 in such a way so as to provide redundancy in case of server failure
 since the DHCP subsystem is in many cases a critical part of the net-
 work infrastructure.

 This document defines a protocol to provide synchronization between

https://datatracker.ietf.org/doc/html/rfc2131

Droms, et. al. Expires May 2003 [Page 4]

Internet Draft DHCP Failover Protocol November 2002

 two servers in order that each can take over for the other should
 either one fail or become unreachable.

 One server is designated the "primary" server, the other is the
 "secondary" server, and most DHCP client requests are sent to each
 server (see section 3.1.1 for details).

 In order to provide a high availability DHCP service, these
 cooperating primary and secondary servers must maintain a consistent
 database of lease information. This implies that servers will need
 to coordinate all lease activity so that this information is syn-
 chronized in case failover is required. The protocol messages and
 processing techniques required to maintain a consistent database are
 specified in the protocol described here.

 The failover protocol also contains a way to integrate the DHCP load-
 balancing algorithm described in [RFC 3074] with the failover proto-
 col.

2. Terminology

 This section discusses both the generic requirements terminology com-
 mon to many IETF protocol specifications as well as specialized DHCP
 and failover protocol specific terminology.

2.1. Requirements terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC 2119].

2.2. DHCP and failover terminology

 This document uses the following terms:

 o "available IP address"

 An IP address is "available" if it may be allocated by a
 specific DHCP server. An IP address is considered (for the
 purposes of this document) to be available to a single server
 for allocation unless otherwise noted. An IP address available
 for allocation on a primary server has state FREE, and an IP
 address available for allocation on a secondary server has
 state BACKUP.

 o "binding"

https://datatracker.ietf.org/doc/html/rfc3074
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Droms, et. al. Expires May 2003 [Page 5]

Internet Draft DHCP Failover Protocol November 2002

 A binding is a collection of configuration parameters, includ-
 ing at least an IP address, associated with or "bound to" a
 DHCP client. Bindings are managed by DHCP servers.

 o "binding database"

 The collection of bindings managed by a primary and secondary.

 o "binding update transaction"

 A binding update transaction refers to the set of information
 (contained in options) necessary to perform a binding update
 for a single IP address. It will be comprised of the
 assigned-IP-address option, the binding-status option, along
 with other options as appropriate.

 o "binding-status"

 The binding-status is the status of an IP address with respect
 to its association with a client. There are specific binding-
 status values defined for use by the failover protocol, e.g.,
 ACTIVE, FREE, RELEASED, ABANDONED, etc. These are designed to
 map more or less directly onto the binding-status values used
 internally in most DHCP server implementations. The term
 binding-status refers to the concept also sometimes known as
 "lease state" or "IP address state", but in this document the
 term "state" is reserved for the failover state of a failover
 endpoint, and binding-status is always used to refer to the
 state associated with an IP address or lease.

 o "DHCP client" or "client"

 A DHCP client is an Internet host using DHCP to obtain confi-
 guration parameters such as a network address. The term
 "client" used within this document always means a DHCP client,
 and never one of the two failover servers.

 o "DHCP server" or "server"

 A DHCP server is an Internet host that returns configuration
 parameters to DHCP clients.

 o "DDNS"

 An abbreviation for "Dynamic DNS", which refers to the capabil-
 ity to update a DNS server's name (actually resource record)
 database using an on-the-wire protocol defined in [RFC 2136].

https://datatracker.ietf.org/doc/html/rfc2136

Droms, et. al. Expires May 2003 [Page 6]

Internet Draft DHCP Failover Protocol November 2002

 o "DNS"

 An abbreviation for "Domain Name System", a scheme where a cen-
 tral name repository is used to map names to IP addresses and IP
 addresses to names.

 o "failover endpoint"

 The failover protocol allows for there to be a unique failover
 endpoint per partner per role (where role is primary or secon-
 dary). This failover endpoint can take actions and hold unique
 states. There are thus a maximum of two failover endpoints per
 server per partner (one for each partner as a primary and one
 for that same partner as a secondary.)

 o "FQDN"

 An FQDN is a "fully qualified domain name". A fully qualified
 domain name generally is a host name with at least one zone
 name, for example "www.dhcp.org" is a fully qualified domain
 name.

 o "lazy update"

 Lazy update refers to the requirement placed on a server imple-
 menting a failover protocol to update its failover partner when-
 ever the binding database changes. A failover protocol which
 didn't support lazy update would require the failover partner
 update to be complete before a DHCP server could respond to a
 DHCP client request with a DHCPACK. A failover protocol which
 does support lazy update places no such restriction on the
 update of the failover partner server, and so a server can allo-
 cate an IP address or extend a lease on an IP address and then
 update its failover partner as time permits. A failover proto-
 col which supports lazy update not only removes the requirement
 to update the failover partner prior to responding to a DHCP
 client with a DHCPACK, but also allows gathering up batches of
 updates from one failover server to its partner.

 o "MCLT"

 The MCLT refers to maximum client lead time. This time is con-
 figured on the primary server and transmitted from the primary
 to the secondary server in the CONNECT message. It is the max-
 imum amount of time that one server can extend a lease for a
 client's binding beyond the time known by the partner server.
 See section 5.2.1 for details.

Droms, et. al. Expires May 2003 [Page 7]

Internet Draft DHCP Failover Protocol November 2002

 o "partner"

 A "partner", for the purposes of this document, refers to a
 failover server, typically the other failover server. In many
 (if not most) cases, the failover protocol is symmetric with
 respect to the primary or secondary nature of the servers, and
 so it is often appropriate to discuss "updating the partner
 server", since it could be a primary server updating a secondary
 server or a secondary server updating a primary server.

 o "Primary server" or "Primary"

 A DHCP server configured to provide primary service to a set of
 DHCP clients for a particular set of subnet address pools.

 o "RR"

 "RR" is an abbreviation for "resource record". All records in
 the DNS are resource records. The resource records of most
 relevance to this document are the "A" resource record, which
 maps a DNS name to a particular IP address, the "PTR" resource
 record, which allows a "reverse map", from the IP address back
 to a DNS name, and the "KEY" resource record, which is used in
 ways defined in [FQDN] to tag a DNS name with the identity of
 the DHCP client with which it is associated.

 o "Secondary server" or "Secondary"

 A DHCP server configured to act as backup to a primary server
 for a particular set of subnet address pools.

 o "stable storage"

 Every DHCP server is assumed to have some form of what is called
 "stable storage". Stable storage is used to hold information
 concerning IP address bindings (among other things) so that this
 information is not lost in the event of a server failure which
 requires restart of the server.

 o "state"

 In this document, the term "state" refers exclusively to the
 state of a failover endpoint, for example: NORMAL,
 COMMUNICATIONS-INTERRUPTED, PARTNER-DOWN. It is not used to
 refer to any attributes of an IP address or a binding of an IP
 address. See "binding-status".

 o "subnet address pool"

Droms, et. al. Expires May 2003 [Page 8]

Internet Draft DHCP Failover Protocol November 2002

 A subnet address pool is the set of IP addresses which is asso-
 ciated with a particular network number and subnet mask. In the
 simple case, there is a single network number and subnet mask
 and a set of IP addresses. In the more complex case (sometimes
 called "secondary subnets", sometimes "superscopes"), several
 (apparently unrelated) network number and subnet mask combina-
 tions with their associated IP addresses may all be configured
 together into one subnet address pool.

3. Background and External Requirements

 This section highlights key aspects of the DHCP protocol on which the
 failover protocol depends. It also discusses the requirements that
 the failover protocol places on other aspects of the network infras-
 tructure, and some general issues surrounding server failure detec-
 tion. Some failure scenarios that provide particular challenges to a
 failover protocol are discussed. Finally, the challenges inherent in
 using a TCP connection as a means to detect failure of a partner
 server are elaborated.

3.1. Key aspects of the DHCP protocol

 The failover protocol is designed to augment the DHCP protocol as
 described in RFC 2131 [RFC 2131]. There are several key aspects of
 the DHCP protocol which are required by the failover protocol in
 order to successfully meet its design goals.

3.1.1. Broadcast behavior

 There are two aspects of the broadcast behavior of the DHCP protocol
 which are key to making the failover protocol operate successfully.
 The first is simply that the DHCP protocol requires a DHCP client to
 broadcast all DHCPDISCOVER and DHCPREQUEST/INIT-REBOOT messages.
 Because of this requirement, a DHCP client who was communicating with
 one server will automatically be able to communicate with another
 server if one is available.

 The second aspect of broadcast behavior is similar to the first, but
 involves the distinction between a DHCPREQUEST/RENEW and
 DHCPREQUEST/REBINDING. A DHCPREQUEST/RENEW is the message that a
 DHCP client uses to extend its lease. It is unicast to the DHCP
 server from which it acquired the lease. However, the DHCP protocol
 (in a farsighted move), was explicitly designed so that in the event
 that a DHCP client cannot contact the server from which it received a
 lease on an IP address using a DHCPREQUEST/RENEW, the client is
 required to broadcast its renewal using a DHCPREQUEST/REBINDING to
 any available DHCP server. Since all DHCP clients were required to

https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2131

Droms, et. al. Expires May 2003 [Page 9]

Internet Draft DHCP Failover Protocol November 2002

 implement this algorithm, the failover protocol can have a different
 server from the one that initially granted a lease be the server to
 renew a lease. Thus, one server can take over for another with no
 interruption in the service as experienced by the DHCP client or its
 associated applications software.

3.1.2. Client responsibility

 In the DHCP protocol the DHCP clients are entrusted with a consider-
 able responsibility. In particular, after they are granted a lease
 on an IP address, they are enjoined to only use that IP address while
 their lease is valid. Every DHCP client is expected to stop using an
 IP address if the expiration time on the lease has passed and if it
 cannot get an extension on the lease for that IP address from some
 DHCP server. Thus, the correct behavior of every DHCP client in this
 regard is required to ensure the integrity of the DHCP service. On
 the other hand, incorrect behavior by a client in this area will tend
 to adversely affect at most one other DHCP client.

 Furthermore, any DHCP client which sends in a DHCPREQUEST/RENEW or
 DHCPREQUEST/REBINDING to a DHCP server (either unicast for a RENEW or
 broadcast for a REBINDING) MUST still have time to run on the lease
 for that IP address. The DHCP server sends the DHCPACK back unicast
 to the IP address from which the RENEW or REBINDING originated.

 Given the existing responsibility placed on the client to only use an
 IP address when the lease is valid, and to only send in a RENEW or
 REBINDING if the lease is valid, the failover protocol relies on DHCP
 clients to perform responsibly and will, in the absence of conflict-
 ing information, believe a DHCP client that is attempting to RENEW or
 REBIND a lease on an IP address is the legitimate owner of that IP
 address.

 If clients do not follow these rules, it is possible for an address
 to be in use by more than one client. For a single server, this hap-
 pens because the server has leased the expired address to another
 client and the original client is also attempting to use the address.
 The server would NAK the renewal request. This is made slightly worse
 in the failover protocol if the two servers are unable to communicate
 with each other and one server leases an available address to a new
 client while the other server receives a renewal from a different
 client. In this case, both servers lease the same address to dif-
 ferent clients for the MCLT time.

 One troublesome issue is that of the DHCP client responsibility when
 sending in DHCPREQUEST/INIT-REBOOT requests. While the original DHCP
 RFC was written to require a DHCP client to have time left to run on
 the lease for an IP address if the client is sending an INIT-REBOOT

Droms, et. al. Expires May 2003 [Page 10]

Internet Draft DHCP Failover Protocol November 2002

 request, it was sufficiently unclear that some client vendors didn't
 realize this until recently. Since the INIT-REBOOT request was sent
 with the IP address in the dhcp-requested-address option and not in
 the ciaddr (for perfectly good reasons), the similarity to the RENEW
 and REBINDING case was lost on many people.

 At present, the failover protocol does not assume that a client send-
 ing in an INIT-REBOOT request necessarily has a valid lease on the IP
 address appearing in the dhcp-requested-address option in the INIT-
 REBOOT request.

 The implications of this are as follows: Assume that there is a DHCP
 client that gets a lease from one server while that server is unable
 to communicate with its failover partner. Then, assume that after
 that client reboots it is able only to communicate with the other
 failover server. If the failover servers have not been able to com-
 municate with each other during this process, then the DHCP client
 will get a new IP address instead of being able to continue to use
 its existing IP address. This will affect no applications on the DHCP
 client, since it is rebooting. However, it will use up an additional
 IP address in this marginal case.

3.1.3. Stable storage update before DHCPACK

 The DHCP protocol allocates resources, and in order to operate
 correctly it requires that a DHCP server update some form of stable
 storage prior to sending a DHCPACK to a DHCP client in order to grant
 that client a lease on an IP address.

 One of the goals of the failover protocol is that it not add signifi-
 cant additional time to this already time consuming requirement to
 update stable storage prior to a DHCPACK. In particular, adding a
 requirement to communicate with another server prior to sending a
 DHCPACK would greatly simplify the failover protocol, but it would
 unacceptably limit the potential scalability of any DHCP server which
 employed the failover protocol.

3.2. BOOTP relay agent implementation

 Many DHCP clients are not resident on the same network segment as a
 DHCP server. In order to support this form of network architecture,
 most contemporary routers implement something known as a BOOTP Relay
 Agent. This capability inside of a router listens for all broadcasts
 at the DHCP port, port 67, and will relay any broadcasts that it
 receives on to a DHCP server. The IP address of the DHCP server must
 have been previously configured into the router. As part of the
 relay process, the relay agent will place the address of the inter-
 face on which it received the broadcast into the giaddr field of the

Droms, et. al. Expires May 2003 [Page 11]

Internet Draft DHCP Failover Protocol November 2002

 DHCP packet.

 Since the failover protocol requires two DHCP servers to receive any
 broadcast DHCP messages, in order to work with DHCP clients which are
 not local to the DHCP server, the BOOTP relay agent on the router
 closest to the DHCP client must be configured to point at more than
 one DHCP server.

 Most BOOTP relay agent implementations allow this duplication of
 packets.

 If this is not possible, an administrator might be able to configure
 the relay agent with a subnet broadcast address, but in this case the
 primary and secondary DHCP servers in a failover pair must both
 reside on the same subnet.

3.3. What does it mean if a server can't communicate with its partner?

 In any protocol designed to allow one server to take over some
 responsibilities from a partner server in the event of "failure" of
 that partner server, there is an inherent difficulty in determining
 when that partner server has failed.

 In fact, it is fundamentally impossible for one server to distinguish
 a network communications failure from the outright failure of the
 server to which it is trying to communicate. In the case where each
 server is handing out resources (in this case IP addresses) to a
 client community, mistaking an inability to communicate with a
 partner server for failure of that partner server could easily cause
 both servers to be handing out the same IP addresses to different
 clients.

 One way that this is sometimes handled is for there to be more than
 two servers. In the case of an odd number of servers, the servers
 that can still communicate with a majority of other servers will con-
 sider themselves operational, and any server which can't communicate
 to a majority of other servers must immediately cease operations.

 While this technique works in some domains, having the only server to
 which a DHCP client can communicate voluntarily shut itself down
 seems like something worth avoiding.

 The failover protocol will operate correctly while both servers are
 unable to communicate, whether they are both running or not. At some
 point there may be resource contention, and if one of the servers is
 actually down, then the operator can inform the operational server
 and the operational server will be able to use all of the failed
 server's resources.

Droms, et. al. Expires May 2003 [Page 12]

Internet Draft DHCP Failover Protocol November 2002

 The protocol also allows detection of an orderly shutdown of a parti-
 cipating server.

3.4. Challenging scenarios for a Failover protocol

 There exist two failure scenarios which provide particular challenges
 to the correctness guarantees of a failover protocol.

3.4.1. Primary Server crash before "lazy" update:

 In the case where the primary server sends a DHCPACK to a client for
 a newly allocated IP address and then crashes prior to sending the
 corresponding update to the secondary server, the secondary server
 will have no record of the IP address allocation. When the secondary
 server takes over, it may well try to allocate that IP address to a
 different client. In the case where the first client to receive the
 IP address is not on the net at the time (yet while there was still
 time to run on its lease), an ICMP echo (i.e., ping) will not prevent
 the secondary server from allocating that IP address to a different
 client.

 The failover protocol deals with this situation by having the primary
 and secondary servers allocate addresses for new clients from dis-
 joint address pools. See section 5.5 for details.

 A more likely (in that DHCPREQUEST/RENEWs are presumably more common
 than DHCPDISCOVERs) and more subtle version of this problem is where
 the primary server crashes after extending a client's lease time, and
 before updating the secondary with a new time using a lazy update.
 After the secondary takes over, if the client is not connected to the
 network the secondary will believe the client's lease has expired
 when, in fact, it has not. In this case as well, the IP address
 might be reallocated to a different client while the first client is
 still using it.

 This scenario is handled by the failover protocol through control of
 the lease time and the use of the maximum client lead time (MCLT).
 See section 5.2.1 for details.

3.4.2. Network partition where DHCP servers can't communicate but each
can talk to clients:

 Several conditions are required for this situation to occur. First,
 due to a network failure, the primary and secondary servers cannot
 communicate. As well, some of the DHCP clients must be able to com-
 municate with the primary server, and some of the clients must now
 only be able to communicate with the secondary server. When this
 condition occurs, both primary and secondary servers could attempt to

Droms, et. al. Expires May 2003 [Page 13]

Internet Draft DHCP Failover Protocol November 2002

 allocate IP addresses for new clients from the same pool of available
 addresses. At some point, then, two clients will end up being allo-
 cated the same IP address. This will cause problems when the network
 failure that created this situation is corrected.

 The failover protocol deals with this situation by having the primary
 and secondary servers allocate addresses for new clients from dis-
 joint address pools. See section 5.5 for details.

3.5. Using TCP to detect partner server failure

 There are several characteristics of TCP that are important to the
 functioning of the failover protocol, which uses one TCP connection
 for both bulk data transfer as well as to assess communications
 integrity with the other server. Reliable and ordered message
 delivery are chief among these important characteristics.

 It would be nice to use the capabilities built in to TCP to allow it
 to determine if communications integrity exists to the failover
 partner but this strategy contains some problems which require
 analysis. There exist three fundamental cases for an open TCP con-
 nection that must be examined.

 1. When no data is being sent on a TCP connection, the TCP layer
 also does not exchange any signaling messages to assure that
 the peer is still up.

 2. When data is queued to be sent, and the receiver has not
 blocked the sending of additional data, then messages are
 flowing across the TCP connection containing the applications
 data.

 3. When data is queued to be sent, and the receiver has blocked
 the transmission of additional data, then persist messages are
 flowing from the receiver to the sender to ensure that the
 sender doesn't miss the receiver opening the window for
 further transmissions.

 The first case can be turned into the second case by sending
 application-level keep-alive messages periodically when there is no
 other data queued to be sent. Note TCP keep-alive messages might be
 used as well, but they present additional problems.

 Thus, we can ensure that the TCP connection has messages flowing
 periodically across the connection fairly easily. The question
 remains as to what TCP will do if the other end of the connection
 fails to respond (either because of network partition or because the
 receiving server crashes). TCP will attempt to retransmit a message

Droms, et. al. Expires May 2003 [Page 14]

Internet Draft DHCP Failover Protocol November 2002

 with an exponential backoff, and will eventually timeout that
 retransmission. However, the length of that timeout cannot, in gen-
 eral, be set on a per-connection basis, and is frequently as long as
 nine minutes, though in some cases it may be as short as two minutes.
 On some systems it can be set system-wide, while on other systems it
 cannot be changed at all.

 A value for this timeout that would be appropriate for the failover
 protocol, say less than 1 minute, could have unpleasant side-effects
 on other applications running on the same server, assuming that it
 could be changed at all on the host operating system.

 Nine minutes is a long time for the DHCP service to be unavailable to
 any new clients that were being served by the server which has
 crashed, when there is another server running that could respond to
 them as soon as it determines that its partner is not operational.

 The conclusion drawn from this analysis is that TCP provides very
 useful support for the failover protocol in the areas of reliable and
 ordered message delivery, but cannot by itself be relied upon to
 detect partner server failure in a fashion acceptable to the needs of
 the failover protocol. Additional failover protocol capabilities
 have been created to support timely detection of partner server
 failure. See section 8.3 for details on this mechanism.

4. Design Goals

 This section lists the design goals and the limitations of the fail-
 over protocol.

4.1. Design goals for this protocol

 The following is a list of goals that are met by this protocol. They
 are listed in priority order.

 1. Implementations of this protocol must work with existing DHCP
 client implementations based on the DHCP protocol [RFC 2131].

 2. Implementations of the protocol must work with existing BOOTP
 relay agent implementations.

 3. The protocol must provide failover redundancy between servers
 that are not located on the same subnet.

 4. Provide for continued service to DHCP clients through an
 automated mechanism in the event of failure of the primary
 server.

https://datatracker.ietf.org/doc/html/rfc2131

Droms, et. al. Expires May 2003 [Page 15]

Internet Draft DHCP Failover Protocol November 2002

 5. Avoid binding an IP address to a client while that binding is
 currently valid for another client. In other words, do not
 allocate the same IP address to two clients.

 6. Minimize any need for manual administrative intervention.

 7. Introduce no additional delays in server response time as a
 result of the network communications required to implement the
 failover protocol, i.e., don't require communications with the
 partner between the receipt of a DHCPREQUEST and the
 corresponding DHCPACK.

 8. Share IP address ranges between primary and secondary servers;
 i.e., impose no requirement that the pool of available
 addresses be manually or permanently divided between servers.

 9. Continue to meet the goals and objectives of this protocol in
 the event of server failure or network partition.

 10. Provide graceful reintegration of full protocol service after
 server failure or network partition.

 11. Allow for one computer to act as a secondary server for multi-
 ple primary servers. The protocol must allow failover primary
 and secondary configuration choices to be made at a granular-
 ity smaller than "all of the subnets served by a single
 server", though individual implementations may not choose to
 allow such flexibility.

 12. Ensure that an existing client can keep its existing IP
 address binding if it can communicate with either the primary
 or secondary DHCP server implementing this protocol - not just
 whichever server that originally offered it the binding.

 13. Ensure that a new client can get an IP address from some
 server. Ensure that in the face of partition, where servers
 continue to run but cannot communicate with each other, the
 above goals and requirements may be met. In addition, when
 the partition condition is removed, allow graceful automatic
 re-integration without requiring human intervention.

 14. If either primary or secondary server loses all of the infor-
 mation that it has stored in stable storage, ensure that it be
 able to refresh its stable storage from the other server.

 15. Support load balancing between the primary and secondary
 servers, and allow configuration of the percentage of the
 client population served by each with a moderately fine

Droms, et. al. Expires May 2003 [Page 16]

Internet Draft DHCP Failover Protocol November 2002

 granularity.

4.2. Limitations of this protocol

 The following are explicit limitations of this protocol.

 1. This protocol provides only one level of redundancy through a
 single secondary server for each primary server.

 2. A subset of the address pool is reserved for secondary server
 use. In order to handle the failure case where both servers
 are able to communicate with DHCP clients, but unable to com-
 municate with each other, a subset of the IP address pool must
 be set aside as a private address pool for the secondary
 server. The secondary can use these to service newly arrived
 DHCP clients during such a period. The required size of this
 private pool is based only on the arrival rate of new DHCP
 clients and the length of expected downtime, and is not influ-
 enced in any way by the total number of DHCP clients supported
 by the server pair.

 The failover protocol can be used in a mode where both the
 primary and secondary servers can share the load between them
 when both are operating. In this load balancing mode, the
 addresses allocated by the primary server to the secondary
 server are not unused, but are used instead to service the
 portion of the client base to which the secondary server is
 required to respond. See section 5.3 for more information on
 load balancing.

 3. The primary and secondary servers do not respond to client
 requests at all while recovering from a failure that could
 have resulted in duplicate IP assignments. (When synchroniz-
 ing in POTENTIAL-CONFLICT state).

5. Protocol Overview

 This section will discuss the failover protocol at a relatively high
 level of detail. In the event that a description in this section
 conflicts (or appears to conflict due to the overview nature of this
 section) with information in later sections of this draft, the infor-
 mation in the later sections should be considered authoritative.

5.1. Messages and States

 This protocol is centered around the message exchange used by one

Droms, et. al. Expires May 2003 [Page 17]

Internet Draft DHCP Failover Protocol November 2002

 server to update the other server of binding database changes result-
 ing from DHCP client activity:

 o Communication of binding database changes

 The binding update (BNDUPD) message is used to send the binding
 database changes to the partner server, and the partner server
 responds with a binding acknowledgement (BNDACK) message when it
 has successfully committed those changes to its own stable
 storage.

 All of the other messages involve ancillary issues:

 o Management of available IP addresses

 The pool request (POOLREQ) message is used by the secondary
 server to request an allocation of IP addresses from the primary
 server. The pool response (POOLRESP) message is used by the
 primary server to inform the secondary server how many IP
 addresses were allocated to the secondary server as the result
 of the pool request.

 o Synchronization of the binding databases between the servers
 after they've been out of communications

 The update request (UPDREQ) message is used by one server to
 request that its partner send it all binding database informa-
 tion that it has not already seen. The update request all
 (UPDREQALL) message is used by one server to request that all
 binding database information be sent in order to recover from a
 total loss of its binding database by the requesting server.
 The update done (UPDDONE) message is used by the responding
 server to indicate that all requested updates have been sent the
 responding server and acked by the requesting server.

 o Connection establishment

 The connect (CONNECT) message is used by the primary server to
 establish a high level connection with the other server, and to
 transmit several important configuration data items between the
 servers. The connect acknowledgement message (CONNECTACK) is
 used by the secondary server to respond to a CONNECT message
 from the primary server. The disconnect (DISCONNECT) message is
 used by either server when closing a connection.

 o Server synchronization

 The state change (STATE) message is used by either server to

Droms, et. al. Expires May 2003 [Page 18]

Internet Draft DHCP Failover Protocol November 2002

 inform the other server of a change of failover state.

 o Connection integrity management

 The contact (CONTACT) message is used by either server to ensure
 that the other server continues to see the connection as opera-
 tional. It MUST be transmitted periodically over every esta-
 blished connection if other message traffic is not flowing, and
 it MAY be sent at any time.

5.1.1. Failover endpoints

 The proper operation of the failover protocol requires more than the
 transmission of messages between one server and the other. Each end-
 point might seem to be a single DHCP server, but in fact there are
 many situations where additional flexibility in configuration is use-
 ful.

 For instance, there might be several servers which are each primary
 for a distinct set of address pools, and one server which is secon-
 dary for all of those address pools. The situation with the pri-
 maries is straightforward, but the secondary will need to maintain a
 separate failover state, partner state, and communications up/down
 status for each of the separate primary servers for which it is act-
 ing as a secondary.

 The failover protocol calls for there to be a unique failover end-
 point per partner per role (where role is primary or secondary).
 This failover endpoint can take actions and hold unique states.
 There are thus a maximum of two failover endpoints per partner (one
 for the partner as a primary and one for that same partner as a
 secondary.)

 Thus, in the case where there are two primary servers A and B each
 backed up by a single common secondary server C, there is one fail-
 over endpoint on each of A and B, and two different failover end-
 points on C. The two different failover endpoints on C each have
 unique states and independent TCP connections.

 This document frequently describes the behavior of the protocol in
 terms of primary and secondary servers, not primary and secondary
 failover endpoints. However, it is important to remember that every
 'server' described in this document is in reality a failover endpoint
 that resides in a particular process, and that many failover end-
 points may reside in the same process.

 It is not the case that there is a unique failover endpoint for each
 subnet address pool that participates in a failover relationship. On

Droms, et. al. Expires May 2003 [Page 19]

Internet Draft DHCP Failover Protocol November 2002

 one server, there is one failover endpoint per partner per role,
 regardless of how many subnet address pools are managed by that com-
 bination of partner and role. Conversely, on a particular server,
 any given subnet address pool will be associated with exactly one
 failover endpoint.

 When a connection is received from the partner, the unique failover
 endpoint to which the message is directed is determined solely by the
 IP address of the partner and the port to which the connection is
 directed by the partner. See section 8.2.

5.2. Fundamental guarantees

 There a several fundamental restrictions this protocol places on what
 one server can do in the absence of knowledge of the other server.
 Operating within these restrictions allows certain guarantees to be
 made to the partner server, and these are key to the correct opera-
 tion of the protocol.

5.2.1. Control of lease time

 The key problem with lazy update is that when a server fails after
 updating a client with a particular lease time and before updating
 its partner, the partner will believe that a lease has expired even
 though the client still retains a valid lease on that IP address.

 In order to handle this problem, a period of time known as the "Max-
 imum Client Lead Time" (MCLT) is defined and must be known to both
 the primary and secondary servers. Proper use of this time interval
 places an upper bound on the difference allowed between the lease
 time provided to a DHCP client by a server and the lease time known
 by that server's partner. However, the MCLT is typically much less
 than the lease time that a server has been configured to offer a
 client, and so some strategy must exist to allow a server to offer
 the configured lease time to a client. During a lazy update the
 updating server typically updates its partner with a potential
 expiration time which is longer than the lease time previously given
 to the client and which is longer than the lease time that the server
 has been configured to give a client. This allows that server to
 give a longer lease time to the client the next time the client
 renews its lease, since the time that it will give to the client will
 not exceed the MCLT beyond the potential expiration time acknowledged
 by its partner.

 The PARTNER-DOWN state exists so that a server can be sure that its
 partner is, indeed, down. Correct operation while in that state
 requires (generally) that the server wait the MCLT after anything
 that happened prior to its transition into PARTNER-DOWN state (or,

Droms, et. al. Expires May 2003 [Page 20]

Internet Draft DHCP Failover Protocol November 2002

 more accurately, when the other server went down if that is known).
 Thus, the server MUST wait the MCLT after the partner server went
 down before allocating any of the partner's addresses which were
 available for allocation. In the event the partner was not in com-
 munication prior to going down, it might have allocated one or more
 of its FREE addresses to a DHCP client and been unable to inform the
 server entering PARTNER-DOWN prior to going down itself. By waiting
 the MCLT after the time the partner went down, the server in
 PARTNER-DOWN state ensures that any clients which have a lease on one
 of the partner's FREE addresses will either time out or contact the
 server in PARTNER-DOWN by the time that period ends.

 In addition, once a server has made a transition to PARTNER-DOWN
 state, it MUST NOT reallocate an IP address from one client to
 another client until the longer of the following two times:

 o The MCLT after the time the partner server went down (see
 above).

 o An additional MCLT interval after the lease by the original
 client expires. (Actually, until the maximum client lead time
 after what it believes to be the lease expiration time of the
 client.)

 Some optimizations exist for this restriction, in that it only
 applies to leases that were issued BEFORE entering PARTNER-DOWN. Once
 a server has entered PARTNER-DOWN and it leases out an address, it
 need not wait this time as long as it has never communicated with the
 partner since the lease was given out.

 The fundamental relationship on which much of the correctness of this
 protocol depends is that the lease expiration time known to a DHCP
 client MUST NOT be more than the maximum client lead time greater
 than the potential expiration time known to a server's partner.

 The remainder of this section makes the above fundamental relation-
 ship more explicit.

 This protocol requires a DHCP server to deal with several different
 lease intervals and places specific restrictions on their relation-
 ships. The purpose of these restrictions is to allow the other server
 in the pair to be able to make certain assumptions in the absence of
 an ability to communicate between servers.

 The different lease times are:

 o desired lease interval

Droms, et. al. Expires May 2003 [Page 21]

Internet Draft DHCP Failover Protocol November 2002

 The desired lease interval is the lease interval that a DHCP server
 would like to give to a DHCP client in the absence of any restric-
 tions imposed by the Failover protocol. Its determination is out-
 side of the scope of this protocol. Typically this is the result of
 external configuration of a DHCP server.

 o actual lease interval

 The actual lease internal is the lease interval that a DHCP server
 gives out to a DHCP client in the dhcp-lease-time option of a
 DHCPACK packet. It may be shorter than the desired client lease
 interval (as explained below).

 o potential lease interval

 The potential lease interval is the lease expiration interval the
 local server tells to its partner in the potential-expiration-time
 option of a BNDUPD message.

 o acknowledged potential lease interval

 The acknowledged potential lease interval is the potential lease
 interval the partner server has most recently acknowledged in the
 potential-expiration-time option of a BNDACK message.

 The key restriction (and guarantee) that any server makes with
 respect to lease intervals is that the actual client lease interval
 never exceeds the acknowledged potential lease interval (if any) by
 more than a fixed amount. This fixed amount is called the "Maximum
 Client Lead Time" (MCLT).

 The MCLT MAY be configurable on the primary server, but for correct
 server operation it MUST be the same and known to both the primary
 and secondary servers. The secondary server determines the MCLT from
 the MCLT option sent from the primary server to the secondary server
 in the CONNECT message.

 A server MUST record in its stable storage both the actual lease
 interval and the most recently acknowledged potential lease interval
 for each IP address binding. It is assumed that the desired client
 lease interval can be determined through techniques outside of the
 scope of this protocol. See section 7.1.5 for more details concern-
 ing the times that the server MUST record in its stable storage and
 the way that they interact with the lease time that may be offered to
 a DHCP client.

 Again, the fundamental relationship among these times which MUST be
 maintained is:

Droms, et. al. Expires May 2003 [Page 22]

Internet Draft DHCP Failover Protocol November 2002

 actual lease interval <
 (acknowledged potential lease interval + MCLT)

 Figure 5.2.1-1 illustrates an initial lease to a client using the
 rules discussed in the example which follows it. Note that this is
 only one example -- as long as the fundamental relationship is
 preserved, the actual times used could be quite different.

Droms, et. al. Expires May 2003 [Page 23]

Internet Draft DHCP Failover Protocol November 2002

 DHCP Primary Secondary
 time Client Server Server

 | (time in intervals) | (absolute time) |
 | | |
 | >-DHCPDISCOVER-> | |
 | <---DHCPOFFER-< | |
 | lease-time=MCLT | |
 | | |
 | >-DHCPREQUEST-> | |
 | (selecting) | |
 | | |
 t | <--------DHCPACK-< | |
 | lease-time=MCLT | |
 | | >-BNDUPD--> |
 | | lease-expiration=t+MCLT
 | | potential-expiration=t+(MCLT/2)+X
 | | |
 | | <-BNDACK-< |
 | | potential-expiration=t+(MCLT/2)+X

 | | |
 t+MCLT/2 | >-DHCPREQUEST-> | |
 | (renew) | |
 | | |
 t1 | <--------DHCPACK-< | |
 | lease-time=X | |
 | | >-BNDUPD--> |
 | | lease-expiration=t1+X
 | | potential-expiration=t1+(X/2)+X
 | | |
 | | <-BNDACK-< |
 | | potential-expiration=t1+(X/2)+X

 Figure 5.2.1-1: Lazy Update Message Traffic
 X = Desired Lease Interval
 Assumes renewal interval = lease interval / 2

 DISCUSSION:

 This protocol mandates only that the above fundamental relation-
 ship concerning lease intervals is preserved.

 In the interests of clarity, however, let's examine a specific
 example. The MCLT in this case is 1 hour. The desired lease

Droms, et. al. Expires May 2003 [Page 24]

Internet Draft DHCP Failover Protocol November 2002

 interval is 3 days, and its renewal time is half the lease inter-
 val.

 The rules for this example are:

 o What to tell the client:

 Take the remainder of the acknowledged potential lease interval.
 If this is a new lease, then this value will be zero. If this
 remainder plus the MCLT is greater than the desired lease inter-
 val, give the client the desired lease interval else give the
 client the remainder plus the MCLT.

 o What to tell the failover partner server:

 Take the renewal interval (typically half of the actual client
 lease interval), add to it the desired lease interval, and add
 it to the current time to yield the value that goes into the
 potential-expiration-time option.

 Also tell the failover partner the actual lease interval by
 adding it to the current time to yield the value that goes into
 the lease-expiration option.

 In operation this might work as follows:

 When a server makes an offer for a new lease on an IP address to a
 DHCP client, it determines the desired lease interval (in this
 case, 3 days). It then examines the acknowledged potential lease
 interval (which in this case is zero) and determines the remainder
 of the time left to run, which is also zero. To this it adds the
 MCLT. Since the actual lease interval cannot be allowed to exceed
 the remainder of the current acknowledged potential lease interval
 plus the MCLT, the offer made to the client is for the remainder
 of the current acknowledged potential lease interval (i.e., zero)
 plus the MCLT. Thus, the actual lease interval is 1 hour.

 Once the server has performed the DHCPACK to the DHCP client, it
 will update the secondary server with the lease information. How-
 ever, the desired potential lease interval will be composed of one
 half of the current actual lease interval added to the desired
 lease interval. Thus, the secondary server is updated with a
 BNDUPD with a lease interval of 3 days + 1/2 hour specified in the
 potential-expiration-time option.

 When the primary server receives a BNDACK to its update of the
 secondary server's (partner's) potential lease interval, it
 records that as the acknowledged potential lease interval. A

Droms, et. al. Expires May 2003 [Page 25]

Internet Draft DHCP Failover Protocol November 2002

 server MUST NOT send a BNDACK in response to a BNDUPD message
 until it is sure that the information in the BNDUPD message
 resides in its stable storage. Thus, the primary server in this
 case can be sure that the secondary server has recorded the poten-
 tial lease interval in its stable storage when the primary server
 receives a BNDACK message from the secondary server.

 When the DHCP client attempts to renew at T1 (approximately one
 half an hour from the start of the lease), the primary server
 again determines the desired lease interval, which is still 3
 days. It then compares this with the remaining acknowledged
 potential lease interval (3 days + 1/2 hour) and adjusts for the
 time passed since the secondary was last updated (1/2 hour). Thus
 the time remaining of the acknowledged potential lease interval is
 3 days. Adding the MCLT to this yields 3 days plus 1 hour, which
 is more than the desired lease interval of 3 days. So the client
 is renewed for the desired lease interval -- 3 days.

 When the primary DHCP server updates the secondary DHCP server
 after the DHCP client's renewal ACK is complete, it will calculate
 the desired potential lease interval as the T1 fraction of the
 actual client lease interval (1/2 of 3 days this time = 1.5 days).
 To this it will add the desired client lease interval of 3 days,
 yielding a total desired partner server lease interval of 4.5
 days. In this way, the primary attempts to have the secondary
 always "lead" the client in its understanding of the client's
 lease interval so as to be able to always offer the client the
 desired client lease interval.

 Once the initial actual client lease interval of the MCLT is past,
 the protocol operates effectively like the DHCP protocol does
 today in its behavior concerning lease intervals. However, the
 guarantee that the actual client lease interval will never exceed
 the remaining acknowledged partner server lease interval by more
 than the MCLT allows full recovery from a variety of failures.

5.2.2. Controlled re-allocation of IP addresses

 When in PARTNER-DOWN state there is a waiting period after which an
 IP address can be re-allocated to another client. For IP addresses
 which are available when the server enters PARTNER-DOWN state, the
 period is the MCLT from entry into PARTNER-DOWN state. For IP
 addresses which are not available when the server enters PARTNER-DOWN
 state, the period is the MCLT after the IP address becomes available.
 See section 9.4.2 for more details.

 In any other state, a server cannot reallocate an address from one
 client to another without first notifying its partner (through a

Droms, et. al. Expires May 2003 [Page 26]

Internet Draft DHCP Failover Protocol November 2002

 BNDUPD message) and receiving acknowledgement (through a BNDACK mes-
 sage) that its partner is aware that that first client is not using
 the address.

 This could be modeled in the following way. Though this specific
 implementation is in no way required, it may serve to better illus-
 trate the concept.

 An "available" IP address on a server may be allocated to any client.
 An IP address which was leased to a client and which expired or was
 released by that client would take on a new state, EXPIRED or
 RELEASED respectively. The partner server would then be notified
 that this IP address was EXPIRED or RELEASED through a BNDUPD. When
 the sending server received the BNDACK for that IP address showing it
 was FREE, it would move the IP address from EXPIRED or RELEASED to
 FREE, and it would be available for allocation by the primary server
 to any clients.

 A server MAY reallocate an IP address in the EXPIRED or RELEASED
 state to the same client with no restrictions provided it has not
 sent a BNDUPD message to its partner. This situation would exist if
 the lease expired or was released after the transition into PARTNER-
 DOWN state, for instance.

5.3. Load balancing

 In order to implement load balancing between a primary and secondary
 server pair, each server must respond to DHCPDISCOVER requests from
 some clients and not from other clients. In order to do this suc-
 cessfully, each server must be able to determine immediately upon
 receipt of a DHCP client request whether it is to service this
 request or to ignore it in order to allow the other server to service
 the request.

 In addition, it should be possible to configure the percentage of
 clients which will be serviced by either the primary or secondary
 server. This configuration should be more or less continuous, from
 all clients serviced by the primary through an even split with half
 serviced by each, to all clients serviced by the secondary.

 The technique chosen to support these goals is described in [RFC
 3074].

 A bitmap-style Hash Bucket Assignment (as described in [RFC 3074]) is
 used to determine which DHCP clients can be processed. There are two
 potential HBA's in a failover server -- a server HBA and a failover
 HBA. The way that a server acquires a server HBA is outside of the

https://datatracker.ietf.org/doc/html/rfc3074

Droms, et. al. Expires May 2003 [Page 27]

Internet Draft DHCP Failover Protocol November 2002

 scope of the failover protocol, but both servers in a failover pair
 MUST have the same server HBA. The failover HBA (which specifies the
 clients that the secondary is supposed to process) is sent by the
 primary server to the secondary server whenever a connection is esta-
 blished, using the hash-bucket-assignment option defined in section

12.11.

 When using the server HBA (if any) and the failover HBA (if any), to
 decide whether to process a DHCP request, the server HBA always
 applies in every failover state, and the failover HBA (which MUST be
 a subset of the server HBA) is used by the secondary server to decide
 which packets to process when in NORMAL state.

5.4. IP address allocations between servers

 The failover protocol allows a DHCP server which implements it to
 operate correctly in spite of the uncertainty over whether its
 partner has failed or whether the communications link to its partner
 has failed. This is made possible in part by the existence of
 separate address pools on each server for allocation to newly arrived
 DHCP clients.

 Thus, each server has its own pool of available IP addresses. Note
 that an IP address is not "owned" by a particular server throughout
 its entire lifetime. Only an IP address which is available is
 "owned" by a particular server -- once it has been leased to a DHCP
 client, it is not owned by either failover partner. When it finally
 becomes available again, it will be owned initially by the primary
 server, and it may or may not be allocated to the secondary server by
 the primary server.

 So, the flow of IP address ownership is as follows: initially an IP
 address is owned by the primary server. It may be allocated to the
 secondary server if it is available, and then it is owned by the
 secondary server. Either server can allocate available IP addresses
 which they own to DHCP clients, in which case they cease to own them.
 When the DHCP client releases the address or the lease on it expires,
 it will again become available and will be owned by the primary.

 An IP address will not become owned by the server which allocated it
 initially when it is released or the lease expires because, in gen-
 eral, that server will have had to replenish its pool of available
 addresses well in advance of any likely lease expirations. Thus,
 having a particular IP address cycle back to the secondary might well
 put the secondary more out of balance with respect to the primary
 instead of enhancing the balance of available addresses between them.

 These address pools are used when in COMMUNICATIONS-INTERRUPTED state

Droms, et. al. Expires May 2003 [Page 28]

Internet Draft DHCP Failover Protocol November 2002

 and while waiting for the MCLT expiration in PARTNER-DOWN state. In
 addition, when using load balancing, these pools are used when in
 NORMAL state as well.

 This allocation and maintenance of these address pools is an area of
 some sensitivity, since the goal is to maintain a more or less con-
 stant ratio of available addresses between the two servers.

 The initial allocation when the servers first integrate is triggered
 by the POOLREQ message from the secondary to the primary. This is
 followed by the POOLRESP message where the primary tells the secon-
 dary how many IP addresses it allocated to the secondary. Then, the
 primary sends the allocated IP addresses to the secondary via BNDUPD
 messages. l The POOLREQ/POOLRESP message is a trigger to the primary
 to perform a scan of its database and to ensure that the secondary
 has enough IP addresses (based on some configured ratio).

 The actual IP addresses are sent to the secondary using the BNDUPD
 message with a state of BACKUP, which indicates the IP address is now
 available for allocation by the secondary. Once the message is sent,
 the primary MUST NOT use these addresses for allocation to DHCP
 clients.

 The POOLREQ/POOLRESP message exchange initiated by the secondary is
 valid at any time, and the primary server SHOULD, whenever it
 receives the POOLREQ message, scan its database of address pools and
 determine if the secondary needs more IP addresses from any of the IP
 address pools.

 However, in order to support a reasonably dynamic balance of the IP
 addresses between the failover partners, the primary server needs to
 do additional work to ensure that the secondary server has as many IP
 addresses as it needs (but that it doesn't have *more* than it needs
 either).

 The primary server SHOULD examine the balance of available addresses
 between the primary and secondary for a particular address pool when-
 ever the number of available addresses for either the primary or
 secondary changes. The primary server SHOULD adjust the available
 address balance as required to ensure the configured address balance,
 excepting that the primary server SHOULD employ some threshold
 mechanism to such a balance adjustment in order to minimize the over-
 head of maintaining this balance.

 An example of a threshold approach is: do not attempt to re-balance
 the available pools on the primary and secondary until the out of
 balance value exceeds a configured value.

Droms, et. al. Expires May 2003 [Page 29]

Internet Draft DHCP Failover Protocol November 2002

 The primary server can, at any time, send an available IP address to
 the secondary using a BNDUPD with the state BACKUP. The primary
 server can attempt to take an available IP address away from the
 secondary by sending a BNDUPD with the state FREE. If the secondary
 accepts the BNDUPD, then it is now available to the PRIMARY and not
 available to the secondary. Of course, the secondary MUST reject
 that BNDUPD if it has already used that IP address for a DHCP client.

 Whenever the primary server examines the possible available IP
 addresses which it could send to the secondary server, the primary
 server SHOULD take into account whether load balancing is in use, and
 it SHOULD attempt to send to the secondary any IP addresses whose
 most recent client would be processed by the secondary under the
 current load balancing regime in use. Likewise, when removing avail-
 able IP addresses from the secondary server when load balancing is in
 use, the primary server SHOULD first remove those IP addresses whose
 most recent client would be processed by the primary server under the
 current load balancing regime in use.

5.5. Operating in NORMAL state

 When in NORMAL state, each server services DHCPDISCOVER's and all
 other DHCP requests other than DHCPREQUEST/RENEWAL or
 DHCPREQUEST/REBINDING from the client set defined by the load balanc-
 ing algorithm [RFC 3074]. Each server services DHCPREQUEST/RENEWAL
 or DHCPDISCOVER/REBINDING requests from any client.

 In general, whenever the binding database is changed in stable
 storage (other than a change resulting from receiving a BNDUPD from
 the failover partner), then a BNDUPD message is sent with the con-
 tents of that change to the partner server. The partner server then
 writes the information about that binding in its bindings database in
 stable storage and replies with a BNDACK message.

 The binding database in a DHCP server would normally be changed as a
 result of DHCP protocol activity with a DHCP client (e.g., granting
 a lease to a DHCP client through the familiar
 DISCOVER/OFFER/REQUEST/ACK cycle or extending a lease due to a
 renewal from a DHCP client) or possibly (on some servers) because a
 lease has expired or undergone another state change that must be
 recorded in the DHCP binding database. These are the state changes
 that would be communicated to the partner server using a BNDUPD mes-
 sage. Of course, receipt of a BNDUPD message itself will normally
 cause an update of the binding database for all of the IP addresses
 contained in the BNDUPD, and a binding database change such as this
 MUST NOT trigger a corresponding BNDUPD message to the partner.

https://datatracker.ietf.org/doc/html/rfc3074

Droms, et. al. Expires May 2003 [Page 30]

Internet Draft DHCP Failover Protocol November 2002

5.6. Operating in COMMUNICATIONS-INTERRUPTED state

 When operating in COMMUNICATIONS-INTERRUPTED state, each server is
 operating independently, but does not assume that its partner is not
 operating. The partner server might be operating and simply unable
 to communicate with this server, or might not be operating.

 Each server responds to the full range of DHCP client messages that
 it receives (subject to server load balancing [RFC 3074]), but in
 such a way that graceful reintegration is always possible when its
 partner comes back into contact with it.

5.7. Operating in PARTNER-DOWN state

 When operating in PARTNER-DOWN state, a server assumes that its
 partner is not currently operating, but does make allowances for the
 possibility that that server was operating in the past, though possi-
 bly out of communications with this server. It responds to all DHCP
 client requests in PARTNER-DOWN state (subject to server load balanc-
 ing [RFC 3074]).

5.8. Operating in RECOVER state

 A server operating in RECOVER state assumes that it is reintegrating
 with a server that has been operating in PARTNER-DOWN state, and that
 it needs to update its bindings database before it services DHCP
 client requests.

 A server may also operate in RECOVER state in order to fully recover
 its bindings database from its partner server.

5.9. Operating in STARTUP state

 A server operating in STARTUP state assumes that failover is opera-
 tional, and it spends a short time whenever it comes up attempting to
 contact the partner. During this short time, the server is unrespon-
 sive to DHCP client requests. This period exists in order to give a
 server a chance to determine that its partner has changed state since
 it was last in communications, and to react to that changed state (if
 any) prior to responding to DHCP client requests.

 The startup period SHOULD be conditioned on the length of time the
 server has been down (if that can be determined). If the server has
 been down less than the MCLT then it can wait only a few (say 5 or
 10) seconds. If it has been down a longer time (such that the
 partner may well have moved to PARTNER-DOWN state), a considerably
 longer startup period of 30 to 60 seconds may be warranted, since the
 consequences of running while the partner is in PARTNER-DOWN state

https://datatracker.ietf.org/doc/html/rfc3074
https://datatracker.ietf.org/doc/html/rfc3074

Droms, et. al. Expires May 2003 [Page 31]

Internet Draft DHCP Failover Protocol November 2002

 are unpleasant.

 The period of time a server remains in STARTUP state SHOULD be long
 enough to ensure that it will connect to the other server if that
 server is available for connections.

5.10. Time synchronization between servers

 The failover protocol is designed to operate between two servers
 which have time values which differ by an arbitrarily large amount.
 A particular implementation MAY choose to only support servers whose
 time values differ by an arbitrarily small amount.

 In any event, whether large or only small differences in time values
 are supported, every message that is received MUST be tagged with a
 time value as soon as possible after receipt. This time value is
 used along with the time value that is sent in every message between
 the failover partners to develop a delta time between the servers.
 This delta time is used during the connection process to establish a
 baseline delta time between the servers, and upon receipt of each
 message, the delta time for that message is used to refine the delta
 time for the server pair.

 While the algorithm for this refinement of delta time is not speci-
 fied as part of this protocol, a server SHOULD allow the delta time
 value for a pair of failover servers to be periodically updated to
 account for time drift. In addition, the delta time value between
 servers SHOULD be smoothed in some fashion, so that transient network
 delays will not cause it to vary wildly.

 A server SHOULD recognize a drastic change in the delta time value as
 an event to be signaled to a network administrator, as well as reset-
 ting the time delta between the failover partners.

 The specific definitions of a minor or drastic change in delta time
 as well as the algorithm used to smooth minor changes into the run-
 ning delta time are implementation issues and are not further
 addressed in this document.

5.11. IP address binding-status

 In most DHCP servers an IP address can take on several different
 binding-status values, sometimes also called states. While no two
 DHCP servers probably have exactly the same possible binding-status
 values, the DHCP RFC enforces some commonality among the general
 semantics of the binding-status values used by various DHCP server
 implementations.

Droms, et. al. Expires May 2003 [Page 32]

Internet Draft DHCP Failover Protocol November 2002

 In order to transmit binding database updates between one server and
 another using the failover protocol, some common denominator
 binding-status values must be defined. It is not expected that these
 binding-status-values correspond with any actual implementation of
 the DHCP protocol in a DHCP server, but rather that the binding-
 status values defined in this document should be a common denominator
 of those in use by many DHCP server implementations. It is a goal of
 this protocol that any DHCP server can map the various IP address
 binding-status values that it uses internally into these failover IP
 address binding-status values on transmission of binding database
 updates to its partner, and likewise that it can map any failover IP
 address binding-status values it received in a binding update into
 its internal IP address binding-status values.

 The IP address binding-status values defined for the failover proto-
 col are listed below. Unless otherwise noted below, there MAY be
 client information associated with each of these binding-status
 values.

 o ACTIVE -- Lease is assigned to a client. Client identification
 MUST appear.

 o EXPIRED -- indicates that a client's binding on an IP address
 has expired. When the partner server ACK's the BNDUPD of an
 EXPIRED IP address, the server sets its internal state to FREE.
 It is then available for allocation to any client of the primary
 server. It may be allocated to the same client on the server
 where the lease expired if a BNDUPD containing the EXPIRED state
 has not yet been sent to the partner (e.g., in the event that
 the servers are not in communication). Client identification
 SHOULD appear.

 o RELEASED -- indicates that a DHCP client sent in a DHCPRELEASE
 message. When the partner server ACK's the BNDUPD of an
 RELEASED IP address, the server sets its internal state to FREE,
 and it is available for allocation by the primary server to any
 DHCP client. It may be allocated to the same client if a BNDUPD
 has not yet been sent to the partner. Client identification
 SHOULD appear.

 o FREE -- is used when a DHCP server needs to communicate that an
 IP address is unused by any DHCP client, but it was not just
 released, expired, or reset by a network administrator. When
 the partner server ACK's the BNDUPD of a FREE IP address, the
 server sets its internal state such that it is available for
 allocation by the primary DHCP server to any DHCP client. (Note
 that in PARTNER-DOWN state, after waiting the MCLT, the IP
 address MAY be allocated to a DHCP client by the secondary

Droms, et. al. Expires May 2003 [Page 33]

Internet Draft DHCP Failover Protocol November 2002

 server.)

 Note that when an IP address that was allocated by the secondary
 reverts to the FREE state, it must (like any other IP address)
 be assigned to the secondary through the POOLREQ/BNDUPD process
 before the secondary can reallocate it.

 Client identification MAY appear.

 o ABANDONED -- indicates that an IP address is considered unusable
 by the DHCP subsystem. An IP address for which a valid PING
 response was received SHOULD be set to ABANDONED. An IP address
 for which a DHCPDECLINE was received should be set to ABANDONED.
 Client identification MUST NOT appear.

 o RESET -- indicates that this IP address was made available by
 operator command. This is a distinct state so that the reason
 that the IP address became FREE can be determined. Client iden-
 tification MAY appear.

 o BACKUP -- indicates that this IP address can be allocated by the
 secondary server to a DHCP client at any time. When the MCLT has
 passed after its time of entry into PARTNER-DOWN state, the IP
 address may be allocated by the primary to any DHCP client.
 Client identification MAY appear.

 These binding-status values are communicated from one failover
 partner to another using the binding-status option, see section 12.3
 for details of this option. Unless otherwise noted above there MAY
 be client information associated with each of these binding-status
 values.

 An IP address will move between these binding-status values using the
 following state transition diagram:

Droms, et. al. Expires May 2003 [Page 34]

Internet Draft DHCP Failover Protocol November 2002

 DHCP client DECLINE or
 server detected problem
 from any state
 |
 V
 +----------+ +--+------+
 External >---->| RESET | (3) |ABANDONED|
 command | +<--------+ |
 +----------+ +---------+
 |
 Comm w/Parter(1)
 V
 +---------+ Comm(1) +----------+ Comm(1) +---------+
 | EXPIRED |--------->| FREE |<----------| RELEASED|
 | | w/Parter | | w/Partner | |
 +---------+ +----------+ +---------+
 ^ ^ | | +-----------+ ^
 | | | | | |
 | Exp. grace IP | IP addr alloc. IP addr |
 | period ends address to sec.(2) reserved |
 | | leased V | | |
 | | by | +----------+ | |
 | | primary | BACKUP |<---+ |
 | wait for | | | |
 | grace period | +----------+ |
 | | | | |
 | | | IP addr leased by |
 | Expired grace | secondary |
 | period exists V V |
 | | +----------+ |
 | | Lease on | ACTIVE | DHCPRELEASE |
 +-----+-IP addr---| |------------------+
 expires +----------+

 Figure 5.11-1: Transitions between binding-status values.

 (1) This transition MAY also occur if the server is in
 PARTNER-DOWN state and the MCLT has passed since the entry
 in the RELEASED, EXPIRED, or RESET states.

 (2) This transition MAY occur if the server is the secondary
 and the MCLT has passed since its entry into PARTNER-DOWN state.

 (3) This transition MAY occur due to an implementation specific
 handling of ABANDONED IP addresses.

Droms, et. al. Expires May 2003 [Page 35]

Internet Draft DHCP Failover Protocol November 2002

 Again, note that a DHCP server implementing the failover protocol
 does not have to implement either this state machine or use these
 particular binding-status values in its normal operation of allocat-
 ing IP addresses to DHCP clients. It only needs to map its internal
 binding-status-values onto these "standard" binding-status values,
 and map these "standard" binding-status values back into its internal
 binding-status values. For example, a server which implements a
 grace period for a IP address binding SHOULD simply wait to update
 its partner server until the grace period on that binding has run
 out.

 The process of setting an IP address to FREE deserves some detailed
 discussion. When an IP address is moved to the EXPIRED,RELEASED, or
 RESET binding-status on a server, it will send a BNDUPD with the
 binding-status of EXPIRED, RELEASED, or RESET to its partner. If its
 partner agrees that is acceptable (see sections 7.1.2 and 7.1.3 con-
 cerning why a server might not accept a BNDUPD) it will return a
 BNDACK with no reject-reason, signifying that it accepted the update.
 As part of the BNDUPD processing, the server returning the BNDACK
 will set the binding-status of the IP address to FREE, and upon
 receipt of the BNDACK the server which sent the BNDUPD will set the
 binding-status of the IP address to FREE. Thus, the EXPIRED,
 RELEASED, or RESET binding-status is something of a transitory state.
 This process is encoded in the transition diagram above by "Comm
 w/Partner".

5.12. DNS dynamic update considerations

 DHCP servers (and clients) can use DNS Dynamic Updates as described
 in [RFC 2136] to maintain DNS name-mappings as they maintain DHCP
 leases. Many different administrative models for DHCP-DNS integra-
 tion are possible. Descriptions of several of these models, and
 guidelines that DHCP servers and clients should follow in carrying
 them out, are laid out in [FQDN]. The nature of the DHCP failover
 protocol introduces some issues concerning dynamic DNS updates that
 are not part of non-failover DHCP environments. This section
 describes these issues, and defines the information which failover
 partners should exchange and the protocol which they should follow in
 order to ensure consistent behavior. The presence of this section
 should not be interpreted as requiring that implementations of the
 DHCP failover protocol must also support DDNS updates. The purpose
 of this discussion is to clarify the areas where the DHCP failover
 and DHCP-DDNS protocols intersect for the benefit of implementations
 which support both protocols, not to introduce a new requirement into
 the DHCP failover protocol. Thus, a DHCP server which implements the

https://datatracker.ietf.org/doc/html/rfc2136

Droms, et. al. Expires May 2003 [Page 36]

Internet Draft DHCP Failover Protocol November 2002

 failover protocol MAY also support dynamic DNS updates, but if it
 does support dynamic DNS updates it SHOULD utilize the techniques
 described here in order to correctly distribute them between the
 failover partners. See [FQDN], [DNSRES], and [DHCID] for details of
 how DHCP servers update DNS.

 From the standpoint of the failover protocol, there is no reason why
 a server which is utilizing the DDNS protocol to update a DNS server
 should not be a partner with a server which is not utilizing the DDNS
 protocol to update a DNS server. However, a server which is not able
 to support DDNS or is not configured to support DDNS SHOULD output a
 warning message when it receives BNDUPD messages which indicate that
 its failover partner is configured to support the DDNS protocol to
 update a DNS server. An implementation MAY consider this an error
 and refuse to operate, or it MAY choose to operate anyway, having
 warned the user of the problem in some way.

5.12.1. Relationship between failover and dynamic DNS update

 The failover protocol describes the conditions under which each fail-
 over server may renew a lease to its current DHCP client, and
 describes the conditions under which it may grant a lease to a new
 DHCP client. An analogous set of conditions determines when a fail-
 over server should initiate a DDNS update, and when it should attempt
 to remove records from the DNS. The failover protocol's conditions
 are based on the desired external behavior: avoiding duplicate
 address assignments; allowing clients to continue using leases which
 they obtained from one failover partner even if they can only commun-
 icate with the other partner; allowing the backup DHCP server to
 grant new leases even if it is unable to communicate with the primary
 server. The desired external DDNS behavior for DHCP failover servers
 is:

 1. Allow timely DDNS updates from the server which grants a
 client a lease. Recognize that there is often a DDNS update
 lifecycle which parallels the DHCP lease lifecycle. This is
 likely to include the addition of records when the lease is
 granted, and the removal of DNS records when the lease is sub-
 sequently made available for allocation to a different client.

 2. Communicate enough information between the two failover
 servers to allow one to complete the DDNS update 'lifecycle'
 even if the other server originally granted the lease.

 3. Avoid redundant or overlapping DDNS updates, where both fail-
 over servers are attempting to perform DDNS updates for the
 same lease-client binding. Avoid situations where one partner
 is attempting to add RRs related to a lease binding while the

Droms, et. al. Expires May 2003 [Page 37]

Internet Draft DHCP Failover Protocol November 2002

 other partner is attempting to remove RRs related to the same
 lease binding.

5.12.2. Use of the DDNS option

 In order for either server to be able to complete a DDNS update, or
 to remove DNS records which were added by its partner, both servers
 need to know the FQDN associated with the lease-client binding. The
 FQDN associated with the client's A RR and PTR RR SHOULD be communi-
 cated from the server which adds records into the DNS to its partner.
 The initiating server SHOULD use the DDNS option in the BNDUPD mes-
 sages to inform the partner server of the status of any DDNS updates
 associated with a lease binding. Failover servers MAY choose not to
 include the DDNS option in BNDUPD messages if there has been no
 change in the status of any DDNS update related to the lease binding.
 The partner server receiving BNDUPD messages containing the DDNS
 option SHOULD compare the status flags and the FQDN contained in the
 option data with the current DDNS information it has associated with
 the lease binding, and update its notion of the DDNS status accord-
 ingly.

 The initiating server MAY send a BNDUPD to its partner before the
 DDNS update has been successfully completed. If it does so, it SHOULD
 leave the 'C' bit in the Flags field clear, to indicate to the
 partner that the DDNS update may not be complete. When the DDNS
 update has been successfully acknowledged by the DNS server, the ini-
 tiating DHCP server SHOULD include the DDNS option in its next BNDUPD
 message about the binding, so that the partner server will be able to
 record the final status of the DDNS update. The initiating server
 SHOULD set the 'C' bit in the DDNS option if the DDNS update was suc-
 cessfully accepted by the DNS server.

 Some implementations will choose to send a BNDUPD without waiting for
 the DDNS update to complete, and then will send a second BNDUPD once
 the DDNS update is complete. Other implementations will delay sending
 the partner a BNDUPD until the DDNS update has been acknowledged by
 the DNS server, or until some time-limit has elapsed, in order to
 avoid sending a second BNDUPD.

 The Domain Name field in the DDNS option contains the FQDN that will
 be associated with the A RR (if the server is performing an A RR
 update for the client) and the PTR RR. This FQDN may be composed in
 any of several ways, depending on server configuration and the infor-
 mation provided by the client in its DHCP messages. The client may
 supply a hostname which it would like the server to use in forming
 the FQDN, or it may supply the entire FQDN. The server may be config-
 ured to attempt to use the information the client supplies, it may be
 configured with an FQDN to use for the client, or it may be

Droms, et. al. Expires May 2003 [Page 38]

Internet Draft DHCP Failover Protocol November 2002

 configured to synthesize an FQDN. The responsive server SHOULD
 include the FQDN that it will be using in DDNS updates it initiates
 when it sends the DDNS option.

 Since the responsive server may not have completed the DDNS update at
 the time it sends the first BNDUPD about the lease binding, there may
 be cases where the FQDN in later BNDUPD messages does not match the
 FQDN included in earlier messages. For example, the responsive
 server may be configured to handle situations where two or more DHCP
 client FQDNs are identical by modifying the most-specific label in
 the FQDNs of some of the clients in an attempt to generate unique
 FQDNs for them (a process sometimes called "disambiguation"). Alter-
 natively, at sites which use some or all of the information which
 clients supply to form the FQDN, it's possible that a client's confi-
 guration may be changed so that it begins to supply new data. The
 responsive server may react by removing the DNS records which it ori-
 ginally added for the client, and replacing them with records that
 refer to the client's new FQDN. In such cases, the responsive server
 SHOULD include the actual FQDN that was used in subsequent DDNS
 options. The responsive server SHOULD include relevant client-option
 data in the client-request-options option in its BNDUPD messages.
 This information may be necessary in order to allow the non-
 responsive partner to detect client configuration changes that change
 the hostname or FQDN data which the client includes in its DHCP
 requests.

5.12.3. Adding RRs to the DNS

 A failover server which is going to perform DDNS updates SHOULD ini-
 tiate the DDNS update when it grants a new lease to a client. The
 non-responsive partner SHOULD NOT initiate a DDNS update when it
 receives the BNDUPD after the lease has been granted. The failover
 protocol ensures that only one of the partners will grant a lease to
 any individual client, so it follows that this requirement will
 prevent both partners from initiating updates simultaneously. The
 server initiating the update SHOULD follow the protocol in [FQDN].
 The server may be configured to perform an A RR update on behalf of
 its clients, or not. Ordinarily, a failover server will not initiate
 DDNS updates when it renews leases. In two cases, however, a failover
 server MAY initiate a DDNS update when it renews a lease to its
 existing client:

 1. When the lease was granted before the server was configured to
 perform DDNS updates, the server MAY be configured to perform
 updates when it next renews existing leases. Since both
 servers are responsive to renewals in NORMAL state, it is not
 enough to simply require the non-responsive server to avoid a
 DNS update in this case. The server which would be responsive

Droms, et. al. Expires May 2003 [Page 39]

Internet Draft DHCP Failover Protocol November 2002

 to a DHCPDISCOVER from this client (even though the current
 request is a DHCPREQUEST/RENEW) is the server which should
 initiate the DDNS update.

 2. If a server is in PARTNER-DOWN state, it can conclude that its
 partner is no longer attempting to perform an update for the
 existing client. If the remaining server has not recorded that
 an update for the binding has been successfully completed, the
 server MAY initiate a DDNS update. It MAY initiate this
 update immediately upon entry to PARTNER-DOWN state, it may
 perform this in the background, or it MAY initiate this update
 upon next hearing from the DHCP client.

5.12.4. Deleting RRs from the DNS

 The failover server which makes an IP address FREE SHOULD initiate
 any DDNS deletes, if it has recorded that DNS records were added on
 behalf of the client.

 A server not in PARTNER-DOWN state "makes an IP address FREE" when it
 initiates a BNDUPD with a binding-status of FREE, EXPIRED, or
 RELEASED. Its partner confirms this status by acking that BNDUPD,
 and upon receipt of the ACK the server has "made the IP address
 FREE". Conversely, a server in PARTNER-DOWN state "makes an IP
 address FREE" when it sets the binding-status to FREE, since in
 PARTNER-DOWN state no communications is required with the partner.

 It is at this point that it should initiate the DDNS operations to
 delete RRs from the DDNS. Its partner SHOULD NOT initiate DDNS
 deletes for DNS records related to the lease binding as part of send-
 ing the BNDACK message. The partner MAY have issued BNDUPD messages
 with a binding-status of FREE, EXPIRED, or RELEASED previously, but
 the other server will have NAKed these BNDUPD messages.

 The failover protocol ensures that only one of the two partner
 servers will be able to make a lease FREE. The server making the
 lease FREE may be doing so while it is in NORMAL communication with
 its partner, or it may be in PARTNER-DOWN state. If a server is in
 PARTNER-DOWN state, it may be performing DDNS deletes for RRs which
 its partner added originally. This allows a single remaining partner
 server to assume responsibility for all of the DDNS activity which
 the two servers were undertaking.

 Another implication of this approach is that no DDNS RR deletes will
 be performed while either server is in COMMUNICATIONS-INTERRUPTED
 state, since no IP addresses are moved into the FREE state during
 that period.

Droms, et. al. Expires May 2003 [Page 40]

Internet Draft DHCP Failover Protocol November 2002

5.13. Reservations and failover

 Some DHCP servers support a capability to offer specific pre-
 configured IP addresses to DHCP clients. These are real DHCP
 clients, they do the entire DHCP protocol, but these servers always
 offer the client a specific pre-configured IP address -- and they
 offer that IP address to no other clients. Such a capability has
 several names, but it is sometimes called a "reservation", in that
 the IP address is reserved for a particular DHCP client.

 In a situation where there are two DHCP servers serving the same sub-
 net without using failover, the two DHCP server's need to have dis-
 joint IP address pools, but identical reservations for the DHCP
 clients.

 In a failover context, both servers need to be configured with the
 proper reservations in an identical manner, but if we stop there
 problems can occur around the edge conditions where reservations are
 made for an IP address that has already been leased to a different
 client. Different servers handle this conflict in different ways,
 but the goal of the failover protocol is to allow correct operation
 with any server's approach to the normal processing of the DHCP pro-
 tocol.

 The general solution with regards to reservations is as follows.
 Whenever a reserved IP address becomes FREE (i.e., when first config-
 ured or whenever a client frees it or it expires or is reset), the
 primary server MUST show that IP address as FREE (and thus available
 for its own allocation) and it MUST send it to the secondary server
 with the R bit set in the IP-flags option and the binding-status
 BACKUP.

 Note that this implies that a reserved IP address goes through the
 normal state changes from FREE to ACTIVE (and possibly back to FREE).
 The failover protocol supports this approach to reservations, i.e.,
 where the IP address undergoes the normal state changes of any IP
 address, but it can only be offered to the client for which it is
 reserved. Other approaches to the support of reservations exist in
 some DHCP server implementations (e.g., where the IP address is
 apparently leased to a particular client forever, without any expira-
 tion). The goal is for the failover protocol to support any of the
 usual approaches to reservations, both those that allow an IP address
 to go through different states when reserved, and those that don't.

 From the above, it follows that a reservation soley on the secondary
 will not necessarily allow the secondary to offer that address to
 client to whom it is reserved. The reservation must also appear on
 the primary as well for the secondary to be able to offer the IP

Droms, et. al. Expires May 2003 [Page 41]

Internet Draft DHCP Failover Protocol November 2002

 address to the client to which is is reserved.

 When the reservation on an IP address is cancelled, if the IP address
 is currently FREE and the server is the primary, or BACKUP and the
 server is the secondary, the server MUST send a BNDUPD to the other
 server with the binding-status FREE and the R bit clear.

5.14. Dynamic BOOTP and failover

 Some DHCP servers support a capability to offer IP addresses to BOOTP
 clients without having a particular address previously allocated for
 those clients. This capability is often called something like
 "dynamic BOOTP". It is discussed briefly in RFC 1534 [RFC 1534].

 This capability has a negative interaction with the fundamental ele-
 ments of the failover protocol, in that an address handed out to a
 BOOTP device has no term (or effectively no term, in that usually
 they are considered leases for "forever"). There is no opportunity
 to hand out a lease which is only the MCLT long when first hearing
 from a BOOTP device, because they may only interact once with the
 DHCP server and they have no notion of a lease expiration time. Thus
 the entire concept of the MCLT and waiting the MCLT after entering
 PARTNER-DOWN state is defeated when dealing with BOOTP devices.

 With some restrictions, however, dynamic BOOTP devices can be sup-
 ported in a server on a subnet where failover is supported. The only
 restriction (and it is not small) is that on any portion of the sub-
 net (in any address pool) where dynamic BOOTP devices can be allo-
 cated IP addresses, a DHCP server MUST NOT ever use any of the IP
 addresses which were previously available for allocation by its fail-
 over partner. Thus, the addresses allocated by the primary to the
 secondary for allocation that might have been allocated to BOOTP dev-
 ices MUST NOT ever be used by the primary server even if it is in
 PARTNER-DOWN state and has waited the MCLT after entering that state.
 Conversely, addresses available for allocation by the primary MUST
 NOT be used by the secondary even it is in PARTNER-DOWN state. The
 reason for this is because one of those IP address could have been
 allocated by the secondary server to a BOOTP device, and the primary
 server would have no way of ever knowing that happened.

 Whenever a server sends BNDUPD message to its partner, if the client
 associated with the IP address is a BOOTP client, then the server
 MUST set the B bit in the IP-flags option.

 There is a very slight possibility that a BOOTP client could get an
 IP address on each server of a failover pair. When these two servers
 eventually attempt to resolve this conflict, they SHOULD agree to
 disagree, since it is not possible to know which IP address the BOOTP

https://datatracker.ietf.org/doc/html/rfc1534
https://datatracker.ietf.org/doc/html/rfc1534

Droms, et. al. Expires May 2003 [Page 42]

Internet Draft DHCP Failover Protocol November 2002

 client will actually use -- indeed, it could use both. Operator
 intervention will, in general, be required to rectify this situation.
 Fortunately, it is extremely unlikely to ever actually occur.

5.15. Guidelines for selecting MCLT

 There is no one correct value for the MCLT. There is an explicit
 tradeoff between various factors in selecting an MCLT value.

5.15.1. Short MCLT

 A short MCLT value will mean that after entering PARTNER-DOWN state,
 a server will only have to wait a short time before it can start
 allocating its partner's IP addresses to DHCP clients. Furthermore,
 it will only have to wait a short time after the expiration of a
 lease on an IP address before it can reallocate that IP address to
 another DHCP client.

 However the downside of a short MCLT value is that the initial lease
 interval that will be offered to every new DHCP client will be short,
 which will cause increased traffic as those clients will need to send
 in their first renew in a half of a short MCLT time. In addition,
 the lease extensions that a server in COMMUNICATIONS-INTERRUPTED
 state can give will be only the MCLT after the server has been in
 COMMUNICATIONS-INTERRUPTED for around the desired client lease
 period. If a server stays in COMMUNICATIONS-INTERRUPTED for that
 long, then the leases it hands out will be short and that will
 increase the load on that server, possibly causing difficulty.

5.15.2. Long MCLT

 A long MCLT value will mean that the initial lease period will be
 longer and the time that a server in COMMUNICATIONS-INTERRUPTED state
 will be able to extend leases (after it has been in COMMUNICATIONS-
 INTERRUPTED state for around the desired client lease period) will be
 longer.

 However, a server entering PARTNER-DOWN state will have to wait the
 longer MCLT before being able to allocate its partner's IP addresses
 to new DHCP clients. This may mean that additional IP addresses are
 required in order to cover this time period. Further, the server in
 PARTNER-DOWN will have to wait the longer MCLT from every lease
 expiration before it can reallocate an IP address to a different DHCP
 client.

5.16. What is sent in response to an UPDREQ or UPDREQALL message?

 In section 7.3, the UPDREQ message is defined, and it says that the

Droms, et. al. Expires May 2003 [Page 43]

Internet Draft DHCP Failover Protocol November 2002

 receiving server sends to the requesting server "all of the binding
 database information that it has not already seen". In section

7.4.2, the UPDREQALL message is defined, and it says that the receiv-
 ing server sends to the requesting server "all binding database
 information".

 Both of these statements need further elaboration.

 First, for the UPDREQ message, the information to be sent in BNDUPD
 messages concerns "all of the binding database information it has not
 already seen". Since every BNDUPD is acked by the receiving server,
 the sending server need only keep track of which IP addresses have
 binding database changes not yet seen by the partner, and when they
 are finally acked by the partner it can record that. Thus, at any
 time, it knows which IP addresses have unacked binding database
 information. This is less simple when, across reconfigurations of
 the servers, an IP address can change the failover partner to which
 it is associated. In that case, it is important to reset the indica-
 tion that the partner has seen this binding information. See section

5.17, below, for a more complete discussion of this issue.

 Second, in the event that a failover server's binding database infor-
 mation is restored from a backup, it will be partially out of date.
 In this case, its partner's indication of which binding database
 information the restored server has seen will be also be out of date.

 The solution to this problem is for a server which is connecting with
 its partner to check the partner's last communicated time, and if it
 is very much ahead of its own last communicated time, go to into
 RECOVER state and transmit an UPDREQALL to allow it to refresh its
 state. See section 9.3.2, step 5. If the partner's last communi-
 cated time is very much behind its own record of when it last commun-
 icated with the partner, then it SHOULD invalidate its information on
 which binding database information the partner server knows, so that
 it will send all of its relevant binding database information to the
 partner.

 Third, in the event that a server receives a UPDREQALL message, what
 constitutes "all binding database information"? At first glance this
 would seem to be information on every configured IP address in the
 server. While this would be technically correct, it may impose a
 serious and unacceptable performance penalty on servers which have
 millions of configured IP addresses. What can be done to lessen the
 data that must be sent for an UPDREQALL?

 When sending "all binding database information", if the sending
 server sends only information concerning IP addresses which have been
 at some time associated with clients, it will send enough information

Droms, et. al. Expires May 2003 [Page 44]

Internet Draft DHCP Failover Protocol November 2002

 to satisfy the needs of the failover protocol. It need not send
 information on any IP addresses that have never been used, since
 presumably they will be initialized as available to the primary
 server (i.e. FREE) on any server employing failover.

5.17. How do you determine that your partner is "up to date" for
specific binding?

 Throughout this document, one server is assumed to know for each IP
 address binding whether or not its partner is "up to date" for that
 binding. There are some subtle issues involved in recording this "up
 to date" information about a specific binding.

 In a steady state world, it would suffice to have a single bit in the
 binding database to represent the information about whether the
 partner was or was not up to date.

 In a more complex environment a configuration change affecting a par-
 ticular IP address may change the failover endpoint with which it is
 associated, and if this should happen, any "up to date" bit which is
 written into the bindings database will be accurate for only the pre-
 vious failover endpoint, but not the current failover endpoint. If
 failover is disabled and then re-enabled (and the "up to date" bits,
 if used, are not cleared) problems can also occur.

 A server MUST have be able to relate the "up to date" condition to a
 particular failover endpoint and even a particular instantiation of
 that failover endpoint. The techniques to do this are implementation
 dependent.

 In addition, section 7.4 requires that a server be able to remember
 that an UPDREQALL message has been received and to treat every UPDREQ
 message as an UPDREQALL message until the first UPDDONE message is
 sent. One way to do this is to clear all of the "up to date" indica-
 tions for an entire failover endpoint upon receipt of an UPDREQALL
 message, thereby ensuring that every active binding will be sent to
 the partner whether through the completion of this UPDREQALL or
 through processing of a subsequent UPDREQ message. This is actually
 better than remembering that an UPDREQALL was received and turning
 every UPDREQ into an UPDREQALL, since any information sent in an
 incomplete UPDREQALL (or subsequent UPDREQ messages turned into "all"
 messages) will be remembered and not re-sent.

6. Common Message Format

 This section discusses the common message format that all failover
 messages have in common, including the message header format as well
 as the common option format. See section 12 for the the definitions

Droms, et. al. Expires May 2003 [Page 45]

Internet Draft DHCP Failover Protocol November 2002

 of the specific options used in the failover protocol.

6.1. Message header format

 The options contained in the payload data section of the failover
 message all use a two byte option number and two byte length format.

 All failover protocol messages are sent over the TCP connection
 between failover endpoints and encoded using a message format
 specific to the failover protocol.

 There exists a common message format for all failover messages, which
 utilizes the options in a way similar to the DHCP protocol. For each
 message type, some options are required and some are optional. In
 addition, when a message is received any options that are not under-
 stood by the receiving server MUST be ignored.

 All of the fields in the fixed portion of the message MUST be filled
 with correct data in every message sent.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | message length (2) | msg type (1) |payload off (1)|
 +---------------+---------------+---------------+---------------+
 | time (4) |
 +---+
 | xid (4) |
 +---+
 | 0 or more additional header bytes (variable) |
 +---+
 | payload data (variable) |
 | |
 | formatted as DHCP-style options |
 | using a two byte option code and two byte length |
 | See section 6.2 for details. |
 +---+

 message length - 2 bytes, network byte order

 This is the length of the message in bytes. It includes the two byte
 message length itself. The maximum length is 2048 bytes. The
 minimum length is 12.

Droms, et. al. Expires May 2003 [Page 46]

Internet Draft DHCP Failover Protocol November 2002

 msg type - 1 byte

 The message type field is used to distinguish between messages.

 The following message types are defined:

 Value Message Type
 ----- ------------
 0 reserved not used
 1 POOLREQ request allocation of addresses
 2 POOLRESP respond with allocation count
 3 BNDUPD update partner with binding info
 4 BNDACK acknowledge receipt of binding update
 5 CONNECT establish connection with the secondary
 6 CONNECTACK respond to attempt to establish connection with partner
 7 UPDREQALL request full transfer of binding info
 8 UPDDONE ack send and ack of req'd binding info
 9 UPDREQ request transfer of un-acked binding info
 10 STATE inform partner of current state or state change
 11 CONTACT probe communications integrity with partner
 12 DISCONNECT close a connection

 New message types should be defined in one of two ranges, 0-127 or
 129-255. The range of 0-127 is used for messages that MUST be sup-
 ported by every server, and if a server receives a message in the
 range of 0-127 that it doesn't understand, it MUST close the TCP con-
 nection. The range of 128-255 is used for messages which MAY be sup-
 ported but are not required, and if a server receives a message in
 this range that it does not understand it SHOULD ignore the message.

 payload offset - 1 byte

 The byte offset of the Payload Data, from the beginning of the
 failover message header. The value for the current protocol version
 (version 1) is 8.

 time - 4 bytes, network byte order

 The absolute time in GMT when the message was transmitted,
 represented as seconds elapsed since Jan 1, 1970 (i.e., similar to
 the ANSI C time_t time value representation). While the ANSI C
 time_t value is signed, the value used in this specification is
 unsigned.

 A server SHOULD set this time as close to the actual transmission of
 the message as possible.

Droms, et. al. Expires May 2003 [Page 47]

Internet Draft DHCP Failover Protocol November 2002

 xid - 4 bytes, network byte order

 This is the transaction id of the failover message. The sender of a
 failover protocol message is responsible for setting this number, and
 the receiver of the message copies the number over into any response
 message, treating it as opaque data. The sender MUST ensure that
 every message sent from a particular failover endpoint over the
 associated TCP connection has a unique transaction id.

 For failover messages that have no corresponding response message,
 the XID value is meaningless, but MUST be supplied. The XID value is
 used solely by the receiver of a response message to determine the
 corresponding request message.

 Request messages where the XID is used in the corresponding response
 messages are: POOLREQ, BNDUPD, CONNECT, UPDREQALL, and UPDREQ. The
 corresponding response messages are POOLRESP, BNDACK, CONNECTACK,
 UPDDONE, and UPDDONE, respectively.

 As requests/responses don't survive connection reestablishment, XIDs
 only need to be unique during a specific connection.

 payload data - variable length

 The options are placed after the header, after skipping payload
 offset bytes from beginning of the message. The payload data options
 are not preceded by a "cookie" value.

 The payload data is formatted as DHCP style options using two byte
 option codes and two byte option lengths. The option codes are in a
 namespace which is unique to the failover protocol.

 The maximum length of the payload data in octets is 2048 less the
 size of the header, i.e., the maximum message length is 2048 octets.

6.2. Common option format

 The options contained in the payload data section of the failover
 message all use a two byte option number and two byte length format.

 The option numbers are drawn from an option number space unique to
 the failover protocol. All of the message types share a common
 option number space and common options definitions, though not all
 options are required or meaningful for every message.

 In contrast to the options which appear in DHCP client and server
 messages, the options in failover message are ordered. That is, for

Droms, et. al. Expires May 2003 [Page 48]

Internet Draft DHCP Failover Protocol November 2002

 some messages the order in which the options appear in the payload
 data area is significant. The messages for which option ordering is
 significant explicitly describe the ordering requirements. If no
 ordering requirements are mentioned, then the order is not signifi-
 cant for that message.

 For all options which refer to time, they all use an absolute time in
 GMT. Time synchronization has already been achieved between the
 source and the target server using the CONNECT message and is updated
 and refined using the time in every packet.

 The time value is an unsigned 32 bit integer in network byte order
 giving the number of seconds since 00:00 UTC, 1st January 1970. This
 can be converted to an NTP timestamp by adding decimal 2208988800.
 This time format will not wrap until the year 2106. Until sometime
 in 2038, it is equal to the ANSI C time_t value (which is a signed 32
 bit value and will overflow into a negative number in 2038).

 Options should appear once only in each message (except for BNDUPD
 and BNDACK messages where bulking is used, see section 6.3 for
 details.) An option that appears twice is not concatenated, but
 treated as an error.

 Specific option values are described in section 12.

 See section 13 for how to define additional options.

6.3. Batching multiple binding update transactions in one BNDUPD mes-
sage

 Implementations of this protocol MAY send multiple binding update
 transactions in one BNDUPD message, where a binding update transac-
 tion is defined as the set of options which are associated with the
 update of a single IP address. All implementations of this protocol
 MUST be prepared to receive BNDUPD messages which contain multiple
 binding update transactions and respond correctly to them, including
 replying with a BNDACK message which contains status for the multiple
 binding update transactions contained in the BNDUPD message.

 In the discussion of sending and receiving BNDUPD messages in section
7.1 and BNDACK messages in section 7.2, each BNDUPD message and

 BNDACK message is assumed to contain a single binding update transac-
 tion in order to reduce the complexity of the discussions in section

7.

 Multiple binding update transactions MAY be batched together in one
 BNDUPD protocol message with the data sets for the individual tran-
 sactions delimited by the assigned-IP-address option, which MUST

Droms, et. al. Expires May 2003 [Page 49]

Internet Draft DHCP Failover Protocol November 2002

 appear first in the option set for each transaction. Ordering of
 options between the assigned-IP-address options is not significant.
 This is illustrated in the following schematic representation:

 Non-IP Address/Non-client specific options first
 assigned-IP-address option for the first IP address
 Options pertaining to first address, including at least the
 binding-status option and others as required.
 assigned-IP-address option for the second IP address
 Options pertaining to second address, including at least the
 binding-status option and others as required.
 ...
 Trailing options (message digest).

 There MUST be a one-to-one correspondence between BNDUPD and BNDACK
 messages, and every BNDACK message MUST contain status for all of the
 binding update transactions in the corresponding BNDUPD message.

 The BNDACK message corresponding to a BNDUPD message MUST contain
 assigned-IP-address options for all of the binding update transac-
 tions in the BNDUPD message. Thus, every BNDACK message contains
 exactly the same assigned-IP-address options as does its correspond-
 ing BNDUPD message. The order of the assigned-IP-address options
 MAY, however, be different. Here is a schematic representation of a
 BNDACK:

 Non-IP Address/Non-client specific options first
 assigned-IP-address option for the first IP address
 If rejected, reject-reason option and message option.
 assigned-IP-address option for the second IP address
 If rejected, reject-reason option and message option.
 ...
 Trailing options (message digest).

 In case the server chooses to reject some or all of the IP address
 binding information in a BNDUPD message in a BNDACK reply, the BNDACK
 message MUST contain a reject-reason option following every failed
 assigned-IP-address option in order to indicate that the binding
 update transaction for that IP address was not accepted and why. As
 with a BNDACK message containing a single binding update transaction,
 an assigned-IP-address option without any associated reject-reason
 option indicates a successful binding update transaction.

Droms, et. al. Expires May 2003 [Page 50]

Internet Draft DHCP Failover Protocol November 2002

7. Protocol Messages

 This section contains the detailed definition of the protocol mes-
 sages, including the information to include when sending the message,
 as well as the actions to take upon receiving the message. The mes-
 sage type for each message appears as [n] in the heading for the mes-
 sage (see section 6.1).

7.1. BNDUPD message [3]

 The binding update (BNDUPD) message is used to send the binding data-
 base changes (known as binding update transactions) to the partner
 server, and the partner server responds with a binding acknowledge-
 ment (BNDACK) message when it has successfully committed those
 changes to its own stable storage.

 The rest of the failover protocol exists to determine whether the
 partner server is able to communicate or not, and to enable the
 partners to exchange BNDUPD/BNDACK messages in order to keep their
 binding databases in stable storage synchronized.

 The rest of this section is written as though every BNDUPD message
 contains only a single binding update transaction in order to reduce
 the complexity of the discussion. See section 6.3 for information on
 how to create and process BNDUPD and BNDACK messages which contain
 multiple binding update transactions. Note that while a server MAY
 generate BNDUPD messages with multiple binding update transactions,
 every server MUST be able to process a BNDUPD message which contains
 multiple binding update transactions and generate the corresponding
 BNDACK messages with status for multiple binding update transactions.

 The following table summarizes the various options for the BNDUPD
 message.

Droms, et. al. Expires May 2003 [Page 51]

Internet Draft DHCP Failover Protocol November 2002

 binding-status BACKUP
 RESET
 ABANDONED
 Option ACTIVE EXPIRED RELEASED FREE
 ------ ------ ------- -------- ----
 assigned-IP-address (3) MUST MUST MUST MUST
 IP-flags MUST(4) MUST(4) MUST(4) MUST(4)
 binding-status MUST MUST MUST MUST
 client-identifier MAY MAY MAY MAY(2)
 client-hardware-address MUST MUST MUST MAY(2)
 lease-expiration-time MUST MUST NOT MUST NOT MUST NOT
 potential-expiration-time MUST MUST NOT MUST NOT MUST NOT
 start-time-of-state SHOULD SHOULD SHOULD SHOULD
 client-last-trans.-time MUST SHOULD MUST MAY
 DDNS(1) SHOULD SHOULD SHOULD SHOULD
 client-request-options SHOULD SHOULD NOT SHOULD SHOULD NOT
 client-reply-options SHOULD SHOULD NOT SHOULD NOT SHOULD NOT

 (1) MUST if server is performing dynamic DNS for this IP address, else
 MUST NOT.
 (2) MUST NOT if binding-status is ABANDONED.
 (3) assigned-IP-address MUST be the first option for an IP address
 (4) IP-flags option MUST appear if any flags are non-zero, else it
 MAY appear.

 Table 7.1-1: Options used in a BNDUPD message

7.1.1. Sending the BNDUPD message

 A BNDUPD message SHOULD be generated whenever any binding changes. A
 change might be in the binding-status, the lease-expiration-time, or
 even just the last-transaction-time. In general, any time a DHCP
 server writes its stable storage, a BNDUPD message SHOULD be gen-
 erated. This will often be the result of the processing of a DHCP
 client request, but it might also be the result of a successful
 dynamic DNS update operation. Stable storage updates due to BNDUPD
 or BNDACK messages SHOULD NOT result in additional BNDUPD messages.

 BNDUPD (and BNDACK) messages refer to the binding-status of the IP
 address, and this protocol defines a series of binding-statuses, dis-
 cussed in more detail below. Some servers may not support all of
 these binding-statuses, and so in those cases they will not be sent.
 Upon receipt of a BNDUPD message which contains an unsupported
 binding-status, a reasonable interpretation should be made (see sec-
 tion 5.10).

Droms, et. al. Expires May 2003 [Page 52]

Internet Draft DHCP Failover Protocol November 2002

 All BNDUPD messages MUST contain the IP address of the binding update
 transaction in the assigned-IP-address option.

 All binding update transactions MUST contain an IP-flags option if
 the value of any of the flags would be non-zero. The IP-flags option
 MAY be omitted if all of the flags that it contains are zero. The
 IP-flags option contains a flag which indicates if the IP address is
 currently reserved on the server sending the BNDUPD message. It also
 contains a flag which indicates that the lease is associated with a
 client that used the BOOTP protocol (as opposed to the DHCP protocol)
 to interact with the DHCP server.

 All binding update transactions contain a binding-status option, and
 it will have one of the values found in section 5.11. Client infor-
 mation consists of client-hardware-address and possibly a client-
 identifier, and is explained in more detail later in this section.
 The following table indicates whether client information should or
 should not appear with each binding-status in a binding update tran-
 saction:

 binding-status includes client information
 --
 ACTIVE MUST
 EXPIRED SHOULD
 RELEASED SHOULD
 FREE MAY
 ABANDONED MUST NOT
 RESET MAY
 BACKUP MAY

 Table 7.1.1-1: Client information required by various
 binding-status values.

 The ACTIVE binding-status requires some options to indicate the
 length of the binding:

 o lease-expiration-time

 The lease-expiration-time option MUST appear, and be set to the
 expiration time most recently ACKed to the DHCP client. Note
 that the time ACKed to a DHCP client is a lease duration in
 seconds, while the lease-expiration-time option in a BNDUPD mes-
 sage is an absolute time value.

 o potential-expiration-time

Droms, et. al. Expires May 2003 [Page 53]

Internet Draft DHCP Failover Protocol November 2002

 The potential-expiration-time option MUST appear, and be set to
 a value beyond that of the lease-expiration time. This is the
 value that is ACKed by the BNDACK message. A server sending a
 BNDUPD message MUST be able to recover the potential-
 expiration-time sent in every BNDUPD, not just those that
 receive a corresponding BNDACK, in order to be able to protect
 against possible duplicate allocation of IP addresses after
 transitioning to PARTNER-DOWN state. See section 5.2.1 for
 details as to why the potential-expiration-time exists and
 guidelines for how to decide on the value.

 The following option information applies to all BNDUPD messages,
 regardless of the value of the binding-status, unless otherwise
 noted.

 o Identifying the client

 For many of the binding-status values a client MUST appear while
 for others a client MAY appear, and for some a client MUST NOT
 appear.

 A client is identified in a BNDUPD message by at least one and pos-
 sibly two options. The client-hardware-address option MUST appear
 any time that a client appears in a BNDUPD message, and contains
 the hardware type and chaddr information from the DHCP request
 packet. A failover client-identifier option MUST appear any time
 that a client appears in a BNDUPD message if and only if that
 client used a DHCP client-identifier option when communicating with
 the DHCP server. See section 12.5 and 12.4 for details of how to
 construct these two options from a DHCP request packet.

 o start-time-of-state

 The start-time-of-state SHOULD appear. It is set to the time at
 which this IP address first took on the state that corresponds to
 the current value of binding-status.

 o last-transaction-time

 The last-transaction-time value SHOULD appear. This is the time at
 which this DHCP server last received a packet from the DHCP client
 referenced by the client-identifier or client-hardware-address that
 was associated with the IP address referenced by the assigned-IP-
 address.

 o DDNS

 If the DHCP server is performing dynamic DNS operations on behalf

Droms, et. al. Expires May 2003 [Page 54]

Internet Draft DHCP Failover Protocol November 2002

 of the DHCP client represented by the client-identifier or client-
 hardware-address, then it should include a DDNS option containing
 the domain name and status of any dynamic DNS operations enabled.

 o client-request-options

 If the BNDUPD was triggered by a request from a DHCP client (typi-
 cally those with binding-status of ACTIVE and RELEASED), then the
 server SHOULD include options of interest to a failover partner
 from the client's request packet in the client-request-options for
 transmission to its partner (see section 12.8).

 A server sending a BNDUPD SHOULD remember the "interesting" options
 or the information that would appear in an "interesting" option for
 transmission at a time when the BNDUPD is not closely associated
 with a DHCP client request.

 A server SHOULD send the following "interesting" options. It MAY
 send any DHCP client options. As new options are defined, the RFC
 defining these options SHOULD include information that they are
 "interesting to failover servers" if they should be sent as part of
 a BNDUPD.

 option option
 number name

 12 host-name
 81 client-FQDN [FQDN]
 82 relay-agent-information [RFC 3046]
 77 user-class [RFC 3004]
 60 vendor-class-identifier
 118 subnet-selection [RFC 3011]

 Table 7.1.1-2: Options which SHOULD be sent in
 the client-request-options option in a BNDUPD message.

 o client-reply-options

 If the BNDUPD was triggered by a request from a DHCP client (typi-
 cally those with binding-status of ACTIVE and RELEASED), then the
 server SHOULD include options of interest to a failover partner
 from the server's DHCP reply packet in the client-reply-options for
 transmission to its partner (see section 12.7).

 A server sending a BNDUPD SHOULD remember the "interesting" options

https://datatracker.ietf.org/doc/html/rfc3046
https://datatracker.ietf.org/doc/html/rfc3004
https://datatracker.ietf.org/doc/html/rfc3011

Droms, et. al. Expires May 2003 [Page 55]

Internet Draft DHCP Failover Protocol November 2002

 or the information that would appear in an "interesting" option for
 transmission at a time when the BNDUPD is not closely associated
 with a DHCP client request.

 A server SHOULD send the following "interesting" options. It MAY
 send any DHCP client options. As new options are defined, the RFC
 defining these options SHOULD include information that they are
 "interesting to failover servers" if they should be sent as part of
 a BNDUPD.

 option option
 number name

 58 renewal-time
 59 rebinding-time

 Table 7.1.1-3: Options which SHOULD be sent in
 the client-reply-options option in a BNDUPD message.

 The BNDUPD message SHOULD be sent as soon as possible from the time
 that the DHCP client received a response and the lease bindings data-
 base is written on stable storage.

7.1.2. Receiving the BNDUPD message

 When a server receives a BNDUPD message, it needs to decide how to
 process the binding update transaction it contains and whether that
 transaction represents a conflict of any sort. The conflict resolu-
 tion process MUST be used on the receipt of every BNDUPD message, not
 just those that are received while in POTENTIAL-CONFLICT state, in
 order to increase the robustness of the protocol.

 There are three sorts of conflicts:

 o Two clients, one IP address conflict

 This is the duplicate IP address allocation conflict. There are
 two different clients each allocated the same address. See sec-
 tion 7.1.3 for how to resolve this conflict.

 o Two IP addresses, one client conflict

 This conflict exists when a client on one server is associated
 with a one IP address, and on the other server with a different
 IP address in the same or a related subnet. This does not refer

Droms, et. al. Expires May 2003 [Page 56]

Internet Draft DHCP Failover Protocol November 2002

 to the case where a single client has addresses in multiple dif-
 ferent subnets or administrative domains, but rather the case
 where on the same subnet the client has as lease on one IP
 address in one server and on a different IP address on the other
 server.

 This conflict may or may not be a problem for a given DHCP
 server implementation. In the event that a DHCP server requires
 that a DHCP client have only one outstanding lease for an IP
 address on one subnet, this conflict should be resolved by
 accepting the lease information which has the latest client-
 last-transaction-time.

 o binding-status conflict

 This is normal conflict, where one server is updating the other
 with newer information. See section 7.1.3 for details of how to
 resolve these conflicts.

7.1.3. Deciding whether to accept the binding update transaction in a
BNDUPD message

 When analyzing a BNDUPD message from a partner server, if there is
 insufficient information in the BNDUPD to process it, then reject the
 BNDUPD with reject-reason 3: "Missing binding information".

 If the IP address in the BNDUPD is not an IP address associated with
 the failover endpoint which received the BNDUPD message, then reject
 it with reject-reason 1: "Illegal IP address (not part of any address
 pool)".

 IP addresses undergo binding status changes for several reasons,
 including receipt and processing of DHCP client requests, administra-
 tive inputs and receipt of BNDUPD messages. Every DHCP server needs
 to respond to DHCP client requests and administrative inputs with
 changes to its internal record of the binding-status of an IP
 address, and this response is not in the scope of the failover proto-
 col. However, the receipt of BNDUPD messages implies at least a pos-
 sible change of the binding-status for an IP address, and must be
 discussed here. See section 7.1.2 for general actions to take upon
 receipt of a BNDUPD message.

 When receiving a BNDUPD message, it is important to note that it may
 not be current, in that the server receiving the BNDUPD message may
 have had a more recent interaction with the DHCP client than its
 partner who sent the BNDUPD message. In this case, the receiving
 server MUST reject the BNDUPD message. The reject reason SHOULD be
 15: "Outdated binding information". In addition, it is worth noting

Droms, et. al. Expires May 2003 [Page 57]

Internet Draft DHCP Failover Protocol November 2002

 that two (and possibly three) binding-status values are the direct
 result of interaction with a DHCP client, ACTIVE and RELEASED (and
 possibly ABANDONED). All other binding-status values are either the
 result of the expiration of a time period or interaction with an
 external agency (e.g., a network administrator).

 Every BNDUPD message SHOULD contain a client-last-transaction-time
 option, which MUST, if it appears, be the time that the server last
 interacted with the DHCP client. It MUST NOT be, for instance, the
 time that the lease on an IP address expired. If there has been no
 interaction with the DHCP client in question (or there is no DHCP
 client presently associated with this IP address), then there will be
 no client-last-transaction-time option in the BNDUPD message.

 The list in Figure 7.1.3-1 is indexed by the binding-status that a
 server receives in a BNDUPD message. In many cases, the binding-
 status of an IP address within the receiving server's data storage
 will have an affect upon the checks performed prior to accepting the
 new binding-status in a BNDUPD message.

 In Figure 7.1.3-1, to "accept" a BNDUPD means to update the server's
 bindings database with the information contained in the BNDUPD and
 once that update is complete, send a BNDACK message corresponding to
 the BNDUPD message. To "reject" a BNDUPD means to respond to the
 BNDUPD with a BNDACK with a reject-reason option included.

 When interpreting the information in the following table (Figure
 7.1.3-1), for those rules that are listed with "time" -- if a BNDUPD
 doesn't have a client-last-transaction-time value, then it MUST NOT
 be considered later than the client-last-transaction-time in the
 receiving server's binding. If the BNDUPD contains a client-last-
 transaction-time value and the receiving server's binding does not,
 then the client-last-transaction-time value in the BNDUPD MUST be
 considered later than the server's.

Droms, et. al. Expires May 2003 [Page 58]

Internet Draft DHCP Failover Protocol November 2002

 binding-status in received BNDUPD
 binding-status
 in receiving FREE RESET
 server ACTIVE EXPIRED RELEASED BACKUP ABANDONED

 ACTIVE accept(5) time(2) time(1) time(2) accept
 EXPIRED time(1) accept accept accept accept
 RELEASED time(1) time(1) accept accept accept
 FREE/BACKUP accept accept accept accept accept
 RESET time(3) accept accept accept accept
 ABANDONED reject(4) reject(4) reject(4) reject(4) accept

 time(1): If the client-last-transaction-time in the BNDUPD
 is later than the client-last-transaction-time in the
 receiving server's binding, accept it, else reject it.

 time(2): If the current time is later than the receiving
 servers' lease-expiration-time, accept it, else reject it.

 time(3): If the client-last-transaction-time in the BNDUPD
 is later than the start-time-of-state in the receiving server's
 binding, accept it, else reject it.

 (1,2,3): If rejecting, use reject reason 15: "Outdated binding
 information".

 (4): Use reject reason 16: "Less critical binding information".

 (5): If the clients in a BNDUPD message and in a receiving
 server's binding differ, then if the receiving server is a
 secondary accept it, else reject it with a reject reason of 2:
 "Fatal conflict exists: address in use by other client".

 Figure 7.1.3-1: Accepting BNDUPD messages

 If the IP address in the BNDUPD message has the R flag set in the
 IP-flags option, indicating it is a reserved IP address, and if the
 binding-status in the BNDUPD is BACKUP, then if the receiving server
 does not show the IP address as reserved, the receiving server SHOULD
 reject the BNDUPD using reject reason 19: "IP not reserved on this
 server".

7.1.4. Accepting the BNDUPD message

 When accepting a BNDUPD message, the information contained in the

Droms, et. al. Expires May 2003 [Page 59]

Internet Draft DHCP Failover Protocol November 2002

 client-request-options and client-reply-options SHOULD be examined
 for any information of interest to this server. For instance, a
 server which wished to detect changes in client specified host names
 might want to examine and save information from the host-name or
 client-FQDN options. Servers which expect to utilize information
 from the relay-agent-information option would want to store this
 information.

7.1.5. Time values related to the BNDUPD message

 There are four time values that MAY be sent in a BNDUPD message.

 o lease-expiration-time

 The time that the server gave to the client, i.e., the time that
 the server believes that the client's lease will expire.

 o potential-expiration-time

 The time that the server wants to be sure its partner waits
 (added to the MCLT) before assuming that this lease has expired.
 Typically some time beyond the desired client lease time.

 o client-last-transaction-time

 The time that the client last interacted with this server.

 o start-time-of-state

 The time at which the binding first went into the current state.

 As discussed in section 5.2, each server knows what its partner has
 ACKed with regard to potential-expiration time. In addition, each
 server needs to remember what it has told its partner as the
 potential-expiration-time. Moreover, each server must remember what
 it has acked to the *other* server as the most recent potential-
 expiration-time from that server.

 Remember that each server sends a potential-expiration-time and
 receives an ACK for that as well as receiving a potential-
 expiration-time and needing to remember what it has acked for that.

 While they don't have to be named in any particular way, the times
 that a server needs to remember for every IP address in order to
 implement the failover protocol are:

 o lease-expiration-time

Droms, et. al. Expires May 2003 [Page 60]

Internet Draft DHCP Failover Protocol November 2002

 The time that a server gave to the DHCP client. A DHCP server
 needs to remember this time already, just to be a DHCP server.
 A server SHOULD update this time with the lease-expiration time
 received from a partner in a BNDUPD if the received lease-
 expiration time is later than the lease-expiration time recorded
 for this binding.

 o sent-potential-expiration-time

 The latest time sent to the partner for a potential-expiration-
 time.

 o acked-potential-expiration-time

 The latest time that the partner has acked for a potential
 expiration time. Typically the same as sent-potential-
 expiration-time if there is not a BNDUPD outstanding.

 o received-potential-expiration-time

 The latest time that this server has ever received as a
 potential-expiration-time from its partner in a BNDUPD that this
 server ACKed.

 So, a server has to remember two additional times concerning BNDUPD
 messages that it has initiated, and one additional time concerning
 BNDUPD message that it has received. How are these times used?

 First, let's look at the time that a DHCP server can offer to a DHCP
 client. A server can offer to a DHCP client a time that is no longer
 than the MCLT beyond the max(received-potential-expiration-time,
 acked-potential-expiration-time). One might think that the server
 should be able to offer only the MCLT beyond the acked-potential-
 expiration-time, and while that is certainly simple and easy to
 understand, it has negative consequences in actual operation.

 To illustrate this, in the simple case where the primary updates the
 secondary for a while and then fails, if the secondary can then renew
 the client for only the MCLT beyond the acked-potential-expiration-
 time, then the secondary will only be able to renew the client for
 the MCLT, because the secondary has never sent a BNDUPD packet to the
 primary concerning this IP address and client, and so its acked-
 potential-expiration-time is zero.

 However, since the secondary is allowed to renew the client with the
 MCLT beyond the max(received-potential-expiration-time, acked-
 potential-expiration-time), then the secondary can usually renew the
 client for the full lease period, at least for the first renew it

Droms, et. al. Expires May 2003 [Page 61]

Internet Draft DHCP Failover Protocol November 2002

 sees from the client, since the received-potential-expiration-time is
 generally longer than the client's desired lease interval. The
 difference in renew times could make a big difference in server load
 on the secondary in this case.

 What are the consequences of allowing a server to offer a DHCP client
 a lease term of the MCLT beyond the max(received-potential-
 expiration-time, acked-potential-expiration-time)? The consequences
 appear whenever a server enters PARTNER-DOWN state, and affect how
 long that server has to wait before reallocating expired leases.
 With this approach, when a server goes into PARTNER-DOWN state, it
 must wait the MCLT beyond the max(lease-expiration-time, sent-
 potential-expiration-time, acked-potential-expiration-time,
 received-potential-expiration-time) for each IP address before it
 can reallocate that IP address to another DHCP client. One might
 normally think that it needed to wait only the MCLT beyond the max(
 lease-expiration-time, received-potential-expiration-time), i.e.,
 beyond what it has told the client and what it has explicitly acked
 to the other server. But with the optimization discussed above --
 where either server can offer the DHCP client a lease term of the
 MCLT beyond the max(received-potential-expiration-time, acked-
 potential-expiration-time), then the additional times sent-
 potential-expiration-time and acked-potential-expiration-time must be
 added into the expression, since the partner could have used those
 times as part of its own lease time calculation.

 Thus this optimization may require a longer waiting time when enter-
 ing PARTNER-DOWN state, but will generally allow servers to operate
 considerably more effectively when running in COMMUNICATIONS-
 INTERRUPTED state.

7.2. BNDACK message [4]

 A server sends a binding acknowledgement (BNDACK) message when it has
 processed a BNDUPD message and after it has successfully committed to
 stable storage any binding database changes made as a result of pro-
 cessing the BNDUPD message. A BNDACK message is used to both accept
 or reject a BNDUPD message. A BNDACK message which contains a
 reject-reason option is a rejection of the corresponding BNDUPD mes-
 sage.

 In order to reduce the complexity of the discussion, the rest of this
 section is written as though every BNDUPD message contains only a
 single binding update transaction and thus every corresponding BNDACK
 message would also contain reply information about only a single
 binding update transaction. See section 6.3 for information on how
 to create and process BNDUPD and BNDACK messages which contain multi-
 ple binding update transactions.

Droms, et. al. Expires May 2003 [Page 62]

Internet Draft DHCP Failover Protocol November 2002

 Note that while a server MAY generate BNDUPD messages with multiple
 binding update transactions, every server MUST be able to process a
 BNDUPD message which contains multiple binding update transactions
 and generate the corresponding BNDACK messages with status for multi-
 ple binding update transactions. If a server does not ever create
 BNDUPD messages which contain multiple binding update transactions,
 then it does not need to be able to process a received BNDACK message
 with multiple binding update transactions. However, all servers MUST
 be able to create BNDACK messages which deal with multiple binding
 update transactions received in a BNDUPD message.

 Every BNDUPD message that is received by a server MUST be responded
 to with a corresponding BNDACK message. The receiving server SHOULD
 respond quickly to every BNDUPD message but it MAY choose to respond
 preferentially to DHCP client requests instead of BNDUPD messages,
 since there is no absolute time period within which a BNDACK must be
 sent in response to a BNDUPD message, while DHCP clients frequently
 have strict time constraints.

 A BNDACK message can only be sent in response to a BNDUPD message
 using the same TCP connection from which the BNDUPD message was
 received, since the XID's in BNDUPD messages are guaranteed unique
 only during the life of a single TCP connection. When a connection
 to a partner server goes down, a server with unprocessed BNDUPD mes-
 sages MAY simply drop all of those messages, since it can be sure
 that the partner will resend them when they are next in communica-
 tions (albeit with a different XID), or it MAY instead choose to pro-
 cess those BNDUPD messages, but it MUST NOT send any BNDACK messages
 in response.

 The following table summarizes the options for the BNDACK message.

Droms, et. al. Expires May 2003 [Page 63]

Internet Draft DHCP Failover Protocol November 2002

 Option accept reject
 ------ ------ ------
 assigned-IP-address (1) MUST MUST
 IP-flags SHOULD NOT SHOULD NOT
 binding-status SHOULD NOT SHOULD NOT
 client-identifier SHOULD NOT SHOULD NOT
 client-hardware-address SHOULD NOT SHOULD NOT
 reject-reason SHOULD NOT MUST
 message SHOULD NOT SHOULD
 lease-expiration-time SHOULD NOT SHOULD NOT
 potential-expiration-time SHOULD NOT SHOULD NOT
 start-time-of-state SHOULD NOT SHOULD NOT
 client-last-trans.-time SHOULD NOT SHOULD NOT
 DDNS(1) SHOULD NOT SHOULD NOT

 (1) assigned-IP-address MUST be the first option for an IP address

 Table 7.2-1: Options used in a BNDACK message

7.2.1. Sending the BNDACK message

 The BNDACK message MUST contain the same xid as the corresponding
 BNDUPD message.

 The assigned-IP-address option from the BNDUPD message MUST be
 included in the BNDACK message. Any additional options from the
 BNDUPD message SHOULD NOT appear in the BNDACK message. Note that
 any information sent in options (e.g, a later lease-expiration time)
 in the BNDACK message MUST NOT be assumed to necessarily be recorded
 in the stable storage of the server who receives the BNDACK message
 because there is no corresponding ACK of the BNDACK message. Any
 information that SHOULD be recorded in the partner server's stable
 storage MUST be transmitted in a subsequent BNDUPD.

 If the server is accepting the BNDUPD, the BNDACK message includes
 only the assigned-IP-address option. If the server is rejecting the
 BNDUPD, the additional option reject-reason MUST appear in the BNDACK
 message, and the message option SHOULD appear in this case containing
 a human-readable error message describing in some detail the reason
 for the rejection of the BNDUPD message.

 If the server rejects the BNDUPD message with a BNDACK and a reject-
 reason option, it may be because the server believes that it has
 binding information that the other server should know. A server
 which is rejecting a BNDUPD may initiate a BNDUPD of its own in order

Droms, et. al. Expires May 2003 [Page 64]

Internet Draft DHCP Failover Protocol November 2002

 to update its partner with what it believes is better binding infor-
 mation, but it MUST ensure through some means that it will not end up
 in a situation where each server is sending BNDUPD messages as fast
 as possible because they can't agree on which server has better bind-
 ing data. Placing a considerable delay on the initiation of a BNDUPD
 message after sending a BNDACK with a reject-reason would be one way
 to ensure this situation doesn't occur.

7.2.2. Receiving the BNDACK message

 When a server receives a BNDACK message, if it doesn't contain a
 reject-reason option that means that the BNDUPD message was accepted,
 and the server which sent the BNDUPD SHOULD update its stable storage
 with the potential-expiration-time value sent in the BNDUPD message.

 If the BNDACK message contains a reject-reason option, that means
 that the BNDUPD was rejected. There SHOULD be a message option in
 the BNDACK giving a text reason for the rejection, and the server
 SHOULD log the message in some way. The server MUST NOT immediately
 try to resend the BNDUPD message as there is no reason to believe the
 partner won't reject it a second time. However a server MAY choose
 to send another BNDUPD at some future time, for instance when the
 server next processes an update request from its partner.

7.3. UPDREQ message [9]

 The update request (UPDREQ) message is used by one server to request
 that its partner send it all of the binding database information that
 it has not already seen. Since each server is required to keep
 track at all times of the binding information the other server has
 ACKed, one server can request transmission of all un-ACKed binding
 database information held by the other server by using the UPDREQ
 message.

 The UPDREQ message is used whenever the sending server cannot proceed
 before it has processed all previously un-ACKed binding update infor-
 mation, since the UPDREQ message should yield a corresponding UPDDONE
 message. The UPDDONE message is not sent until the server that sent
 the UPDREQ message has responded to all of the BNDUPD messages gen-
 erated by the UPDREQ message with BNDACK messages (they may either be
 accepted or rejected by the BNDACK messages, but they MUST have been
 responded to). Thus, the sender of the UPDREQ message can be sure
 upon receipt of an UPDDONE message that it has received and committed
 to stable storage all outstanding binding database updates.

 See section 9, Failover Endpoint States, for the details of when the
 UPDREQ message is sent.

Droms, et. al. Expires May 2003 [Page 65]

Internet Draft DHCP Failover Protocol November 2002

7.3.1. Sending the UPDREQ message

 The UPDREQ message has no message specific options.

7.3.2. Receiving the UPDREQ message

 A server receiving an UPDREQ message MUST send all binding database
 changes that have not yet been ACKed by the sending server. These
 changes are sent as undistinguished BNDUPD messages.

 However, the server which received and is processing the UPDREQ mes-
 sage MUST track the BNDACK messages that correspond to the BNDUPD
 messages triggered by the UPDREQ message and, when they are all
 received, the server MUST send an UPDDONE message.

 The server processing the UPDREQ message and sending BNDUPD messages
 to its partner SHOULD only track the BNDUPD and BNDACK message pairs
 for unACKed binding database changes that were present upon the
 receipt of the UPDREQ message. A server which has received an UPDREQ
 message SHOULD send BNDUPD messages for binding database changes that
 occur after receipt of the UPDREQ message, but it SHOULD NOT include
 those additional BNDUPD messages and their corresponding BNDACK mes-
 sages in the accounting necessary to consider the UPDREQ complete and
 subsequently send the UPDDONE message. If some additional binding
 database changes end up becoming part of the set of BNDUPD messages
 considered as part of the UPDREQ (due to whatever algorithm the
 server uses to scan its bindings database for unacked changes) it
 will probably not cause any difficulty, but a server MUST NOT attempt
 to include all such later BNDUPD messages in the accounting for the
 UPDREQ in order to be able to transmit an UPDDONE message.

 When queuing up the BNDUPD messages for transmission to the sender of
 the UPDREQ message, the server processing the UPDREQ message MUST
 honor the value returned in the max-unacked-bndupd option in the CON-
 NECT or CONNECTACK message that set up the connection with the send-
 ing server. It MUST NOT send more BNDUPD messages without receiving
 corresponding BNDACKs than the value returned in max-unacked-bndupd.
 (See section 8 for more details.)

7.4. UPDREQALL message [7]

 The update request all (UPDREQALL) message is used by one server to
 request that its partner send it all of the binding database informa-
 tion. This message is used to allow one server to recover from a
 failure of stable storage and to restore its binding database in its
 entirety from the other server.

 A server which sends an UPDREQALL message cannot proceed until all of

Droms, et. al. Expires May 2003 [Page 66]

Internet Draft DHCP Failover Protocol November 2002

 its binding update information is restored, and it knows that all of
 that information is restored when an UPDDONE message is received.

 See section 9, Protocol state transitions, for the details of when
 the UPDREQALL message is sent.

 The UPDREQALL message has no message specific options.

7.4.1. Sending the UPDREQALL message

 The UPDREQALL is sent.

7.4.2. Receiving the UPDREQALL message

 A server receiving an UPDREQALL message MUST send all binding data-
 base information to the sending server. See section 5.16 for details
 of what might actually comprise "all binding database information".

 A server receiving an UPDREQALL message MUST remember that such a
 message has been received, ensure that all binding information extant
 at that point is sent to the partner prior to any UPDDONE message
 being sent to that partner. One way to do this is to remember the
 receipt of an UPDREQALL message and to and treat every subsequent
 UPDREQ message as an UPDREQALL message until it sends the first
 UPDDONE message after receipt of the UPDREQALL message. This
 requirement exists because communications may fail and become re-
 established between the two servers, and the specific conditions
 which provoked the UPDREQALL message may not longer exist even though
 the UPDREQALL message may not yet have completed. See section 5.17
 for information on a more efficient way to meet the above require-
 ment.

 These changes are sent as undistinguished BNDUPD messages. Otherwise
 the processing is the same as for the UPDREQ message. See section

7.3.2 for details.

7.5. UPDDONE message [8]

 The update done (UPDDONE) message is used by a server receiving an
 UPDREQ or UPDREQALL message to signify that it has sent all of the
 BNDUPD messages requested by the UPDREQ or UPDREQALL request and that
 it has received a BNDACK for each of those messages.

 While a BNDACK message MUST have been received for each BNDUPD mes-
 sage prior to the transmission of the UPDDONE message, this doesn't
 necessarily mean that all of the BNDUPD messages were accepted, only
 that all of them were responded to with a BNDACK message. Thus, a
 NAK (comprised of a BNDACK message containing a reject-reason option)

Droms, et. al. Expires May 2003 [Page 67]

Internet Draft DHCP Failover Protocol November 2002

 could be used to reject a BNDUPD, but for the purposes of the UPDDONE
 message, such NAK would count as a response to the associated BNDUPD
 message, and would not block the eventual transmission of the UPDDONE
 message.

 The xid in an UPDDONE message MUST be identical to the xid in the
 UPDREQ or UPDREQALL message that initiated the update process.

 The UPDDONE message has no message specific options.

7.5.1. Sending the UPDDONE message

 The UPDDONE message SHOULD be sent as soon as the last BNDACK message
 corresponding to a BNDUPD message requested by the UPDREQ or
 UPDREQALL is received from the server which sent the UPDREQ or
 UPDREQALL. The XID of the UPDDONE message MUST be the same as the
 XID of the corresponding UPDREQ or UPDREQALL message.

7.5.2. Receiving the UPDDONE message

 A server receiving the UPDDONE message knows that all of the informa-
 tion that it requested by sending an UPDREQ or UPDREQALL message has
 now been sent and that it has recorded this information in its stable
 storage. It typically uses the receipt of an UPDDONE message to move
 to a different failover state. See sections 9.5.2 and 9.8.3 for
 details.

7.6. POOLREQ message [1]

 The pool request (POOLREQ) message is used by the secondary server to
 request an allocation of IP addresses from the primary server. It
 MUST be sent by a secondary server to a primary server to request IP
 address allocation by the primary. The IP addresses allocated are
 transmitted using normal BNDUPD messages from the primary to the
 secondary.

 The POOLREQ message SHOULD be sent from the secondary to the primary
 whenever the secondary makes a transition into NORMAL state. It
 SHOULD periodically be resent in order that any change in the number
 of available IP addresses on the primary be reflected in the pool on
 the secondary. The period may be influenced by the secondary
 server's leasing activity.

 The POOLREQ message has no message specific options.

7.6.1. Sending the POOLREQ message

 The POOLREQ message is sent.

Droms, et. al. Expires May 2003 [Page 68]

Internet Draft DHCP Failover Protocol November 2002

7.6.2. Receiving the POOLREQ message

 When a primary server receives a POOLREQ message it SHOULD examine
 the binding database and determine how many IP addresses the secon-
 dary server should have, and set these IP addresses to BACKUP state.
 It SHOULD then send BNDUPD messages concerning all of these IP
 addresses to the secondary server.

 Servers frequently have several kinds of IP addresses available on a
 particular network segment. The failover protocol assumes that both
 primary and secondary servers are configured in such a way that each
 knows the type and number of IP addresses on every network segment
 participating in the failover protocol. The primary server is
 responsible for allocating the secondary server the correct propor-
 tion of available IP addresses of each kind, and the secondary server
 is responsible for being configured in such a way that it can tell
 the kind of every IP address based solely on the IP address itself.

 A primary server MUST keep track of how many IP addresses were allo-
 cated as a result of processing the POOLREQ message, and send that
 number in the POOLRESP message.

 A primary server MAY choose to defer processing a POOLREQ message
 until a more convenient time to process it, but it should not depend
 on the secondary server to resend the POOLREQ message in that case.

 If a secondary server receives a POOLREQ message it SHOULD report an
 error.

7.7. POOLRESP message [2]

 A primary server sends a POOLRESP message to a secondary server after
 the allocation process for available addresses to the secondary
 server is complete. Typically this message will precede some of the
 BNDUPD messages that the primary uses to send the actual allocated IP
 addresses to the secondary.

 The xid in the POOLRESP message MUST be identical to the xid in the
 POOLREQ message for which this POOLRESP is a response.

7.7.1. Sending the POOLRESP message

 The POOLRESP message MUST contain the same xid as the corresponding
 POOLREQ message.

 Only one option MUST appear in a POOLREQ message:

Droms, et. al. Expires May 2003 [Page 69]

Internet Draft DHCP Failover Protocol November 2002

 o addresses-transferred

 The number of addresses allocated to the secondary server by the
 primary server as a result of a POOLREQ is contained in the
 addresses-transferred option in a POOLRESP message. Note this
 is the number of addresses that are transferred to the secondary
 in the primary's binding database as a result of the correspond-
 ing POOLREQ message, and that it may be some time before they
 can all be transmitted to the secondary server through the use
 of BNDUPD messages.

7.7.2. Receiving the POOLRESP message

 When a secondary server receives a POOLRESP message, it SHOULD send
 another POOLREQ message if the value of the addresses-transferred
 option is non-zero.

 Typically, no other action is taken on the reception of a POOLRESP
 message.

7.8. CONNECT message [5]

 The connect message is used to establish an applications level con-
 nection over a newly created TCP connection. It gives the source
 information for the connection and critical configuration informa-
 tion. It MUST be sent only by the primary server. Either server can
 initiate a TCP connection, but the CONNECT message is only sent by
 the primary server.

 The CONNECT message MUST be the first message sent down a newly esta-
 blished connection, and it MUST be sent only by the primary server.

 The following table summarizes the options that are associated with
 the CONNECT message:

Droms, et. al. Expires May 2003 [Page 70]

Internet Draft DHCP Failover Protocol November 2002

 Option

 relationship-name MUST
 max-unacked-bndupd MUST
 receive-timer MUST
 vendor-class-identifier MUST
 protocol-version MUST
 TLS-request MUST (1)
 MCLT MUST
 hash-bucket-assignment MUST

 (1) MUST NOT if CONNECT is being sent over a TLS connection

 Table 7.8-1: Options used in a CONNECT message

7.8.1. Sending the CONNECT message

 The CONNECT message MUST be the first message sent by the primary
 server after the establishment of a new TCP connection with a secon-
 dary server participating in the failover protocol.

 The xid of the CONNECT message is not related to any previous xid
 sequence, but initiates the sequence for this connection.

 The name of the failover relationship MUST be placed in the
 relationship-name option. This information is placed in an option
 inside of the message in order to allow the identity of the sender to
 be covered by a shared secret.

 The number of BNDUPD messages the primary server can accept without
 blocking the TCP connection MUST be placed in the max-unacked-bndupd
 option. This MUST be a number equal to or greater than 1, SHOULD be
 a number greater than 10, and SHOULD be a number less than 100.

 The length of the receive timer (tReceive, see section 8.3) MUST be
 placed in the receive-timer option.

 The MCLT MUST be placed in the MCLT option.

 The hash-bucket-assignment option MUST be included in the CONNECT
 message. In the event that load balancing is not configured for this
 server, the hash-bucket-assignment option will indicate that. The
 value of the hash-bucket-assignment option is determined from the
 specific buckets that the primary server has determined that the
 secondary server MUST service as part of the load-balancing

Droms, et. al. Expires May 2003 [Page 71]

Internet Draft DHCP Failover Protocol November 2002

 algorithm. The way in which the primary server determines this
 information is outside the scope of this protocol definition. The
 primary server SHOULD be configured with a percentage of clients that
 the secondary server will be instructed to service, and the primary
 server SHOULD use the algorithm in [RFC 3074] to generate a Hash
 Bucket Assignment which it sends to the secondary server.

 The vendor class identifier MUST be placed in the vendor-class-
 identifier option.

 The protocol-version option MUST be included in every CONNECT mes-
 sage. The current value of the protocol version is 1.

 The TLS-request option MUST be sent and contains the desired TLS con-
 nection request as well as information concerning whether TLS is sup-
 ported. If this CONNECT message is being sent over a already
 created TLS connection, the TLS-request MUST NOT appear.

7.8.2. Receiving the CONNECT message

 When a server established a TCP connection on a failover port, if it
 is a PRIMARY server it should send a CONNECT message, and if it is a
 secondary server it should wait for a CONNECT message before sending
 any messages. To avoid denial of service attacks, a secondary should
 only wait for a CONNECT message on a new connection for a limited
 amount of time and close the connection if none is received during
 that time.

 When a secondary server receives a CONNECT message it should:

 1. Record the time at which the message was received.

 2. Examine the protocol-version option, and decide if this server
 is capable of interoperating with another server running that
 protocol version. If not, send the CONNECTACK message with
 the reject reason 14: "Protocol version mismatch". The server
 MUST include its protocol-version in the CONNECTACK message.

 3. Examine the TLS-request option. Figure out the TLS-reply
 value based on the capabilities and configuration of this
 server. If the result for the TLS-reply value is a 1 and the
 connection is accepted, indicating use of TLS, then immedi-
 ately send the CONNECTACK message and go into TLS negotiation.
 If the TLS-reply value implies rejection of the connection,
 then immediately send the CONNECTACK message with the TLS-
 reply value and the appropriate reject-reason option value.
 In all other cases, save the TLS-reply option information for
 the eventual CONNECTACK message.

https://datatracker.ietf.org/doc/html/rfc3074

Droms, et. al. Expires May 2003 [Page 72]

Internet Draft DHCP Failover Protocol November 2002

 The possibilities for TLS-request and TLS-reply are:

 CONNECT CONNECTACK
 TLS TLS
 request reply
 Reject
 t1 t1 Reason Comments
 -- -- ------ --------
 0 0 no TLS used
 0 1 11 primary won't use TLS, secondary requires TLS
 1 0 primary desires TLS, secondary doesn't
 1 1 primary desires TLS, secondary will use TLS
 2 0 9, 10 primary requires TLS and secondary won't
 2 1 primary requires TLS and secondary will use TLS

 4. Check to see if there is a message-digest option in the CON-
 NECT message. If there was, and the server does not support
 message-digests, then reject the connection with reject reason
 12: "Message digest not supported" in the CONNECTACK. If the
 server does support message-digests, then check this message
 for validity based on the message-digest, and reject it if the
 digest indicates the message was altered with reject reason
 20: "Message digest failed to compare".

 5. Determine if the sender (from the relationship-name option)
 and the implicit role of the sender (i.e., primary) represents
 a server with which the receiver was configured to engage in
 failover activity. This is performed after any TLS or message
 digest processing so that it occurs after a secure connection
 is created, to ensure that there is no tampering with the
 relationship name of the partner. In the absence of any other
 security capability (i.e., when TLS or a message digest is not
 used), the server MAY wish to be configured with the IP
 address of the partner and check the source-ip of the CONNECT
 message against that IP address as a weak form of security.

 If not, then the receiving server should reject the CONNECT
 request by sending a CONNECTACK message with a reject-reason
 value of: 8, invalid failover partner.

 If it is, then the receiving failover endpoint should be
 determined.

 6. Decide if the time delta between the sending of the message,
 in the time field, and the receipt of the message, recorded in
 step 1 above, is acceptable. A server MAY require an

Droms, et. al. Expires May 2003 [Page 73]

Internet Draft DHCP Failover Protocol November 2002

 arbitrarily small delta in time values in order to set up a
 failover connection with another server. See section 5.10 for
 information on time synchronization.

 If the delta between the time values is too great, the server
 should reject the CONNECT request by sending a CONNECTACK mes-
 sage with a reject-reason of 4, time mismatch too great.

 If the time mismatch is not considered too great then the
 receiving server MUST record the delta between the servers.
 The receiving server MUST use this delta to correct all of the
 absolute times received from the other server in all time-
 valued options. Note that servers can participate in failover
 with arbitrarily great time mismatches, as long as it is more
 or less constant.

 7. Examine the MCLT option in the CONNECT request and use the
 value of the MCLT as the MCLT for this failover endpoint.

 The secondary server SHOULD be able to operate with any MCLT
 sent by the primary, but if it cannot, then it should send a
 CONNECTACK with a reject-reason of 5, MCLT mismatch. In the
 event that the MCLT from the primary does not match that con-
 figured on the secondary, and the secondary will run with the
 primary's value, then the secondary MUST save the MCLT in
 secondary storage since it will need it even if it cannot con-
 tact the primary. The secondary MUST NOT use a different MCLT
 value than it received from the primary even if it cannot con-
 tact the primary.

 8. The server MUST store hash-bucket-assignment option for use
 during processing during NORMAL state. If this hash bucket
 assignment conflicts with the secondary server's configured
 hash bucket assignment for use in other than NORMAL state, the
 secondary server should send a CONNECTACK with a reject reason
 of 19, Hash bucket assignment conflict.

 9. The receiving server MAY use the vendor-class-identifier to do
 vendor specific processing.

7.9. CONNECTACK message [6]

 The CONNECTACK message is sent to accept or reject a CONNECT message.
 It is sent by the secondary server which received a CONNECT message.

 Attempting immediately to reconnect after either receiving a CONNEC-
 TACK with a reject-reason or after sending a CONNECTACK with a
 reject-reason could yield unwanted looping behavior, since the reason

Droms, et. al. Expires May 2003 [Page 74]

Internet Draft DHCP Failover Protocol November 2002

 that the connection was rejected may well not have changed since the
 last attempt. A simple suggested solution is to wait a minute or two
 after sending or receiving a CONNECTACK message with a reject-reason
 before attempting to reestablish communication.

 The following table summarizes the options associated with the CON-
 NECTACK message:

 Option accept reject

 relationship-name MUST MUST
 max-unacked-bndupd MUST MUST NOT
 receive-timer MUST MUST NOT
 vendor-class-identifier MUST MUST NOT
 protocol-version MUST MUST
 TLS-reply (1) (2)
 reject-reason MUST NOT MUST
 message MUST NOT SHOULD
 MCLT MUST NOT MUST NOT
 hash-bucket-assignment MUST NOT MUST NOT

 (1) MUST NOT if sending CONNECTACK after TLS negotiation, MUST
 if TLS-request in CONNECT, else MUST NOT.
 (2) MUST if TLS-request in CONNECT message, else MUST NOT.

 Table 7.9-1: Options used in a CONNECTACK message

7.9.1. Sending the CONNECTACK message

 The xid of the CONNECTACK message MUST be that of the corresponding
 CONNECT message.

 The name of the relationship MUST be placed in the relationship-name
 option. This information is placed in an option inside of the mes-
 sage in order to allow the identity of the sender to be covered by a
 shared secret.

 The protocol-version option MUST be included in every CONNECTACK mes-
 sage. The current value of the protocol version is 1.

 If the connection has been rejected, the reject-reason option MUST be
 placed in the CONNECTACK message with an appropriate reason, and a
 message option SHOULD be included with a human-readable error message
 describing the reason for the rejection in some detail. If the
 reject-reason option appears, then the remaining options listed below
 do not appear. The sending server should close the connection after

Droms, et. al. Expires May 2003 [Page 75]

Internet Draft DHCP Failover Protocol November 2002

 sending the CONNECTACK if the connection was rejected.

 The results of the TLS negotiation MUST be placed in the TLS-reply
 option. If this CONNECTACK message is being sent over an already TLS
 secured connection, then there MUST NOT be a TLS-reply option.

 If there was a message-digest option in the CONNECT message, then
 there MUST be a message-digest in the CONNECTACK message and any sub-
 sequent messages if the CONNECTACK does not contain a reject-reason.

 The number of BNDUPD messages the server can accept without blocking
 the TCP connection MUST be placed in the max-unacked-bndupd option.
 This SHOULD be a number greater than 10, and SHOULD be a number less
 than 100.

 The length of the receive timer (tReceive, see section 8.3) MUST be
 placed in the receive-timer option.

 The vendor class identifier MUST be placed in the vendor-class-
 identifier option.

 After a connection is created (either by sending a CONNECTACK message
 to the first CONNECT message, or sending a CONNECTACK message to a
 CONNECT message received over a TLS connection), the server MUST send
 a STATE message.

 After a connection is created, the server MUST start two timers for
 the connection: tSend and tReceive. The tSend timer SHOULD be
 approximately 33 percent of the time in the receiver-timer option in
 the corresponding CONNECT message. The tReceive timer SHOULD be the
 time sent in the receiver-timer option in the CONNECTACK message.

 The tReceive timer is reset whenever a message is received from this
 TCP connection. If it ever expires, the TCP connection is dropped
 and communications with this partner is considered not ok. The
 reject reason 17: "No traffic within sufficient time" is placed in
 the DISCONNECT message sent prior to dropping the TCP connection.

 The tSend timer is reset whenever a message is sent over this connec-
 tion. When it expires, a CONTACT message MUST be sent.

7.9.2. Receiving the CONNECTACK message

 If a CONNECTACK message is received with a different XID from the one
 in the CONNECT that was sent, it SHOULD be ignored. To avoid denial
 of service attacks, a primary should only wait for a CONNECTACK mes-
 sage on a new connection for a limited amount of time and close the
 connection if none is received during that time.

Droms, et. al. Expires May 2003 [Page 76]

Internet Draft DHCP Failover Protocol November 2002

 When a CONNECTACK message is received, the following actions should
 be taken:

 1. Record the time the message was received.

 2. Check to see if the xid on the CONNECTACK matches an outstand-
 ing CONNECT message on this TCP connection.

 3. Check to see if there is a reject-reason option in the CONNEC-
 TACK message. If not, continue with step 3. If there is a
 reject-reason option, the server SHOULD report the error code.
 If a message option appears a server SHOULD display the string
 from the message option in a user visible way. The server
 MUST close the connection if a reject-reason option appears.

 4. Check the value of the TLS-reply option (if any, which there
 won't be if this CONNECT is taking place utilizing TLS), and
 if it was 1, then skip processing of the rest of the CONNEC-
 TACK message, and immediately enter into TLS connection setup.

 This step occurs prior to steps 5 and 6 in order to allow
 creation of a secure connection (if required) prior to pro-
 cessing the protocol version and IP address information.

 5. Examine the value of the protocol-version option. If this
 server is able to establish connections with another server
 running this protocol version, then continue, else close the
 connection.

 6. Decide if the time delta between the sending of the message,
 in the time field, and the receipt of the message, recorded in
 step 1 above, is acceptable. A server MAY require an arbi-
 trarily small delta in time values in order to set up a fail-
 over connection with another server.

 If the delta between the time values is too great, the server
 should drop the TCP connection (see section 7.12).

 If the time mismatch is not considered too great then the
 receiving server MUST record the delta between the servers.
 The receiving server MUST use this delta to correct all of the
 absolute times received from the other server in all time-
 valued options. Note that the failover protocol is con-
 structed so that two servers can be failover partners with
 arbitrarily great time mismatches.

 7. The receiving server MAY use the vendor-class-identifier to do
 vendor specific processing.

Droms, et. al. Expires May 2003 [Page 77]

Internet Draft DHCP Failover Protocol November 2002

 8. After accepting a CONNECTACK message, the server MUST send a
 STATE message.

 After receiving a CONNECTACK message, the server MUST start
 two timers for the connection: tSend and tReceive. The tSend
 timer SHOULD be approximately 20 percent of the time in the
 receiver-timer option in the corresponding CONNECTACK message.
 The tReceive timer SHOULD be set to the time sent in the
 receiver-timer option in the CONNECT message.

 The tReceive timer is reset whenever a message is received
 from this TCP connection. If it ever expires, the TCP connec-
 tion is dropped and communications with this partner is con-
 sidered not ok. The reject reason 17: "No traffic within suf-
 ficient time" is placed in the DISCONNECT message sent prior
 to dropping the TCP connection.

 The tSend timer is reset whenever a message is sent over this
 connection. When it expires, a CONTACT message MUST be sent.

7.10. STATE message [10]

 The state (STATE) message is used to communicate the current failover
 state to the partner server.

 The STATE message MUST be sent after sending a CONNECTACK message
 that didn't contain a reject-reason option, and MUST be sent after
 receiving a CONNECTACK message without a reject-reason option.

 A STATE message MUST be sent whenever the failover endpoint changes
 its failover state and a connection exists to the partner.

 The STATE message requires no response from the failover partner.

 The following table shows the options that MUST appear in a STATE
 message:

 Option

 sending-state MUST
 server-flags MUST
 start-time-of-state MUST

 Table 7.10-1: Options used in a STATE message

Droms, et. al. Expires May 2003 [Page 78]

Internet Draft DHCP Failover Protocol November 2002

7.10.1. Sending the STATE message

 The current failover state is placed in the server-state option and
 the current state of the STARTUP flag is placed in the server-flags
 option.

 The message is sent with a unique xid.

 A server SHOULD only send the STATE message either when the connec-
 tion is created (i.e, after sending or receiving a CONNECTACK message
 with no reject-reason option), or when there is a change from the
 values sent in a previous STATE message.

7.10.2. Receiving the STATE message

 Every STATE message SHOULD indicate a change in state or a change in
 the flags.

 When a STATE message is received, any state transitions specified in
section 9 are taken.

 No response to a STATE message is required.

7.11. CONTACT message [11]

 The contact (CONTACT) message is sent to verify communications
 integrity with a failover partner. The CONTACT message is sent when
 no messages have been sent to the failover partner for a specified
 period of time. This is determined by the tSend timer expiring (see

section 8.3).

 The CONTACT message has no message specific options.

7.11.1. Sending the CONTACT message

 The CONTACT message is sent.

7.11.2. Receiving the CONTACT message

 When a CONTACT message is received, the tReceive timer is reset (as
 it is with any message that is received).

 A server SHOULD use the time in the time field and the time the mes-
 sage was received to refine the delta time calculations between the
 servers.

Droms, et. al. Expires May 2003 [Page 79]

Internet Draft DHCP Failover Protocol November 2002

7.12. DISCONNECT message [12]

 The DISCONNECT is the last message sent over a connection before
 dropping an established connection (note that an established connec-
 tion is one where a CONNECTACK has been sent without a reject rea-
 son).

 After sending or receiving a DISCONNECT message, a server needs to
 have some mechanism to prevent an error loop. Simply reconnecting to
 the partner immediately is not the best option, especially after
 several consecutive attempts.

 A simple suggested solution is to wait a minute or two after sending
 or receiving a DISCONNECT before attempting to reestablish communica-
 tion.

 The DISCONNECT message MUST be the last message sent down a connec-
 tion before it is closed.

 The following table summarizes the options that are associated with
 the DISCONNECT message:

 Option

 reject-reason MUST
 message SHOULD

 Table 7.12-1: Options used in a DISCONNECT message

7.12.1. Sending the DISCONNECT message

 The DISCONNECT message MUST be the last message sent by the a server
 which is dropping a TCP connection.

 The xid of the DISCONNECT message must be unique.

 The reject-reason option MUST appear giving a reason why the connec-
 tion was dropped. A message option SHOULD appear giving a human
 readable error message with possibly more details.

7.12.2. Receiving the DISCONNECT message

 When a server receives a DISCONNECT message it should log the message
 if there was one and possibly raise an alarm of some sort if the
 reject reason was one that was sufficiently serious.

Droms, et. al. Expires May 2003 [Page 80]

Internet Draft DHCP Failover Protocol November 2002

8. Connection Management

 Servers participating in the failover protocol communicate over TCP
 connections. These TCP connections are used both to transmit bind-
 ing information from one server to another as well as to allow each
 server to determine whether communications is possible with the other
 server.

 Central to the operation of the failover protocol is a notion of
 "communications okay" or "communications failed". Failover state
 transitions are taken in many cases when the status of communications
 with the partner changes, and the existence or non-existence of a TCP
 connections between failover endpoints is used to determine if com-
 munications is "okay" or "failed".

 A single TCP connection exists which connects two failover endpoints.

8.1. Connection granularity

 There exists one TCP connection between each set of failover end-
 points. See section 5.1.1 for an explanation of failover endpoints.

 There are a maximum of two TCP connections between any two servers
 implementing the failover protocol, one for each of the possible
 failover endpoints between these two servers. There is a minimum of
 one TCP connection between one server and every other failover server
 with which it implements the failover protocol.

8.2. Creating the TCP connection

 There are two ports used for initiating TCP connections, correspond-
 ing to the two roles that a server can fill with respect to another
 server. Every server implementing the failover protocol MUST listen
 on at least one of these ports. Port 647 is the port to which pri-
 mary servers will attempt a connection, and port 847 is the port to
 which secondary servers will attempt a connection. When a connection
 attempt is received on port 647, it is therefore from a primary
 server, and the primary server is attempting to connect to this
 secondary server. Likewise, when a connection attempt is received on
 port 847, it is therefore from a secondary server, and the secondary
 server is attempting to connect to this primary server." See the
 schematic representation below:

Droms, et. al. Expires May 2003 [Page 81]

Internet Draft DHCP Failover Protocol November 2002

 Primary Server

 Listens on port 847 for secondary server to connect to it
 Periodically connects on port 647 to contact secondary

 Secondary Server

 Listens on port 647 for primary server to connect to it
 Periodically connects on port 847 to contact primary

 Every server implementing the failover protocol SHOULD attempt to
 connect to all of its partners periodically, where the period is
 implementation dependent and SHOULD be configurable. In the event
 that a connection has been rejected by a CONNECTACK message with a
 reject-reason option contained in it or a DISCONNECT message, a
 server SHOULD reduce the frequency with which it attempts to connect
 to that server but it SHOULD continue to attempt to connect periodi-
 cally.

 If a connection attempt has been received from another server in a
 particular role (i.e., from a specific failover endpoint) then the
 receiving server MUST NOT initiate a connection attempt to the
 partner server in that same role.

 If both servers happen to attempt to connect simultaneously, the
 secondary server MUST drop its attempt in favor of the primary's
 attempt. Thus, in the event that a secondary server receives a con-
 nection attempt to port 647 from a primary server when it has already
 initiated a connection attempt to port 847 on the same primary
 server, it MUST accept the connection to port 647 and it MUST drop
 drop the connection attempt to port 847. In the event that a primary
 server receives a connection attempt to port 847 from a secondary
 server when it has already initiated a connection attempt to port 647
 on that same server, it MUST reject the connection attempt to port
 847 and continue to pursue the connection attempt on port 647.

 Once a connection is established, the primary server MUST send a CON-
 NECT message across the connection. A secondary server MUST wait for
 the CONNECT message from a primary server.

 Every CONNECT message includes a TLS-request option, and if the CON-
 NECTACK message does not reject the CONNECT message and the TLS-reply
 option says TLS MUST be used, then the servers will immediately enter
 into TLS negotiation.

 Once TLS negotiation is complete, the primary server MUST resend the

Droms, et. al. Expires May 2003 [Page 82]

Internet Draft DHCP Failover Protocol November 2002

 CONNECT message on the newly secured TLS connection and then wait for
 the CONNECTACK message in response. The TLS-request and TLS-reply
 options MUST NOT appear in either this second CONNECT or its associ-
 ated CONNECTACK message as they had in the first messages.

 The second message sent over a new connection (either a bare TCP con-
 nection or a connection utilizing TLS) is a STATE message. Upon the
 receipt of this message, the receiver can consider communications up.

 It is entirely possible that two servers will attempt to make connec-
 tions to each other essentially simultaneously, and in this case the
 secondary server will be waiting for a CONNECT message on each con-
 nection. The primary server MUST send a CONNECT message over one
 connection and it MUST close the other connection.

 A secondary server MUST NOT respond to the closing of a TCP connec-
 tion with a blind attempt to reconnect -- there may be another TCP
 connection to the same failover partner already in use.

8.3. Using the TCP connection for determining communications status

 The TCP connection is used to determine the communications status of
 the other server, i.e., communications-ok, or communications-
 interrupted.

 Three things must happen for a server to consider that communications
 are ok with respect to another server:

 1. A TCP connection must be established to the other server.

 2. A CONNECT message must be received and a CONNECTACK message
 sent in response. The CONNECT message is used to determine
 the identify of the failover endpoint of the other end of the
 TCP connection -- without it, the failover endpoint cannot be
 uniquely determined. Without knowledge of the failover end-
 point, then the entity with which communications is ok is
 undetermined.

 3. A STATE message must be received from the other server over
 the connection. This STATE message initializes important
 information necessary to the operation of the state machine
 the governs the behavior of this failover endpoint.

 There are two ways that a server can determine that communications
 has failed:

Droms, et. al. Expires May 2003 [Page 83]

Internet Draft DHCP Failover Protocol November 2002

 1. The TCP connection can go down, yielding an error when
 attempting to send or receive a message. This will happen at
 least as often as the period of the tSend timer.

 2. The tReceive timer can expire.

 In either of these cases, communications is considered interrupted.

 If the tReceive timer expires, the connection MUST be dropped. The
 reject reason 17: "No traffic within sufficient time" is placed in
 the DISCONNECT message sent prior to dropping the TCP connection.

 Several difficulties arise when trying to use one TCP connection for
 both bulk data transfer as well as to sense the communications status
 of the other server. One aspect of the problem stems from the dif-
 ferent requirements of both uses. The bulk data transfer is of
 course critically important to the protocol, but the speed with which
 it is processed is not terribly significant. It might well be
 minutes before a BNDUPD message is processed, and while not optimal,
 such an occasional delay doesn't compromise the correctness of the
 protocol. However, the speed with which one server detects the other
 server is up (or, more importantly, down) is more highly constrained.
 Generally one server should be able to detect that the other server
 is not communicating within a minute or less.

 These differing time constraints makes it difficult to use the same
 TCP connection for data transfer as well as to sense communications
 integrity. See section 3.5 for additional details on TCP.

 The solution to this problem is to require that some message be
 received by each end of the connection within a limited time or that
 the connection will be considered down. If no messages have been
 sent recently, then a CONTACT message is sent.

 In the case where there is no data queued to be sent, this is not a
 problem, but in the case where there is data queued to be sent to the
 partner, then the CONTACT message will not actually be transmitted
 until the queued data is sent. Section 3.5 explains why waiting for
 TCP to determine that the connection is down is not acceptable, and
 leads to a requirement that the receiving server never block the
 sending server from sending CONTACT messages.

 In order to meet this requirement, each server tells the other server
 the number of outstanding BNDUPD messages that it will accept. The
 receiving server is required to always be able to accept that many
 BNDUPD messages off of the connection's input queue even if it cannot
 process them immediately, and to accept all other messages immedi-
 ately.

Droms, et. al. Expires May 2003 [Page 84]

Internet Draft DHCP Failover Protocol November 2002

 Thus, the sending server's TCP is never blocked from sending a mes-
 sage except for very short periods, less than a few seconds unless
 the network connection itself has problems. In this case, if the
 CONTACT messages don't make it to the partner then the partner will
 close the connection.

 DISCUSSION:

 When implementing this capability, one needs to be careful when
 sending any message on the TCP connection as TCP can easily block
 the server if the local TCP send buffers are full. This can't be
 prevented because if the receiver is not reachable (via the net-
 work), the sending TCP can't send and thus it will be unable to
 empty the local TCP send buffers. So, all send operations either
 need to assume they may block for some time or non-blocking sends
 must be used carefully.

8.4. Using the TCP connection for binding data

 Binding data, in the form of BNDUPD messages and BNDACK messages to
 respond to them, are sent across the TCP connection.

 In order to support timely detection of any failure in the partner
 server, the TCP connection MUST NOT block for more than a very short
 time, on the order of a few seconds. Therefore, a server that is
 sending BNDUPD messages MUST send only a restricted number before
 receiving BNDACK messages about previous messages sent.

 The number of outstanding BNDUPD messages that each server will
 accept without causing TCP to block transmission of additional data
 (i.e, CONTACT messages) is sent by each server in the CONNECT and
 CONNECTACK messages in the max-unacked-bndupd option.

8.5. Using the TCP connection for control messages

 The TCP connection is used for control messages: POOLREQ, UPDREQ,
 STATE, CONTACT, UPDREQALL and the corresponding reply messages: POOL-
 RESP, UPDDONE. A server MUST immediately accept all of these mes-
 sages from the TCP connection. A server MUST immediately accept any
 BNDACK which is received as well.

8.6. Losing the TCP connection

 When the TCP connection is lost, then communications is not ok with
 the other server. A server which has lost communications SHOULD
 immediately attempt to reconnect to the other server, and should
 retry these connection attempts periodically.

Droms, et. al. Expires May 2003 [Page 85]

Internet Draft DHCP Failover Protocol November 2002

 An acknowledgement message (BNDACK, POOLRESP, UPDDONE) message can
 only be sent in response to a request message (BNDUPD, POOLREQ,
 UPDREQ, UPDREQALL) on the same TCP connection from which the request
 was received, in part since the XID's in the request messages are
 guaranteed unique only during the life of a single TCP connection.

 When a connection to a partner server goes down, a server with unpro-
 cessed request messages MAY simply drop all of those messages, since
 it can be sure that the partner will resend them when they are next
 in communications. A server with unprocessed BNDUPD messages when a
 TCP connection goes down MAY instead choose to process those BNDUPD
 messages, but it MUST NOT send any BNDACK messages in response (again
 because of the issues surrounding XID uniqueness).

 When the TCP connection is closed explicitly, the DISCONNECT message
 with a reject-reason option (and, ideally, a message option) MUST be
 sent over the TCP connection.

9. Failover Endpoint States

 This section discusses the various states that a failover endpoint
 may take, and the server actions required when entering the state,
 operating in the state, and leaving the state, as well as the events
 that cause transitions out of the state into another state.

 The state transition diagram in Figure 9.2-1 is relevant for this
 section. This is the common state transition diagram for both servers
 in a failover pair. In the event that the textual description of a
 state differs from the state transition diagram, the textual descrip-
 tion is to be considered authoritative.

9.1. Server Initialization

 When a server starts it starts out in STARTUP state. See section 9.3
 below for details.

9.2. Server State Transitions

 Whenever a server makes a transition into a new state, it MUST record
 the state and the time at which it entered that state in stable
 storage. If communications is "ok", it MUST also send a STATE mes-
 sage to its failover partner.

 Figure 9.2-1 is the diagram of the server state transitions. The
 remainder of this section contains information important to the
 understanding of that diagram.

 The server stays in the current state until all of the actions

Droms, et. al. Expires May 2003 [Page 86]

Internet Draft DHCP Failover Protocol November 2002

 specified on the state transition are complete. If communications
 fails during one of the actions, the server simply stays in the
 current state and attempts a transition whenever the conditions for a
 transition are later fulfilled.

 In the state transition diagram below, the "+" or "-" in the upper
 right corner of each state is a notation about whether communication
 is ongoing with the other server.

 The legend "responsive", "balanced", or "unresponsive" in each state
 indicates whether the server is responsive to all DHCP client
 requests, running in load balanced mode, or totally unresponsive in
 the respective state. The terms "responsive" and "unresponsive" have
 the obvious meanings, while "balanced" means that a DHCP server may
 respond to all DHCPREQUEST messages that are RENEWAL or REBINDING,
 and to all other messages from clients for which the load balancing
 algorithm indicates that it MUST respond to. See sections 5.3 and
 9.8.2 for details on load balancing.

 In the state transition diagram below, when communication is reesta-
 blished between the two servers, each must record the state of the
 partner when communication was restored. State transitions on one
 server in some cases imply state transitions on the partner server,
 so a record of the current state of the partner server must be kept
 by each server.

 If the state of the partner changes while communicating a server
 moves through the communications-failed transition and into whatever
 state results. It then immediately moves through whatever state
 transition is appropriate given the current state of the partner
 server. A server performing this operation SHOULD NOT close the TCP
 connection to its partner.

 DISCUSSION:

 The point of this technique is simplicity, both in explanation of
 the protocol and in its implementation. The alternative to this
 technique of memory of partner state and automatic state transi-
 tion on change of partner state is to have every state in the fol-
 lowing diagram have a state transition for every possible state of
 the partner. With the approach adopted, only the states in which
 communications are reestablished require a state transition for
 each possible partner state.

 The current state of a server MUST be recorded in stable storage and
 thus be available to the server after a server restart.

 A transition into SHUTDOWN or PAUSED state is not represented in the

Droms, et. al. Expires May 2003 [Page 87]

Internet Draft DHCP Failover Protocol November 2002

 following figure, since other than sending that state to its partner,
 the remaining actions involved look just like the server halting in
 its otherwise current state, which then becomes the previous state
 upon server restart.

Droms, et. al. Expires May 2003 [Page 88]

Internet Draft DHCP Failover Protocol November 2002

 +---------------+ V +--------------+
 | RECOVER -|+| | | STARTUP - |
 |(unresponsive) | +->+(unresponsive)|
 +------+--------+ +--------------+
 +-Comm. OK +-----------------+
 | Other State: | PARTNER DOWN - +<----------------------+
 | RESOLUTION-INTER. | (responsive) | ^
 All POTENTIAL- +----+------------+ |
 Others CONFLICT------------ | --------+ |
 | CONFLICT-DONE Comm. OK | +--------------+ |
 UPDREQ or Other State: | +--+ RESOLUTION - | |
 UPDREQALL | | | | | INTERRUPTED | |
 Rcv UPDDONE RECOVER All | | | (responsive) | |
 | +---------------+ | Others | | +------------+-+ |
 +->+RECOVER-WAIT +-| RECOVER | | | ^ | |
 |(unresponsive) | WAIT or | | Comm. | Ext. |
 +-----------+---+ DONE | | OK Comm. Cmd----->+
 Comm.---+ Wait MCLT | V V V Failed |
 Changed | V +---+ +---+-----+--+-+ | |
 | +---+----------++ | | POTENTIAL + +-------+ |
 | |RECOVER-DONE +-| Wait | CONFLICT +------+ |
 +->+(unresponsive) | for |(unresponsive)| Primary |
 +------+--------+ Other +>+----+--------++ resolve Comm. |
 Comm. OK State: | | ^ conflict Changed |
 +---Other State:-+ RECOVER | Secondary | V V | |
 | | | DONE | resolve | ++----------+---++ | | |
 | All Others: POTENT. | | conflict | |CONFLICT-DONE-|+| |
 | Wait for CONFLICT- | ----+ see (9.10) | | (responsive) | |
 | Other State: V V | +------+---------+ |
 | NORMAL or RECOVER ++------------+---+ Other State: NORMAL |
 | | DONE | NORMAL + +<--------------+ |
 | +--+----------+-->+ (balanced) +-------External Command--->+
 | ^ ^ +--------+--------+ or Other State: |
 | | | | | SHUTDOWN |
 | Wait for Comm. OK Comm. Failed or | |
 | Other Other Other State: PAUSED | External
 | State: State: | | Command
 | RECOVER-DONE NORMAL Start Safe Comm. OK or
 | | COMM. INT. Period Timer Other State: Safe
 | Comm. OK. | V All Others Period
 | Other State: | +---------+--------+ | expiration
 | RECOVER +--+ COMMUNICATIONS - +----+ |
 | +-------------+ INTERRUPTED | |
 RECOVER | (responsive) +-------------------------->+
 RECOVER-WAIT--------->+------------------+
 Figure 9.2-1: Server state diagram.

Droms, et. al. Expires May 2003 [Page 89]

Internet Draft DHCP Failover Protocol November 2002

9.3. STARTUP state

 The STARTUP state affords an opportunity for a server to probe its
 partner server, before starting to service DHCP clients.

 DISCUSSION:

 Without the STARTUP state, a server would likely start in a state
 derived from its previously stored state (held in stable storage),
 if any. However, this may be inconsistent with the current state
 of the partner. The STARTUP state affords the opportunity for a
 server to potentially learn the partner's state and determine if
 that state is consistent with its derived starting state or
 whether some significant state change has occurred at the partner
 that forces the server to start in another state. This is
 especially critical if significant time has elapsed while the
 server was down.

9.3.1. Operation while in STARTUP state

 Whenever a server is in STARTUP state, it MUST be unresponsive to
 DHCP client requests, and so the time spent in the STARTUP state is
 necessarily short, typically on the order of a few seconds to a few
 tens of seconds. The exact time spent in the STARTUP state is imple-
 mentation dependent, and the primary and secondary server are not
 required to spend the same amount of time in the STARTUP state. See

section 5.9 for some guidelines on the time to spend in STARTUP
 state.

 Whenever a STATE message is sent to the partner while in STARTUP
 state the STARTUP bit MUST be set in the server-flags option and the
 previously recorded failover state MUST be placed in the server-state
 option.

9.3.2. Transition out of STARTUP state

 Each server starts out in startup state every time it initializes
 itself, and performs the following algorithm as part of its initiali-
 zation:

 1. Is there any record in stable storage of a previous failover
 state? If yes, set previous-state to the last recorded state
 in stable storage, and continue with step 2.

 Is there any configuration information that indicates that

Droms, et. al. Expires May 2003 [Page 90]

Internet Draft DHCP Failover Protocol November 2002

 this server was previously running but lost its stable
 storage? Such information must typically come from some
 administrative intervention, since it is difficult for a
 server to distinguish first startup from a startup after it
 has lost its stable storage. If yes, then set the previous-
 state to RECOVER, and set the time-of-failure to whatever time
 was configured, and go on to step 2. This time-of-failure
 will be used in the transition out of the RECOVER-WAIT state
 into the RECOVER-DONE state, below.

 If there is no record of any previous failover state in stable
 storage for this server, then set the previous-state to
 RECOVER and set the time-of-failure to a time before the
 maximum-client-lead-time before now. If using standard Posix
 times, 0 would typically do quite well. This will allow two
 servers which already have lease information to synchronize
 themselves prior to operating.

 Note that neither server is responsive to DHCP client requests
 while in the RECOVER state. If both servers can communicate,
 however, they will come out of the RECOVER state and progress
 through RECOVER-WAIT to RECOVER-DONE and thence to NORMAL or
 COMMUNICATIONS-INTERRUPTED state quickly. If both have state,
 then they will exchange information. If only one has state,
 then the one that does not will complete its update of its
 partner quickly (since it has nothing to send).

 In some cases, an existing server will be commissioned as a
 failover server and brought back into operation where its
 partner is not yet available. In this case, the newly commis-
 sioned failover server will not operate until its partner
 comes online -- but it has operational responsibilities as a
 DHCP server nonetheless. To properly handle this situation, a
 server SHOULD be configurable in such a way as to move
 directly into PARTNER-DOWN state after the startup period
 expires if it has been unable to contact its partner during
 the startup period.

 2. If the previous state is one where communications was "OK",
 then set the previous state to the state that is the result of
 the communications failed state transition in Figure 9.2-1 (if
 such transition is shown -- some states don't have a communi-
 cations failed state transition, since they allow both commun-
 ications OK and failed).

 3. Start the STARTUP state timer. The time that a server remains
 in the STARTUP state (absent any communications with its
 partner) is implementation dependent and SHOULD be

Droms, et. al. Expires May 2003 [Page 91]

Internet Draft DHCP Failover Protocol November 2002

 configurable. It SHOULD be long enough for a TCP connection
 to be created to a heavily loaded partner across a slow net-
 work.

 4. Attempt to create a TCP connection to the failover partner.
 See section 8.2.

 5. Wait for "communications okay", i.e., the process discussed in
section 8.2 "Creating the TCP Connection", to complete,

 including the receipt of a STATE message from the partner.

 When and if communications become "okay", clear the STARTUP
 flag, and set the current state to the previous-state.

 If the partner is in PARTNER-DOWN state, and if the time at
 which it entered PARTNER-DOWN state (as received in the
 start-time-of-state option in the STATE message) is later than
 the last recorded time of operation of this server, then set
 the current state to RECOVER. If the time at which it entered
 PARTNER-DOWN state is earlier than the last recorded time of
 operation of this server, then set the current state to
 POTENTIAL-CONFLICT.

 Then, transition to the current state and take the "communica-
 tions okay" state transition based on the current state of
 this server and the partner.

 6. If the startup time expires, take an implementation dependent
 action: The server MAY go to the previous-state, or the
 server MAY wait.

 Reasons to go to previous-state and begin processing:

 If the current server is the only operational server, then if
 it waits, there will be no operational DHCP servers. This
 situation could occur very easily where one server fails and
 then the other crashes and reboots. If the rebooting server
 doesn't start processing DHCP client requests without first
 being in communication with the other server, then the level
 of DHCP redundancy is not particularly high. This is an
 appropriate approach if the possibility of partition is low,
 or if the safe period expiration time is well beyond the time
 at which an operator would notice and react to a partition
 situation. It is also quite appropriate if the safe period
 will never expire.

 Reasons to wait:

Droms, et. al. Expires May 2003 [Page 92]

Internet Draft DHCP Failover Protocol November 2002

 If the current server has been down for longer than the
 maximum-client-lead-time, and it is partitioned from the other
 server, then when it returns it will attempt to use its own
 available addresses to allocate to new DHCP clients, and the
 other server may well be in PARTNER-DOWN state and may have
 already allocated some of those available addresses to DHCP
 clients. In cases where the possibility of partition is high,
 and the safe period expiration time is less than the likely
 operator reaction time, this is a good approach to use.

9.4. PARTNER-DOWN state

 PARTNER-DOWN state is a state either server can enter. When in this
 state, the server does not assume that the other server could still
 be operating and servicing a different set of clients, but instead
 assumes that it is the only server operating. If one server is in
 PARTNER-DOWN state, the other server MUST NOT be operating.

9.4.1. Upon entry to PARTNER-DOWN state

 No special actions are required when entering PARTNER-DOWN state.

 The server should continue to attempt to connect to the partner
 periodically.

9.4.2. Operation while in PARTNER-DOWN state

 A server in PARTNER-DOWN state MUST respond to DHCP client requests.
 It will allow renewal of all outstanding leases on IP addresses, and
 will allocate IP addresses from its own pool, and after a fixed
 period of time (the MCLT interval) has elapsed from entry into
 PARTNER-DOWN state, it will allocate IP addresses from the set of all
 available IP addresses.

 Once a server has entered NORMAL state, the PARTNER-DOWN state is
 entered only on command of an external agency (typically an adminis-
 trator of some sort) or after the expiration of an externally config-
 ured minimum safe-time after the beginning of COMMUNICATIONS-
 INTERRUPTED state.

 Any IP address tagged as available for allocation by the other server
 (at entry to PARTNER-DOWN state) MUST NOT be allocated to a new
 client until the maximum-client-lead-time beyond the entry into
 PARTNER-DOWN state has elapsed.

 A server in PARTNER-DOWN state MUST NOT allocate an IP address to a

Droms, et. al. Expires May 2003 [Page 93]

Internet Draft DHCP Failover Protocol November 2002

 DHCP client different from that to which it was allocated at the
 entrance to PARTNER-DOWN state until the maximum-client-lead-time
 beyond the maximum of the following times: client expiration time,
 most recently transmitted potential-expiration-time, most recently
 received ack of potential-expiration-time from the partner, and most
 recently acked potential-expiration-time to the partner. See section

7.1.5 for details. If this time would be earlier than the current
 time plus the maximum-client-lead-time, then the time the server
 entered PARTNER-DOWN state plus the maximum-client-lead-time is used.

 Two options exist for lease times given out while in PARTNER-DOWN
 state, with different ramifications flowing from each.

 If the server wishes the Failover protocol to protect it from loss of
 stable storage in PARTNER-DOWN state, then it should ensure that the
 MCLT based lease time restrictions in section 5.1 are maintained,
 even in PARTNER-DOWN state.

 If the server wishes to forego the protection of the Failover proto-
 col in the event of loss of stable storage, then it need recognize no
 restrictions on actual client lease times while in PARTNER-DOWN
 state.

 A server in PARTNER-DOWN state MUST continue to attempt to establish
 communications and synchronization with its partner.

9.4.3. Transitions out of PARTNER-DOWN state

 When a server in PARTNER-DOWN state succeeds in establishing a con-
 nection to its partner, its actions are conditional on the state and
 flags received in the STATE message from the other server as part of
 the process of establishing the connection.

 If the STARTUP bit is set in the server-flags option of a received
 STATE message, a server in PARTNER-DOWN state MUST NOT take any state
 transitions based on reestablishing communications. Essentially, if a
 server is in PARTNER-DOWN state, it ignores all STATE messages from
 its partner that have the STARTUP bit set in the server-flags option
 of the STATE message.

 If the STARTUP bit is not set in the server-flags option of a STATE
 message received from its partner, then a server in PARTNER-DOWN
 state takes the following actions based on the value of the server-
 state option in the received STATE message (either immediately after
 establishing communications or at any time later when a new state is
 received):

 o partner in NORMAL, COMMUNICATIONS-INTERRUPTED, PARTNER-DOWN,

Droms, et. al. Expires May 2003 [Page 94]

Internet Draft DHCP Failover Protocol November 2002

 POTENTIAL-CONFLICT, RESOLUTION-INTERRUPTED, or CONFLICT-DONE
 state

 transition to POTENTIAL-CONFLICT state

 o partner in RECOVER, RECOVER-WAIT, SHUTDOWN, PAUSED state

 stay in PARTNER-DOWN state

 o partner in RECOVER-DONE state

 transition into NORMAL state

9.5. RECOVER state

 This state indicates that the server has no information in its stable
 storage or that it is re-integrating with a server in PARTNER-DOWN
 state after it has been down. A server in this state MUST attempt to
 refresh its stable storage from the other server.

9.5.1. Operation in RECOVER state

 A server in RECOVER MUST NOT respond to DHCP client requests.

 A server in RECOVER state will attempt to reestablish communications
 with the other server.

9.5.2. Transitions out of RECOVER state

 If the other server is in POTENTIAL-CONFLICT, RESOLUTION-INTERRUPTED,
 or CONFLICT-DONE state when communications are reestablished, then
 the server in RECOVER state will move to POTENTIAL-CONFLICT state
 itself.

 If the other server is in any other state, then the server in RECOVER
 state will request an update of missing binding information by send-
 ing an UPDREQ message. If the server has been instructed (through
 configuration or other external agency) that it has lost its stable
 storage, or if it has deduced that from the fact that it has no
 record of ever having talked to its partner, while its partner does
 have a record of communicating with it, it MUST send an UPDREQALL
 message, otherwise it MUST send an UPDREQ message. See Figure
 9.5.2-1.

 It will wait for an UPDDONE message, and upon receipt of that message
 it will transition to RECOVER-WAIT state.

 If communications fails during the reception of the results of the

Droms, et. al. Expires May 2003 [Page 95]

Internet Draft DHCP Failover Protocol November 2002

 UPDREQ or UPDREQALL message, the server will remain in RECOVER state,
 and will re-issue the UPDREQ or UPDREQALL when communications are
 re-established. (See section 5.17).

 If an UPDDONE message isn't received within an implementation depen-
 dent amount of time, and no BNDUPD messages are being received, the
 connection SHOULD be dropped.

 A B
 Server Server

 | |
 RECOVER PARTNER-DOWN
 | |
 | >--UPDREQ--------------------> |
 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |

 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |
 | |
 | <--------------------UPDDONE--< |
 | |
 RECOVER-WAIT |
 | |
 | >--STATE-(RECOVER-WAIT)------> |
 | |
 | |
 Wait MCLT from last known |
 time of failover operation |
 | |
 RECOVER-DONE |
 | |
 | >--STATE-(RECOVER-DONE)------> |
 | NORMAL
 | <-------------(NORMAL)-STATE--< |
 NORMAL |
 | >---- State-(NORMAL)--------------->
 | |
 | |

 Figure 9.5.2-1: Transition out of RECOVER state

Droms, et. al. Expires May 2003 [Page 96]

Internet Draft DHCP Failover Protocol November 2002

If, at any time while a server is in RECOVER state communications fails,
the server will stay in RECOVER state. When communications are
restored, it will restart the process of transitioning out of RECOVER
state.

9.6. RECOVER-WAIT state

 This state indicates that the server has done an UPDREQ or UPDREQALL
 and has received the UPDDONE message indicating that it has received
 all outstanding binding update information. In the RECOVER-WAIT
 state the server will wait for the MCLT in order to ensure that any
 processing that this server might have done prior to losing its
 stable storage will not cause future difficulties.

9.6.1. Operation in RECOVER-WAIT state

 A server in RECOVER-WAIT MUST NOT respond to DHCP client requests.

9.6.2. Transitions out of RECOVER-WAIT state

 Upon entry to RECOVER-WAIT state the server MUST start a timer whose
 expiration is set to a time equal to the time the server went down
 (if known) or the time the server started (if the down-time is
 unknown) plus the maximum-client-lead-time. When this timer goes
 off, the server will transition into RECOVER-DONE state.

 This is to allow any IP addresses that were allocated by this server
 prior to loss of its client binding information in stable storage to
 contact the other server or to time out.

 If this is the first time this server has run failover -- as
 determined by the information received from the partner, not
 necessarily only as determined by this server's stable storage (as
 that may have been lost), then the waiting time discussed above may
 be skipped, and the server may transition immediately to RECOVER-DONE
 state.

 See Figure 9.5.2-1.

 DISCUSSION:

 The actual requirement on this wait period in RECOVER is that it
 start not before the recovering server went down, not necessarily
 when it came back up. If the time when the recovering server
 failed is known, it could be communicated to the recovering server
 (perhaps through actions of the network administrator), and the
 wait period could be reduced to the maximum-client-lead-time less

Droms, et. al. Expires May 2003 [Page 97]

Internet Draft DHCP Failover Protocol November 2002

 the difference between the current time and the time the server
 failed. In this way, the waiting period could be minimized.
 Various heuristics could be used to estimate this time, for
 example if the recovering server periodically updates stable
 storage with a time stamp, the wait period could be calculated to
 start at the time of the last update of stable storage plus the
 time required for the next update (which never occurred). This
 estimate is later than the server went down, but probably not too
 much later.

 If the server has never before run failover, then there is no need
 to wait in this state -- but, again, to determine if this server
 has run failover it is vital that the information provided by the
 partner be utilized, since the stable storage of this server may
 have been lost.

 If communications fails while a server is in RECOVER-WAIT state, it
 has no effect on the operation of this state. The server SHOULD
 continue to operate its timer, and the timer goes off during the
 period where communications with the other server have failed, then
 the server SHOULD transition to RECOVER-DONE state. This is rare --
 failover state transitions are not usually made while communications
 are interrupted, but in this case there is no reason to inhibit the
 timer. A server MAY state in RECOVER-WAIT state even after expiry of
 the timer and transition to RECOVER-DONE state upon re-establishing
 communications with the partner if desired. The key point here is to
 allow the timer to continue to operate, not whether or not the state
 transition is made before or after communications are re-established.

9.7. RECOVER-DONE state

 This state exists to allow an interlocked transition for one server
 from RECOVER state and another server from PARTNER-DOWN or
 COMMUNICATIONS-INTERRUPTED state into NORMAL state.

9.7.1. Operation in RECOVER-DONE state

 A server in RECOVER-DONE state MUST respond only to
 DHCPREQUEST/RENEWAL and DHCPREQUEST/REBINDING DHCP messages.

9.7.2. Transitions out of RECOVER-DONE state

 When a server in RECOVER-DONE state determines that its partner
 server has entered NORMAL or RECOVER-DONE state, then it will transi-
 tion into NORMAL state.

 If communications fails while in RECOVER-DONE state, a server will

Droms, et. al. Expires May 2003 [Page 98]

Internet Draft DHCP Failover Protocol November 2002

 stay in RECOVER-DONE state.

 9.8. NORMAL state

 NORMAL state is the state used by a server when it is communicating
 with the other server, and any required resynchronization has been
 performed. While some bindings database synchronization is performed
 in NORMAL state, potential conflicts are resolved prior to entry into
 NORMAL state as is binding database data loss.

9.8.1. Upon entry to NORMAL state

 When entering NORMAL state, a server will send to the other server
 all currently unacknowledged binding updates as BNDUPD messages.

 When the above process is complete, if the server entering NORMAL
 state is a secondary server, then it will request IP addresses for
 allocation using the POOLREQ message.

9.8.2. Processing DHCP client requests and load balancing

 In NORMAL state, a server MUST process every DHCPREQUEST/RENEWAL or
 DHCPREQUEST/REBINDING request it receives. And, it processes other
 requests only for those clients as dictated by the load balancing
 algorithm specified in [RFC 3074].

 As discussed in section 5.3, each server will take the client-
 identifier from each DHCP client request (or the client-hardware-
 address, i.e., the chaddr if no client-identifier is present in the
 request) and use it as the 'Request ID' specified in [RFC 3074].
 After applying the algorithm specified in [RFC 3074] and comparing
 the result with the hash bucket assignment (performed during connect
 processing between failover servers), each failover server will be
 able to unambiguously determine if it should process the DHCP client
 request.

9.8.3. Operation in NORMAL state

 When in NORMAL state, for every DHCP client request that it
 processes, as determined by the algorithm described in section 9.8.2,
 above, a server will operate in the following manner:

 o Lease time calculations

 As discussed in section 5.2.1, "Control of lease time", the

https://datatracker.ietf.org/doc/html/rfc3074
https://datatracker.ietf.org/doc/html/rfc3074
https://datatracker.ietf.org/doc/html/rfc3074

Droms, et. al. Expires May 2003 [Page 99]

Internet Draft DHCP Failover Protocol November 2002

 lease interval given to a DHCP client can never be more than the
 MCLT greater than the most recently received potential-
 expiration-time from the failover partner or the current time,
 whichever is later.

 As long as a server adheres to this constraint, the specifics of
 the lease interval that it gives to a DHCP client or the value
 of the potential-expiration-time sent to its failover partner
 are implementation dependent. One possible approach is dis-
 cussed in section 5.2.1, but that particular approach is in no
 way required by this protocol.

 See section 7.1.5 for details concerning the storage of time
 associated with IP addresses and how to use these times when
 calculating lease times for DHCP clients.

 o Lazy update of partner server

 After an DHCPACK of a IP address binding, the server servicing a
 DHCP client request attempts to update its partner with the new
 binding information. The lease time used in the update of the
 secondary MUST be at least that given to the DHCP client in the
 DHCPACK, and the potential-expiration-time MUST be at least the
 lease time, and SHOULD be considerably longer.

 o Reallocation of IP addresses between clients

 Whenever a client binding is released or expires, a BNDUPD mes-
 sage must be sent to the partner, setting the binding state to
 RELEASED or EXPIRED. However, until a BNDACK is received for
 this message, the IP address cannot be allocated to another
 client. It cannot be allocated to the same client again if a
 BNDUPD was sent, otherwise it can. See section 5.2.2.

 In normal state, each server receives binding updates from its
 partner server in BNDUPD messages. It records these in its client
 binding database in stable storage and then sends a corresponding
 BNDACK message to its partner server. It MUST ensure that the infor-
 mation is recorded in stable storage prior to sending the BNDACK mes-
 sage back to its partner.

9.8.4. Transitions out of NORMAL state

 If an external command is received by a server in NORMAL state
 informing it that its partner is down, then transition into PARTNER-
 DOWN state. Generally, this would be an unusual situation, where
 some external agency knew the partner server was down. Using the

Droms, et. al. Expires May 2003 [Page 100]

Internet Draft DHCP Failover Protocol November 2002

 command in this case would be appropriate if the polling interval and
 timeout were long.

 If a server in NORMAL state fails to receive acks to messages sent to
 its partner for an implementation dependent period of time, it MAY
 move into COMMUNICATIONS-INTERRUPTED state. This situation might
 occur if the partner server was capable of maintaining the TCP con-
 nection between the server and also capable of sending a CONTACT mes-
 sage every tSend seconds, but was (for some reason) incapable of pro-
 cessing BNDUPD messages.

 If the communications is determined to not be "ok" (as defined in
section 8), then transition into COMMUNICATIONS-INTERRUPTED state.

 If a server in NORMAL state receives any messages from its partner
 where the partner has changed state from that expected by the server
 in NORMAL state, then the server should transition into
 COMMUNICATIONS-INTERRUPTED state and take the appropriate state tran-
 sition from there. For example, it would be expected for the partner
 to transition from POTENTIAL-CONFLICT into NORMAL state, but not for
 the partner to transition from NORMAL into POTENTIAL-CONFLICT state.

 If a server in NORMAL state receives any messages from its partner
 where the PARTNER has changed into PAUSED state, the server should
 transition into COMMUNICATIONS-INTERRUPTED state. If a server in
 NORMAL state receives any messages from its partner where the PARTNER
 has changed into SHUTDOWN state, the server should transition into
 PARTNER-DOWN state.

9.9. COMMUNICATIONS-INTERRUPTED State

 A server goes into COMMUNICATIONS-INTERRUPTED state whenever it is
 unable to communicate with the other server. Primary and secondary
 servers cycle automatically (without administrative intervention)
 between NORMAL and COMMUNICATIONS-INTERRUPTED state as the network
 connection between them fails and recovers, or as the partner server
 cycles between operational and non-operational. No duplicate IP
 address allocation can occur while the servers cycle between these
 states.

9.9.1. Upon entry to COMMUNICATIONS-INTERRUPTED state

 When a server enters COMMUNICATIONS-INTERRUPTED state, if it has been
 configured to support an automatic transition out of COMMUNICATIONS-
 INTERRUPTED state and into PARTNER-DOWN state (i.e., a "safe period"
 has been configured, see section 10), then a timer MUST be started
 for the length of the configured safe period.

Droms, et. al. Expires May 2003 [Page 101]

Internet Draft DHCP Failover Protocol November 2002

 A server transitioning into the COMMUNICATIONS-INTERRUPTED state from
 the NORMAL state SHOULD raise some alarm condition to alert adminis-
 trative staff to a potential problem in the DHCP subsystem.

9.9.2. Operation in COMMUNICATIONS-INTERRUPTED State

 In this state a server MUST respond to all DHCP client requests, and
 the algorithm for load balancing described in section 5.3 MUST NOT be
 used. When allocating new IP addresses, each server allocates from
 its own IP address pool, where the primary MUST allocate only FREE IP
 addresses, and the secondary MUST allocate only BACKUP IP addresses.
 When responding to renewal requests, each server will allow continued
 renewal of a DHCP client's current lease on an IP address irrespec-
 tive of whether that lease was given out by the receiving server or
 not, although the renewal period MUST NOT exceed the maximum client
 lead time (MCLT) beyond the latest of: 1) the potential-expiration-
 time already acknowledged by the other server, or 2) the lease-
 expiration-time, or 3) the potential-expiration-time received from
 the partner server.

 However, since the server cannot communicate with its partner in this
 state, the acknowledged-potential-expiration time will not be updated
 in any new bindings. This is likely to eventually cause the actual-
 client-lease-times to be the current time plus the maximum-client-
 lead-time (unless this is greater than the desired-client-lease-
 time).

 The server should continue to try to establish a connection with its
 partner.

9.9.3. Transition out of COMMUNICATIONS-INTERRUPTED State

 If the safe period timer expires while a server is in the
 COMMUNICATIONS-INTERRUPTED state, it will transition immediately into
 PARTNER-DOWN state.

 If an external command is received by a server in COMMUNICATIONS-
 INTERRUPTED state informing it that its partner is down, it will
 transition immediately into PARTNER-DOWN state.

 If communications is restored with the other server, then the server
 in COMMUNICATIONS-INTERRUPTED state will transition into another
 state based on the state of the partner:

 o partner in NORMAL or COMMUNICATIONS-INTERRUPTED

Droms, et. al. Expires May 2003 [Page 102]

Internet Draft DHCP Failover Protocol November 2002

 The partner SHOULD NOT be in NORMAL state here, since upon res-
 toration of communications it MUST have created a new TCP con-
 nection which would have forced it into COMMUNICATIONS-
 INTERRUPTED state. Still, we should account for every state
 just in case.

 Transition into the NORMAL state.

 o partner in RECOVER

 Stay in COMMUNICATIONS-INTERRUPTED state.

 o partner in RECOVER-DONE

 Transition into NORMAL state.

 o partner in PARTNER-DOWN, POTENTIAL-CONFLICT, CONFLICT-DONE, or
 RESOLUTION-INTERRUPTED

 Transition into POTENTIAL-CONFLICT state.

 o partner in PAUSED

 Stay in COMMUNICATIONS-INTERRUPTED state.

 o partner in SHUTDOWN

 Transition into PARTNER-DOWN state.

 The following figure illustrates the transition from NORMAL to
 COMMUNICATIONS-INTERRUPTED state and then back to NORMAL state again.

Droms, et. al. Expires May 2003 [Page 103]

Internet Draft DHCP Failover Protocol November 2002

 Primary Secondary
 Server Server

 NORMAL NORMAL
 | >--CONTACT-------------------> |
 | <--------------------CONTACT--< |
 | [TCP connection broken] |
 COMMUNICATIONS : COMMUNICATIONS
 INTERRUPTED : INTERRUPTED
 | [attempt new TCP connection] |
 | [connection succeeds] |
 | |
 | >--CONNECT-------------------> |
 | <-----------------CONNECTACK--< |
 | NORMAL
 | <-------------------STATE-----< |
 NORMAL |
 | >--STATE---------------------> |
 |
 | >--BNDUPD--------------------> |
 | <---------------------BNDACK--< |
 | |
 | <---------------------BNDUPD--< |
 | >------BNDACK----------------> |

 | |
 | <--------------------POOLREQ--< |
 | >--POOLRESP-(2)--------------> |
 | |
 | >--BNDUPD-(#1)---------------> |
 | <---------------------BNDACK--< |
 | |
 | <--------------------POOLREQ--< |
 | >--POOLRESP-(0)--------------> |
 | |
 | >--BNDUPD-(#2)---------------> |
 | <---------------------BNDACK--< |
 | |

 Figure 9.9.3-1: Transition from NORMAL to COMMUNICATIONS-
 INTERRUPTED and back (example with 2
 addresses allocated to secondary)

Droms, et. al. Expires May 2003 [Page 104]

Internet Draft DHCP Failover Protocol November 2002

9.10. POTENTIAL-CONFLICT state

 This state indicates that the two servers are attempting to re-
 integrate with each other, but at least one of them was running in a
 state that did not guarantee automatic reintegration would be
 possible. In POTENTIAL-CONFLICT state the servers may determine that
 the same IP address has been offered and accepted by two different
 DHCP clients.

 It is a goal of this protocol to minimize the possibility that
 POTENTIAL-CONFLICT state is ever entered.

9.10.1. Upon entry to POTENTIAL-CONFLICT state

 When a primary server enters POTENTIAL-CONFLICT state it should
 request that the secondary send it all updates of which it is
 currently unaware by sending an UPDREQ message to the secondary
 server.

 A secondary server entering POTENTIAL-CONFLICT state will wait for
 the primary to send it an UPDREQ message.

9.10.2. Operation in POTENTIAL-CONFLICT state

 Any server in POTENTIAL-CONFLICT state MUST NOT process any incoming
 DHCP requests.

9.10.3. Transitions out of POTENTIAL-CONFLICT state

 If communications fails with the partner while in POTENTIAL-CONFLICT
 state, then the server will transition to RESOLUTION-INTERRUPTED
 state.

 Whenever either server receives an UPDDONE message from its partner
 while in POTENTIAL-CONFLICT state, it MUST transition to a new state.
 The primary MUST transition to CONFLICT-DONE state, and the secondary
 MUST transition to NORMAL state. This will cause the primary server
 to leave POTENTIAL-CONFLICT state prior to the secondary, since the
 primary sends an UPDREQ message and receives an UPDDONE before the
 secondary sends an UPDREQ message and receives its UPDDONE message.

 When a secondary server receives an indication that the primary
 server has made a transition from POTENTIAL-CONFLICT to CONFLICT-DONE
 state, it SHOULD send an UPDREQ message to the primary server.

Droms, et. al. Expires May 2003 [Page 105]

Internet Draft DHCP Failover Protocol November 2002

 Primary Secondary
 Server Server

 | |
 POTENTIAL-CONFLICT POTENTIAL-CONFLICT
 | |
 | >--UPDREQ--------------------> |
 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |

 | |
 | <---------------------BNDUPD--< |
 | >--BNDACK--------------------> |
 | |
 | <--------------------UPDDONE--< |
 CONFLICT-DONE |
 | >--STATE--(CONFLICT-DONE)----> |
 | <---------------------UPDREQ--< |
 | |
 | >--BNDUPD--------------------> |
 | <---------------------BNDACK--< |

 | >--BNDUPD--------------------> |
 | <---------------------BNDACK--< |
 | |
 | >--UPDDONE-------------------> |
 | NORMAL
 | <------------STATE--(NORMAL)--< |
 NORMAL |
 | >--STATE--(NORMAL)-----------> |
 | |
 | <--------------------POOLREQ--< |
 | >------POOLRESP-(n)----------> |
 | addresses |

 Figure 9.10.3-1: Transition out of POTENTIAL-CONFLICT

Droms, et. al. Expires May 2003 [Page 106]

Internet Draft DHCP Failover Protocol November 2002

9.11. RESOLUTION-INTERRUPTED state

 This state indicates that the two servers were attempting to re-
 integrate with each other in POTENTIAL-CONFLICT state, but
 communications failed prior to completion of re-integration.

 If the servers remained in POTENTIAL-CONFLICT while communications
 was interrupted, neither server would be responsive to DHCP client
 requests, and if one server had crashed, then there might be no
 server able to process DHCP requests.

9.11.1. Upon entry to RESOLUTION-INTERRUPTED state

 When a server enters RESOLUTION-INTERRUPTED state it SHOULD raise an
 alarm condition to alert administrative staff of a problem in the
 DHCP subsystem.

9.11.2. Operation in RESOLUTION-INTERRUPTED state

 In this state a server MUST respond to all DHCP client requests, and
 any load balancing (described in section 5.3) MUST NOT be used. When
 allocating new IP addresses, each server SHOULD allocate from its own
 IP address pool (if that can be determined), where the primary SHOULD
 allocate only FREE IP addresses, and the secondary SHOULD allocate
 only BACKUP IP addresses. When responding to renewal requests, each
 server will allow continued renewal of a DHCP client's current lease
 on an IP address irrespective of whether that lease was given out by
 the receiving server or not, although the renewal period MUST not
 exceed the maximum client lead time (MCLT) beyond the latest of: 1)
 the potential-expiration-time already acknowledged by the other
 server or 2) the lease-expiration-time or 3) `potential-expiration-
 time received from the partner server.

 However, since the server cannot communicate with its partner in this
 state, the acknowledged-potential-expiration time will not be updated
 in any new bindings.

9.11.3. Transitions out of RESOLUTION-INTERRUPTED state

 If an external command is received by a server in RESOLUTION-
 INTERRUPTED state informing it that its partner is down, it will
 transition immediately into PARTNER-DOWN state.

 If communications is restored with the other server, then the server
 in RESOLUTION-INTERRUPTED state will transition into POTENTIAL-
 CONFLICT state.

Droms, et. al. Expires May 2003 [Page 107]

Internet Draft DHCP Failover Protocol November 2002

9.12. CONFLICT-DONE state

 This state indicates that during the process where the two servers
 are attempting to re-integrate with each other, the primary server
 has received all of the updates from the secondary server. It make a
 transition into CONFLICT-DONE state in order that it may be totally
 responsive to the client load, as opposed to NORMAL state where it
 would be in a "balanced" responsive state, running the load balancing
 algorithm.

9.12.1. Upon entry to CONFLICT-DONE state

 A secondary server should never enter CONFLICT-DONE state.

9.12.2. Operation in CONFLICT-DONE state

 A primary server in CONFLICT-DONE state is fully responsive to all
 DHCP clients (similar to the situation in COMMUNICATIONS-INTERRUPTED
 state).

 If communications fails, remain in CONFLICT-DONE state. If communi-
 cations becomes OK, remain in CONFLICT-DONE state until the condi-
 tions for transition out become satisfied.

9.12.3. Transitions out of CONFLICT-DONE state

 If communications fails with the partner while in CONFLICT-DONE
 state, then the server will remain in CONFLICT-DONE state.

 When a primary server determines that the secondary server has made a
 transition into NORMAL state, the primary server will also transition
 into NORMAL state.

9.13. PAUSED state

 This state exists to allow one server to inform another that it will
 be out of service for what is predicted to be a relatively short
 time, and to allow the other server to transition to COMMUNICATIONS-
 INTERRUPTED state immediately and to begin servicing all DHCP clients
 with no interruption in service to new DHCP clients.

 A server which is aware that it is shutting down temporarily SHOULD
 send a STATE message with the server-state option containing PAUSED
 state and close the TCP connection.

 While a server may or may not transition internally into PAUSED

Droms, et. al. Expires May 2003 [Page 108]

Internet Draft DHCP Failover Protocol November 2002

 state, the 'previous' state determined when it is restarted MUST be
 the state the server was in prior to receiving the command to shut-
 down and restart and which precedes its entry into the PAUSED state.
 See section 9.3.2 concerning the use of the previous state upon
 server restart.

9.13.1. Upon entry to PAUSED state

 When entering PAUSED state, the server MUST store the previous state
 in stable storage, and use that state as the previous state when it
 is restarted.

9.13.2. Transitions out of PAUSED state

 A server makes a transition out of PAUSED state by being restarted.
 At that time, the previous state MUST be the state the server was in
 prior to entering the PAUSED state.

9.14. SHUTDOWN state

 This state exists to allow one server to inform another that it will
 be out of service for what is predicted to be a relatively long time,
 and to allow the other server to transition immediately to PARTNER-
 DOWN state, and take over completely for the server going down.

9.14.1. Upon entry to SHUTDOWN state

 When entering SHUTDOWN state, the server MUST record the previous
 state in stable storage for use when the server is restarted. It
 also MUST record the current time as the last time operational.

 A server which is aware that it is shutting down SHOULD send a STATE
 message with the server-state field containing SHUTDOWN.

9.14.2. Operation in SHUTDOWN state

 A server in SHUTDOWN state MUST NOT respond to any DHCP client input.

 If a server receives any message indicating that the partner has
 moved to PARTNER-DOWN state while it is in SHUTDOWN state then it
 MUST record RECOVER state as the previous state to be used when it is
 restarted.

 A server SHOULD wait for a few seconds after informing the partner of
 entry into SHUTDOWN state (if communications are okay) to determine
 if the partner entered PARTNER-DOWN state.

Droms, et. al. Expires May 2003 [Page 109]

Internet Draft DHCP Failover Protocol November 2002

9.14.3. Transitions out of SHUTDOWN state

 A server makes a transition out of SHUTDOWN state by being restarted.

10. Safe Period

 Due to the restrictions imposed on each server while in
 COMMUNICATIONS-INTERRUPTED state, long-term operation in this state
 is not feasible for either server. One reason that these states
 exist at all, is to allow the servers to easily survive transient
 network communications failures of a few minutes to a few days
 (although the actual time periods will depend a great deal on the
 DHCP activity of the network in terms of arrival and departure of
 DHCP clients on the network).

 Eventually, when the servers are unable to communicate, they will
 have to move into a state where they no longer can re-integrate
 without some possibility of a duplicate IP address allocation. There
 are two ways that they can move into this state (known as PARTNER-
 DOWN).

 They can either be informed by external command that, indeed, the
 partner server is down. In this case, there is no difficulty in mov-
 ing into the PARTNER-DOWN state since it is an accurate reflection of
 reality and the protocol has been designed to operate correctly (even
 during reintegration) as long as, when in PARTNER-DOWN state the
 partner is, indeed, down.

 The more difficult scenario is when the servers are running unat-
 tended for extended periods, and in this case an option is provided
 to configure something called a "safe-period" into each server. This
 OPTIONAL safe-period is the period after which either the primary or
 secondary server will automatically transition to PARTNER-DOWN from
 COMMUNICATIONS-INTERRUPTED state. If this transition is completed
 and the partner is not down, then the possibility of duplicate IP
 address allocations will exist.

 The goal of the "safe-period" is to allow network operations staff
 some time to react to a server moving into COMMUNICATIONS-INTERRUPTED
 state. During the safe-period the only requirement is that the net-
 work operations staff determine if both servers are still running --
 and if they are, to either fix the network communications failure
 between them, or to take one of the servers down before the expira-
 tion of the safe-period.

 The length of the safe-period is installation dependent, and depends
 in large part on the number of unallocated IP addresses within the
 subnet address pool and the expected frequency of arrival of

Droms, et. al. Expires May 2003 [Page 110]

Internet Draft DHCP Failover Protocol November 2002

 previously unknown DHCP clients requiring IP addresses. Many
 environments should be able to support safe-periods of several days.

 During this safe period, either server will allow renewals from any
 existing client. The only limitation concerns the need for IP
 addresses for the DHCP server to hand out to new DHCP clients and the
 need to re-allocate IP addresses to different DHCP clients.

 The number of "extra" IP addresses required is equal to the expected
 total number of new DHCP clients encountered during the safe period.
 This is dependent only on the arrival rate of new DHCP clients, not
 the total number of outstanding leases on IP addresses.

 In the unlikely event that a relatively short safe period of an hour
 is all that can be used (given a dearth of IP addresses or a very
 high arrival rate of new DHCP clients), even that can provide sub-
 stantial benefits in allowing the DHCP subsystem to ride through
 minor problems that could occur and be fixed within that hour. In
 these cases, no possibility of duplicate IP address allocation
 exists, and re-integration after the failure is solved will be
 automatic and require no operator intervention.

11. Security

 The Failover protocol communicates DHCP lease activity and this data
 is generally easily discovered via other means, such as by pinging
 addresses and doing DNS lookups. Therefore, the need to encrypt the
 data over the wire is likely not great (though some sites may feel
 differently).

 However, it is very desirable to assure the integrity of failover
 partners and to thus ensure proper operation of the servers. For
 example, denial of service attacks are possible by the communication
 of invalid state information to one or both servers.

 Therefore, the Failover protocol MUST be capable of being secured by
 using a simple shared secret message digest which covers each mes-
 sage. This provides authentication of the servers, but does not pro-
 vide encryption of the data exchange.

 The Failover protocol MAY also be secured by using TLS [RFC 2246]
 (Transport Layer Security) if encryption of the data exchange is
 desired. The use of the shared secret or TLS will not protect
 against TCP or IP layer attacks (such as someone sending fake TCP RST
 segments). IPsec [RFC 2401] SHOULD be used to protect against most
 (if not all) of these kinds of attacks.

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2401

Droms, et. al. Expires May 2003 [Page 111]

Internet Draft DHCP Failover Protocol November 2002

11.1. Simple shared secret

 Messages between the failover partners can be authenticated through
 the use of a shared secret, which is never sent over the network and
 must be known by each server. How each server is told about this
 shared secret and secures its storage of the shared secret is outside
 the scope of this document. If a server is configured with a shared
 secret for a partner, it MUST send the message-digest option in ALL
 messages to that partner and it MUST treat any messages received from
 that partner without a message-digest option as failing authentica-
 tion and reject them with reject reason 21: "Missing message digest".
 Note that the message digest option MUST be the first option in the
 message.

 If a server is not configured with a shared secret for a partner, it
 MUST NOT send the message-digest option in any message to that
 partner and it MUST treat any messages received from that partner
 with a message-digest option as failing authentication with reject
 reason 13: "Message digest not configured".

 The shared secret is used to calculate a 16 octet message-digest
 which is sent in every failover message in the message-digest option.
 See section 12.16. The message-digest contains a one-way 16 octet
 HMAC-MD5 [RFC 2104] hash calculated over a stream of octets consist-
 ing of the entire message concatenated with the shared secret.

 For calculation, the message includes the message-digest option with
 the message-digest data zeroed (16-octets of zero). Once the calcula-
 tion is complete, these 16 octets of zero are replaced by the 16-
 octet HMAC-MD5 hash and the message is sent.

 For verification, the 16-octet message-digest is saved and replaced
 with 16-octets of zero and calculated per above. The resulting HMAC-
 MD5 hash is compared to the received hash and if they match, the mes-
 sage is assumed authenticated.

 A failover partner that fails to authenticate a received message or
 receives a message without a message-digest option when configured
 with a shared secret MUST close the connection immediately and take
 steps to notify operators.

 Every time a CONNECT message is received, the time at which that mes-
 sage was sent by the partner (i.e., the time that actually appears in
 the message itself) MUST be saved. If a CONNECT message is ever
 received containing that time or containing a time before that time,
 it MUST be rejected.

 The XID (see section 6.1) of every message received at a failover

https://datatracker.ietf.org/doc/html/rfc2104

Droms, et. al. Expires May 2003 [Page 112]

Internet Draft DHCP Failover Protocol November 2002

 endpoint MUST be greater than that of the previous message received
 on that failover endpoint or the message just received MUST be
 rejected.

 A server MAY operate with arbitrary time skew between servers (see
section 5.10), but when using a shared secret administrators MAY wish

 to configure a maximum allowable time skew between a failover server
 and its partner(s). Servers SHOULD allow an administrator to config-
 ure a maximum allowable time skew between two failover partners.

11.2. TLS

 TLS, Transport Layer Security, as specified in [RFC 2246] MAY be
 used. The use of TLS would be similar to the way it is used with
 SMTP [RFC 2487] and IMAP/POP3/ACAP [RFC 2595].

 To request the use of TLS, the primary MUST send the TLS-request
 option as part of the CONNECT message. The secondary receiving the
 TLS-request option MUST respond with a TLS-reply option indicating
 its acceptance or rejection of the TLS-request in the CONNECT mes-
 sage."

 If the CONNECTACK message contained a TLS-reply of 1 , then both
 servers immediately begin TLS negotiation.

 Upon completion of this negotiation, the primary server sends another
 CONNECT message without any TLS-request option, and must wait for a
 corresponding CONNECTACK.

 Implementation of the TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA [RFC 2246]
 cipher suite is REQUIRED in Failover servers supporting TLS. This is
 important as it assures that any two compliant implementations can be
 configured to interoperate.

12. Failover Options

 This section lists all of the options that are currently defined to
 be used with the failover protocol. See section 6.2 for details con-
 cerning time values.

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2487
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc2246

Droms, et. al. Expires May 2003 [Page 113]

Internet Draft DHCP Failover Protocol November 2002

12.1. addresses-transferred

 A 32 bit unsigned long in network byte order. Reports the number of
 addresses transferred by the primary to the secondary server
 (addresses to be used for the secondary server's private address
 pool).

 Code Len Number of Addresses
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 1 | 0 | 4 | n1 | n2 | n3 | n4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

12.2. assigned-IP-address

 The DHCP managed IP address to which this message refers.

 Code Len Address
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 2 | 0 | 4 | a1 | a2 | a3 | a4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

12.3. binding-status

 This option is used to convey the current state of a binding.

 Code Len Type
 +-----+-----+-----+-----+-----+
 | 0 | 3 | 0 | 1 | 1-7 |
 +-----+-----+-----+-----+-----+

 Legal values for this option are:

 Value Binding Status
 ----- --
 1 FREE Lease is currently available to the primary
 2 ACTIVE Lease is assigned to a client
 3 EXPIRED Lease has expired
 4 RELEASED Lease has been released by client
 5 ABANDONED A server, or client flagged address as unusable
 6 RESET Lease was freed by some external agent
 7 BACKUP Lease belongs to secondary's private address pool

Droms, et. al. Expires May 2003 [Page 114]

Internet Draft DHCP Failover Protocol November 2002

12.4. client-identifier

 This is the client-identifier for the client associated with a
 binding. The client-identifier data is subject to the same
 conventions as DHCP option 81 [RFC 2132].

 Code Len Client Identifier
 +-----+-----+-----+-----+----+-----+---
 | 0 | 4 | 0 | n | i1 | i2 | ...
 +-----+-----+-----+-----+----+-----+--

12.5. client-hardware-address

 This is the hardware address for the client associated with a
 binding. Byte t1 (type) MUST be set to the proper ARP hardware
 address code, as defined in the ARP section of RFC 1700 (it MUST NOT
 be zero!)

 Code Len htype chaddr
 +-----+-----+-----+-----+----+-----+-----+---
 | 0 | 5 | 0 | n | t1 | c1 | c2 | ...
 +-----+-----+-----+-----+----+-----+-----+---

12.6. client-last-transaction-time

 The time at which this server last received a DHCP request from a
 particular client expressed as an absolute time (see section 6.2).

 Code Len client last transaction time
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 6 | 0 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc1700

Droms, et. al. Expires May 2003 [Page 115]

Internet Draft DHCP Failover Protocol November 2002

12.7. client-reply-options

 This option contains options from a DHCP server's reply to a DHCP
 client request. It is sent in a BNDUPD message. The first 4 bytes
 of the option contain the "magic number" of the option area from
 which the DHCP reply options were taken and serves to define the
 format of the rest of the sub-options contained in this option.
 After the magic number, the options included are in the normal
 options format appropriate for that magic number.

 A server SHOULD NOT include all of the options in a DHCP server's
 reply to a client's request in this option, but rather a server
 SHOULD include only those options which are of likely interest to its
 partner server. See section 7.1 for details.

 Code Len Magic Number Embedded options
 +-----+-----+-----+-----+----+----+----+----+----+----+--
 | 0 | 7 | 0 | n | m1 | m2 | m3 | m4 | b1 | b2 | ...
 +-----+-----+-----+-----+----+----+----+----+----+----+--

12.8. client-request-options

 This option contains options from a DHCP client's request. It is
 sent in a BNDUPD message. The first 4 bytes of the option contain
 the "magic number" of the option area from which the DHCP client's
 request options were taken and serves to define the format of the
 rest of the sub-options contained in this option. After the magic
 number, the options included are in the normal options format
 appropriate for that magic number.

 A server SHOULD NOT include all of the options in a DHCP client
 request in this option, but rather a server SHOULD include only those
 options which are of likely interest to its partner server. See

section 7.1 for details.

 Code Len Magic Number Embedded options
 +-----+-----+-----+-----+----+----+----+----+----+----+--
 | 0 | 8 | 0 | n | m1 | m2 | m3 | m4 | b1 | b2 | ...
 +-----+-----+-----+-----+----+----+----+----+----+----+--

Droms, et. al. Expires May 2003 [Page 116]

Internet Draft DHCP Failover Protocol November 2002

12.9. DDNS

 If an implementation supports Dynamic DNS updates, this option is
 used to communicate the status of the DDNS update associated with a
 particular lease binding. The Flags field conveys the types of DNS
 RRs that are to be updated by the DHCP server, and the status of the
 DDNS update. The Domain Name field conveys the DNS FQDN that the
 DHCP server is using to refer to the client, in DNS encoding as
 specified in [RFC 1035].

 Code Len Flags Domain Name
 +-----+-----+-----+-----+-----+------+------+-----+------
 | 0 | 9 | 0 | n | flags | d1 | d2 | ...
 +-----+-----+-----+-----+-----+------+------+-----+------

 The Flags field is a 16-bit field; several bit positions are
 specified here.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |C|A|D|P| MBZ |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The bits (numbered from the least-significant bit in network
 byte-order) are used as follows:

 0 (C): name to address (such as A RR) update successfully completed
 1 (A): Server is controlling A RR on behalf of the client
 2 (D): address to name (such as PTR RR) update successfully completed (Done)
 3 (P): Server is controlling PTR RR on behalf of the client
 4-15 : Must be zero

 All of the unspecified bit positions SHOULD be set to 0 by servers
 sending the Failover-DDNS option, and they MUST be ignored by servers
 receiving the option.

https://datatracker.ietf.org/doc/html/rfc1035

Droms, et. al. Expires May 2003 [Page 117]

Internet Draft DHCP Failover Protocol November 2002

12.10. delayed-service-parameter

 The delayed-service-parameter is an optional load balancing tuning
 parameter, defined in [RFC 3074]. If it is used, it MUST be sent in
 the same message as the hash-bucket-assignment option (see section

12.11).

 Format :

 Code Len Seconds
 +-----+-----+-----+-----+----+
 | 0 | 10 | 0 | 1 | S |
 +-----+-----+-----+-----+----+

 S is a one byte value, 1..255.

12.11. hash-bucket-assignment

 A set of load balancing hash values for the secondary server. A one
 bit in the hash buckets indicates that the secondary is to service
 that set of clients. See section 5.3 for more information on how
 this option is used. This option is only sent from the primary to
 the secondary.

 The format and usage of the data in this option is defined in [RFC
 3074].

 Code Len Hash Buckets
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 0 | 11 | 0 | 32 | b1 | b2 | ... | b32 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

https://datatracker.ietf.org/doc/html/rfc3074

Droms, et. al. Expires May 2003 [Page 118]

Internet Draft DHCP Failover Protocol November 2002

12.12. IP-flags

 This option is used to convey the current flags of the assigned-IP-
 address option preceding it.

 Code Len IP Flags
 +-----+-----+-----+-----+-----+-----+
 | 0 | 12 | 0 | 1 | f1 | f2 |
 +-----+-----+-----+-----+-----+-----+

 The IP-flags field is a 16-bit field; two bit positions are
 specified here.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |R|B| MBZ |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The bits (numbered from the least-significant bit in network
 byte-order) are used as follows:

 0 (R): RESERVED (this bit allocated and in use and named "RESERVED")
 Bit 0 MUST be set to 1 whenever the IP address in the preceding
 assigned-IP-address option is reserved on the server sending the
 packet.
 1 (B): BOOTP
 Bit 1 MUST be set to 1 whenever the IP address in the preceding
 assigned-IP-address option is a an IP address which has been
 allocated due to an interaction with a BOOTP client (as opposed
 to a DHCP client).
 2-15 : Must be zero

Droms, et. al. Expires May 2003 [Page 119]

Internet Draft DHCP Failover Protocol November 2002

12.13. lease-expiration-time

 The lease expiration time is the lease interval that a DHCP server
 has ACKed to a DHCP client added to the time at which that ACK was
 transmitted -- expressed as an absolute time (see section 6.2).

 Code Len Time
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 13 | 0 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

12.14. max-unacked-bndupd

 The maximum number of BNDUPD message that this server is prepared to
 accept over the TCP connection without causing the TCP connection to
 block. A 32 bit unsigned integer value, in network byte order.

 Code Len Maximum Unacked BNDUPD
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 14 | 0 | 4 | n1 | n2 | n3 | n4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

12.15. MCLT

 Maximum Client Lead Time, an interval, in seconds. A 32 bit unsigned
 integer value, in network byte order.

 Code Len Time
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 15 | 0 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

Droms, et. al. Expires May 2003 [Page 120]

Internet Draft DHCP Failover Protocol November 2002

12.16. message

 This option is used to supply a human readable message text. It may
 be used in association with the Reject Reason Code to provide a human
 readable error message for the reject.

 Code Len Text
 +-----+-----+-----+-----+------+-----+--
 | 0 | 16 | 0 | n | c1 | c2 | ...
 +-----+-----+-----+-----+------+-----+--

12.17. message-digest

 The message digest for this message.

 This option consists of a variable number of bytes which contain the
 message digest of the message prior to the inclusion of this option.

 When this option appears in a message, it MUST appear as the first
 option in the message. It MUST appear in every message if message
 digests are required. The Type MUST be configurable (once additional
 types are defined). When additional types are defined, they MUST be
 specified as either optional (MAY be supported) or required (MUST be
 supported). See the section on IANA considerations for more details.

 Code Len Type Message Digest
 +-----+-----+-----+-----+-----+-----+-----+--
 | 0 | 17 | 0 | n | t | d1 | d2 | ...
 +-----+-----+-----+-----+-----+-----+-----+--

 Type: 0 Not Allowed
 1 HMAC-MD5
 2-255 Not Allowed

Droms, et. al. Expires May 2003 [Page 121]

Internet Draft DHCP Failover Protocol November 2002

12.18. potential-expiration-time

 The potential expiration time is the time that one server tells
 another server that it may wish to grant in a lease to a DHCP client.
 It is an absolute time. See section 6.2.

 Code Len Time
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 18 | 0 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

12.19. receive-timer

 The number of seconds (an interval) within which the server must
 receive a message from its partner, or it will assume that
 communications with the partner is not ok. An unsigned 32 bit
 integer in network byte order.

 Code Len Receive Timer
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 19 | 0 | 4 | s1 | s2 | s3 | s4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

12.20. protocol-version

 The protocol version being used by the server. It is only sent in the
 CONNECT and CONNECTACK messages. The current value for the version
 is 1.

 Code Len Version
 +-----+-----+-----+-----+-----+
 | 0 | 20 | 0 | 1 | 1 |
 +-----+-----+-----+-----+-----+

Droms, et. al. Expires May 2003 [Page 122]

Internet Draft DHCP Failover Protocol November 2002

12.21. reject-reason

 This option is used to selectively reject binding updates. It MAY be
 used in a BNDACK message or a CONNECTACK message, always associated
 with an assigned-IP-address option, which contains the IP address of
 the update being rejected.

 Code Len Reason Code
 +-----+-----+-----+-----+-----+
 | 0 | 21 | 0 | 1 | R1 |
 +-----+-----+-----+-----+-----+

 Reason codes (section where referenced in parentheses):

 0 Reserved
 1 Illegal IP address (not part of any address pool). (7.1.3)
 2 Fatal conflict exists: address in use by other client. (7.1.3)
 3 Missing binding information. (7.1.3)
 4 Connection rejected, time mismatch too great. (7.8.2)
 5 Connection rejected, invalid MCLT. (7.8.2)
 6 Connection rejected, unknown reason. (not specifically referenced)
 7 Connection rejected, duplicate connection. (unused)
 8 Connection rejected, invalid failover partner. (7.8.2)
 9 TLS not supported. (7.8.2)
 10 TLS supported but not configured. (7.8.2)
 11 TLS required but not supported by partner. (7.8.2)
 12 Message digest not supported. (11.1)
 13 Message digest not configured. (11.1)
 14 Protocol version mismatch. (7.8.2)
 15 Outdated binding information. (7.1.3)
 16 Less critical binding information. (7.1.3)
 17 No traffic within sufficient time. (8.6)
 18 Hash bucket assignment conflict. (7.8.2)
 19 IP not reserved on this server. (7.1.3)
 20 Message digest failed to compare. (7.8.2)
 21 Missing message digest. (7.1.3)
 22-253, reserved.
 254 Unknown: Error occurred but does not match any reason code.
 255 Reserved for code expansion.

Droms, et. al. Expires May 2003 [Page 123]

Internet Draft DHCP Failover Protocol November 2002

12.22. relationship-name

 A string which is a unique identifier for the failover relationship.

 Code Len Relationship Name
 +-----+-----+-----+-----+----+-----+---
 | 0 | 22 | 0 | n | c1 | c2 | ...
 +-----+-----+-----+-----+----+-----+---

12.23. server-flags

 This option is used to convey the current flags of the failover
 endpoint in the sending server.

 Code Len Server Flags
 +-----+-----+-----+-----+-------+
 | 0 | 23 | 0 | 1 | flags |
 +-----+-----+-----+-----+-------+

 The flags field is an 8-bit field; one bit position is
 specified here.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |S| MBZ |
 +-+-+-+-+-+-+-+-+

 The bits (numbered from the least-significant bit in network
 byte-order) are used as follows:

 0 (S): STARTUP,
 Bit 0 MUST be set to 1 whenever the server is in STARTUP state,
 and set to 0 otherwise. (Note that when in STARTUP state, the
 state transmitted in the server-state option is usually the last
 recorded state from stable storage, but see section 9.3 for
 details.)
 1-7 : Must be zero

Droms, et. al. Expires May 2003 [Page 124]

Internet Draft DHCP Failover Protocol November 2002

12.24. server-state

 This option is used to convey the current state of the failover
 endpoint in the sending server.

 Code Len Server State
 +-----+-----+-----+-----+-----+
 | 0 | 24 | 0 | 1 | 1-9 |
 +-----+-----+-----+-----+-----+

 Legal values for this option are:

 Value Server State
 ----- ---
 0 reserved
 1 STARTUP Startup state (1)
 2 NORMAL Normal state
 3 COMMUNICATIONS-INTERRUPTED Communication interrupted (safe)
 4 PARTNER-DOWN Partner down (unsafe mode)
 5 POTENTIAL-CONFLICT Synchronizing
 6 RECOVER Recovering bindings from partner
 7 PAUSED Shutting down for a short period.
 8 SHUTDOWN Shutting down for an extended
 period.
 9 RECOVER-DONE Interlock state prior to NORMAL
 10 RESOLUTION-INTERRUPTED Comm. failed during resolution
 11 CONFLICT-DONE Primary has resolved its conflicts

 (1) The STARTUP state is never sent to the partner server, it is
 indicated by the STARTUP bit in the server-flags options (see section

12.22).

12.25. start-time-of-state

 This option is used for different states in different messages. In a
 BNDUPD message it represents the start time of the state of the lease
 in the BNDUPD message. In a STATE message, it represents the start
 time of the partner server's failover state. In all cases it is an
 absolute time.

 Code Len Start Time of State
 +-----+-----+-----+-----+----+-----+-----+-----+
 | 0 | 25 | 0 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+----+-----+-----+-----+

Droms, et. al. Expires May 2003 [Page 125]

Internet Draft DHCP Failover Protocol November 2002

12.26. TLS-reply

 This option contains information relating to TLS security
 negotiation. It is sent in a CONNECTACK message

 A t1 value of 0 indicates no TLS operation, a value of 1 indicates
 that TLS operation is required.

 Code Len TLS
 +-----+-----+-----+-----+-----+
 | 0 | 26 | 0 | 1 | t1 |
 +-----+-----+-----+-----+-----+

12.27. TLS-request

 This option contains information relating to TLS security
 negotiation. It is sent in a CONNECT message.

 The t1 byte is the TLS request from the primary server. A value of 0
 indicates no TLS operation (to communicate the secondary server MUST
 NOT require TLS), a value of 1 indicates that TLS operation is
 desired but not required (to communicate, the secondary server MAY
 utilize TLS), and a value of 2 indicates that TLS operation is
 required (to communicate the secondary server MUST utilize TLS) to
 establish communications with the primary server.

 Code Len TLS
 +-----+-----+-----+-----+-----+
 | 0 | 27 | 0 | 1 | t1 |
 +-----+-----+-----+-----+-----+

12.28. vendor-class-identifier

 A string which identifies the vendor of the failover protocol
 implementation.

 Code Len vendor class string
 +-----+-----+-----+-----+----+-----+---
 | 0 | 28 | 0 | n | c1 | c2 | ...
 +-----+-----+-----+-----+----+-----+---

Droms, et. al. Expires May 2003 [Page 126]

Internet Draft DHCP Failover Protocol November 2002

12.29. vendor-specific-options

 This option is used to convey options specific to a particular
 vendor's implementation. The vendor class identifier is used to
 specify which option space the embedded options are drawn from.
 Every message that uses vendor specific options MUST have a vendor-
 class-identifier option in it.

 It functions similarly to the vendor class identifier and vendor
 specific options in the DHCP protocol.

 This option contains other options in the same two byte code, two
 byte length format. If this option appears in a message without a
 corresponding vendor class identifier, it MUST be ignored.

 Code Len Embedded options
 +-----+-----+-----+-----+----+-----+---
 | 0 | 29 | 0 | n | c1 | c2 | ...
 +-----+-----+-----+-----+----+-----+---

13. IANA Considerations

 This document defines several number spaces (failover options, fail-
 over message types, message digest types, and failover reject reason
 codes). For all of these number spaces, certain values are defined in
 this specification. New values may only be defined by IETF Con-
 sensus, as described in [RFC 2434]. Basically, this means that they
 are defined by RFCs approved by the IESG.

14. Acknowledgments

 Ralph Droms started it all, by sketching out an initial interserver
 draft that embodied ideas from several past IETF meetings. In that
 draft, he acknowledged contributions by Jeff Mogul, Greg Minshall,
 Rob Stevens, Walt Wimer, Ted Lemon, and the DHC working group.

 Kim Kinnear and Bob Cole each extended that draft, separately and
 then together, until they created an interserver draft that supported
 any number of servers. The complexity of that approach was just too
 great, and that draft wasn't greeted with enthusiasm by many, includ-
 ing its authors.

 It did however lead to a much simpler approach embodied in the first

https://datatracker.ietf.org/doc/html/rfc2434

Droms, et. al. Expires May 2003 [Page 127]

Internet Draft DHCP Failover Protocol November 2002

 Failover draft by Greg Rabil, Mike Dooley, Arun Kapur and Ralph
 Droms. This draft posited only two servers -- a primary and a secon-
 dary.

 Kim Kinnear then wrote the Safe Failover draft to layer on top of the
 Failover Draft and increase its robustness in the face of certain
 rare network failures.

 At the spring 1998 IETF meeting in LA, the DHC working group said
 that they wanted a merged Failover and Safe Failover draft. Steve
 Gonczi and Bernie Volz stepped up and produced the raw material for
 such a merged draft, along with a new message format designed around
 DHCP options and other extensions and clarifications. Kim Kinnear
 edited their work into draft format and made other changes in time
 for the Summer Chicago IETF meeting.

 Many people have reviewed the various earlier drafts that went into
 this result. At American Internet, ideas were contributed by Brad
 Parker. At Cisco Systems Paul Fox and Ellen Garvey contributed to
 the design of the protocol.

 During the summer and fall of 1998, two groups worked on separate
 implementations of the UDP failover draft. Bernie Volz and Steve
 Gonczi constituted one group, and Kim Kinnear, Mark Stapp and Paul
 Fox made up the other. These two groups worked together to produce
 considerable changes and simplifications of the protocol during that
 period, and Steve Gonczi and Kim Kinnear edited those changes into
 -03 draft in time for submission to the December 1998 Orlando IETF
 meeting.

 In February of 1999 Kim Kinnear and Mark Stapp hosted a meeting of
 people interested in the failover draft. During that meeting a gen-
 eral agreement was reached to recast the failover protocol to use TCP
 instead of UDP. In addition, the group together brainstormed a work-
 able load-balancing technique. Kim Kinnear rewrote the entire draft
 to include the changes made at that meeting as well as to restructure
 the draft along guidelines suggested by Thomas Narten. The result
 was the -04 draft, submitted prior to the Oslo IETF meeting.

 The initial idea for a hash-based load balancing approach was offered
 by Ted Lemon, and the determination of an algorithm and its integra-
 tion into the draft was done by Steve Gonczi. The security section
 was spearheaded by Bernie Volz. Both contributed considerably to the
 ideas and text in the rest of the draft with several reviews.

 In early October of 1999, three conference calls were held to discuss
 the -04 draft. The -05 includes changes as a result of those calls,
 perhaps the largest of which was to remove the load balancing

Droms, et. al. Expires May 2003 [Page 128]

Internet Draft DHCP Failover Protocol November 2002

 approach into a separate draft. Thanks to all of the many people
 who participated in the conference calls. Changes were made because
 of contributions by: Ted Lemon, David Erdmann, Richard Jones, Rob
 Stevens, Thomas Narten, Diana Lane, and Andre Kostur.

 Another conference call was held in mid-January of 2000, and the -06
 draft was produced to tighten up the the -05 draft both technically
 as well as editorially.

 The -07 draft was edited by Kim Kinnear and was based in part on
 reviews by Richard Jones, Bernie Volz, and Steve Gonczi. It embodies
 several technical updates as well as numerous editorial revisions
 that enhanced both correctness as well as clarity.

 The -08 draft was edited by Kim Kinnear and was based on the results
 of two conference calls held in October and November of 2000. It
 includes the correct second port number, a new state to synchronize
 conflict resolution with load balancing, a generally accepted
 approach to secondary pool allocation, and many other updates based
 on both operational as well as implementation experience.

 The -09 draft was edited by Kim Kinnear based on discussions held at
 the Minneapolis IETF in December of 2000, as well as issues raised by
 Ted Lemon based on implementation and deployment. The specific
 changes were mailed to the dhcp-v4 list.

 The -10 draft differed from the -09 draft in that figure 9.8.3-1 was
 correctly relabeled figure 9.10.3-1, and it was updated to include
 the CONFLICT-DONE message. One of the authors affiliations was also
 updated.

 This, the -11 draft differs only slightly from the -10 draft in
 correcting another author affiliation.

 These most recent changes have not been widely circulated among the
 other authors prior to submission to the IETF.

 Glenn Waters of Nortel Networks contributed ideas and enthusiasm to
 make a Failover protocol that was both "safe" and "lazy".

15. References

 [DHCID] Stapp, M., Lemon, T., Gustafsson, A., "draft-ietf-dnsext-
dhcid-rr-02.txt", March, 2001.

 [DNSRES] Stapp, M., "draft-ietf-dhc-dns-resolution-01.txt", March,

https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-dhcid-rr-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-dhcid-rr-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dns-resolution-01.txt

Droms, et. al. Expires May 2003 [Page 129]

Internet Draft DHCP Failover Protocol November 2002

 2001.

 [FQDN] Rekhter, Y., Stapp, M., "draft-ietf-dhc-fqdn-option-01.txt",
 March, 2001.

 [RFC 1035] Mockapetris, P., "Domain Names - Implementation and
 Specification", November, 1987.

 [RFC 1534] Droms, R., "Interoperation between DHCP and BOOTP", RFC
1534, October 1993.

 [RFC 2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed
 Hashing for Message Authentication", RFC 2104, IBM T.J. Watson
 Research Center, University of California at San Diego, February
 1997.

 [RFC 2119] Bradner, S. "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119.

 [RFC 2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
2131, March 1997.

 [RFC 2132] Alexander, S., Droms, R., "DHCP Options and BOOTP Vendor
 Extensions", Internet RFC 2132, March 1997.

 [RFC 2136] P. Vixie, S. Thomson, Y. Rekhter, J. Bound, "Dynamic
 Updates in the Domain Name System (DNS UPDATE)", RFC 2136, April
 1997

 [RFC 2139] Rigney, C., "Radius Accounting", RFC 2139, Livingston
 Enterprises, April 1997.

 [RFC 2246] Dierks, T., "The TLS Protocol, Version 1.0", RFC 2246,
 January 1999.

 [RFC 2401] Kent, S., Atkinson, R., "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [RFC 2434] Alvestrand, H. and T. Narten, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434, October
 1998.

 [RFC 2487] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 TLS", RFC 2487, January 1999.

 [RFC 2595] Newman, C., "Using TLS with IMAP, POP3, and ACAP", RFC
2595, June 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-fqdn-option-01.txt
https://datatracker.ietf.org/doc/html/rfc1534
https://datatracker.ietf.org/doc/html/rfc1534
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2139
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2487
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc2595

Droms, et. al. Expires May 2003 [Page 130]

Internet Draft DHCP Failover Protocol November 2002

 [RFC 3004] Stump, G., Droms, R., Gu, Y., Vyaghrapuri, R., Demirtjis,
 A., Privat, J. "The User Class Option for DHCP", November 2000.

 [RFC 3011] Waters, G., "The IPv4 Subnet Selection Option for DHCP",
 November 2000.

 [RFC 3046] Patrick, M., "DHCP Relay Agent Information Option", RFC
3046, January 2001.

 [RFC 3074] Volz, B., Gonczi, S., Lemon, T., Stevens, R., "DHC Load-
 balancing Algorithm", February, 2001.

16. Author's information

 Ralph Droms
 Kim Kinnear
 Mark Stapp
 Cisco Systems
 250 Apollo Drive
 Chelmsford, MA 01824

 Phone: (978) 244-8000

 EMail: rdroms@cisco.com
 kkinnear@cisco.com
 mjs@cisco.com

 Bernie Volz
 Ericsson
 959 Concord St.
 Framingham, MA 01701

 Phone: +1-617-513-9060

 EMail: bernie.volz@ericsson.com

 Steve Gonczi
 Relicore, Inc.
 One Wall Street
 Burlington, MA 01803

 Phone: (781) 229-1122

 Email: steve@relicore.com

https://datatracker.ietf.org/doc/html/rfc3046
https://datatracker.ietf.org/doc/html/rfc3046

Droms, et. al. Expires May 2003 [Page 131]

Internet Draft DHCP Failover Protocol November 2002

 Greg Rabil, Mike Dooley, Arun Kapur
 Lucent Technologies
 400 Lapp Road
 Malvern, PA 19355

 Phone: (800) 208-2747

 EMail: grabil@lucent.com
 mdooley@lucent.com
 akapur@lucent.com

17. Full Copyright Statement

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to oth-
ers, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and dis-
tributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all
such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or
references to the Internet Society or other Internet organizations,
except as needed for the purpose of developing Internet standards in
which case the procedures for copyrights defined in the Internet Stan-
dards process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FIT-
NESS FOR A PARTICULAR PURPOSE.

Droms, et. al. Expires May 2003 [Page 132]

