
Network Working Group R. Droms
INTERNET DRAFT Bucknell University
 K. Kinnear
 American Internet Corporation
 April 1997
 Expires October 1997

An Inter-server Protocol for DHCP
<draft-ietf-dhc-interserver-alt-00.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working docu-
 ments of the Internet Engineering Task Force (IETF), its areas, and
 its working groups. Note that other groups may also distribute work-
 ing documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference mate-
 rial or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 The DHCP protocol is designed to allow for multiple DHCP servers, so
 that reliability of DHCP service can be improved through the use of
 redundant servers. To provide redundant service, all of the DHCP
 servers must be configured with the same information about assigned
 IP addresses and parameters; i.e., all of the servers must be config-
 ured with the same bindings. Because DHCP servers may dynamically
 assign new addresses or configuration parameters, or extend the lease
 on an existing address assignment, the bindings on some servers may
 become out of date. The DHCP inter-server protocol provides an auto-
 matic mechanism for synchronization of the bindings stored on a set
 of cooperating DHCP servers.

 This draft is a direct extension of draft-ietf-dhc-
interserver-00.txt, but has been renamed draft-ietf-dhc-interserver-
alt-00.txt since an alternative proposal (also a direct extension of
draft-ietf-dhc-interserver-00.txt but in a different direction)

Droms & Kinnear [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-alt-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-alt-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-alt-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-00.txt

DRAFT April 1997

 exists named draft-ietf-dhc-interserver-01.txt.

1. Introduction

 DHCP servers manage the assignment of IP address and configuration
 parameters to IP hosts. The DHCP protocol specification [1] refers
 to the collection of configuration information assigned to a client
 as a "binding". The DHCP protocol is designed to allow for multiple
 DHCP servers, so that reliability of DHCP service can be improved
 through the use of redundant servers. To provide redundant service,
 all of the DHCP servers must be configured with the same information
 about assigned IP addresses and parameters; i.e., all of the servers
 must be configured with the same bindings. Because DHCP servers may
 dynamically assign new addresses or configuration parameters, or
 extend the lease on an existing address assignment, the bindings on
 some servers may become out of date.

 The DHCP inter-server protocol provides an automatic mechanism for
 synchronization of the bindings stored on a set of cooperating DHCP
 servers.

 The remainder of this document is organized in the following sec-
 tions:

 2. Goals and Requirements

 Defines the requirements and goals for the protocol. Discusses
 limitations of the protocol. Also contains a definition of
 several classes of failures as well as a list of specific fail-
 ures (which provide a useful common ground for discussion).

 3. Overview

 Discusses in a general way the content of the information com-
 municated between servers implementing this protocol as well as
 the way that information is communicated.

 Defines some key concepts surrounding the allowable "states" of
 an IP address, including extensions critical to the operation
 of this protocol.

 Gives a brief sketch of the actions required by this protocol
 for each DHCP client request received by the server.

 4. Groups

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-01.txt

Droms & Kinnear [Page 2]

DRAFT April 1997

 Examines the concept of a group of servers as used by this pro-
 tocol, and defines the "group specifier" used in all messages
 of this protocol.

 5. Protocol Messages

 Examines the general structure of the messages used by this
 protocol. For each message, it lists the format of the message
 along with all possible success and error status returns. Mes-
 sages discussed in two groups: Address Information Messages and
 Configuration Messages.

 6. Protocol Operations

 The messages from Section 5 are grouped into some higher level
 operations, and these are explained: POLL, PUSH, DUMP, TRANS-
 FER, GROUP JOIN, GROUP LEAVE.

 7. Protocol Actions

 The actions required by this protocol in response to incoming
 messages are detailed for each message a DHCP server can
 receive. The messages are grouped in three sections: DHCP
 Client Messages and Events, Address Information Messages, and
 Configuration Messages. The first of these are the normal DHCP
 messages, and the second and third are the new messages gener-
 ated as part of this protocol.

 8. IP Address State Transition

 This protocol expands the possible states for an IP address.
 The new states are described in Section 3.3. This section
 describes all of the transitions between states in detail.

 9. Server Initialization

 This section describes how a server becomes a member of a group
 to deliver a reliable DHCP service, as well as the actions to
 take on every server restart.

 10. Open Questions

 Poses open questions about the protocol. The questions from
draft-ietf-dhc-interserver-00.txt are included verbatim, and

 for some answers are supplied. Questions new to this draft are
 included as well.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-00.txt

Droms & Kinnear [Page 3]

DRAFT April 1997

1.1. The Language of Requirements

 Throughout this document, the words that are used to define the sig-
 nificance of particular requirements are capitalized. These words
 are:

 o "MUST"

 This word or the adjective "REQUIRED" means that the item is an
 absolute requirement of this specification.

 o "MUST NOT"

 This phrase means that the item is an absolute prohibition of
 this specification.

 o "SHOULD"

 This word or the adjective "RECOMMENDED" means that there may
 exist valid reasons in particular circumstances to ignore this
 item, but the full implications should be understood and the case
 carefully weighed before choosing a different course.

 o "SHOULD NOT"

 This phrase means that there may exist valid reasons in particu-
 lar circumstances when the listed behavior is acceptable or even
 useful, but the full implications should be understood and the
 case carefully weighed before implementing any behavior described
 with this label.

 o "MAY"

 This word or the adjective "OPTIONAL" means that this item is
 truly optional. One vendor may choose to include the item
 because a particular marketplace requires it or because it
 enhances the product, for example; another vendor may omit the
 same item.

1.2. Terminology

 This document uses the following terms:

 o "DHCP client"

 A DHCP client is an Internet host using DHCP to obtain configura-
 tion parameters such as a network address.

Droms & Kinnear [Page 4]

DRAFT April 1997

 o "client"

 Whenever the term client is used in this draft, it refers to a
 DHCP client (and not a server communicating with another server
 using this protocol).

 o "DHCP server"

 A DHCP server is an Internet host that returns configuration
 parameters to DHCP clients.

 o "binding"

 A binding is a collection of configuration parameters, including
 at least an IP address, associated with or "bound to" a DHCP
 client. Bindings are managed by DHCP servers.

 o "active server"

 An active server is one which is capable of offering IP addresses
 to clients.

 o "stable storage"

 Every DHCP server is assumed to have some form of what is called
 "stable storage". Stable storage is used to hold information
 concerning IP address bindings (among other things) so that this
 information is not lost in the event of a server failure which
 requires restart of the server.

2. Goals and Requirements

 There are several levels of goals for this protocol. There are a set
 of requirements with which it must comply, and then there are a set
 of goals for the protocol and the way that it is used that are listed
 in priority order.

2.1. Requirements on this Protocol

 The following list of requirements must be (and are) achieved by this
 protocol.

 1. Implementations of this protocol works with existing DHCP client
 implementations based on the DHCP protocol [1]. It must work
 with today's clients!

Droms & Kinnear [Page 5]

DRAFT April 1997

 2. Implementation works with existing BOOTP relay implementations.

 3. Can be specified with sufficient clarity that unique implementa-
 tions will work well together the first time (e.g. DHCP today
 largely meets this requirement).

 4. Work with minimum of two and a maximum of 16 servers.

2.2. Goals of this Protocol

 The following are the goals of this protocol. These goals are listed
 in priority order. The protocol meets all of these goals.

 1. Avoid binding an IP address to a client while that binding is
 currently valid for another client. In other words, don't allo-
 cate the same IP address to two clients.

 2. Ensure that an existing client can keep its existing IP address
 binding if it can communicate with any DHCP server using this
 protocol -- not just the server that originally offered it the
 binding.

 DISCUSSION:

 There is a subtle but very important point here. For exam-
 ple, assume that there are five servers using this protocol.
 Everything is running fine, and then the network becomes par-
 titioned, and three servers can communicate among themselves,
 and the other two can communicate among themselves -- but the
 set of three cannot communicate with the set of two. Each
 set, however, can communicate with some clients.

 In this situation, every client that can communicate with a
 DHCP server in either set should be able to continue to use
 its existing binding, even if the server that originally cre-
 ated the binding is not included in the set of servers with
 which it can communicate.

 3. Do not add any requirement for communication with another server
 to the processing between a DHCPDISCOVER and a DHCPOFFER or
 between a DHCPREQUEST and a DHCPACK.

 DISCUSSION:

 This is another subtle point. The implications of this goal
 are that "lazy" update of IP address binding information is
 required. In other words, because of this goal, the protocol
 cannot require one server to update another server with

Droms & Kinnear [Page 6]

DRAFT April 1997

 information concerning a new IP address binding prior to
 sending the DHCPACK to the DHCP client.

 As a result of this goal, a server may fail immediately after
 sending the DHCPACK to the client but prior to successfully
 sending a record of that information to any other server.
 Should this happen, the DHCP client is the only operational
 machine with a record of this binding -- and the protocol must
 be (and has been) designed to properly deal with this situation.

 3. Ensure that a new client can get an IP address from some server.

 4. If a server goes down, and an external agent determines that it
 is actually down as opposed to running but simply unable to com-
 municate with other servers, then the addresses that it cur-
 rently owns but are not yet bound may be recovered for use by
 other servers.

 5. Ensure that in the face of partition, where servers continue to
 run but cannot communicate with each other, the above goals and
 requirements are met. In addition, when the partition condition
 is removed, allow graceful re-integration.

2.3. Limitations of this Protocol

 The following are explicit limitations of this protocol. This is not
 to say that they are not useful capabilities to have (that's why they
 are explicitly listed, so that it will be clear that this protocol
 does not supply them).

 1. Determination of permanent server failure.

 The protocol provides a way to propagate information about the
 permanent failure of a server, but no way to detect a permanent
 failure. Transient failures are detected, but there is no mech-
 anism in this protocol to determine when a transient failure is
 really a permanent failure. Some external agent must make this
 determination -- and must ensure that the server declared perma-
 nently failed is not simply partitioned from the other servers
 and unable to communicate with them. The server which has been
 declared permanently failed by the external agent MUST be
 informed of that declaration prior to restart.

 DISCUSSION:

 The existing configuration messages would allow one server to
 declare another server as permanently failed and remove it

Droms & Kinnear [Page 7]

DRAFT April 1997

 from the group. That is not the issue. What makes fully
 automatic determination of permanent server failure impracti-
 cal is distinguishing between permanent server failure (which
 is easily defined as transient server failure that has gone
 on too long) and partition of the group of servers.

 Once communication fails with a server, the other servers
 cannot know if it is still operating or not, and removing an
 operating server from the group is an activity fraught with
 peril.

 This protocol is designed that it will re-integrate cleanly
 when it can communicate again with the rest of the group.

 Group membership protocols typically handle a partition situ-
 ation (when they bother to handle it at all) by having the
 partitioned server determine that it has been partitioned and
 shut itself down. It detects a partition condition in one of
 two ways: either it can't communicate with the "master", or
 it can't communicate with the "majority" of the group. In
 either case, it shuts down.

 We believe that this is not an appropriate response for a
 DHCP server. If my DHCP client can talk to a DHCP server, I
 want my client to continue to operate -- I'm not interested
 in having the only DHCP server to which I can talk shut
 itself down!

 2. Some addresses are temporarily unavailable during transient
 server failure.

 The full range of existing IP addresses that are potentially
 available for allocation is reduced during the period of a tran-
 sient server failure. The size of the pool of addresses that
 are available for allocation but not yet allocated SHOULD be
 configurable for each server. If the server is subsequently
 declared to have undergone a permanent failure, these addresses
 will be made available again.

 Note that it is only the addresses not yet allocated but avail-
 able for allocation that are unusable during the period of a
 transient server failure. IP addresses that have been allocated
 to clients may continue to be used by those clients even during
 server failure. Indeed -- to allow existing clients to be able
 to renew their existing IP addresses even if the server who
 granted them the lease has failed is a primary reason why this
 protocol exists.

Droms & Kinnear [Page 8]

DRAFT April 1997

2.4. Failures

 This section makes explicit both classes of failures as well as a
 list of specific failure scenarios in order to facilitate discussion
 of the capabilities of this protocol.

 o "transient server failure"

 A transient server failure is one where a server is unable to
 respond to requests, but later becomes operational and able to
 respond to requests. Its local stable storage (i.e. whatever
 mechanism it uses to preserve its binding information) is accu-
 rate as of the time that transient server failure began.

 o "permanent server failure"

 A permanent server failure is one where a server is unable to
 respond to requests -- probably for an extended period. While the
 protocol defined in this document supports declaration of a per-
 manent server failure, the decision that a transient server fail-
 ure is in reality a permanent server failure is beyond the scope
 of this protocol.

 This determination will be likely be performed by some adminis-
 trative entity, although in the future a group membership proto-
 col could be integrated with the protocol defined in this docu-
 ment to make such determinations automatically.

 o "partition"

 A network partition is caused by a failure of the underlying com-
 munications substrate, such that two systems that could previ-
 ously communicate cannot now do so. This may mimic transient
 server failure, but is not the same because in this case the
 server that appears to have failed may still be operational and
 interacting with clients.

 There is a form of partition known as "partial partition", where
 the transitivity of communication usually expected is not
 achieved. Imagine a set of servers organized (for the purposes
 of exposition only) as a ring where each server can communicate
 with its neighbors, but nobody else -- and when the number of
 servers is greater than three, a partial partition situation
 exists.

 This term may also be used as a noun, as in "each partition may
 communicate with ...", and in this case it refers to the group of
 servers which can communicate normally (as distinguished from

Droms & Kinnear [Page 9]

DRAFT April 1997

 those with which that group cannot communicate).

 o "communication failure"

 Communications failure describes the condition where the communi-
 cation channel between two servers becomes impossible. "Partial
 communication failure" describes the case where the normally
 bidirectional communications channel becomes unidirectional,
 where one server can send to but not receive from another server.

 Some examples of the above failures are given below:

 1. A single server crashes and reboots. [transient failure]

 2. A single server crashes and stays down for a period of hours and
 then reboots (either automatically or through some external
 agent). [transient failure]

 3. A single server fails and never returns. No permanent failure
 is declared for this server. [transient failure]

 4. A single server fails. A permanent failure is declared for this
 server. [permanent failure]

 5. A group of two servers are partitioned so that they cannot com-
 municate, but each can communicate to some clients. [partition]

 6. A group of five servers are partitioned so that three can commu-
 nicate together and the remaining two can also communicate, but
 the two partitions cannot communicate. Each partition can com-
 municate with a subset of the clients, and these subsets are
 disjoint. [partition]

 7. A group of five servers are partitioned so that three can commu-
 nicate together and the remaining two can also communicate, but
 the two partitions cannot communicate. Each server continues to
 be able to communicate with all of the clients. [partition]

 DISCUSSION:

 This situation is unlikely to occur, but the protocol should
 be able to handle it.

 8. Server A can send packets to server B, but cannot receive pack-
 ets from server B. [partial communications failure]

 9. There are four servers, A, B, C, and D. A cannot communicate
 with C, B cannot communicate with D. [partial partition]

Droms & Kinnear [Page 10]

DRAFT April 1997

 DISCUSSION:

 This section on failures may well not belong in the final docu-
 ment. For the purposes of review of the rest of the protocol,
 however, defining a common language to describe failures and giv-
 ing specific examples of failures as an aid to discussion seemed
 useful.

3. Overview

 At the most basic level, the DHCP protocol specifies the behavior of
 DHCP servers which communicate with DHCP clients in order to allocate
 IP address to the clients as well as provide a variety of configura-
 tion parameters information to them. It is the allocation of IP
 addresses to clients by the server that creates a requirement to
 update what is known as "stable storage" -- typically held on disk.
 This information is used to "remember" the IP address bindings that
 have been made by the DHCP server in order to avoid allocating the
 same IP address to two clients.

 The key motivation for an inter-server protocol is the desire to
 allow a client to continue to use its IP address (i.e. be able to
 renew its lease on an IP address) even if the server who initially
 offered it the lease on its IP address is unavailable for some rea-
 son. In addition, no IP address should ever be bound to two clients
 simultaneously.

 Providing multiple DHCP servers to which each client can communicate
 is the first step in creating this reliable DHCP capability.

 In addition, these DHCP servers must communicate in order to provide
 this reliable DHCP capability.

3.1. What information must be communicated between servers implementing
the inter-server protocol?

 Information about IP addresses is what is communicated among DHCP
 servers in order to provide this reliable DHCP service. There are
 two types of information about IP addresses that are relevant to the
 inter-server protocol:

 o IP Address State Information

 Information on whether an IP address is bindable (i.e. could be
 offered to a DHCP client) or bound (i.e. is currently bound to a

Droms & Kinnear [Page 11]

DRAFT April 1997

 client).

 o IP Address Binding Information

 If an IP address is bound to a client, then considerable informa-
 tion about that client must be stored in the stable storage of a
 DHCP server. This information is maintained to allow a lease on
 an IP address to expire and that IP address to be re-used by
 another client. It is also maintained to allow a client to check
 to see if it is using the "proper" addresses -- i.e. the one to
 which it was bound. As well, the server uses this information to
 check for errors when a client attempts to renew the lease on an
 IP address.

 The inter-server protocol described here involves communicating both
 types of information between servers.

3.2. How is this information communicated between servers implementing
the inter-server protocol?

 The protocol requires that servers who implement it can communicate,
 each with the other, in a point-to-point manner (when all are operat-
 ing correctly). It allows for the possibility that they can fail
 entirely (i.e. crash) or be unable to communicate with each other for
 a variety of reasons.

 These servers will periodically need to communicate with other
 servers in the group. There are several recurring styles of communi-
 cation that, if defined, will assist in explaining the major concepts
 of this protocol. These major styles of group communication are as
 follows:

 o POLL

 A POLL operation is used when one server must contact every other
 server in the group in order to request that they respond with
 some information (typically concerning an IP address). Usually,
 if the server executing the POLL cannot contact all of the other
 servers, it will use whatever information it could glean from
 those it could contact.

 A COMPLETE POLL is like a POLL in that one server attempts to
 contact every other server -- but in a COMPLETE POLL it must
 receive a reply from all of them or the operation fails to com-
 plete.

Droms & Kinnear [Page 12]

DRAFT April 1997

 o PUSH

 A PUSH operation is used when one server wants to send informa-
 tion to all of the other servers in the group.

 o DUMP

 A DUMP operation is used when one server sends information about
 every IP address binding it holds in its stable storage to
 another server. This bulk transfer can be initiated by the
 server sending the information, or by the server who wishes to
 receive the information.

 o TRANSFER

 A TRANSFER operation is where one server engages in a
 request/reply dialog with a single other server, usually to
 transfer ownership of an IP address.

 Note that both PUSH and POLL involves operations to all of the
 servers in the group, while DUMP and TRANSFER are operations between
 two servers in the group.

3.3. IP Address State

Section 3.1 discussed the two kinds of IP address information that
 are communicated using this protocol. The first of them, IP Address
 State, needs to be explained in more detail.

3.3.1. IP Address State: Basic DHCP Protocol

 When an IP address is always controlled by a single DHCP server
 (implicit in the definition of DHCP in the current DHCP draft [1])
 the IP address is either in the BINDABLE state or the BOUND state.
 The following state diagram represents the states that an IP address
 may occupy based on the current DHCP draft.

Droms & Kinnear [Page 13]

DRAFT April 1997

 +-----------------+
 | |
 | BINDABLE |<-+
 | | |
 +-----------------+ |
 | |
 V |
 +-----------------+ |
 | | |
 | BOUND |--+
 | |
 +-----------------+

 Figure 1: Basic DHCP IP address state transition diagram

 When an IP address transitions from one of these states to the other,
 that transition must be recorded in the server's stable storage prior
 to the transition being "published" to any observer outside of the
 server.

3.3.2. IP Address State: The Inter-server Protocol Extension

 The situation is more complex when multiple servers are managing the
 same set of IP addresses as required by this protocol. Two new
 states are defined for an IP address. One is called UNBINDABLE, the
 other EXPIRED.

 This is the state diagram for IP address state required by this pro-
 tocol:

Droms & Kinnear [Page 14]

DRAFT April 1997

 +-----------------+
 | |
 | UNBINDABLE |<--+
 | | |
 +-----------------+ |
 | |
 V |
 +-----------------+ |
 | | |
 | BINDABLE | |
 | |-->|
 +-----------------+ |
 | |
 V |
 +-----------------+ |
 | | |
 +-->| BOUND |-->|
 | | | |
 | +-----------------+ |
 | | |
 | V |
 | +-----------------+ |
 | | | |
 +---| EXPIRED |---+
 | |
 +-----------------+

 Figure 2: Extended DHCP IP address state transition diagram
 required for the Inter-server protocol.

 For every server which cooperates using this protocol, an IP address
 is in one of the following four states:

 o UNBINDABLE

 This state represents the default state for every IP address.
 Explicit action must be taken to move an IP address from this
 state into the BINDABLE state. A COMPLETE POLL must be per-
 formed.

 o BINDABLE

 In this state, the IP address is available to be offered to a
 DHCP client, and if the client accepts the offer, it may be bound
 to that client.

Droms & Kinnear [Page 15]

DRAFT April 1997

 An IP address is only BINDABLE by a single server at a time. A
 server must know for precisely which IP addresses it has on its
 list of BINDABLE addresses. A server does not know about any
 other server's list of BINDABLE addresses. (Although performance
 optimizations are possible where a server may develop hints about
 this information, they are not required).

 An IP address can move from the BINDABLE state into the BOUND
 state through the normal activity of the DHCP protocol where a
 server interacts with a client.

 A server can also transfer ownership of a BINDABLE IP address to
 another server upon request from that other server (and without
 any interaction beyond that with the other server).

 o BOUND

 An address that is BOUND is associated with a particular DHCP
 client, and usually is in use by that client (although it may
 have abandoned the lease on that IP address). It may be termed
 BOUND to that client.

 When a DHCP client releases a lease on an IP address it moves
 into the UNBINDABLE state, but no explicit PUSH operation is
 required.

 When the lease time and any grace period implemented by a server
 both expire, then an IP address moves into the EXPIRED state.

 DISCUSSION:

 Many DHCP servers implement something called a "grace
 period", which is a period after the the lease on a binding
 expires that an IP address will not be offered to another
 DHCP client. A lease which is in this "grace period" is
 still BOUND as far as the inter-server protocol is con-
 cerned.

 o EXPIRED

 An IP address is EXPIRED when it was BOUND and the term of the
 lease (and any implemented grace period) run out. It may be
 termed EXPIRED to that client.

 An EXPIRED IP address may be made UNBINDABLE though a POLL of
 another server, or it may be moved back into the BOUND state by
 an REQUEST/INIT-REBOOT request from the previously bound client.

Droms & Kinnear [Page 16]

DRAFT April 1997

3.4. Overview of Server Operation

 This section will give a brief sketch of the IP address binding parts
 of the protocol (from the perspective of an already configured group
 of servers). Many of the possible cases are not described here, and
 this section is not to be considered definitive. The definitive
 description of this information is in Section 7.1, and in the case of
 conflicts between this section and that one, the description in Sec-
 tion 7.1 will govern.

3.4.1. DISCOVER

 Prior to the receipt of a DISCOVER message, each server should have
 built up a list of BINDABLE IP addresses -- for two reasons. First,
 because a COMPLETE POLL is required to get a BINDABLE IP address, and
 a COMPLETE POLL may not be possible due to server failure at any
 given instant. Second, because even if a COMPLETE POLL was possible
 it would generally take too long to do between a DISCOVER and an
 OFFER message.

 A server should offer a BINDABLE address to a client upon receipt of
 a DISCOVER message.

 There are no inter-server protocol activities required when a DIS-
 COVER is processed and an OFFER is returned to the client.

3.4.2. REQUEST/SELECTING

 When a client accepts an offer by sending a SELECTING message, then
 the server updates its stable storage with the binding information
 and ACKs the client. It must then perform a PUSH operation to push
 the binding information to all of the other servers (to which it can
 communicate at that time).

3.4.3. REQUEST/INIT-REBOOT

 In the usual case where the server who created the binding for the
 requesting client managed to PUSH that information to the other
 servers, the receiving server will have (or be able to discover) the
 binding information for this client. If this information can be ver-
 ified, then ACK the client -- else NAK it.

Droms & Kinnear [Page 17]

DRAFT April 1997

3.4.4. REQUEST/RENEWING

 Upon receipt of a RENEWAL message (which is unicast from the client
 to the server), it is expected that the server will have accurate
 information concerning the binding of the client. If it does not,
 process the message like a REBINDING, below. Given that the server
 has information sufficient to extend the lease, it should update its
 stable storage with the lease extension, and then ACK the client with
 the extended time. Then it must perform a PUSH operation to the
 other servers with the updated binding information.

3.4.5. REQUEST/REBINDING

 Upon receipt of a REBINDING message (which is broadcast from the
 client), the server will check to see if it has any information about
 the binding for this client. There are several cases possible:

 1. Current information shows that this client owns the IP address.

 Extend the lease, update stable storage, ACK the client, and
 perform a PUSH with the information to the other servers.

 2. Current information shows that some other client is BOUND to
 this IP address.

 This is a problem. Make the IP address UNAVAILABLE (see Section
10 for details).

 3. Current information says this IP address is UNBINDABLE.

 In this case, a server has probably created a binding and then
 failed to propagate the information to this server. Perform a
 POLL operation to see if any communicating server has any better
 information.

 If information is returned, then move to the appropriate case in
 this list.

 If no information is returned, then extend the lease on the IP
 address, update stable storage, ACK the client, and PUSH the
 information to the other servers.

3.4.6. Release

 When a release is received, if the client matches the binding infor-
 mation in the server, then update stable storage with the release,

Droms & Kinnear [Page 18]

DRAFT April 1997

 set the IP address UNBINDABLE, and PUSH the information to the other
 servers.

3.4.7. Expiration

 When a lease on an IP address expires, move the lease to the EXPIRED
 state and update stable storage with this information. From now on,
 if some server performs a POLL operation to gather information about
 this IP address, make the IP address UNBINDABLE, update stable stor-
 age, and respond with the state of the IP address UNBINDABLE.

4. Groups

 Fundamental to this protocol is the "group" of servers which are com-
 municating and with which the clients can communicate in order to
 provide a reliable DHCP service.

4.1. Group Membership Definition

 Each "group" to which a server belongs is associated with a particu-
 lar set of address pools. These address pools are those which exist
 on a single network segment (sometimes called a single "wire").

 An active server can be (and typically would be) a member of several
 groups simultaneously. The groups to which a server attempts to
 become members are defined externally to this protocol.

 Each group has a unique 32bit group id which is used in the protocol
 messages of every type in this protocol.

 A server attempts to become a member of a particular group by using
 the configuration messages described below. In addition, a server
 can remove another server from the group using these messages -- but
 in this case an external agent must ensure that the server being
 removed is truly inactive and not just partitioned.

4.2. Group Specifier Definition

 Every protocol message (excluding only those mentioned later in this
 section) includes something called a "group specifier". A group
 specifier consists of two 32 bit quantities:

 o Group ID

Droms & Kinnear [Page 19]

DRAFT April 1997

 The group id is a 32 bit unsigned quantity which defines the
 group to which this message applies. It is defined in the series
 of configuration messages below. This group id applies to a set
 of address pools which exist on the same physical network.

 DISCUSSION:

 Just how does the first server in the group get selected?

 As well, just how does it select the group-id for the group?
 Group-id's don't have to be globally unique -- just unique
 amongst all of the servers who are connected using this proto-
 col. But, this is pretty much the same thing.

 Possibly there is a way to figure out how to generate a group-
 id from the network numbers of the subnets contained in the
 group definition.

 o Group Sequence Number

 This 32 bit unsigned sequence number is incremented every time
 that the group moves into the proposal stage. When it overflows
 beyond the 32 bit boundary, it will never increment back to zero,
 but will go to 1 instead.

 DISCUSSION:

 I've been told that there is a excellent and precise specifi-
 cation of a sequence number like this in the DNS RFC. It
 should replace the paragraph above.

 This is the "generation number" of the group.

 A group specifier containing these two values is a part of every mes-
 sage in the inter-server protocol, except for the messages listed
 below:

 o REQUEST-GROUPS

 o REPLY-GROUPS

 o REQUEST-GROUP-CONFIG

 o REPLY-GROUP-CONFIG

 o REQUEST-GROUP-MEMBERSHIP

Droms & Kinnear [Page 20]

DRAFT April 1997

4.3. Group Specifier Usage

 For every message sent which includes a group specifier, if the
 receiving server doesn't have a matching group sequence number in its
 current group specifier for that group, it will return an error: NAK-
 GROUP-SPECIFIER-MISMATCH.

 This error return will include its current group specifier, as well
 as the information that would be included in the REPLY-GROUP-
 MEMBERSHIP message (i.e. the list of servers currently in this group
 from the replying server's standpoint).

 It will also take additional action based on the relationship of the
 message's group sequence number to its current group sequence number.

 o message group sequence number > server group sequence number

 In this case, the server sending the message has a "more up to
 date" version of the group than the receiving server. The
 receiving server will drop the incoming message and return an
 error response as specified above, and then it will send a
 REQUEST-GROUP-MEMBERSHIP message to the server from which the
 message originated. The REPLY-GROUP-MEMBERSHIP message which is
 returned will be used to update the server's group specifier and
 group definition.

 In the event that the current server is not a member of the
 group after that membership is updated by the REPLY-GROUP-
 MEMBERSHIP message, it will immediately cease to operate on all
 address pools associated with that group.

 o message group sequence number < server group sequence number

 In this case, the server sending the message has a "less up to
 date" version of the group than the receiving server. The error
 message the receiving server has returned contains the informa-
 tion necessary for the sending server to update its conception
 of group membership and retry the original packet.

 In this way, the most recent view of the membership of the group will
 eventually propagate throughout the group.

5. Protocol Messages

 The various messages that make up the inter-server protocol are
 described in this section. First, the overall structure of each mes-
 sage is described, and the the messages are described in two groups:

Droms & Kinnear [Page 21]

DRAFT April 1997

 Address Information Messages, and Configuration Messages.

 The way the messages are used is explained in Sections 6 and 7.

5.1. Message Structure

 All of the interserver messages have the following fields:

 o Group ID

 This is the group from the group specifier described in Section
 TBD. A value of zero is not a legal group id and is used when no
 group id should be specified (i.e. for those few messages which
 don't have a group id).

 o Group Sequence Number

 This is the group sequence number from Section TBD. It must be
 non-zero if the group id is non-zero.

 o Operation

 The operation is either a request or a reply, and there are a
 wide variety of each of them. Possible operations are listed
 below:

 REQUEST-ADDRESS-INFORMATION | REPLY-ADDRESS-INFORMATION

 REQUEST-ADDRESS-INFORMATION-BINDABLE

 REQUEST-UPDATE-ADDRESS-INFORMATION | REPLY-UPDATE-ADDRESS-
 INFORMATION

 REQUEST-ADDRESS-INFORMATION-DUMP | REPLY-ADDRESS-INFORMATION-DUMP

 REQUEST-BINDABLE-ADDRESS | REPLY-BINDABLE-ADDRESS

 REQUEST-GROUPS | REPLY-GROUPS

 REQUEST-GROUP-CONFIG | REPLY-GROUP-CONFIG

 REQUEST-GROUP-MEMBERSHIP | REPLY-GROUP-MEMBERSHIP

 REQUEST-PROPOSE-GROUP-JOIN | REPLY-PROPOSE-GROUP-JOIN

 REQUEST-COMMIT-GROUP-JOIN | REPLY-COMMIT-GROUP-JOIN

Droms & Kinnear [Page 22]

DRAFT April 1997

 REQUEST-PROPOSE-GROUP-LEAVE | REPLY-PROPOSE-GROUP-LEAVE

 REQUEST-COMMIT-GROUP-LEAVE | REPLY-COMMIT-GROUP-LEAVE

 o Result

 When the operation is a reply, the result is one of the follow-
 ing:

 ACK

 ACK-DATA

 NAK

 NAK-GROUP-SPECIFIER-MISMATCH-DATA

 o Data

 If there is any data for the operation, then it appears last. It
 is possible from the Result of the operation to determine if
 there is any data. For all of the results listed above, if they
 end in -DATA, then data appears in the data section.

5.2. Address Information Messages

 The address information messages are used to exchange information
 about the state and binding of an IP address among the servers in the
 group. The general content and usage of the binding data is first
 discussed, and following that the individual address information mes-
 sages are discussed.

5.2.1. Binding Data and State Information

 When binding data is sent as part of an address information message,
 it contains the following information:

 o IP Address [ipaddr]

 o Expiration [int32] (delta from now)

 o Client ID [string]

 o MAC Address [string]

Droms & Kinnear [Page 23]

DRAFT April 1997

 o Last Transaction [int32]

 o Last Transaction Time [int32] (delta from now)

 o Last Transaction Server [ipaddr]

 Each server must maintain as part of the binding information the
 "last transaction time", the "last transaction", and the "last trans-
 action server" associated with that binding.

 The last transaction time is the time at which the binding changed in
 response to a request (the last transaction) from the client. The
 last transaction time is returned in an address information message
 as a number of seconds from "now".

 The possible last transactions are listed below. This list is
 ordered by the precedence of the transactions and is used to help
 determine if a response to an address information message contains
 more recent information than that currently held by a server.

 The last transaction is one of the following:

 o DHCPREQUEST/SELECTING

 o DHCPREQUEST/REBINDING

 o DHCPREQUEST/INIT-REBOOT

 o DHCPREQUEST/RENEWING

 o DHCPRELEASE

 o EXPIRATION

 The IP address state information is transmitted as well, and it con-
 sists of one of the following states:

 o UNBINDABLE

 o BINDABLE

 o BOUND

 o EXPIRED

Droms & Kinnear [Page 24]

DRAFT April 1997

5.2.2. REQUEST-ADDRESS-INFORMATION | REPLY-ADDRESS-INFORMATION

 The REQUEST-ADDRESS-INFORMATION message contains a list of of all of
 the IP addresses for which a REPLY is requested.

 The REPLY-ADDRESS-INFORMATION message contains the binding data (see
Section 5.2.1) for each IP address listed in the REQUEST.

 Additional detailed information describing the format and all possi-
 ble success and error returns of these messages is TBD.

5.2.3. REQUEST-ADDRESS-INFORMATION-BINDABLE

 The REQUEST-ADDRESS-INFORMATION-BINDABLE message contains a list of
 of all of the IP addresses for which a REPLY is requested. It is in
 the same format as the REQUEST-ADDRESS-INFORMATION message, but con-
 tains the additional information that the requester wishes to make
 the IP addresses listed BINDABLE if possible.

 A REPLY-ADDRESS-INFORMATION message (see above) is used to reply to
 this message.

 Additional detailed information describing the format and all possi-
 ble success and error returns of these messages is TBD.

5.2.4. REQUEST-UPDATE-ADDRESS-INFORMATION | REPLY-UPDATE-ADDRESS-
INFORMATION

 The REQUEST-UPDATE-ADDRESS-INFORMATION message contains address bind-
 ing information (see Section 5.2.1) for every IP address for which an
 update is requested.

 Additional detailed information describing the format and all possi-
 ble success and error returns of these messages is TBD.

5.2.5. REQUEST-ADDRESS-INFORMATION-DUMP | REPLY-ADDRESS-INFORMATION-
DUMP

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

Droms & Kinnear [Page 25]

DRAFT April 1997

5.2.6. REQUEST-BINDABLE-ADDRESS | REPLY-BINDABLE-ADDRESS

 In the REQUEST-BINDABLE-ADDRESS message the requesting server must
 specify

 o The address pool in the group for which it wishes to acquire some
 BINDABLE addresses.

 o The number of number of BINDABLE addresses it is requesting.

 o The number of number of BINDABLE addresses it currently has for
 that address pool.

 Additional detailed information describing the format and all possi-
 ble success and error returns of these messages is TBD.

5.3. Configuration Messages

 Configuration messages are used add a server to a group as well as to
 remove a server from a group. A server must add itself to a group --
 it cannot be added by another server. A server may be removed by any
 server in the group, including itself.

 DISCUSSION:

 As written, it is a requirement for a server to add itself to the
 group. Is this a good idea? This prevents an external agent from
 adding a server to the group to which some existing group members
 could not communicate.

 Likewise, should an existing member of a group be required to
 remove a server from a group? Again, as written, the answer is
 yes. Of course, an external agent could become a member of the
 group (nothing requires it to be a DHCP server if it deals with
 the protocol messages successfully), remove another server from
 the group, and then remove itself from the group.

 In addition to changing the group membership, configuration messages
 are used to keep the various servers up to date with respect to the
 current membership of the group.

5.3.1. REQUEST-GROUPS | REPLY-GROUPS

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

Droms & Kinnear [Page 26]

DRAFT April 1997

5.3.2. REQUEST-GROUP-CONFIG | REPLY-GROUP-CONFIG

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

5.3.3. REQUEST-GROUP-MEMBERSHIP | REPLY-GROUP-MEMBERSHIP

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

5.3.4. REQUEST-PROPOSE-GROUP-JOIN | REPLY-PROPOSE-GROUP-JOIN

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

5.3.5. REQUEST-COMMIT-GROUP-JOIN | REPLY-COMMIT-GROUP-JOIN

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

5.3.6. REQUEST-PROPOSE-GROUP-LEAVE | REPLY-PROPOSE-GROUP-LEAVE

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

5.3.7. REQUEST-COMMIT-GROUP-LEAVE | REPLY-COMMIT-GROUP-LEAVE

 Detailed information describing the format and all possible success
 and error returns of these messages is TBD.

6. Protocol Operations

 The protocol messages from the previous section can be combined to
 form the following, more complicated, operations:

 o POLL and COMLETE POLL

 o PUSH

 o DUMP

Droms & Kinnear [Page 27]

DRAFT April 1997

 o TRANSFER

 o Determine the Available Groups

 o GROUP JOIN

 o GROUP LEAVE

6.1. POLL and COMPLETE POLL

 In POLL operation, the exchange of REQUEST-ADDRESS-INFORMATION and
 REPLY-ADDRESS-INFORMATION messages is used by a server in order to
 determine if an IP address is in use by any other server, or to
 update its internal database with the most recent binding informa-
 tion.

 It will send a REQUEST-ADDRESS-INFORMATION message to every server in
 the group, and expect a REPLY-ADDRESS-INFORMATION message in response
 from each. This can be done either serially, stepping through all of
 the servers in the group, or in parallel -- sending REQUEST-ADDRESS-
 INFORMATION messages to all of them at once.

 When COMPLETE POLL operation is used to move an address from the
 UNBINDABLE state into the BINDABLE state, the REQUEST-ADDRESS-
 INFORMATION-BINDABLE request is used. The REPLY-ADDRESS-INFORMATION
 message is still used as a reply.

 No address can be offered to a client until all servers in the group
 have been queried and responded. All of the responses must have been
 ACK-DATA and the state of the IP addresses must have been UNBINDABLE.
 Once this operation is complete, the server can consider the IP
 address to be BINDABLE and must update its stable storage to that
 effect.

 Note that this operation would typically *not* be performed immedi-
 ately prior to making an offer to a client, but would be done in
 advance to build up a list of BINDABLE IP addresses that could be
 offered to clients. The reasons for this are:

 1. It could take a fair amount of time to contact each DHCP server
 in the group to ask about the status of an address, and that
 would slow down the offer process.

 2. If *any* server in the group is down, this protocol cannot com-
 plete, and can never yield a positive answer.

Droms & Kinnear [Page 28]

DRAFT April 1997

6.1.1. PUSH

 This exchange of REQUEST-UPDATE-ADDRESS-INFORMATION and REPLY-UPDATE-
 ADDRESS-INFORMATION messages are used by one server to inform another
 server of the address binding information it has about a lease.

 The data part of the REQUEST-UPDATE-ADDRESS-INFORMATION message has
 the same form as the REPLY-ADDRESS-INFORMATION from the poll mode of
 this protocol, except that it is used to inform another server of
 updated information from the requester.

 The responding server will return an REPLY-UPDATE-ADDRESS-INFORMATION
 if the information sent in the REQUEST-UPDATE-ADDRESS-INFORMATION
 message was more recent than that available in its cache. Prior to
 sending the ACK, it will update its stable storage with the new
 information.

 In the event that the responding server determines that it has more
 recent information than the requesting server (based on the algorithm
 in Section TBD above), it will reply with a REPLY-UPDATE-ADDRESS-
 INFORMATION message with a NAK-DATA which will also contain all of
 its latest information. The requesting server -- which now is the
 recipient of a lot of information which it didn't anticipate --
 should update its stable storage with this latest information. The
 requesting server is under no obligation to reply to the NAK message.

 DISCUSSION:

 Just how long should a server doing a PUSH of information try to
 get the information to the rest of the servers? Since the entire
 protocol has been designed to allow "lazy update", then perhaps it
 is sufficient to try once or retry several times over less than a
 minute -- and then to stop trying.

 Actually, since the mismatch of group specifiers can at any time
 cause a packets to be dropped, whenever a NAK-GROUP-SPECIFIER-
 MISMATCH message is received, the sending server MUST retry the
 message that was sent after correcting its view of the group spec-
 ifier (and therefore the group definition).

6.2. DUMP

 The push of all of the binding information for all IP addresses where
 the last transaction server is the sending server to another server
 can be triggered by a REQUEST-ADDRESS-INFORMATION-DUMP message sent
 to a server. When a server receives a REQUEST-ADDRESS-INFORMATION-
 DUMP message, it will send a series of REQUEST-UPDATE-ADDRESS-

Droms & Kinnear [Page 29]

DRAFT April 1997

 INFORMATION messages to the requester. When it has completed the
 DUMP operation, it will send a REPLY-ADDRESS-INFORMATION-DUMP message
 with an ACK.

6.3. TRANSFER

 The exchange of REQUEST-BINDABLE-ADDRESS and REPLY-BINDABLE-ADDRESS
 messages is used by a server in order to ask another single server
 for one of its BINDABLE addresses. The address returned by the query
 must be BINDABLE by the responding server and, prior to this message
 being sent, must be set to be UNBINDABLE and recorded in that
 server's stable storage.

 This protocol exchange would typically be used by a server who ran
 out of available addresses to offer to new clients and could not gen-
 erate any new ones by using the COMPLETE POLL operation because:

 1. Some other server was down and so a COMPLETE POLL could not com-
 plete.

 2. While the COMPLETE POLL could complete, it could not yield any
 new addresses for allocation because all of them were currently
 either allocated to a client or already on the list of available
 addresses of other servers.

6.4. Determine the Available Groups

 The first stage of becoming a server participating in the inter-
 server protocol is to determine the existing group id for each set of
 address pools for which participation in the inter-server protocol is
 desired.

 Assuming that a server has been provided or can discover the IP
 address of a server that is already in the group to which it wants to
 join, a server who wants to become a member of a group will send a
 REQUEST-GROUPS message to some server it thinks might belong to a
 group to which it wishes to join.

 Any server who receives a REQUEST-GROUPS message will reply with a
 REPLY-GROUPS message containing the set of group specifiers for every
 group to which it is a member.

 For each of the group specifiers specified in the REPLY-GROUPS mes-
 sage, the joining server will send a REQUEST-GROUP-CONFIG request to
 the server it is interrogating. This message asks for the group

Droms & Kinnear [Page 30]

DRAFT April 1997

 information for one group specifier.

 The response to the REQUEST-GROUP-CONFIG message will be a REPLY-
 GROUP-CONFIG message which will contain the latest group specifier,
 and the network number and subnet mask of every subnet associated
 with that group.

 From this information, the requesting server can determine if it
 wishes to participate in this group.

6.5. GROUP JOIN

 There are two phases to involved in a server adding itself to a
 group. The first is the proposal stage, and the second is the commit
 stage.

6.5.1. GROUP JOIN -- Proposal Stage

 In the proposal stage, all of the servers in the group are synchro-
 nized by the joining server with respect to their current concept of
 group membership as well as the identity of the joining server.

 When a server decides to join a group, then it will issue a REQUEST-
 GROUP-MEMBERSHIP request, and the responding server will reply with
 REPLY-GROUP-MEMBERSHIP. This message contains the latest group spec-
 ifier, along with the list of IP addresses that make up the group.

 The joining server must check to see that it is not already a member
 of this group before proceeding.

 The joining server now has the list of existing servers in the group,
 and has verified that it makes sense to be a member of this group.
 Now, it has to interact with each server currently in the group.

 It will send a REQUEST-PROPOSE-GROUP-JOIN request to every server in
 the group. This message has the current group specifier in the mes-
 sage along with a revised group membership (i.e. the response from
 REPLY-GROUP-MEMBERSHIP with the addition of the joining server).

 Upon receipt of a REQUEST-PROPOSE-GROUP-JOIN request, if no existing
 proposal exists that has not timed out, a server will create a single
 "proposed" group specifier from the current group specifier by incre-
 menting the group sequence number by 1. The creation of this pro-
 posed group specifier will inhibit the creation of another proposed
 group specifier for a 30 seconds. The responding server will reply
 with REPLY-PROPOSE-GROUP-JOIN and an ACK.

Droms & Kinnear [Page 31]

DRAFT April 1997

 If an existing proposal exists that has not timed out, the responding
 server will reply with REPLY-PROPOSE-GROUP-JOIN and a NAK-DATA. This
 will include the same information as a REPLY-GROUP-MEMBERSHIP. (From
 this, the joining server can determine just who is attempting to join
 the group.)

 DISCUSSION:

 Clearly a deadlock situation can occur where two servers are try-
 ing to join a group at the same time, and each is working from
 "opposite ends" of the group. In this case, where the joining
 server gets a failure from a REQUEST-PROPOSE-GROUP-JOIN message
 due to the existence of a valid proposal that has not timed out,
 then the joining server should backoff an amount of time that is
 based in part on its IP address before trying again. The exact
 algorithm is TBD.

 This proposed group specifier will not be used in any messages until
 it moves to the accepted stage and become the current group specifier
 (see below for how it does that).

 If a second REQUEST-PROPOSE-GROUP-JOIN request is received from a
 server, that message will supersede the existing proposal and the
 timer will be reset.

 As the joining server cycles through the existing members of the
 group, it will be rationalizing the group specifiers among the group
 and the entire group's picture of the membership of the group. If it
 encounters a server whose view of the group membership lags behind
 that of the server from which the joining server received its idea of
 group membership, then it will bring that server up to date.

 If, on the other hand, it encounters a server that has a more up to
 date version of the group membership than the one from which it is
 operating, it will have to update its idea of the group membership
 and then start the proposal sequence over. All of the servers with
 which it has created proposals will be forced to update their view of
 group membership as part of this process.

 At the end of this process of proposal generation, all of the servers
 in the group share a common picture of both the group membership as
 well as the current proposal.

6.5.2. GROUP JOIN -- Commit Stage

 The joining server must have started a timer when it sent out the
 first REQUEST-PROPOSE-GROUP-JOIN message, and if that timer has less

Droms & Kinnear [Page 32]

DRAFT April 1997

 than time/2 time left on it, or the joining server SHOULD start over.

 Now, the joining server sends a REQUEST-COMMIT-GROUP-JOIN message
 (which contains the same information as the REQUEST-PROPOSE-GROUP-
 JOIN message) to the first server to which it sent the REQUEST-
 PROPOSE-GROUP-JOIN message. That server must update its stable stor-
 age with the new group membership. When that server has returned an
 REPLY-COMMIT-GROUP-JOIN message with an ACK, then the server has
 joined the group. However, the joining server SHOULD also send
 REQUEST-COMMIT-GROUP-JOIN messages to all remaining servers in the
 group.

 Upon receipt of a REQUEST-COMMIT-GROUP-JOIN message, the current pro-
 posal is compared with the data in the REQUEST-COMMIT-GROUP-JOIN mes-
 sage, and if it compares successfully, the proposed new group becomes
 the current group and the group specifier is changed. It returns
 REPLY-COMMIT-GROUP-JOIN and an ACK.

6.6. GROUP LEAVE

 The process of removing a server from a group is largely identical to
 that used in a GROUP JOIN and described above. It contains the same
 two phases -- "proposal" and "commit". The messages used are:
 REQUEST-PROPOSE-GROUP-LEAVE -> REPLY-PROPOSE-GROUP-LEAVE, and
 REQUEST-COMMIT-GROUP-LEAVE -> REPLY-COMMIT-GROUP-LEAVE.

 The only other change from GROUP JOIN above is that when sending
 REQUEST-PROPOSE-GROUP-LEAVE messages and REQUEST-COMMIT-GROUP-LEAVE
 messages, while they are sent to all servers in the current group
 (including the server who is supposed to be leaving the group), if no
 reply from the server leaving the group is received, it is not con-
 sidered an error.

 The messages are sent to the leaving server in order to help preserve
 correct operation in the event that server is still operational.

 If a server receives a REQUEST-COMMIT-GROUP-LEAVE message from
 another server where the group defined does not include itself, it
 will cease operations on the address pools associated with that
 group.

 A server must be removed from a group by another server which is cur-
 rently a member of that group.

Droms & Kinnear [Page 33]

DRAFT April 1997

7. Protocol Actions

 This section gives the definitive details on the response a server
 should make to the receipt of various messages. The messages are
 grouped into three sections:

 1. DHCP Client Messages and Events

 These are the messages that normally flow from a DHCP client to
 DHCP servers. This section explains the actions required by the
 inter-server protocol for each DHCP client message.

 2. Address Information Messages

 This section explains the required responses to Address Informa-
 tion messages.

 3. Configuration Messages

 This section explains the required responses to Configuration
 Messages.

7.1. DHCP Client Messages and Events

 This section details the actions to be taken in response to the mes-
 sages that may be received by a DHCP server from a DHCP client.

 DISCUSSION:

 There is considerable commonality in the sections that describe
 the various DHCP client messages below. Once the details have
 stabilized, it should be possible to compress the explanations.

7.1.1. DISCOVER

 Prior to the receipt of a DISCOVER message, each server should have
 built of a list of BINDABLE IP addresses -- for two reasons. First,
 because a COMPLETE POLL is required to get a BINDABLE IP address, and
 a COMPLETE POLL may not be possible due to server failure at any
 given instant. Second, because even if a COMPLETE POLL were possi-
 ble, it would be unwise to require such an operation between a
 receipt of a DISCOVER message and the response of an OFFER to a
 client.

 There are several cases involved in processing a DISCOVER request,
 depending on the state of the requested IP address in the DISCOVER

Droms & Kinnear [Page 34]

DRAFT April 1997

 request:

 o No specific IP address requested.

 Offer a BINDABLE address to the client. Record that this address
 was offered in the cache memory of the server, but there is no
 need to update the stable storage of the server with any informa-
 tion. The IP address continues to be BINDABLE.

 o Requested IP address is UNBINDABLE.

 If the IP address is UNBINDABLE, then perform a COMPLETE POLL
 operation in an attempt to make the IP address BINDABLE. If the
 operation is successful, then respond as though the IP address
 were BINDABLE, below. If the results of the attempt to make the
 IP address BINDABLE resulted in a discovery that the IP address
 is now BOUND, then respond as for BOUND, below. Otherwise (i.e.
 the IP address is BINDABLE for some other server, or no a com-
 plete POLL was not possible) then respond as above for "No spe-
 cific IP address requested".

 o Requested IP address is BINDABLE.

 Offer the IP address to the client. IP address remains BINDABLE.

 o Requested IP address is BOUND or EXPIRED.

 If the IP address is BOUND or EXPIRED to the requesting client,
 then offer it to the client. Otherwise, respond as in "No spe-
 cific IP address requested", above.

7.1.2. REQUEST/SELECTING

 The client uses a REQUEST/SELECTING to accept the offer of a lease
 made by a server. When a server receives such a message, and where
 the server-id option reflects the IP address of that server, then if
 the IP address is in the following states the server should respond
 in the following way:

 o UNBINDABLE

 If the IP address is UNBINDABLE, then perform a COMPLETE POLL
 operation in an attempt to make the IP address BINDABLE. If the
 operation is successful, then respond as though the IP address
 were BINDABLE, below. If the results of the attempt to make the
 IP address BINDABLE resulted in a discovery that the IP address
 is now BOUND, then respond as for BOUND, below. Otherwise (i.e.

Droms & Kinnear [Page 35]

DRAFT April 1997

 the IP address is BINDABLE for some other server, or no a com-
 plete POLL was not possible) NAK the REQUEST.

 o BINDABLE

 If the IP address is BINDABLE and has been offered to the
 requester, then bind the IP address to the client, set the IP
 address BOUND, and update stable storage. Then, ACK the client,
 and finally perform a PUSH operation of the binding information
 to the other servers.

 o BOUND or EXPIRED

 If the IP address is BOUND or EXPIRED to the requesting client,
 set the IP address to be BOUND, update the expiration time,
 update stable storage, and ACK the client. Finally, perform a
 PUSH operation of the updated binding information to the other
 servers.

 If the IP address is BOUND or EXPIRED to some other client, then
 NAK the request.

7.1.3. REQUEST/INIT-REBOOT

 The client uses a REQUEST/INIT-REBOOT to query the server (as part of
 the client boot process) to determine if a "remembered" binding is
 still valid. If the requested IP address will be in one of the fol-
 lowing states:

 o UNBINDABLE

 If the IP address is UNBINDABLE, then perform a COMPLETE POLL
 operation in an attempt to make the IP address BINDABLE. If the
 operation is successful, then respond as though the IP address
 were BINDABLE, below. If the results of the attempt to make the
 IP address BINDABLE resulted in a discovery that the IP address
 is now BOUND, then respond as for BOUND, below. Otherwise (i.e.
 the IP address is BINDABLE for some other server, or a complete
 POLL was not possible) NAK the REQUEST.

 DISCUSSION:

 This means that if a server creates a binding for a client and
 fails to PUSH the information to any other server prior to
 undergoing a server failure, and if the client is powered off
 prior to the time when it will issue a REBINDING message, it
 will not get back the same lease when it is powered back on.

Droms & Kinnear [Page 36]

DRAFT April 1997

 The reasoning for this (and the difference from the REBINDING
 case below) is that in this case the server has no way to
 determine if the requested address in the INIT-REBOOT request
 is current or perhaps very old indeed. In the REBINDING case
 the client is currently using the address, so the client at
 least believes that it is current and not in use by some other
 client. In this case, however, no such assumption is possi-
 ble.

 In the case where a server which creates a binding fails prior to
 PUSHing the information about a lease to some other server, and
 the client which receives that binding makes it to a REBINDING
 request prior to either failing or being shutdown, it will get
 back the existing binding upon restart and INIT-REBOOT -- since
 the REBINDING will have caused a recovery of the binding informa-
 tion and that will have been distributed through a PUSH.

 o BINDABLE

 If the IP address is BINDABLE, then bind the IP address to the
 client, set the IP address BOUND, and update stable storage.
 Then, ACK the client, and finally perform a PUSH operation of the
 binding information to the other servers.

 o BOUND or EXPIRED

 If the IP address is BOUND or EXPIRED to the requesting client
 then set the IP address BOUND, update the expiration time, update
 stable storage, and ACK the client. Finally, perform a PUSH
 operation of the updated binding information to the other
 servers. If the IP address is BOUND or EXPIRED to some other
 client, then NAK the request.

7.1.4. REQUEST/RENEWING

 Upon receipt of a RENEWAL message (which is unicast from the client
 to the server), it is expected that the server will have accurate
 information concerning the binding of the client.

 Perform the following actions if the IP address being renewed (i.e.
 the IP address in ciaddr) is in one of these states:

 o UNBINDABLE

 If the IP address is UNBINDABLE, then perform a COMPLETE POLL
 operation in an attempt to make the IP address BINDABLE. If the
 operation is successful, then respond as though the IP address

Droms & Kinnear [Page 37]

DRAFT April 1997

 were BINDABLE, below. If the results of the attempt to make the
 IP address BINDABLE resulted in a discovery that the IP address
 is now BOUND, then respond as for BOUND, below.

 If the IP address is determined to be BINDABLE for some other
 server, then NAK the request, and set the IP address to be
 UNAVAILABLE since this likely represents a duplicate allocation
 of an IP address (see Section 10, Open Questions, for details).

 Otherwise NAK the request.

 o BINDABLE

 If the IP address is BINDABLE, then bind the IP address to the
 client, set the IP address BOUND, and update stable storage.
 Then, ACK the client, and finally perform a PUSH operation of the
 binding information to the other servers.

 o BOUND or EXPIRED

 If the IP address is BOUND or EXPIRED to the requesting client
 then update the expiration time, update stable storage, and ACK
 the client. Finally, perform a PUSH operation of the updated
 binding information to the other servers.

 If the IP address is BOUND or EXPIRED to some other client, then
 NAK the request.

 Set the IP address to be UNAVAILABLE since this likely represents
 a duplicate allocation of an IP address (see Section 10, Open
 Questions, for details).

7.1.5. REQUEST/REBINDING

 Upon receipt of a REBINDING message (which is broadcast from the
 client), the server will check to the state of the address requested
 for rebinding (i.e. the ciaddr). There are several cases possible:

 o UNBINDABLE

 If the IP address is UNBINDABLE, then perform a COMPLETE POLL
 operation in an attempt to make the IP address BINDABLE. If the
 operation is successful, then respond as though the IP address
 were BINDABLE, below. If the results of the attempt to make the
 IP address BINDABLE resulted in a discovery that the IP address
 is now BOUND, then respond as for BOUND, below.

Droms & Kinnear [Page 38]

DRAFT April 1997

 If the IP address is determined to be BINDABLE for some other
 server, then NAK the request. Set the IP address to be UNAVAIL-
 ABLE since this likely represents a duplicate allocation of an IP
 address (see Section 10, Open Questions, for details).

 If no information is returned from any server that this IP
 address is anything but UNBINDABLE, then consider the address
 BOUND to this client, and proceed as in BOUND below.

 DISCUSSION:

 This is one of the key points of the inter-server protocol.
 In this case, a server has created a binding and then failed
 prior to telling any other server about that binding. Eventu-
 ally, the client to whom that binding was made will attempt a
 REQUEST/REBINDING and contact a different server. That dif-
 ferent server will be able to determine nothing about that IP
 address. As far as can be determined, it is not BOUND to any
 client, and it is not BINDABLE for any other server. In this
 restricted case, the server will renew the lease for the
 client and move the IP address into the BOUND state -- and
 PUSH this information to the rest of the servers.

 How can this be safe? Well, remember that the client is
 presently using the IP address to make this request. In this
 limited case where a server crashes before PUSHing information
 about a BOUND IP address to any other server, the client to
 whom the IP address is BOUND is the only running machine with
 any record of that binding. In this case, the DHCP servers
 will accept that client's information about the binding as
 correct.

 o BINDABLE

 If the IP address is BINDABLE, then bind the IP address to the
 client, set the IP address BOUND, and update stable storage.
 Then, ACK the client, and finally perform a PUSH operation of the
 binding information to the other servers.

 o BOUND or EXPIRED

 If the IP address is BOUND or EXPIRED to the requesting client
 then update the expiration time, update stable storage, and ACK
 the client. Finally, perform a PUSH operation of the updated
 binding information to the other servers.

 If the IP address is BOUND or EXPIRED to some other client, then
 NAK the request.

Droms & Kinnear [Page 39]

DRAFT April 1997

 Set the IP address to be UNAVAILABLE since this likely represents
 a duplicate allocation of an IP address (see Section 10, Open
 Questions, for details).

7.1.6. RELEASE

 When a RELEASE is received, an IP address will be in one of the fol-
 lowing states:

 o UNBINDABLE

 If the IP address is UNBINDABLE, then perform a POLL operation in
 an attempt to determine if this IP address is BOUND to any
 client.

 If the results of the POLL operation indicate that the IP address
 is now BOUND, then respond as for BOUND, below.

 If the IP address is determined to be BINDABLE for some other
 server, then NAK the request. Set the IP address to be UNAVAIL-
 ABLE since this likely represents a duplicate allocation of an IP
 address (see Section 6, Open Questions, for details).

 Otherwise, ignore the RELEASE.

 o BINDABLE

 If the IP address is BINDABLE, ignore the RELEASE.

 o BOUND or EXPIRED

 If the IP address is BOUND or EXPIRED to the requesting client
 set the IP address to be UNBINDABLE, update stable storage, and
 PUSH the information to the other servers.

7.1.7. Lease Period Expiration

 When the lease period on a BOUND IP address expires, set the IP
 address to be EXPIRED and update stable storage.

7.2. Address Information Messages

Droms & Kinnear [Page 40]

DRAFT April 1997

7.2.1. REQUEST-ADDRESS-INFORMATION

 Build a REPLY-ADDRESS-INFORMATION message with binding information
 about each requested IP address.

7.2.2. REPLY-ADDRESS-INFORMATION

 Compare the information received in the REPLY-ADDRESS-INFORMATION
 message with the information held in by this server. Determine the
 "most recent" information in the following way:

 Compare the current most recent binding data (known as the current
 data) to binding data just received from the requesting server (known
 as the new data). If the new last transaction time is:

 o Later than the current time

 Replace the current data with the new data.

 o Eearlier than the current time

 Leave the current data intact.

 o within epsilon (value TBD) of the current time

 If the responding server for the new data matches the last
 transaction server in the new data and the last transaction
 server in the current data, replace the current data with the
 new data.

 Otherwise, compare the last transactions. If they are the same,
 use the data that corresponds with the longest lease time. If
 they are different, use the data whose corresponding last trans-
 action appears first in the list of possible last transactions
 in Section 5.2.1.

 DISCUSSION:

 This situation with multiple address information responses (or
 requests) with essentially identical transaction times would occur
 because several servers sent out a response to a broadcast REBIND-
 ING request, and the lease period was not configured the same on
 all of them. There is absolutely no way to determine which of the
 ACK's the client accepted, and so using the information from the
 server which sent the latest lease expiration time is the only
 prudent course.

Droms & Kinnear [Page 41]

DRAFT April 1997

7.2.3. REQUEST-ADDRESS-INFORMATION-BINDABLE

 For each IP address in the message, if that IP address is currently
 EXPIRED, set it to UNBINDABLE and update stable storage prior to
 building the REPLY-ADDRESS-INFORMATION message. Then build a REPLY-
 ADDRESS-INFORMATION message with binding information about each
 requested IP address.

7.2.4. REQUEST-UPDATE-ADDRESS-INFORMATION

 Compare the binding data received in this message with the current
 binding information held by this server using the algorithm listed in
 REPLY-ADDRESS-INFORMATION, above.

 If the new information is more recent than the current information,
 replace the current information and return a REPLY-UPDATE-ADDRESS-
 INFORMATION message with an ACK.

 If the new information is not more recent than the current informa-
 tion, return the current information in a REPLY-UPDATE-ADDRESS-
 INFORMATION with a NAK-DATA.

7.2.5. REPLY-UPDATE-ADDRESS-INFORMATION

 If the result is an ACK, do nothing.

 If the result is a NAK-DATA, compare the binding data received in
 this message with the current binding information held by this server
 using the algorithm in REPLY-ADDRESS-INFORMATION above. If the new
 information is more recent than the current information, replace the
 current information. Otherwise do nothing.

7.2.6. REQUEST-ADDRESS-INFORMATION-DUMP

 Iterate though all of the IP addresses associated with this group,
 and send REQUEST-UPDATE-ADDRESS-INFORMATION messages to the request-
 ing server. When this operation is complete, send a REPLY-ADDRESS-
 INFORMATION-DUMP with an ACK to the requesting server.

7.2.7. REPLY-ADDRESS-INFORMATION-DUMP

 Mark the dump in progress complete.

Droms & Kinnear [Page 42]

DRAFT April 1997

7.2.8. REQUEST-BINDABLE-ADDRESS

 Build a REPLY-BINDABLE-ADDRESS message with TBD BINDABLE addresses.
 Set all of those addresses to be UNBINDABLE in this server, and prior
 to sending the message, update stable storage with the new state of
 these IP addresses.

7.2.9. REPLY-BINDABLE-ADDRESS

 Add the BINDABLE IP addresses in the message to the list of BINDABLE
 IP addresses and update stable storage with this list.

7.3. Configuration Messages

7.3.1. REQUEST-GROUPS | REPLY-GROUPS

 Respond with a REPLY-GROUPS message.

7.3.2. REQUEST-GROUP-CONFIG | REPLY-GROUP-CONFIG

 Respond with the group configuration in a REPLY-GROUP-CONFIG.

7.3.3. REQUEST-GROUP-MEMBERSHIP | REPLY-GROUP-MEMBERSHIP

 Respond with the group membership in a REPLY-GROUP-MEMBERSHIP mes-
 sage.

7.3.4. REQUEST-PROPOSE-GROUP-JOIN | REPLY-PROPOSE-GROUP-JOIN

 If there is an existing active proposal (i.e. one that has not timed
 out), reply with REPLY-PROPOSE-GROUP-JOIN and a NAK. Note that there
 is only one active proposal per group per server -- and that it is
 used by both the JOIN and LEAVE messages.

 If there is no existing active proposal or if the existing active
 proposal is from the sending server of the REQUEST-PROPOSE-GROUP-
 JOIN, then create a new (or updated) proposal and start (restart) the
 timer for that proposal. In that new proposal, increment the group
 sequence number.

Droms & Kinnear [Page 43]

DRAFT April 1997

7.3.5. REQUEST-COMMIT-GROUP-JOIN | REPLY-COMMIT-GROUP-JOIN

 Make the outstanding proposal the current proposal. Reply with a
 REPLY-COMMIT-GROUP-JOIN message and an ACK.

7.3.6. REQUEST-PROPOSE-GROUP-LEAVE | REPLY-PROPOSE-GROUP-LEAVE

 If there is an existing active proposal (i.e. one that has not timed
 out), reply with REPLY-PROPOSE-GROUP-LEAVE and a NAK. Note that
 there is only one active proposal per group per server -- and that it
 is used by both the JOIN and LEAVE messages.

 If there is no existing active proposal or if the existing active
 proposal is from the sending server of the REQUEST-PROPOSE-GROUP-
 LEAVE, then create a new (or updated) proposal and start (restart)
 the timer for that proposal. In that new proposal, increment the
 group sequence number.

7.3.7. REQUEST-COMMIT-GROUP-LEAVE | REPLY-COMMIT-GROUP-LEAVE

 Make the outstanding proposal the current proposal. Reply with a
 REPLY-COMMIT-GROUP-JOIN message and an ACK.

8. IP Address State Transitions

 The possible states of an IP address were defined in Section 3.2.2,
 and the state transition diagram appears there. The state transi-
 tions though which an IP address can move were discussed implicitly
 in Section 7 in the context of the receipt of DHCP messages from DHCP
 clients. However, an explicit examination of the processing required
 of a server by this protocol on each of the state transitions will
 serve to highlight some important aspects of this protocol.

 The IP address state transitions are handled in the following way:

 o UNBINDABLE -> BINDABLE

 A fundamental point and guarantee of this state transition dia-
 gram is that for an IP address to move from the UNBINDABLE state
 (where it is not owned by any server) to the BINDABLE state
 (where it is owned by a single server) requires the server seek-
 ing to own the IP address to contact all of the other servers in
 the group. It requires a COMPLETE POLL.

Droms & Kinnear [Page 44]

DRAFT April 1997

 The server attempting to move an IP address from the UNBINDABLE
 to the BINDABLE state must ask every other server in the group if
 it believes that the IP address is currently UNBINDABLE. If any
 server says that the IP address is either BINDABLE (i.e. it cur-
 rently owns the IP address) or BOUND (i.e. a client currently
 owns the IP address), then the server attempting to move the IP
 address from the UNBINDABLE to BINDABLE state MUST abandon the
 attempt.

 DISCUSSION:

 In addition (and this is important!) if the server attempting
 to move the IP address from the UNBINDABLE to the BINDABLE
 state fails to hear from some other server, then the attempt
 cannot complete. This means that if a server cannot communi-
 cate with every other server (due to communications failure,
 transient server failure, or network partition) then this
 state transition cannot be made.

 Thus, all addresses in the UNBINDABLE state will stay in that
 state while any server in the group is out of communication with
 the group for any reason at all.

 Of course, the detailed description of the protocol suggests that
 a server build up a supply of BINDABLE IP addresses so that in
 the event of server failure it has BINDABLE addresses that are
 available to offer to new DHCP clients.

 o BINDABLE -> BOUND

 Once an IP address is BINDABLE it may be BOUND to a client
 through the normal actions of the DHCP protocol. Once a server
 has received a DHCPREQUEST/SELECTING message from a client it can
 move the IP address into the BOUND state, update its stable stor-
 age, and reply with a DHCPACK message to the client.

 After the DHCPACK has been sent, the DHCP server MUST also
 attempt to update all servers in the group with information indi-
 cating that the IP address is now BOUND to a particular client.
 It must perform a PUSH operation with this information.

 DISCUSSION:

 In an ideal world, the server who created the binding would
 always succeed in updating all other servers in the group with
 the binding information. Then, in the event that the binding
 server failed at some later time, another server to whom the
 client could broadcast would receive a DHCPREQUEST/REBINDING

Droms & Kinnear [Page 45]

DRAFT April 1997

 request and could reply with updated binding information.

 However, there is obviously a window where a server can crash
 after sending a DHCPACK and prior to updating even one additional
 server. This protocol has been designed so that not only is the
 process of updating all of the servers in the group with informa-
 tion concerning a new binding "lazy" (i.e. performed after the
 actual binding is made), but also unnecessary for correct opera-
 tion. The protocol only requires that a server try to update the
 other servers -- not that it succeed at updating even one server.

 The protocol accomplishes this by allowing a server to respond to
 a DHCPREQUEST/REBINDING message from a client without any infor-
 mation having been propagated from the server who created the
 binding. Thus, a server who receives a rebinding request for an
 IP address about which it has no information must check with all
 available servers in the group, but in the absence of information
 to the contrary arriving within a relatively short timeout
 period, the server should respond to the rebinding request with
 an extension of the existing lease on the IP address.

 o BINDABLE -> UNBINDABLE

 A server can relinquish an IP address in the BINDABLE state that
 it owns simply by responding to requests for information about
 the IP address as if it were UNBINDABLE. No explicit action need
 be taken other than to respond correctly to POLL operations from
 other servers.

 o BOUND -> UNBINDABLE

 In order for an IP address to move from the BOUND to the UNBIND-
 ABLE state, client that owns the IP address (i.e. to which it is
 BOUND) must send a DHCPRELEASE message. In this case, the
 receiving server (which may or may not be the server who created
 original binding) will update its stable storage with information
 that the IP address is not currently BOUND by any client. It
 should then transmit this information to all other servers to
 which it can communicate at that time by performing a PUSH opera-
 tion.

 In the event that the server fails to update any other server
 with the new information about the IP address prior to undergoing
 some failure, then the worst that will happen is that the other
 servers will believe that an IP address is in the BOUND state
 when it need not be. Ultimately the lease on the IP address will
 expire.

Droms & Kinnear [Page 46]

DRAFT April 1997

 o BOUND -> EXPIRED

 Any server which has information concerning a BOUND IP address
 may determine that the lease on the IP address has expired, and
 after an appropriate grace period has elapsed, that the IP
 address should be EXPIRED.

 o EXPIRED -> UNBINDABLE

 In this case, all the server need do is to respond to request for
 information on this IP address in such a way that it is clear
 that (as far as this server knows) no client is using the IP
 address. If any server asks for information concerning this IP
 address, then the receiving server should set the IP address to
 be UNBINDABLE, update its stable storage, and respond to the
 requesting server.

 o EXPIRED -> BOUND

 If a server receives a message from a client and the IP address
 is EXPIRED, but was last BOUND to that client, then the IP
 address can be moved back into the BOUND state. This is possible
 because no other server can have attempted to make this IP
 address BINDABLE. If it had, the IP address would not be in the
 EXPIRED state anymore, but in the UNBINDABLE state (see the
 EXPIRED -> UNBINDABLE transition above).

9. Server Initialization

 With regard to the inter-server protocol, there are two distinct
 forms of server initialization. Remember that group membership is
 persistent -- i.e. saved in stable storage. Given this, whenever a
 server initializes itself, it either has a record in its persistent
 storage of being a member of a group or it doesn't. Each of these
 cases is described below.

9.1. No record of any group membership.

 Use the technique in Section 6.4, Determining the Available Groups,
 determine the groups to which the server should belong.

 Use the GROUP JOIN technique from Section 6.5 to join the appropriate
 groups.

 Then use the address information messages to build up a list of BIND-
 ABLE IP addresses, one for each address pool in each group.

Droms & Kinnear [Page 47]

DRAFT April 1997

 If insufficient IP addresses can be obtained using that technique,
 use the TRANSFER technique from Section 6.3 to acquire some BINDABLE
 IP addresses from some other server in the group.

 DISCUSSION:

 Just how many IP addresses should a server acquire? First, it
 should be configurable for each server. Second, it appears that
 all of the addresses should be acquired by one server or another.
 In any of the possible failure modes, it is better that the
 addresses not be UNBINDABLE -- since during transient server fail-
 ure the UNBINDABLE addresses will stay that way.

 The server should then initiate a DUMP operation (see Section 6.2)
 from each server in the group.

9.2. The server believes that it is currently the member of a group.

 It is assumed that the list of groups to which this server belongs is
 held in stable storage. Thus group membership is persistent.

 When a server is restarted for any reason, for all of the groups for
 which it believes that it is currently a member, it should send
 REQUEST-GROUP-MEMBERSHIP messages to the a server in that group. It
 should use the reply to determine if it is or is not a member of that
 group, and take the appropriate action:

 o Still a member of the group

 The server should update its group specifier.

 It should revalidate the list of BINDABLE leases owned by this
 server if possible using a series of COMPLETE POLL operations
 (see Section 6.1). If responses cannot be obtained from all of
 the other group members, then assume that the current list of
 BINDABLE leases is all right.

 For every IP address where the current server is listed as the
 "last transaction server" in the state, use a POLL operation to
 determine the latest information about that IP address.

 Request a DUMP operation from each server in the group. This
 will cause each server to update the requester with address
 information messages for all bindings for which that server is
 listed as the last transaction server.

Droms & Kinnear [Page 48]

DRAFT April 1997

 o Not currently a member of the group

 The server should drop its current list of BINDABLE IP addresses
 associated with this group.

 The server should verify that the group is still the same group,
 i.e. that it still is associated with the same subnets. If it
 is, it should rejoin the group.

 It should rebuild its list of BINDABLE IP addresses using a COM-
 PLETE POLL operation.

 Request a DUMP operation from each server in the group. This
 will cause each server to update the requester with address
 information messages for all bindings for which that server is
 listed as the last transaction server.

10. Open questions

 The following open questions set off by the "*" character remain from
 the original draft: draft-ietf-dhc-interserver-00.txt. Comments
 have been added in square brackets []. Additional open questions new
 to draft: draft-ietf-dhc-interserver-01.txt are listed with the "o"
 character.

 * Are these the only cases in which binding information may become
 out of date?

 * Are these solutions correct?

 * INIT case needs EXISTING/NEW binding option [done]

 * Because of the "lazy synchronization" of DHCP servers, it is pos-
 sible that some servers may know about an existing binding while
 others do not. As an optimization, DHCP clients should be able
 to select between existing bindings and new bindings in DHCPOFFER
 messages from servers. A new option could be defined to indicate
 to the client whether a DHCPOFFER message represents a new or an
 existing binding.

 [A great idea, but requires client changes to be really effec-
 tive. Still, no reason not to put it in the servers now.]

 * Each server must know all other servers.

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-interserver-01.txt

Droms & Kinnear [Page 49]

DRAFT April 1997

 Requiring each server to know about every other server imposes
 additional administrative overhead in the configuration of DHCP
 servers. However, this configuration overhead is probably mini-
 mal relative to any other configuration required for DHCP
 servers.

 [The configuration messages provide a step towards an answer
 here.]

 * Each server must contact all other servers before reassigning an
 address.

 [This is fundamental if we wish to use the "lazy synchronization"
 above -- you can't get one without the other.]

 There is a potential issue here in which no new DHCP clients can
 be configured if any of the DHCP servers cannot be contacted.
 Servers can mitigate this problem by maintaining a list of pre-
 checked addresses that can be allocated without contacting all
 other servers at the time of address allocation.

 The protocol may need additional definition of specific actions
 on the part of DHCP servers in response to situations in which a
 server cannot contact all other servers. [Added a lot of these
 in this draft.]

 * Servers cooperating to achieve "fair" distribution of available
 addresses.

 The protocol may need additional mechanisms or definition of
 default behavior through which servers cooperate among themselves
 to ensure that each has a sufficient pool of prechecked-addresses
 on each network.

 [Not yet addressed, and needs work.]

 * User intervention in case of database incoherency.

 Fixing the collective database on the DHCP servers in case of a
 problem could be a *real* nightmare.

 * Potential deadlock in checking address - suppose two servers
 check the same address for reassignment simultaneously?

 [Needs some work, but easily solved by a bit of work in the
 address information messages specification.]

Droms & Kinnear [Page 50]

DRAFT April 1997

 * Potential configuration for new server?

 One ancillary use of the inter-server protocol might be in con-
 figuring new DHCP servers. Suppose the inter-server protocol
 were extended to allow download of a server's configuration file
 and to allow addition of a new server to the list of DHCP
 servers. A new server might be configured by simply giving it
 the address of an existing server. The new server could then
 download a list of all other known servers, the pool of candidate
 addresses, any special configuration information (e.g., vendor
 class information) and the existing bindings. The new server
 could also announce itself to all of the other existing servers.

 [Pieces of this are in the current draft, principally in the con-
 figuration messages. At this stage, a server can figure out
 which groups correspond with which subnets -- and can therefore
 determine which groups it wishes to join. It must have a priori
 configuration information about the allocatable IP addresses for
 each subnet, and all other configuration information.

 Downloading configuration files would not be a great idea for
 servers which don't use configuration files. I do believe that
 we could easily extend the configuration messages to support
 information about ranges of addresses in each subnet, and go a
 long way toward not only making the protocol more flexible but
 also more correct.]

 * DHCP server maintenance

 There is likely an opportunity for the development of a server
 management tool that would download the database information from
 all servers and check for conflicts/inconsistencies such as
 assignment of an IP address to multiple clients, bindings that
 are not replicated across all servers, bindings that have incon-
 sistent lease expiration times, etc.

 o Group-id selection.

 The group-id's for various groups need to be sufficiently unique
 that no server will ever be a member of two groups with the same
 group-id. No mechanism is provided yet in this protocol to gen-
 erate group-id's which conform to this requirement.

 Possibly a group-id can be synthesized in some manner to ensure
 that they conform to this requirement.

 o The original draft discussed the requirement for each server to
 have a synchronized clock using available time synchronization

Droms & Kinnear [Page 51]

DRAFT April 1997

 protocols. That requirement has been removed in this draft, and
 in its place all times are sent in "seconds from now" as a signed
 32 bit number. There is clearly a bit of additional complexity
 required to do this, but I have been so impressed at how well
 DHCP works with "relative" instead of "absolute" time that I felt
 the complexity of using relative time worth it (since using syn-
 chronized time is not without its own complexities).

 o There is clearly a need to batch multiple updates, and litle men-
 tion has yet been made as to how to achieve that batch operation.

 o What should the actual packet format look like?

 There is nothing in this draft which specifies the details of the
 packet format. One approach would be to format the packets as a
 small delta from the current DHCP packets, and use presently one
 or more undefined dhcp-message-type values for the different pro-
 tocol messages. The data in the packets could be easily format-
 ted as options. All current DHCP servers have parsers built in
 which can handle the current packet formats, and so why invent
 yet another format when this one will do as well?

 o Do we really need TCP?

 Certainly the initial focus on this protocol has all of the
 servers using TCP to each other. Within the confines of the
 actual draft I have not altered that approach, although I feel
 that UDP packets would be as effective. The gains from having a
 connection "always up" seem to me to be outweighed by the diffi-
 culty of keeping a connection "always up" in the face of tran-
 sient server failures. With proper care, idempotent UDP packets
 can solve the problems this protocol needs to solve with no addi-
 tional complexity beyond retransmission timeouts -- which are
 needed anyway if a server is down and the TCP connection is bro-
 ken.

 o UNAVAILABLE IP addresses

 There are several cases where a server can determine that some
 sort of serious error has occurred, and apparently an IP address
 is in an inconsistent state. In these cases, the server should
 make the IP address UNAVAILABLE -- i.e. no other server should be
 able to operate on it. Just what is necessary to make this hap-
 pen? Could it be a passive response to address information mes-
 sages, or must it involve a complete push to all of the other
 servers, and a new IP address state?

Droms & Kinnear [Page 52]

DRAFT April 1997

11. Acknowledgments

 Many of the ideas in this proposal are due to Jeff Mogul, Greg Min-
 shall, Rob Stevens, Walt Wimer, Ted Lemon and the DHC working group.
 Thanks to all who have contributed their ideas and participated in
 the discussion of the inter-server protocol.

 At American Internet, Brad Parker and Mark Stapp have been key con-
 tributors to the design discussions that have resulted in our contri-
 butions to the this draft. They have each invested many hours of
 work in this protocol.

12. References

 [1] Droms, R., "draft-ietf-dhc-dhcp-09.txt", Work in progress,
 December 1996.

13. Security Considerations

 Minimal security would be provided by configuring every server in a
 group with the IP addresses of the allowable servers that could ever
 join that group.

 Other, more powerful security approaches are TBD.

14. Author's information

 Ralph Droms
 Computer Science Department
 323 Dana Engineering
 Bucknell University
 Lewisburg, PA 17837

 Phone: (717) 524-1145
 EMail: droms@bucknell.edu

 Kim Kinnear
 American Internet Corporation
 4 Preston Ct.
 Bedford, MA 01730-2334

 Phone: (617) 276-4587
 EMail: kinnear@american.com

https://datatracker.ietf.org/doc/html/draft-ietf-dhc-dhcp-09.txt

Droms & Kinnear [Page 53]

