
dice H. Tschofenig, Ed.
Internet-Draft ARM Ltd.
Intended status: Standards Track T. Fossati
Expires: September 9, 2015 Alcatel-Lucent
 March 8, 2015

A TLS/DTLS Profile for the Internet of Things
draft-ietf-dice-profile-10.txt

Abstract

 A common design pattern in Internet of Things (IoT) deployments is
 the use of a constrained device that collects data via sensor or
 controls actuators for use in home automation, industrial control
 systems, smart cities and other IoT deployments.

 This document defines a Transport Layer Security (TLS) and Datagram
 TLS (DTLS) 1.2 profile that offers communications security for this
 data exchange thereby preventing eavesdropping, tampering, and
 message forgery. The lack of communication security is a common
 vulnerability in Internet of Things products that can easily be
 solved by using these well-researched and widely deployed Internet
 security protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Tschofenig & Fossati Expires September 9, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TLS/DTLS IoT Profile March 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. TLS/DTLS Protocol Overview 4
4. Communication Models . 5
4.1. Constrained TLS/DTLS Clients 6
4.2. Constrained TLS/DTLS Servers 13

5. The Ciphersuite Concept 18
6. Credential Types . 19
6.1. Pre-Shared Secret . 19
6.2. Raw Public Key . 21
6.3. Certificates . 23

7. Signature Algorithm Extension 27
8. Error Handling . 28
9. Session Resumption . 29
10. Compression . 30
11. Perfect Forward Secrecy 30
12. Keep-Alive . 31
13. Timeouts . 33
14. Random Number Generation 34
15. Truncated MAC and Encrypt-then-MAC Extension 35
16. Server Name Indication (SNI) 35
17. Maximum Fragment Length Negotiation 36
18. Session Hash . 36
19. Re-Negotiation Attacks 36
20. Downgrading Attacks . 37
21. Crypto Agility . 38
22. Key Length Recommendations 39
23. False Start . 39
24. Privacy Considerations 40
25. Security Considerations 41
26. IANA Considerations . 41
27. Acknowledgements . 41
28. References . 42
28.1. Normative References 42
28.2. Informative References 43

Appendix A. Conveying DTLS over SMS 49

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Tschofenig & Fossati Expires September 9, 2015 [Page 2]

Internet-Draft TLS/DTLS IoT Profile March 2015

A.1. Overview . 49
A.2. Message Segmentation and Re-Assembly 50
A.3. Multiplexing Security Associations 50
A.4. Timeout . 51

Appendix B. DTLS Record Layer Per-Packet Overhead 52
Appendix C. DTLS Fragmentation 53

 Authors' Addresses . 53

1. Introduction

 An engineer developing an Internet of Things (IoT) device needs to
 investigate the security threats and decide about the security
 services that can be used to mitigate these threats.

 Enabling IoT devices to exchange data often requires authentication
 of the two endpoints and the ability to provide integrity- and
 confidentiality-protection of exchanged data. While these security
 services can be provided at different layers in the protocol stack,
 the use of Transport Layer Security (TLS)/Datagram TLS (DTLS) has
 been very popular with many application protocols and it is likely to
 be useful for IoT scenarios as well.

 Fitting Internet protocols into constrained devices can be difficult
 but thanks to the standardization efforts new profiles and protocols
 are available, such as the Constrained Application Protocol (CoAP)
 [RFC7252]. UDP is mainly used to carry CoAP messages but other
 transports can be utilized, such as SMS or even TCP.

 While the main goal for this document is to protect CoAP messages
 using DTLS 1.2 [RFC6347] the information contained in the following
 sections is not limited to CoAP nor to DTLS itself.

 Instead, this document defines a profile of DTLS 1.2 [RFC6347] and
 TLS 1.2 [RFC5246] that offers communication security services for IoT
 applications and is reasonably implementable on many constrained
 devices. Profile thereby means that available configuration options
 and protocol extensions are utilized to best support the IoT
 environment. This document does not alter TLS/DTLS specifications
 and does not introduce any new TLS/DTLS extension.

 The main target audience for this document is the embedded system
 developer configuring and using a TLS/DTLS stack. This document may,
 however, also help those developing or selecting a suitable TLS/DTLS
 stack for an Internet of Things product.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246

Tschofenig & Fossati Expires September 9, 2015 [Page 3]

Internet-Draft TLS/DTLS IoT Profile March 2015

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "MUST", "MUST NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification refers to TLS as well as DTLS and particularly to
 version 1.2, which is the most recent version at the time of writing.
 We refer to TLS/DTLS whenever the text is applicable to both versions
 of the protocol and to TLS or DTLS when there are differences between
 the two protocols.

 Note that "Client" and "Server" in this document refer to TLS/DTLS
 roles, where the client initiates the handshake. This does not
 restrict the interaction pattern of the protocols on top of DTLS
 since the record layer allows bi-directional communication. This
 aspect is further described in Section 4.

RFC 7228 [RFC7228] introduces the notion of constrained-node
 networks, which are made of small devices with severe constraints on
 power, memory, and processing resources. The terms constrained
 devices, and Internet of Things (IoT) devices are used
 interchangeably.

 The terms "Certification Authority" (CA) and "Distinguished Name"
 (DN) are taken from [RFC5280]. The terms "trust anchor" and "trust
 anchor store" are defined in [RFC6024] as

 "A trust anchor represents an authoritative entity via a public
 key and associated data. The public key is used to verify digital
 signatures, and the associated data is used to constrain the types
 of information for which the trust anchor is authoritative."

 "A trust anchor store is a set of one or more trust anchors stored
 in a device. A device may have more than one trust anchor store,
 each of which may be used by one or more applications."

3. TLS/DTLS Protocol Overview

 The TLS protocol [RFC5246] provides authenticated, confidentiality-
 and integrity-protected communication between two endpoints. The
 protocol is composed of two layers: the Record Protocol and the
 Handshaking Protocols. At the lowest level, layered on top of a
 reliable transport protocol (e.g., TCP), is the Record Protocol. It
 provides connection security by using symmetric cryptography for
 confidentiality, data origin authentication, and integrity
 protection. The Record Protocol is used for encapsulation of various
 higher-level protocols. The handshaking protocols consist of three

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6024
https://datatracker.ietf.org/doc/html/rfc5246

Tschofenig & Fossati Expires September 9, 2015 [Page 4]

Internet-Draft TLS/DTLS IoT Profile March 2015

 sub-protocols, namely the handshake protocol, the change cipher spec
 protocol and the alert protocol. The handshake protocol allows the
 server and client to authenticate each other and to negotiate an
 encryption algorithm and cryptographic keys before the application
 protocol transmits or receives data.

 The design of DTLS [RFC6347] is intentionally very similar to TLS.
 However, since DTLS operates on top of an unreliable datagram
 transport, it must explicitly cope with the reliable and ordered
 delivery assumptions made by TLS. RFC 6347 explains these
 differences in great detail. As a short summary, for those not
 familiar with DTLS the differences are:

 o An explicit sequence number and an epoch field is included in the
 Record Protocol. Section 4.1 of RFC 6347 explains the processing
 rules for these two new fields. The value used to compute the MAC
 is the 64-bit value formed by concatenating the epoch and the
 sequence number.

 o Stream ciphers must not be used with DTLS. The only stream cipher
 defined for TLS 1.2 is RC4 and due to cryptographic weaknesses it
 is not recommended anymore even for use with TLS
 [I-D.ietf-tls-prohibiting-rc4]. Note that the term 'stream
 cipher' is a technical term in the TLS specification. Section 4.7
 of RFC 5246 defines stream ciphers in TLS as follows: in stream
 cipher encryption, the plaintext is exclusive-ORed with an
 identical amount of output generated from a cryptographically
 secure keyed pseudorandom number generator.

 o The TLS Handshake Protocol has been enhanced to include a
 stateless cookie exchange for Denial of Service (DoS) resistance.
 For this purpose a new handshake message, the HelloVerifyRequest,
 was added to DTLS. This handshake message is sent by the server
 and includes a stateless cookie, which is returned in a
 ClientHello message back to the server. Although the exchange is
 optional for the server to execute, a client implementation has to
 be prepared to respond to it. Furthermore, the handshake message
 format has been extended to deal with message loss, reordering,
 and fragmentation.

4. Communication Models

 This document describes a profile of DTLS and, to be useful, it has
 to make assumptions about the envisioned communication architecture.

 Two communication architectures (and consequently two profiles) are
 described in this document.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1
https://datatracker.ietf.org/doc/html/rfc5246#section-4.7
https://datatracker.ietf.org/doc/html/rfc5246#section-4.7

Tschofenig & Fossati Expires September 9, 2015 [Page 5]

Internet-Draft TLS/DTLS IoT Profile March 2015

4.1. Constrained TLS/DTLS Clients

 The communication architecture shown in Figure 1 assumes a unicast
 communication interaction with an IoT device utilizing a constrained
 TLS/DTLS client interacting with one or multiple TLS/DTLS servers.

 Before a client can initiate the TLS/DTLS handshake it needs to know
 the IP address of that server and what credentials to use.
 Application layer protocols, such as CoAP, which is conveyed on top
 of DTLS, may be configured with URIs of the endpoints to which CoAP
 needs to register and publish data. This configuration information
 (including credentials) may be conveyed to clients as part of a
 firmware/software package or via a configuration protocol. The
 following credential types are supported by this profile:

 o For PSK-based authentication (see Section 6.1), this includes the
 paired "PSK identity" and shared secret to be used with each
 server.

 o For raw public key-based authentication (see Section 6.2), this
 includes either the server's public key or the hash of the
 server's public key.

 o For certificate-based authentication (see Section 6.3), this
 includes a pre-populated trust anchor store that allows the DTLS
 stack to perform path validation for the certificate obtained
 during the handshake with the server.

 Figure 1 shows example configuration information stored at the
 constrained client for use with respective servers.

 This document focuses on the description of the DTLS client-side
 functionality but, quite naturally, the equivalent server-side
 support has to be available.

Tschofenig & Fossati Expires September 9, 2015 [Page 6]

Internet-Draft TLS/DTLS IoT Profile March 2015

 +////////////////////////////////////+
 | Configuration |
 |////////////////////////////////////|
 | Server A --> PSK Identity, PSK |
 | |
 | Server B --> Public Key (Server B),|
 | Public/Private Key |
 | (for Client) |
 | |
 | Server C --> Public/Private Key |
 | (for Client) |
 | Trust Anchor Store |
 +------------------------------------+
 oo
 oooooo
 o
 +-----------+
 |Constrained|
 |TLS/DTLS |
 |Client |-
 +-----------+ \
 \ ,-------.
 ,' `. +------+
 / IP-based \ |Server|
 (Network) | A |
 \ / +------+
 `. ,'
 '---+---' +------+
 | |Server|
 | | B |
 | +------+
 |
 | +------+
 +----------------->|Server|
 | C |
 +------+

 Figure 1: Constrained Client Profile.

4.1.1. Examples of Constrained Client Exchanges

4.1.1.1. Network Access Authentication Example

 Re-use is a recurring theme when considering constrained environments
 and is behind a lot of the directions taken in developments for
 constrained environments. The corollary of re-use is to not add
 functionality if it can be avoided. An example relevant to the use

Tschofenig & Fossati Expires September 9, 2015 [Page 7]

Internet-Draft TLS/DTLS IoT Profile March 2015

 of TLS is network access authentication, which takes place when a
 device connects to a network and needs to go through an
 authentication and access control procedure before it is allowed to
 communicate with other devices or connect to the Internet.

 Figure 2 shows the network access architecture with the IoT device
 initiating the communication to an access point in the network using
 the procedures defined for a specific physical layer. Since
 credentials may be managed and stored centrally, in the
 Authentication, Authorization, and Accounting (AAA) server, the
 security protocol exchange may need to be relayed via the
 Authenticator, i.e., functionality running on the access point, to
 the AAA server. The authentication and key exchange protocol itself
 is encapsulated within a container, the Extensible Authentication
 Protocol (EAP) [RFC3748], and messages are conveyed back and forth
 between the EAP endpoints, namely the EAP peer located on the IoT
 device and the EAP server located on the AAA server or the access
 point. To route EAP messages from the access point, acting as a AAA
 client, to the AAA server requires an adequate protocol mechanism,
 namely RADIUS [RFC2865] or Diameter [RFC6733].

 More details about the concepts and a description about the
 terminology can be found in RFC 5247 [RFC5247].

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5247

Tschofenig & Fossati Expires September 9, 2015 [Page 8]

Internet-Draft TLS/DTLS IoT Profile March 2015

 +--------------+
 |Authentication|
 |Authorization |
 |Accounting |
 |Server |
 |(EAP Server) |
 | |
 +-^----------^-+
 * EAP o RADIUS/
 * o Diameter
 --v----------v--
 /// \\\
 // \\
 | Federation |
 | Substrate |
 \\ //
 \\\ ///
 --^----------^--
 * EAP o RADIUS/
 * o Diameter
 +-------------+ +-v----------v--+
 | | EAP/EAP Method | |
 | Internet of |<***************************>| Access Point |
 | Things | |(Authenticator)|
 | Device | EAP Lower Layer and |(AAA Client) |
 | (EAP Peer) | Secure Association Protocol | |
 | |<--------------------------->| |
 | | | |
 | | Physical Layer | |
 | |<===========================>| |
 +-------------+ +---------------+
 Legend:

 <****>: Device-to-AAA Server Exchange
 <---->: Device-to-Authenticator Exchange
 <oooo>: AAA Client-to-AAA Server Exchange
 <====>: Physical layer like IEEE 802.11/802.15.4

 Figure 2: Network Access Architecture.

 One standardized EAP method is EAP-TLS, defined in RFC 5216
 [RFC5216], which re-uses the TLS-based protocol exchange and
 encapsulates it inside the EAP payload. In terms of re-use this
 allows many components of the TLS protocol to be shared between the
 network access security functionality and the TLS functionality
 needed for securing application layer traffic. In the EAP-TLS

https://datatracker.ietf.org/doc/html/rfc5216
https://datatracker.ietf.org/doc/html/rfc5216

Tschofenig & Fossati Expires September 9, 2015 [Page 9]

Internet-Draft TLS/DTLS IoT Profile March 2015

 exchange shown in Figure 3 the IoT device as the EAP peer acts as a
 TLS client.

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 TLS certificate_request,
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS certificate,
 TLS client_key_exchange,
 TLS certificate_verify,
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS change_cipher_spec,
 TLS finished)
 EAP-Response/
 EAP-Type=EAP-TLS ->
 <- EAP-Success

 Figure 3: EAP-TLS Exchange.

 The guidance in this document also applies to the use of EAP-TLS for
 network access authentication. An IoT device using a network access
 authentication solution based on TLS can re-use most parts of the
 code for the use of DTLS/TLS at the application layer thereby saving
 a significant amount of flash memory. Note, however, that the
 credentials used for network access authentication and those used for
 application layer security are very likely different.

Tschofenig & Fossati Expires September 9, 2015 [Page 10]

Internet-Draft TLS/DTLS IoT Profile March 2015

4.1.1.2. CoAP-based Data Exchange Example

 When a constrained client uploads sensor data to a server
 infrastructure it may use CoAP by pushing the data via a POST message
 to a pre-configured endpoint on the server. In certain circumstances
 this might be too limiting and additional functionality is needed, as
 shown in Figure 4, where the IoT device itself runs a CoAP server
 hosting the resource that is made accessible to other entities.
 Despite running a CoaP server on the IoT device it is still the DTLS
 client on the IoT device that initiates the interaction with the non-
 constrained resource server in our scenario.

 Figure 4 shows a sensor starting a DTLS exchange with a resource
 directory to register available resources.
 [I-D.ietf-core-resource-directory] defines the resource directory
 (RD) as a web entity that stores information about web resources and
 implements Representational State Transfer (REST) interfaces for
 registration and lookup of those resources. Note that the described
 exchange is borrowed from the OMA Lightweight Machine-to-Machine
 (LWM2M) specification [LWM2M] that uses RD but adds proxy
 functionality.

 The initial DTLS interaction between the sensor, acting as a DTLS
 client, and the resource directory, acting as a DTLS server, will be
 a full DTLS handshake. Once this handshake is complete both parties
 have established the DTLS record layer. Subsequently, the CoAP
 client can securely register at the resource directory.

 After some time (assuming that the client regularly refreshes its
 registration) the resource directory receives a request from an
 application to retrieve the temperature information from the sensor.
 This request is relayed by the resource directory to the sensor using
 a GET message exchange. The already established DTLS record layer
 can be used to secure the message exchange.

 Resource
 Sensor Directory
 ------ ---------

 +---
 |
 | ClientHello -------->
 | client_certificate_type
 F| server_certificate_type
 U|
 L| <------- HelloVerifyRequest
 L|

Tschofenig & Fossati Expires September 9, 2015 [Page 11]

Internet-Draft TLS/DTLS IoT Profile March 2015

 | ClientHello -------->
 D| client_certificate_type
 T| server_certificate_type
 L|
 S| ServerHello
 | client_certificate_type
 H| server_certificate_type
 A| Certificate
 N| ServerKeyExchange
 D| CertificateRequest
 S| <-------- ServerHelloDone
 H|
 A| Certificate
 K| ClientKeyExchange
 E| CertificateVerify
 | [ChangeCipherSpec]
 | Finished -------->
 |
 | [ChangeCipherSpec]
 | <-------- Finished
 +---

 +--- ///+
 C| \ D
 O| Req: POST coap://rd.example.com/rd?ep=node1 \ T
 A| Payload: \ L
 P| </temp>;ct=41; \ S
 | rt="temperature-c";if="sensor", \
 R| </light>;ct=41; \ R
 D| rt="light-lux";if="sensor" \ E
 | --------> \ C
 R| \ O
 E| \ R
 G| Res: 2.01 Created \ D
 .| <-------- Location: /rd/4521 \
 | \ L
 +--- \ A
 \ Y
 * \ E
 * (time passes) \ R
 * \
 +--- \ P
 C| \ R
 O| Req: GET coaps://sensor.example.com/temp \ O
 A| <-------- \ T
 P| \ E
 | Res: 2.05 Content \ C
 G| Payload: \ T

Tschofenig & Fossati Expires September 9, 2015 [Page 12]

Internet-Draft TLS/DTLS IoT Profile March 2015

 E| 25.5 --------> \ E
 T| \ D
 +--- ///+

 Figure 4: DTLS/CoAP exchange using Resource Directory.

4.2. Constrained TLS/DTLS Servers

Section 4.1 illustrates a deployment model where the TLS/DTLS client
 is constrained and efforts need to be taken to improve memory
 utilization, bandwidth consumption, reduce performance impacts, etc.
 In this section, we assume a scenario where constrained devices run
 TLS/ DTLS servers to secure access to application layer services
 running on top of CoAP, HTTP or other protocols. Figure 5
 illustrates a possible deployment whereby a number of constrained
 servers are waiting for regular clients to access their resources.
 The entire process is likely, but not necessarily, controlled by a
 third party, the authentication and authorisation server. This
 authentication and authorization server is responsible for holding
 authorization policies that govern the access to resources and
 distribution of keying material.

Tschofenig & Fossati Expires September 9, 2015 [Page 13]

Internet-Draft TLS/DTLS IoT Profile March 2015

 +////////////////////////////////////+
 | Configuration |
 |////////////////////////////////////|
 | Credentials |
 | Client A -> Public Key |
 | Server S1 -> Symmetric Key |
 | Server S2 -> Certificate |
 | Server S3 -> Public Key |
 | Trust Anchor Store |
 | Access Control Lists |
 | Resource X: Client A / GET |
 | Resource Y: Client A / PUT |
 +------------------------------------+
 oo
 oooooo
 o
 +---------------+ +-----------+
 |Authentication | +-------->|TLS/DTLS |
 |& Authorization| | |Client A |
 |Server | | +-----------+
 +---------------+ ++
 ^ | +-----------+
 \ | |Constrained|
 \ ,-------. | Server S1 |
 ,' `. +-----------+
 / Local \
 (Network)
 \ / +-----------+
 `. ,' |Constrained|
 '---+---' | Server S2 |
 | +-----------+
 |
 | +-----------+
 +-----------------> |Constrained|
 | Server S3 |
 +-----------+

 Figure 5: Constrained Server Profile.

 A deployment with constrained servers has to overcome several
 challenges. Below we explain how these challenges have be solved
 with CoAP, as an example. Other protocols may offer similar
 capabilities. While the requirements for the TLS/DTLS protocol
 profile change only slightly when run on a constrained server (in
 comparison to running it on a constrained client) several other eco-
 system factor will impact deployment.

Tschofenig & Fossati Expires September 9, 2015 [Page 14]

Internet-Draft TLS/DTLS IoT Profile March 2015

 There are several challenges that need to be addressed:

 Discovery and Reachability:

 A client must first and foremost discover the server before
 initiating a connection to it. Once it as been discovered,
 reachability to the device needs to be maintained.

 In CoAP the discovery of resources offered by servers is
 accomplished by sending a unicast or multicast CoAP GET to a well-
 known URI. The CORE Link format specification [RFC6690] describes
 the use case (see Section 1.2.1), and reserves the URI (see

Section 7.1). Section 7 of the CoAP specification [RFC7252]
 describes the discovery procedure. [RFC7390] describes use case
 for discovering CoAP servers using multicast (see Section 3.3),
 and specifies the protocol processing rules for CoAP group
 communications (see Section 2.7).

 The use of Resource Directory (RD)
 [I-D.ietf-core-resource-directory] is yet another possibility for
 discovering registered servers and their resources. Since RD is
 usually not a proxy, clients can discover links registered with
 the RD and then access them directly.

 Authentication:

 The next challenge concerns the provisioning of authentication
 credentials to the clients as well as servers. In Section 4.1 we
 assumed that credentials (and other configuration information) are
 provisioned to the device and that those can be used with the
 authorization servers. Of course, this leads to a very static
 relationship between the clients and their server-side
 infrastructure but poses fewer challenges from a deployment point
 of view, as described in Section 2 of
 [I-D.iab-smart-object-architecture] these different communication
 patterns. In any case, engineers and product designers have to
 determine how the relevant credentials are distributed to the
 respective parties. For example, shared secrets may need to be
 provisioned to clients and the constrained servers for subsequent
 use of TLS/DTLS PSK. In other deployments, certificates, private
 keys, and trust anchors for use with certificate-based
 authentication may need to be utilized.

 Practical solutions either use pairing (also called imprinting) or
 a trusted third party. With pairing two devices execute a special
 protocol exchange that is unauthenticated to establish an shared
 key (for example using an unauthenticated Diffie-Hellman exchange)
 key. To avoid man-in-the-middle attacks an out-of-band channel is

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7390

Tschofenig & Fossati Expires September 9, 2015 [Page 15]

Internet-Draft TLS/DTLS IoT Profile March 2015

 used to verify that nobody has tampered with the exchanged
 protocol messages. This out-of-band channel can come in many
 forms, including:

 * Human involvement by comparing hashed keys, entering passkeys,
 scanning QR codes

 * The use of alternative wireless communication channels (e.g.,
 infra-red communication in addition to WiFi)

 * Proximity-based information

 More details about these different pairing/imprinting techniques
 can be found in the smart object security workshop report
 [RFC7397] and various position papers submitted to that topic,
 such as [ImprintingSurvey]. The use of a trusted third party
 follows a different approach and is subject to ongoing
 standardization efforts in the 'Authentication and Authorization
 for Constrained Environments (ACE)' working group [ACE-WG].

 Authorization

 The last challenge is the ability for the constrained server to
 make an authorization decision when clients access protected
 resources. Pre-provisioning access control information to
 constrained servers may be one option but works only in a small
 scale, less dynamic environment. For a more fine-grained and
 dynamic access control the reader is referred to the ongoing work
 in the ACE working group.

 Figure 6 shows an example interaction whereby a device, a thermostat
 in our case, searches in the local network for discoverable resources
 and accesses those. The thermostat starts the procedure using a
 link-local discovery message using the "All CoAP Nodes" multicast
 address by utilizing the RFC 6690 [RFC6690] link format. The IPv6
 multicast address used for site-local discovery is FF02::FD. As a
 result, a temperature sensor and a fan respond. These responses
 allow the thermostat to subsequently read temperature information
 from the temperature sensor with a CoAP GET request issued to the
 previously learned endpoint. In this example we assume that
 accessing the temperature sensor readings and controlling the fan
 requires authentication and authorization of the thermostat and TLS
 is used to authenticate both endpoint and to secure the
 communication.

 Temperature
 Thermostat Sensor Fan

https://datatracker.ietf.org/doc/html/rfc7397
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6690

Tschofenig & Fossati Expires September 9, 2015 [Page 16]

Internet-Draft TLS/DTLS IoT Profile March 2015

 ---------- --------- ---

 Discovery
 -------------------->
 GET coap://[FF02::FD]/.well-known/core

 CoAP 2.05 Content
 <-------------------------------
 </3303/0/5700>;rt="temperature";
 if="sensor"

 CoAP 2.05 Content
 <--
 </fan>;rt="fan";if="actuation"

 +~~+
 \ /
 \ Protocol steps to obtain access token or keying /
 \ material for access to the temperature sensor and fan. /
 \ /
 +~~+

 Read Sensor Data
 (authenticated/authorized)
 ------------------------------->
 GET /3303/0/5700

 CoAP 2.05 Content
 <-------------------------------
 22.5 C

 Configure Actuator
 (authenticated/authorized)
 --->
 PUT /fan?on-off=true

 CoAP 2.04 Changed
 <---

Tschofenig & Fossati Expires September 9, 2015 [Page 17]

Internet-Draft TLS/DTLS IoT Profile March 2015

 Figure 6: Local Discovery and Resouce Access.

5. The Ciphersuite Concept

 TLS (and consequently DTLS) has the concept of ciphersuites and an
 IANA registry [IANA-TLS] was created to register the suites. A
 ciphersuite (and the specification that defines it) contains the
 following information:

 o Authentication and key exchange algorithm (e.g., PSK)

 o Cipher and key length (e.g., Advanced Encryption Standard (AES)
 with 128 bit keys [AES])

 o Mode of operation (e.g., Counter with Cipher Block Chaining -
 Message Authentication Code (CBC-MAC) Mode (CCM) for AES)
 [RFC3610]

 o Hash algorithm for integrity protection, such as the Secure Hash
 Algorithm (SHA) in combination with Keyed-Hashing for Message
 Authentication (HMAC) (see [RFC2104] and [RFC4634])

 o Hash algorithm for use with pseudorandom functions (e.g., HMAC
 with the SHA-256)

 o Misc information (e.g., length of authentication tags)

 o Information whether the ciphersuite is suitable for DTLS or only
 for TLS

 The TLS ciphersuite TLS_PSK_WITH_AES_128_CCM_8, for example, uses a
 pre-shared authentication and key exchange algorithm. [RFC6655]
 defines this ciphersuite. It uses the Advanced Encryption Standard
 (AES) encryption algorithm, which is a block cipher. Since the AES
 algorithm supports different key lengths (such as 128, 192 and 256
 bits) this information has to be specified as well and the selected
 ciphersuite supports 128 bit keys. A block cipher encrypts plaintext
 in fixed-size blocks and AES operates on fixed block size of 128
 bits. For messages exceeding 128 bits, the message is partitioned
 into 128-bit blocks and the AES cipher is applied to these input
 blocks with appropriate chaining, which is called mode of operation.

 TLS 1.2 introduced Authenticated Encryption with Associated Data
 (AEAD) ciphersuites (see [RFC5116] and [RFC6655]). AEAD is a class
 of block cipher modes which encrypt (parts of) the message and
 authenticate the message simultaneously. Examples of such modes
 include the Counter with Cipher Block Chaining - Message

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc6655
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc6655

Tschofenig & Fossati Expires September 9, 2015 [Page 18]

Internet-Draft TLS/DTLS IoT Profile March 2015

 Authentication Code (CBC-MAC) Mode (CCM) mode, and the Galois/Counter
 Mode (GCM) (see [RFC5288] and [RFC7251]).

 Some AEAD ciphersuites have shorter authentication tags (i.e.,
 message authentication codes) and are therefore more suitable for
 networks with low bandwidth where small message size matters. The
 TLS_PSK_WITH_AES_128_CCM_8 ciphersuite that ends in "_8" has an
 8-octet authentication tag, while the regular CCM ciphersuites have,
 at the time of writing, 16-octet authentication tags. The design of
 CCM and the security properties are described in [CCM].

 TLS 1.2 also replaced the combination of MD5/SHA-1 hash functions in
 the TLS pseudo random function (PRF) used in earlier versions of TLS
 with cipher-suite-specified PRFs. For this reason authors of more
 recent TLS 1.2 ciphersuite specifications explicitly indicate the MAC
 algorithm and the hash functions used with the TLS PRF.

6. Credential Types

 The mandatory-to-implement functionality will depend on the
 credential type used with IoT devices. The sub-sections below
 describe the implications of three different credential types, namely
 pre-shared secrets, raw public keys, and certificates. When using
 pre-shared key, a critical consideration is how to assure the
 randomness of these secrets. The best practice is to ensure that any
 pre-shared key contains as much randomness as possible. Deriving a
 shared secret from a password, name, or other low-entropy source is
 not secure. A low-entropy secret, or password, is subject to
 dictionary attacks.

6.1. Pre-Shared Secret

 The use of pre-shared secrets is one of the most basic techniques for
 TLS/DTLS since it is both computational efficient and bandwidth
 conserving. Pre-shared secret based authentication was introduced to
 TLS with RFC 4279 [RFC4279]. The exchange shown in Figure 7
 illustrates the DTLS exchange including the cookie exchange. While
 the server is not required to initiate a cookie exchange with every
 handshake, the client is required to implement and to react on it
 when challenged. The cookie exchange allows the server to react to
 flooding attacks.

https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc7251
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279

Tschofenig & Fossati Expires September 9, 2015 [Page 19]

Internet-Draft TLS/DTLS IoT Profile March 2015

 Client Server
 ------ ------
 ClientHello -------->

 <-------- HelloVerifyRequest
 (contains cookie)

 ClientHello -------->
 (with cookie)
 ServerHello
 *ServerKeyExchange
 <-------- ServerHelloDone
 ClientKeyExchange
 ChangeCipherSpec
 Finished -------->
 ChangeCipherSpec
 <-------- Finished

 Application Data <-------> Application Data

 Legend:

 * indicates an optional message payload

 Figure 7: DTLS PSK Authentication including the Cookie Exchange.

 [RFC4279] does not mandate the use of any particular type of client
 identity and the client and server have to agree on the identities
 and keys to be used. The mandated encoding of identities in

Section 5.1 of RFC 4279 aims to improve interoperability for those
 cases where the identity is configured by a person using some
 management interface. However, many IoT devices do not have a user
 interface and most of their credentials are bound to the device
 rather than the user. Furthermore, credentials are often provisioned
 into trusted hardware modules or in the firmware by developers. As
 such, the encoding considerations are not applicable to this usage
 environment. For use with this profile the PSK identities SHOULD NOT
 assume a structured format (as domain names, Distinguished Names, or
 IP addresses have) and a bit-by-bit comparison operation can then be
 used by the server-side infrastructure.

 The client indicates which key it uses by including a "PSK identity"
 in the ClientKeyExchange message. As described in Section 4 clients
 may have multiple pre-shared keys with a single server, for example
 in a hosting context. The TLS Server Name Indication (SNI) extension
 allows the client to convey the name of the server it is contacting,
 which is relevant for hosting environments. A server implementation

https://datatracker.ietf.org/doc/html/rfc4279#section-5.1

Tschofenig & Fossati Expires September 9, 2015 [Page 20]

Internet-Draft TLS/DTLS IoT Profile March 2015

 needs to guide the selection based on a received SNI value from the
 client.

RFC 4279 requires TLS implementations supporting PSK ciphersuites to
 support arbitrary PSK identities up to 128 octets in length, and
 arbitrary PSKs up to 64 octets in length. This is a useful
 assumption for TLS stacks used in the desktop and mobile environments
 where management interfaces are used to provision identities and
 keys. For the IoT environment, keys are distributed as part of
 hardware modules or are embedded into the firmware. Implementations
 in compliance with this profile MAY use PSK identities up to 128
 octets in length, and arbitrary PSKs up to 64 octets in length. The
 use of shorter PSK identities is RECOMMENDED.

 Constrained Application Protocol (CoAP) [RFC7252] currently specifies
 TLS_PSK_WITH_AES_128_CCM_8 as the mandatory to implement ciphersuite
 for use with shared secrets. This ciphersuite uses the AES algorithm
 with 128 bit keys and CCM as the mode of operation. The label "_8"
 indicates that an 8-octet authentication tag is used. This
 ciphersuite makes use of the default TLS 1.2 Pseudorandom Function
 (PRF), which uses an HMAC with the SHA-256 hash function. Note:
 Starting with TLS 1.2 (and consequently DTLS 1.2) ciphersuites have
 to specify the pseudorandom function. RFC 5246 states that 'New
 cipher suites MUST explicitly specify a PRF and, in general, SHOULD
 use the TLS PRF with SHA-256 or a stronger standard hash function.'.
 The ciphersuites recommended in this document use the SHA-256
 construct defined in Section 5 of RFC 5246.

 A device compliant with the profile in this section MUST implement
 TLS_PSK_WITH_AES_128_CCM_8 and follow the guidance from this section.

6.2. Raw Public Key

 The use of raw public keys with TLS/DTLS, as defined in [RFC7250], is
 the first entry point into public key cryptography without having to
 pay the price of certificates and a public key infrastructure (PKI).
 The specification re-uses the existing Certificate message to convey
 the raw public key encoded in the SubjectPublicKeyInfo structure. To
 indicate support two new extensions had been defined, as shown in
 Figure 8, namely the server_certificate_type*' and the
 client_certificate_type. To operate this mechanism securely it is
 necessary to authenticate and authorize the public keys out-of-band.
 This key distribution step may, for example, be provided by a
 dedicated protocol, such as the OMA LWM2M [LWM2M]. This document
 therefore assumes that a client implementation comes with one or
 multiple raw public keys of servers, it has to communicate with, pre-
 provisioned. To replace, delete, or add raw public keys to this list
 requires a software update, for example using a firmware update

https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246#section-5
https://datatracker.ietf.org/doc/html/rfc7250

Tschofenig & Fossati Expires September 9, 2015 [Page 21]

Internet-Draft TLS/DTLS IoT Profile March 2015

 mechanism. Additionally, a device will have its own raw public key
 and the corresponding private key. This key pair may, for example,
 be configured during the manufacturing process of the device.

 Client Server
 ------ ------

 ClientHello -------->
 #client_certificate_type#
 #server_certificate_type#

 ServerHello
 #client_certificate_type#
 #server_certificate_type#
 Certificate
 ServerKeyExchange
 CertificateRequest
 <-------- ServerHelloDone

 Certificate
 ClientKeyExchange
 CertificateVerify
 [ChangeCipherSpec]
 Finished -------->

 [ChangeCipherSpec]
 <-------- Finished

 Note: Extensions marked with '#' were introduced with
RFC 7250.

 Figure 8: DTLS Raw Public Key Exchange.

 The CoAP recommended ciphersuite for use with this credential type is
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251]. This elliptic curve
 cryptography (ECC) based AES-CCM TLS ciphersuite uses the Ephemeral
 Elliptic Curve Diffie-Hellman (ECDHE) as the key establishment
 mechanism and an Elliptic Curve Digital Signature Algorithm (ECDSA)
 for authentication. Due to the use of Ephemeral Elliptic Curve
 Diffie-Hellman (ECDHE) the recently introduced named Diffie-Hellman
 groups [I-D.ietf-tls-negotiated-dl-dhe] are not applicable to this
 profile. This ciphersuite makes use of the AEAD capability in DTLS
 1.2 and utilizes an eight-octet authentication tag. The use of a
 Diffie-Hellman key exchange provides perfect forward secrecy (PFS).
 More details about PFS can be found in Section 11.

https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7251

Tschofenig & Fossati Expires September 9, 2015 [Page 22]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [RFC6090] provides valuable information for implementing Elliptic
 Curve Cryptography algorithms, particularly for choosing methods that
 have been available in the literature for a long time (i.e., 20 years
 and more).

 A device compliant with the profile in this section MUST implement
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 and follow the guidance from this
 section.

6.3. Certificates

 The use of mutual certificate-based authentication is shown in
 Figure 9, which makes use of the cached info extension
 [I-D.ietf-tls-cached-info]. Support of the cached info extension is
 REQUIRED. Caching certificate chains allows the client to reduce the
 communication overhead significantly since otherwise the server would
 provide the end entity certificate, and the certificate chain.
 Because certificate validation requires that root keys be distributed
 independently, the self-signed certificate that specifies the root
 certificate authority is omitted from the chain. Client
 implementations MUST be provisioned with a trust anchor store that
 contains the root certificates. The use of the Trust Anchor
 Management Protocol (TAMP) [RFC5934] is, however, not envisioned.
 Instead IoT devices using this profile MUST use a software update
 mechanism to populate the trust anchor store.

https://datatracker.ietf.org/doc/html/rfc5934

Tschofenig & Fossati Expires September 9, 2015 [Page 23]

Internet-Draft TLS/DTLS IoT Profile March 2015

 Client Server
 ------ ------

 ClientHello -------->
 cached_info

 ServerHello
 cached_info
 Certificate
 ServerKeyExchange
 CertificateRequest
 <-------- ServerHelloDone

 Certificate
 ClientKeyExchange
 CertificateVerify
 [ChangeCipherSpec]
 Finished -------->

 [ChangeCipherSpec]
 <-------- Finished

 Note: Extensions marked with '*' were introduced with
 [I-D.ietf-tls-cached-info].

 Figure 9: DTLS Mutual Certificate-based Authentication.

 Server certificates MUST contain the fully qualified DNS domain name
 or "FQDN" as dNSName [RFC5280]. For CoAP, the coaps URI scheme is
 described in Section 6.2 of [RFC7252]. This FQDN is stored in the
 SubjectAltName or in the leftmost CN component of subject name, as
 explained in Section 9.1.3.3 of [RFC7252], and used by the client to
 match it against the FQDN used during the look-up process, as
 described in [RFC6125]. For other protocols, the appropriate URI
 scheme specification has to be consulted.

 When constrained servers are used, for example in context of locally
 discoverable services as shown in Figure 6, then the rules of client
 certificates are applicable since these constrained servers are less
 likely to have an FQDN configured. Note that the Service Name
 Indication (SNI) extension cannot be used in this case since SNI does
 not offer the ability to convey EUI-64 [EUI64] identifiers.

 For client certificates the identifier used in the SubjectAltName or
 in the leftmost CN component of subject name MUST be an EUI-64, as
 mandated in Section 9.1.3.3 of [RFC7252].

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7252#section-6.2
https://datatracker.ietf.org/doc/html/rfc7252#section-9.1.3.3
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc7252#section-9.1.3.3

Tschofenig & Fossati Expires September 9, 2015 [Page 24]

Internet-Draft TLS/DTLS IoT Profile March 2015

 For certificate revocation neither the Online Certificate Status
 Protocol (OCSP) nor Certificate Revocation Lists (CRLs) are used.
 Instead, this profile relies on a software update mechanism to
 provision information about revoked certificates. While multiple
 OCSP stapling [RFC6961] has recently been introduced as a mechanism
 to piggyback OCSP request/responses inside the DTLS/TLS handshake (to
 avoid the cost of a separate protocol handshake), further
 investigations are needed to determine its suitability for the IoT
 environment.

 Regarding the ciphersuite choice the discussion in Section 6.2
 applies. Further details about X.509 certificates can be found in

Section 9.1.3.3 of [RFC7252]. The TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
 ciphersuite description in Section 6.2 is also applicable to this
 section.

 When using certificates, IoT devices MUST provide support for a
 server certificate chain of at least 3 not including the trust anchor
 and MAY reject connections from servers offering chains longer than
 3. IoT devices MAY have client certificate chains of any length.
 Obviously, longer chains require more digital signature verification
 operations to perform and lead to larger certificate messages in the
 TLS handshake.

 Table 1 provides a summary of the elements in a certificate for use
 with this profile.

 +----------------------+--+
 | Element | Notes |
 +----------------------+--+
version	This profile uses X.509 v3 certificates
	[RFC5280].
serialNumber	Positive integer unique per certificate.
signature	This field contains the signature
	algorithm and this profile uses ecdsa-
	with-SHA256 or stronger [RFC5758].
issuer	Contains the DN of the issuing CA.
validity	Values expressed as UTC time in notBefore
	and notAfter fields. No validity period
	mandated.
subject	See rules outlined in this section.
subjectPublicKeyInfo	The SubjectPublicKeyInfo structure

https://datatracker.ietf.org/doc/html/rfc6961
https://datatracker.ietf.org/doc/html/rfc7252#section-9.1.3.3
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5758

Tschofenig & Fossati Expires September 9, 2015 [Page 25]

Internet-Draft TLS/DTLS IoT Profile March 2015

	indicates the algorithm and any associated
	parameters for the ECC public key.This
	profile uses the id-ecPublicKey algorithm
	identifier for ECDSA signature keys, as
	defined in specified in [RFC5480].
signatureAlgorithm	The ECDSA signature algorithm with ecdsa-
	with-SHA256 or stronger.
signatureValue	Bit string containing the digital
	signature.
Extension:	See rules outlined in this section.
subjectAltName	
Extension:	Indicates whether the subject of the
BasicConstraints	certificate is a CA and the maximum depth
	of valid certification paths that include
	this certificate. This extension is used
	for CA certs only and then the value of
	the 'cA' field is set to TRUE. The default
	is FALSE.
Extension: Key Usage	The KeyUsage field MAY have the following
	values in the context of this profile:
	digitalSignature or keyAgreement,
	keyCertSign for verifying signatures on
	public key certificates.
Extension: Extended	The ExtKeyUsageSyntax field MAY have the
Key Usage	following values in context of this
	profile: id-kp-serverAuth for server
	authentication, id-kp-clientAuth for
	client authentication, id-kp-codeSigning
	for code signing (for software update
	mechanism), id-kp-OCSPSigning for future
	OCSP usage in TLS.
 +----------------------+--+

 Table 1: Certificate Content.

 All certificate elements listed in Table 1 are mandatory-to-
 implement. No other certificate elements are used by this
 specification.

 A device compliant with the profile in this section MUST implement
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 and follow the guidance from this
 section.

https://datatracker.ietf.org/doc/html/rfc5480

Tschofenig & Fossati Expires September 9, 2015 [Page 26]

Internet-Draft TLS/DTLS IoT Profile March 2015

6.3.1. Client Certificate URLs

RFC 6066 [RFC6066] allows to avoid sending client-side certificates
 and uses URLs instead. This reduces the over-the-air transmission.
 Note that the TLS cached info extension does not provide any help
 with caching client certificates.

 TLS/DTLS clients MUST implement support for client certificate URLs
 for those environments where client-side certificates are used and
 the server-side is not constrained. For constrained servers this
 functionality is NOT RECOMMENDED since it forces the server to
 execute an additional protocol exchange, potentially using a protocol
 it does not even support. The use of this extension also increases
 the risk of a denial of service attack against the constrained server
 due to the additional workload.

6.3.2. Trusted CA Indication

RFC 6066 [RFC6066] allows clients to indicate what trust anchor they
 support. With certificate-based authentication a DTLS server conveys
 its end entity certificate to the client during the DTLS exchange
 provides. Since the server does not necessarily know what trust
 anchors the client has stored and to facilitate certification path
 construction as well as path validation, it includes intermediate CA
 certs in the certificate payload.

 Today, in most IoT deployments there is a fairly static relationship
 between the IoT device (and the software running on them) and the
 server-side infrastructure. For these deployments where IoT devices
 interact with a fixed, pre-configured set of servers this extension
 is NOT RECOMMENDED.

 In cases where client interact with dynamically discovered TLS/DTLS
 servers, for example in the use cases described in Section 4.2, the
 use of this extension is RECOMMENDED.

7. Signature Algorithm Extension

 The "signature_algorithms" extension, defined in Section 7.4.1.4.1 of
 RFC 5246 [RFC5246], allows the client to indicate to the server which
 signature/hash algorithm pairs may be used in digital signatures.
 The client MUST send this extension to select the use of SHA-256
 since otherwise absent this extension RFC 5246 defaults to SHA-1 /
 ECDSA for the ECDH_ECDSA and the ECDHE_ECDSA key exchange algorithms.

 The "signature_algorithms" extension is not applicable to the PSK-
 based ciphersuite described in Section 6.1.

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4.1
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Tschofenig & Fossati Expires September 9, 2015 [Page 27]

Internet-Draft TLS/DTLS IoT Profile March 2015

8. Error Handling

 TLS/DTLS uses the Alert protocol to convey errors and specifies a
 long list of error types. However, not all error messages defined in
 the TLS/DTLS specification are applicable to this profile. In
 general, there are two categories of errors (as defined in

Section 7.2 of RFC 5246), namely fatal errors and warnings. Alert
 messages with a level of fatal result in the immediate termination of
 the connection. If possible, developers should try to develop
 strategies to react to those fatal errors, such as re-starting the
 handshake or informing the user using the (often limited) user
 interface. Warnings may be ignored by the application since many IoT
 devices will either have limited ways to log errors or no ability at
 all. In any case, implementers have to carefully evaluate the impact
 of errors and ways to remedy the situation since a commonly used
 approach for delegating decision making to users is difficult (or
 impossible) to accomplish in a timely fashion.

 All error messages marked as RESERVED are only supported for
 backwards compatibility with SSL MUST NOT be used with this profile.
 Those include decryption_failed_RESERVED, no_certificate_RESERVED,
 and export_restriction_RESERVED.

 A number of the error messages MUST only be used for certificate-
 based ciphersuites. Hence, the following error messages MUST NOT be
 used with with PSK and raw public key authentication:

 o bad_certificate,

 o unsupported_certificate,

 o certificate_revoked,

 o certificate_expired,

 o certificate_unknown,

 o unknown_ca, and

 o access_denied.

 Since this profile does not make use of compression at the TLS layer
 the decompression_failure error message MUST NOT be used either.

RFC 4279 introduced a new alert message unknown_psk_identity for PSK
 ciphersuites. As stated in Section 2 of RFC 4279 the
 decryption_error error message may also be used instead. For this
 profile the TLS server MUST return the decryption_error error message

https://datatracker.ietf.org/doc/html/rfc5246#section-7.2
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279#section-2

Tschofenig & Fossati Expires September 9, 2015 [Page 28]

Internet-Draft TLS/DTLS IoT Profile March 2015

 instead of the unknown_psk_identity since the two mechanisms exist
 and provide the same functionality.

 Furthermore, the following errors should not occur with devices and
 servers supporting this specification but implementations MUST be
 prepared to process these errors to deal with servers that are not
 compliant to the profiles in this document:

 protocol_version: While this document focuses only on one version of
 the TLS/DTLS protocol, namely version 1.2, ongoing work on TLS/
 DTLS 1.3 is in progress at the time of writing.

 insufficient_security: This error message indicates that the server
 requires ciphers to be more secure. This document specifies only
 one ciphersuite per profile but it is likely that additional
 ciphtersuites get added over time.

 user_canceled: Many IoT devices are unattended and hence this error
 message is unlikely to occur.

9. Session Resumption

 Session resumption is a feature of the core TLS/DTLS specifications
 that allows a client to continue with an earlier established session
 state. The resulting exchange is shown in Figure 10. In addition,
 the server may choose not to do a cookie exchange when a session is
 resumed. Still, clients have to be prepared to do a cookie exchange
 with every handshake. The cookie exchange is not shown in the
 figure.

 Client Server
 ------ ------

 ClientHello -------->
 ServerHello
 [ChangeCipherSpec]
 <-------- Finished
 [ChangeCipherSpec]
 Finished -------->
 Application Data <-------> Application Data

 Figure 10: DTLS Session Resumption.

 Constrained clients MUST implement session resumption to improve the
 performance of the handshake. This will lead to a reduced number of
 message exchanges, lower computational overhead (since only symmetric

Tschofenig & Fossati Expires September 9, 2015 [Page 29]

Internet-Draft TLS/DTLS IoT Profile March 2015

 cryptography is used during a session resumption exchange), and
 session resumption requires less bandwidth.

 For cases where the server is constrained (but not the client) the
 client MUST implement RFC 5077 [RFC5077]. RFC 5077 specifies a
 version of TLS/DTLS session resumption that does not require per-
 session state information to be maintained by the constrained server.
 This is accomplished by using a ticket-based approach.

 If both the client and the server are constrained devices both
 devices SHOULD implement RFC 5077 and MUST implement basic session
 resumption. Clients that do not want to use session resumption are
 always able to send a ClientHello message with an empty session_id to
 revert to a full handshake.

10. Compression

 Section 3.3 of [I-D.ietf-uta-tls-bcp] recommends to disable TLS/DTLS-
 level compression due to attacks, such as CRIME. For IoT
 applications compression at the TLS/DTLS layer is not needed since
 application layer protocols are highly optimized and the compression
 algorithms at the DTLS layer increases code size and complexity.

 This TLS/DTLS profile MUST NOT implement TLS/DTLS layer compression.

11. Perfect Forward Secrecy

 Perfect forward secrecy (PFS) is a property that preserves the
 confidentiality of past conversations even in situations where the
 long-term secret is compromised.

 The PSK ciphersuite recommended in Section 6.1 does not offer this
 property since it does not utilize a Diffie-Hellman exchange. New
 ciphersuites that support PFS for PSK-based authentication, such as
 proposed in [I-D.schmertmann-dice-ccm-psk-pfs], might become
 available as standardized ciphersuite in the (near) future. The
 recommended PSK-based ciphersuite offers excellent performance, a
 very small memory footprint, and has the lowest on the wire overhead
 at the expense of not using any public cryptography. For deployments
 where public key cryptography is acceptable the raw public might
 offer an acceptable middleground between the PSK ciphersuite in terms
 of out-of-band validation and the functionality offered by asymmetric
 cryptography.

 The use of PFS is a trade-off decision since on one hand the
 compromise of long-term secrets of embedded devices is more likely
 than with many other Internet hosts but on the other hand a Diffie-
 Hellman exchange requires ephemeral key pairs to be generated, which

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Tschofenig & Fossati Expires September 9, 2015 [Page 30]

Internet-Draft TLS/DTLS IoT Profile March 2015

 is demanding from a performance point of view. For obvious
 performance improvement, some implementations re-use key pairs over
 multiple exchanges (rather than generating new keys for each
 exchange). However, note that such key re-use over long periods
 voids the benefits of forward secrecy when an attack gains access to
 this DH key pair.

 The impact of the disclosure of past conversations and the desire to
 increase the cost for pervasive monitoring (as demanded by [RFC7258])
 has to be taken into account when making a deployment decision.

 Client implementations claiming support of this profile MUST
 implement the ciphersuites listed in Section 6 according to the
 selected credential type.

12. Keep-Alive

 Application layer communication may create state at the endpoints and
 this state my expire at some time. For this reason, applications
 define ways to refresh state, if necessary. While the application
 layer exchanges are largely outside the scope of the underlying TLS/
 DTLS exchange similar state considerations also play a role at the
 level of TLS/DTLS. While TLS/DTLS also creates state in form of a
 security context (see the security parameter described in Appendix A6
 in RFC 5246) at the client and the server this state information does
 not expire. However, network intermediaries may also allocate state
 and require this state to be kept alive. Failure to keep state alive
 at a stateful packet filtering firewall or at a NAT may result in the
 inability for one node to reach the other since packets will get
 blocked by these middleboxes. Periodic keep-alive messages exchanged
 between the TLS/DTLS client and server keep state at these
 middleboxes alive. According to measurements described in
 [HomeGateway] there is some variance in state management practices
 used in residential gateways but the timeouts are heavily impacted by
 the choice of the transport layer protocol: timeouts for UDP are
 typically much shorter than those for TCP.

RFC 6520 [RFC6520] defines a heartbeat mechanism to test whether the
 other peer is still alive. As an additional feature, the same
 mechanism can also be used to perform Path Maximum Transmission Unit
 (MTU) Discovery.

 A recommendation about the use of RFC 6520 depends on the type of
 message exchange an IoT device performs and the number of messages
 the application needs to exchange as part of their application
 functionality. There are three types of exchanges that need to be
 analysed:

https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6520
https://datatracker.ietf.org/doc/html/rfc6520
https://datatracker.ietf.org/doc/html/rfc6520

Tschofenig & Fossati Expires September 9, 2015 [Page 31]

Internet-Draft TLS/DTLS IoT Profile March 2015

 Client-Initiated, One-Shot Messages

 This is a common communication pattern where IoT devices upload
 data to a server on the Internet on an irregular basis. The
 communication may be triggered by specific events, such as opening
 a door.

 Since the upload happens on an irregular and unpredictable basis
 and due to renumbering and Network Address Translation (NAT) the
 DTLS handshake may need to be re-started (ideally using session
 resumption, if possible).

 In this case there is no use for a keep-alive extension for this
 scenario.

 Client-Initiated, Regular Data Uploads

 This is a variation of the previous case whereby data gets
 uploaded on a regular basis, for example, based on frequent
 temperature readings. If neither NAT bindings nor IP address
 changes occurred then the record layer will not notice any
 changes. For the case where the IP address and port number
 changes, it is necessary to re-create the record layer using
 session resumption.

 In this scenario there is no use for a keep-alive extension. It
 is also very likely that the device will enter a sleep cycle in
 between data transmissions to keep power consumption low.

 Server-Initiated Messages

 In the two previous scenarios the client initiated the protocol
 interaction and maintains it. Since messages to the client may
 get blocked by middleboxes the initial connection setup is
 triggered by the client and then kept alive by the server.

 For this message exchange pattern the use of DTLS heartbeat
 messages is quite useful but may have to be coordinated with
 application exchanges (for example when the CoAP resource
 directory is used) to avoid redundant keep-alive message
 exchanges. The MTU discovery mechanism, which is also part of
 [RFC6520], is less likely to be relevant since for many IoT
 deployments the most constrained link is the wireless interface
 between the IoT device and the network itself (rather than some
 links along the end-to-end path). Only in more complex network
 topologies, such as multi-hop mesh networks, path MTU discovery
 might be appropriate. It also has to be noted that DTLS itself
 already provides a basic path discovery mechanism (see

https://datatracker.ietf.org/doc/html/rfc6520

Tschofenig & Fossati Expires September 9, 2015 [Page 32]

Internet-Draft TLS/DTLS IoT Profile March 2015

Section 4.1.1.1 of RFC 6347 by using the fragmentation capability
 of the handshake protocol).

 For server-initiated messages the heartbeat extension is RECOMMENDED.

13. Timeouts

 To connect to the Internet a variety of wired and wireless
 technologies are available. Many of the low power radio
 technologies, such as IEEE 802.15.4 or Bluetooth Smart, only support
 small frame sizes (e.g., 127 bytes in case of IEEE 802.15.4 as
 explained in RFC 4919 [RFC4919]). Other radio technologies, such as
 the Global System for Mobile Communications (GSM) using the short
 messaging service (SMS) have similar constraints in terms of payload
 sizes, such as 140 bytes without the optional segmentation and
 reassembly scheme known as Concatenated SMS, but show higher latency.

 The DTLS handshake protocol adds a fragmentation and reassembly
 mechanism to the TLS handshake protocol since each DTLS record must
 fit within a single transport layer datagram, as described in

Section 4.2.3 of [RFC6347]. Since handshake messages are potentially
 bigger than the maximum record size, the mechanism fragments a
 handshake message over a number of DTLS records, each of which can be
 transmitted separately.

 To deal with the unreliable message delivery provided by UDP, DTLS
 adds timeouts and re-transmissions, as described in Section 4.2.4 of
 [RFC6347]. Although the timeout values are implementation specific,
 recommendations are provided in Section 4.2.4.1 of [RFC6347], with an
 initial timer value of 1 second and doubled with at each
 retransmission up to no less than 60 seconds. Due to the nature of
 some radio technologies, these values are too aggressive and lead to
 spurious failures when messages in flight need longer.

 Note: If a round-trip time estimator (such as proposed in
 [I-D.bormann-core-cocoa]) is available in the protocol stack of the
 device, it could be used to dynamically update the setting of the
 retransmit timeout.

 Choosing appropriate timeout values is difficult with changing
 network conditions, and large variance in latency. This
 specification therefore RECOMMENDS an initial timer value of 10
 seconds with exponential back off up to no less then 60 seconds.

Appendix A provides additional normative text for carrying DTLS over
 SMS.

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.1.1
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.3
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.4
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.4
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.4.1

Tschofenig & Fossati Expires September 9, 2015 [Page 33]

Internet-Draft TLS/DTLS IoT Profile March 2015

14. Random Number Generation

 The TLS/DTLS protocol requires random numbers to be available during
 the protocol run. For example, during the ClientHello and the
 ServerHello exchange the client and the server exchange random
 numbers. Also, the use of the Diffie-Hellman exchange requires
 random numbers during the key pair generation. Special care has to
 be taken when generating random numbers in embedded systems as many
 entropy sources available on desktop operating systems or mobile
 devices might be missing, as described in [Heninger]. Consequently,
 if not enough time is given during system start time to fill the
 entropy pool then the output might be predictable and repeatable, for
 example leading to the same keys generated again and again.

 It is important to note that sources contributing to the randomness
 pool on laptops, or desktop PCs are not available on many IoT device,
 such as mouse movement, timing of keystrokes, air turbulence on the
 movement of hard drive heads, etc. Other sources have to be found or
 dedicated hardware has to be added.

 The ClientHello and the ServerHello messages contains the 'Random'
 structure, which has two components: gmt_unix_time and a sequence of
 28 random bytes. gmt_unix_time holds the current time and date in
 standard UNIX 32-bit format (seconds since the midnight starting Jan
 1, 1970, GMT). [I-D.mathewson-no-gmtunixtime] argues that the entire
 ClientHello.Random value (including gmt_unix_time) should be a
 sequence of random bits because of device fingerprinting privacy
 concerns. Since many IoT devices do not have access to an accurate
 clock, it is RECOMMENDED to follow the guidance outlined in
 [I-D.mathewson-no-gmtunixtime] regarding the content of the
 ClientHello.Random field. However, for the ServerHello.Random
 structure it is RECOMMENDED to maintain the existing structure with
 gmt_unix_time followed by a sequence of 28 random bytes since the
 client can use the received time information to securely obtain time
 information. For constrained servers it cannot be assumed that they
 maintain accurate time information; these devices MUST include time
 information in the Server.Random structure when they actually obtain
 accurate time information that can be utilized by clients. Clients
 MUST only use time information obtained from servers they trust and
 the use of this approach has to be agreed out-of-band.

 IoT devices using TLS/DTLS MUST offer ways to generate quality random
 numbers using hardware-based random number generators. Note that
 these hardware-based random number generators do not necessarily need
 to be implemented inside the microcontroller itself but could be made
 available in dedicated crypto-chips as well. Guidelines and
 requirements for random number generation can be found in RFC 4086
 [RFC4086] and in the NIST Special Publication 800-90a [SP800-90A].

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Tschofenig & Fossati Expires September 9, 2015 [Page 34]

Internet-Draft TLS/DTLS IoT Profile March 2015

 Chip manufacturers are highly encouraged to provide sufficient
 documentation of their design for random number generators so that
 customers can have confidence about the quality of the generated
 random numbers. The confidence can be increased by providing
 information about the procedures that have been used to verify the
 randomness of numbers generated by the hardware modules. For
 example, NIST Special Publication 800-22b [SP800-22b] describes
 statistical tests that can be used to verify random random number
 generators.

15. Truncated MAC and Encrypt-then-MAC Extension

 The truncated MAC extension was introduced with RFC 6066 [RFC6066]
 with the goal to reduce the size of the MAC used at the Record Layer.
 This extension was developed for TLS ciphersuites that used older
 modes of operation where the MAC and the encryption operation was
 performed independently.

 The recommended ciphersuites in this document use the newer
 Authenticated Encryption with Associated Data (AEAD) construct,
 namely the CBC-MAC mode (CCM) with eight-octet authentication tags,
 and are therefore not appliable to the truncated MAC extension.

RFC 7366 [RFC7366] introduced the encrypt-then-MAC extension (instead
 of the previously used MAC-then-encrypt) since the MAC-then-encrypt
 mechanism has been the subject of a number of security
 vulnerabilities. RFC 7366 is, however, also not applicable to the
 AEAD ciphers recommended in this document.

 Implementations conformant to this specification MUST use AEAD
 ciphers. Hence, RFC 7366 and RFC 6066 are not applicable to this
 specifciation and MUST NOT be implemented.

16. Server Name Indication (SNI)

 The Server Name Indication extension defined in [RFC6066] defines a
 mechanism for a client to tell a TLS/DTLS server the name of the
 server it wants to contact. This is a useful extension for many
 hosting environments where multiple virtual servers are run on single
 IP address.

 This specification RECOMMENDs the implementation of the Server Name
 Indication extension unless it is known that a TLS/DTLS client does
 not interact with a server in a hosting environment.

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066

Tschofenig & Fossati Expires September 9, 2015 [Page 35]

Internet-Draft TLS/DTLS IoT Profile March 2015

17. Maximum Fragment Length Negotiation

 This RFC 6066 extension lowers the maximum fragment length support
 needed for the Record Layer from 2^14 bytes to 2^9 bytes.

 This is a very useful extension that allows the client to indicate to
 the server how much maximum memory buffers it uses for incoming
 messages. Ultimately, the main benefit of this extension is to allow
 client implementations to lower their RAM requirements since the
 client does not need to accept packets of large size (such as 16k
 packets as required by plain TLS/DTLS).

 Client implementations MUST support this extension.

18. Session Hash

 In order to begin connection protection, the Record Protocol requires
 specification of a suite of algorithms, a master secret, and the
 client and server random values. The algorithm for computing the
 master secret is defined in Section 8.1 of RFC 5246 but only includes
 a small number of parameters exchanged during the handshake and does
 not include parameters like the client and server identities. This
 can be utilized by an attacker to mount a man-in-the-middle attack
 since the master secret is not guaranteed to be unique across
 sessions, as discovered in the 'Triple Handshake' attack [Triple-HS].

 [I-D.ietf-tls-session-hash] defines a TLS extension that binds the
 master secret to a log of the full handshake that computes it, thus
 preventing such attacks.

 Client implementations SHOULD implement this extension even though
 the ciphersuites recommended by this profile are not vulnerable to
 this attack. For Diffie-Hellman-based ciphersuites the keying
 material is contributed by both parties and in case of the pre-shared
 secret key ciphersuite, both parties need to be in possession of the
 shared secret to ensure that the handshake completes successfully.
 It is, however, possible that some application layer protocols will
 tunnel other authentication protocols on top of DTLS making this
 attack relevant again.

19. Re-Negotiation Attacks

 TLS/DTLS allows a client and a server who already have a TLS/DTLS
 connection to negotiate new parameters, generate new keys, etc by
 using the re-negotiation feature. Renegotiation happens in the
 existing connection, with the new handshake packets being encrypted
 along with application data. Upon completion of the re-negotiation
 procedure the new channel replaces the old channel.

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246#section-8.1

Tschofenig & Fossati Expires September 9, 2015 [Page 36]

Internet-Draft TLS/DTLS IoT Profile March 2015

 As described in RFC 5746 [RFC5746] there is no cryptographic binding
 between the two handshakes, although the new handshake is carried out
 using the cryptographic parameters established by the original
 handshake.

 To prevent the re-negotiation attack [RFC5746] this specification
 RECOMMENDS to disable the TLS renegotigation feature. Clients MUST
 respond to server-initiated re-negotiation attempts with an alert
 message (no_renegotiation) and clients MUST NOT initiate them.

20. Downgrading Attacks

 When a client sends a ClientHello with a version higher than the
 highest version known to the server, the server is supposed to reply
 with ServerHello.version equal to the highest version known to the
 server and the handshake can proceed. This behaviour is known as
 version tolerance. Version-intolerance is when the server (or a
 middlebox) breaks the handshake when it sees a ClientHello.version
 higher than what it knows about. This is the behaviour that leads
 some clients to re-run the handshake with lower version. As a
 result, a potential security vulnerability is introduced when a
 system is running an old TLS/SSL version (e.g., because of the need
 to integrate with legacy systems). In the worst case, this allows an
 attacker to downgrade the protocol handshake to SSL 3.0. SSL 3.0 is
 so broken that there is no secure cipher available for it (see
 [I-D.ietf-tls-sslv3-diediedie]).

 The above-described downgrade vulnerability is solved by the TLS
 Fallback Signaling Cipher Suite Value (SCSV)
 [I-D.ietf-tls-downgrade-scsv] extension. However, the solution is
 not appliable to implementations conforming to this profile since the
 version negotiation MUST use TLS/DTLS version 1.2 (or higher). More
 specifically, this implies:

 o Clients MUST NOT send a TLS/DTLS version lower than version 1.2 in
 the ClientHello.

 o Clients MUST NOT retry a failed negotiation offering a TLS/DTLS
 version lower than 1.2.

 o Servers MUST fail the handshake by sending a protocol_version
 fatal alert if a TLS/DTLS version >= 1.2 cannot be negotiated.
 Note that the aborted connection is non-resumable.

 If at some time in the future this profile reaches the quality of SSL
 3.0 a software update is needed since constrained devices are
 unlikely to run multiple TLS/DTLS versions due to memory size
 restrictions.

https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc5746

Tschofenig & Fossati Expires September 9, 2015 [Page 37]

Internet-Draft TLS/DTLS IoT Profile March 2015

21. Crypto Agility

 This document recommends software and chip manufacturers to implement
 AES and the CCM mode of operation. This document references the CoAP
 recommended ciphersuite choices, which have been selected based on
 implementation and deployment experience from the IoT community.
 Over time the preference for algorithms will, however, change. Not
 all components of a ciphersuite are likely to change at the same
 speed. Changes are more likely expected for ciphers, the mode of
 operation, and the hash algorithms. The recommended key lengths have
 to be adjusted over time. Some deployment environments will also be
 impacted by local regulation, which might dictate a certain cipher
 and key size. Ongoing discussions regarding the choice of specific
 ECC curves will also likely impact implementations. Note that this
 document does not recommend or mandate a specific ECC curve.

 The following recommendations can be made to chip manufacturers:

 o Make any AES hardware-based crypto implementation accessible to
 developers working on security implementations at higher layers.
 Sometimes hardware implementatios are added to microcontrollers to
 offer support for functionality needed at the link layer and are
 only available to the on-chip link layer protocol implementation.

 o Provide flexibility for the use of the crypto function with future
 extensibility in mind. For example, making an AES-CCM
 implementation available to developers is a first step but such an
 implementation may not be usable due to parameter differences
 between an AES-CCM implementations. AES-CCM in IEEE 802.15.4 and
 Bluetooth Smart uses a nonce length of 13-octets while DTLS uses a
 nonce length of 12-octets. Hardware implementations of AES-CCM
 for IEEE 802.15.4 and Bluetooth Smart are therefore not re-usable
 by a DTLS stack.

 o Offer access to building blocks in addition (or as an alternative)
 to the complete functionality. For example, a chip manufacturer
 who gives developers access to the AES crypto function can use it
 to build an efficient AES-GCM implementations. Another example is
 to make a special instruction available that increases the speed
 of speed-up carryless multiplications.

 As a recommendation for developers and product architects we
 recommend that sufficient headroom is provided to allow an upgrade to
 a newer cryptographic algorithms over the lifetime of the product.
 As an example, while AES-CCM is recommended thoughout this
 specification future products might use the ChaCha20 cipher in
 combination with the Poly1305 authenticator

Tschofenig & Fossati Expires September 9, 2015 [Page 38]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [I-D.irtf-cfrg-chacha20-poly1305]. The assumption is made that a
 robust software update mechanism is offered.

22. Key Length Recommendations

RFC 4492 [RFC4492] gives approximate comparable key sizes for
 symmetric- and asymmetric-key cryptosystems based on the best-known
 algorithms for attacking them. While other publications suggest
 slightly different numbers, such as [Keylength], the approximate
 relationship still holds true. Figure 11 illustrates the comparable
 key sizes in bits.

 At the time of writing the key size recommendations for use with TLS-
 based ciphers found in [I-D.ietf-uta-tls-bcp] recommend DH key
 lengths of at least 2048 bit, which corresponds to a 112-bit
 symmetric key and a 233 bit ECC key. These recommendations are
 inline with those from other organizations, such as National
 Institute of Standards and Technology (NIST) or European Network and
 Information Security Agency (ENISA). The authors of
 [ENISA-Report2013] add that a 80-bit symmetric key is sufficient for
 legacy applications for the coming years, but a 128-bit symmetric key
 is the minimum requirement for new systems being deployed. The
 authors further note that one needs to also take into account the
 length of time data needs to be kept secure for. The use of 80-bit
 symmetric keys for transactional data may be acceptable for the near
 future while one has to insist on 128-bit symmetric keys for long
 lived data.

 Symmetric | ECC | DH/DSA/RSA
 ------------+---------+-------------
 80 | 163 | 1024
 112 | 233 | 2048
 128 | 283 | 3072
 192 | 409 | 7680
 256 | 571 | 15360

 Figure 11: Comparable Key Sizes (in bits).

23. False Start

 A full TLS handshake as specified in [RFC5246] requires two full
 protocol rounds (four flights) before the handshake is complete and
 the protocol parties may begin to send application data.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5246

Tschofenig & Fossati Expires September 9, 2015 [Page 39]

Internet-Draft TLS/DTLS IoT Profile March 2015

 An abbreviated handshake (resuming an earlier TLS session) is
 complete after three flights, thus adding just one round-trip time if
 the client sends application data first.

 If the conditions outlined in [I-D.bmoeller-tls-falsestart] are met,
 application data can be transmitted when the sender has sent its own
 "ChangeCipherSpec" and "Finished" messages. This achieves an
 improvement of one round-trip time for full handshakes if the client
 sends application data first, and for abbreviated handshakes if the
 server sends application data first.

 The conditions for using the TLS False Start mechanism are met by the
 public-key-based ciphersuites in this document. In summary, the
 conditions are

 o Modern symmetric ciphers with an effective key length of 128 bits,
 such as AES-128-CCM

 o Client certificate types, such as ecdsa_sign

 o Key exchange methods, such as ECDHE_ECDSA

 Based on the improvement over a full roundtrip for the full TLS/DTLS
 exchange this specification RECOMMENDS the use of the False Start
 mechanism when clients send application data first.

24. Privacy Considerations

 The DTLS handshake exchange conveys various identifiers, which can be
 observed by an on-path eavesdropper. For example, the DTLS PSK
 exchange reveals the PSK identity, the supported extensions, the
 session id, algorithm parameters, etc. When session resumption is
 used then individual TLS sessions can be correlated by an on-path
 adversary. With many IoT deployments it is likely that keying
 material and their identifiers are persistent over a longer period of
 time due to the cost of updating software on these devices.

 User participation with many IoT deployments poses a challenge since
 many of the IoT devices operate unattended, even though they will
 initially be provisioned by a human. The ability to control data
 sharing and to configure preference will have to be provided at a
 system level rather than at the level of the DTLS exchange itself,
 which is the scope of this document. Quite naturally, the use of
 DTLS with mutual authentication will allow a TLS server to collect
 authentication information about the IoT device (likely over a long
 period of time). While this strong form of authentication will
 prevent mis-attribution, it also allows strong identification.
 Device-related data collection (e.g., sensor recordings) associated

Tschofenig & Fossati Expires September 9, 2015 [Page 40]

Internet-Draft TLS/DTLS IoT Profile March 2015

 with other data type will prove to be truly useful but this extra
 data might include personal information about the owner of the device
 or data about the environment it senses. Consequently, the data
 stored on the server-side will be vulnerable to stored data
 compromise. For the communication between the client and the server
 this specification prevents eavesdroppers to gain access to the
 communication content. While the PSK-based ciphersuite does not
 provide PFS the asymmetric versions do. This prevents an adversary
 from obtaining past communication content when access to a long-term
 secret has been gained. Note that no extra effort to make traffic
 analysis more difficult is provided by the recommendations made in
 this document.

25. Security Considerations

 This entire document is about security.

 We would also like to point out that designing a software update
 mechanism into an IoT system is crucial to ensure that both
 functionality can be enhanced and that potential vulnerabilities can
 be fixed. This software update mechanism is important for changing
 configuration information, for example, trust anchors and other
 keying related information. Such a suitable software update
 mechanism is available with the Lightweight Machine-to-Machine
 (LWM2M) protocol published by the Open Mobile Alliance (OMA) [LWM2M].

26. IANA Considerations

 This document includes no request to IANA.

27. Acknowledgements

 Thanks to Olaf Bergmann, Paul Bakker, Robert Cragie, Russ Housley,
 Rene Hummen, Matthias Kovatsch, Sandeep Kumar, Sye Loong Keoh, Simon
 Lemay, Alexey Melnikov, Manuel Pegourie-Gonnard, Akbar Rahman, Eric
 Rescorla, Michael Richardson, Ludwig Seitz, Zach Shelby, Michael
 StJohns, Rene Struik, and Sean Turner for their helpful comments and
 discussions that have shaped the document.

 Big thanks also to Klaus Hartke, who wrote the initial version of
 this document.

 Finally, we would like to thank our area director (Stephen Farrell)
 and our working group chairs (Zach Shelby and Dorothy Gellert) for
 their support.

Tschofenig & Fossati Expires September 9, 2015 [Page 41]

Internet-Draft TLS/DTLS IoT Profile March 2015

28. References

28.1. Normative References

 [EUI64] "GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64)
 REGISTRATION AUTHORITY", April 2010,
 <http://standards.ieee.org/regauth/oui/tutorials/

EUI64.html>.

 [GSM-SMS] ETSI, "3GPP TS 23.040 V7.0.1 (2007-03): 3rd Generation
 Partnership Project; Technical Specification Group Core
 Network and Terminals; Technical realization of the Short
 Message Service (SMS) (Release 7)", March 2007.

 [I-D.ietf-tls-cached-info]
 Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", draft-ietf-tls-

cached-info-17 (work in progress), November 2014.

 [I-D.ietf-tls-session-hash]
 Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", draft-ietf-

tls-session-hash-03 (work in progress), November 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279, December
 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
https://datatracker.ietf.org/doc/html/draft-ietf-tls-cached-info-17
https://datatracker.ietf.org/doc/html/draft-ietf-tls-cached-info-17
https://datatracker.ietf.org/doc/html/draft-ietf-tls-session-hash-03
https://datatracker.ietf.org/doc/html/draft-ietf-tls-session-hash-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6125

Tschofenig & Fossati Expires September 9, 2015 [Page 42]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520, February 2012.

 [RFC7250] Wouters, P., Tschofenig, H., Gilmore, J., Weiler, S., and
 T. Kivinen, "Using Raw Public Keys in Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7250, June 2014.

 [RFC7251] McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
 TLS", RFC 7251, June 2014.

 [WAP-WDP] Wireless Application Protocol Forum, "Wireless Datagram
 Protocol", June 2001.

28.2. Informative References

 [ACE-WG] IETF, "Authentication and Authorization for Constrained
 Environments (ace) Working Group", URL:

https://datatracker.ietf.org/wg/ace/charter/, Jan 2015.

 [AES] National Institute of Standards and Technology, "FIPS PUB
 197, Advanced Encryption Standard (AES)",

http://www.iana.org/assignments/tls-parameters/
tls-parameters.xhtml#tls-parameters-4, November 2001.

 [CCM] National Institute of Standards and Technology, "Special
 Publication 800-38C, Recommendation for Block Cipher Modes
 of Operation: The CCM Mode for Authentication and
 Confidentiality", http://csrc.nist.gov/publications/

nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf, May
 2004.

 [ENISA-Report2013]
 ENISA, "Algorithms, Key Sizes and Parameters Report -
 2013", http://www.enisa.europa.eu/activities/identity-and-

trust/library/deliverables/
 algorithms-key-sizes-and-parameters-report, October 2013.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6520
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7251
https://datatracker.ietf.org/wg/ace/charter/
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/

Tschofenig & Fossati Expires September 9, 2015 [Page 43]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [Heninger]
 Heninger, N., Durumeric, Z., Wustrow, E., and A.
 Halderman, "Mining Your Ps and Qs: Detection of Widespread
 Weak Keys in Network Devices", 21st USENIX Security
 Symposium,

https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/heninger, 2012.

 [HomeGateway]
 Eggert, L., "An experimental study of home gateway
 characteristics, In Proceedings of the '10th annual
 conference on Internet measurement'", 2010.

 [I-D.bmoeller-tls-falsestart]
 Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", draft-bmoeller-tls-

falsestart-01 (work in progress), November 2014.

 [I-D.bormann-core-cocoa]
 Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
 "CoAP Simple Congestion Control/Advanced", draft-bormann-

core-cocoa-02 (work in progress), July 2014.

 [I-D.iab-smart-object-architecture]
 Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,
 "Architectural Considerations in Smart Object Networking",

draft-iab-smart-object-architecture-06 (work in progress),
 October 2014.

 [I-D.ietf-core-resource-directory]
 Shelby, Z. and C. Bormann, "CoRE Resource Directory",

draft-ietf-core-resource-directory-02 (work in progress),
 November 2014.

 [I-D.ietf-lwig-tls-minimal]
 Kumar, S., Keoh, S., and H. Tschofenig, "A Hitchhiker's
 Guide to the (Datagram) Transport Layer Security Protocol
 for Smart Objects and Constrained Node Networks", draft-

ietf-lwig-tls-minimal-01 (work in progress), March 2014.

 [I-D.ietf-tls-downgrade-scsv]
 Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", draft-ietf-tls-downgrade-scsv-05 (work in
 progress), February 2015.

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://datatracker.ietf.org/doc/html/draft-bmoeller-tls-falsestart-01
https://datatracker.ietf.org/doc/html/draft-bmoeller-tls-falsestart-01
https://datatracker.ietf.org/doc/html/draft-bormann-core-cocoa-02
https://datatracker.ietf.org/doc/html/draft-bormann-core-cocoa-02
https://datatracker.ietf.org/doc/html/draft-iab-smart-object-architecture-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-02
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-tls-minimal-01
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-tls-minimal-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-downgrade-scsv-05

Tschofenig & Fossati Expires September 9, 2015 [Page 44]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [I-D.ietf-tls-negotiated-dl-dhe]
 Gillmor, D., "Negotiated Discrete Log Diffie-Hellman
 Ephemeral Parameters for TLS", draft-ietf-tls-negotiated-

dl-dhe-00 (work in progress), July 2014.

 [I-D.ietf-tls-prohibiting-rc4]
 Popov, A., "Prohibiting RC4 Cipher Suites", draft-ietf-

tls-prohibiting-rc4-01 (work in progress), October 2014.

 [I-D.ietf-tls-sslv3-diediedie]
 Barnes, R., Thomson, M., Pironti, A., and A. Langley,
 "Deprecating Secure Sockets Layer Version 3.0", draft-

ietf-tls-sslv3-diediedie-02 (work in progress), March
 2015.

 [I-D.ietf-uta-tls-bcp]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of TLS and DTLS", draft-

ietf-uta-tls-bcp-11 (work in progress), February 2015.

 [I-D.irtf-cfrg-chacha20-poly1305]
 Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 protocols", draft-irtf-cfrg-chacha20-poly1305-10 (work in
 progress), February 2015.

 [I-D.mathewson-no-gmtunixtime]
 Mathewson, N. and B. Laurie, "Deprecating gmt_unix_time in
 TLS", draft-mathewson-no-gmtunixtime-00 (work in
 progress), December 2013.

 [I-D.schmertmann-dice-ccm-psk-pfs]
 Schmertmann, L. and C. Bormann, "ECDHE-PSK AES-CCM Cipher
 Suites with Forward Secrecy for Transport Layer Security
 (TLS)", draft-schmertmann-dice-ccm-psk-pfs-01 (work in
 progress), August 2014.

 [IANA-TLS]
 IANA, "TLS Cipher Suite Registry",

http://www.iana.org/assignments/tls-parameters/
tls-parameters.xhtml#tls-parameters-4, 2014.

 [ImprintingSurvey]
 Chilton, E., "A Brief Survey of Imprinting Options for
 Constrained Devices", URL: http://www.lix.polytechnique.fr

/hipercom/SmartObjectSecurity/papers/EricRescorla.pdf,
 March 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-negotiated-dl-dhe-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-negotiated-dl-dhe-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-prohibiting-rc4-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-prohibiting-rc4-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-sslv3-diediedie-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-sslv3-diediedie-02
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls-bcp-11
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls-bcp-11
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-chacha20-poly1305-10
https://datatracker.ietf.org/doc/html/draft-mathewson-no-gmtunixtime-00
https://datatracker.ietf.org/doc/html/draft-schmertmann-dice-ccm-psk-pfs-01
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/papers/EricRescorla.pdf
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/papers/EricRescorla.pdf

Tschofenig & Fossati Expires September 9, 2015 [Page 45]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [Keylength]
 Giry, D., "Cryptographic Key Length Recommendations",

http://www.keylength.com, November 2014.

 [LWM2M] Open Mobile Alliance, "Lightweight Machine-to-Machine,
 Technical Specification, Candidate Version 1.0", December
 2013.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC

2865, June 2000.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, September 2003.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC

3748, June 2004.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634, July 2006.

 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals", RFC

4919, August 2007.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, January 2008.

http://www.keylength.com
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc5077

Tschofenig & Fossati Expires September 9, 2015 [Page 46]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, March 2008.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",

RFC 5247, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 August 2008.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [RFC5758] Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T.
 Polk, "Internet X.509 Public Key Infrastructure:
 Additional Algorithms and Identifiers for DSA and ECDSA",

RFC 5758, January 2010.

 [RFC5934] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Management Protocol (TAMP)", RFC 5934, August 2010.

 [RFC6024] Reddy, R. and C. Wallace, "Trust Anchor Management
 Requirements", RFC 6024, October 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655, July 2012.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [RFC6733] Fajardo, V., Arkko, J., Loughney, J., and G. Zorn,
 "Diameter Base Protocol", RFC 6733, October 2012.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5216
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc5480
https://datatracker.ietf.org/doc/html/rfc5758
https://datatracker.ietf.org/doc/html/rfc5934
https://datatracker.ietf.org/doc/html/rfc6024
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc6655
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6733

Tschofenig & Fossati Expires September 9, 2015 [Page 47]

Internet-Draft TLS/DTLS IoT Profile March 2015

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 June 2013.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, May 2014.

 [RFC7366] Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366, September 2014.

 [RFC7390] Rahman, A. and E. Dijk, "Group Communication for the
 Constrained Application Protocol (CoAP)", RFC 7390,
 October 2014.

 [RFC7397] Gilger, J. and H. Tschofenig, "Report from the Smart
 Object Security Workshop", RFC 7397, December 2014.

 [RFC7400] Bormann, C., "6LoWPAN-GHC: Generic Header Compression for
 IPv6 over Low-Power Wireless Personal Area Networks
 (6LoWPANs)", RFC 7400, November 2014.

 [SP800-22b]
 National Institute of Standards and Technology, "Special
 Publication 800-22, Revision 1a, A Statistical Test Suite
 for Random and Pseudorandom Number Generators for
 Cryptographic Applications",

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/
SP800-22rev1a.pdf, April 2010.

 [SP800-90A]
 NIST, "DRAFT Special Publication 800-90a, Revision 1,
 Recommendation for Random Number Generation Using
 Deterministic Random Bit Generators",

http://csrc.nist.gov/publications/drafts/800-90/
sp800-90a_r1_draft_november2014_ver.pdf, November 2014.

 [Triple-HS]
 Bhargavan, K., Delignat-Lavaud, C., Pironti, A., and P.
 Strub, "Triple Handshakes and Cookie Cutters: Breaking and
 Fixing Authentication over TLS", IEEE Symposium on
 Security and Privacy, pages 98-113, 2014.

https://datatracker.ietf.org/doc/html/rfc6961
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7397
https://datatracker.ietf.org/doc/html/rfc7400
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800-90a_r1_draft_november2014_ver.pdf
http://csrc.nist.gov/publications/drafts/800-90/sp800-90a_r1_draft_november2014_ver.pdf

Tschofenig & Fossati Expires September 9, 2015 [Page 48]

Internet-Draft TLS/DTLS IoT Profile March 2015

Appendix A. Conveying DTLS over SMS

 This section is normative for the use of DTLS over SMS. Timer
 recommendations are already outlined in Section 13 and also
 applicable to the transport of DTLS over SMS.

 This section requires readers to be familiar with the terminology and
 concepts described in [GSM-SMS], and [WAP-WDP].

 The remainder of this section assumes Mobile Stations are capable of
 producing and consuming 8-bit binary data encoded Transport Protocol
 Data Units (TPDU).

A.1. Overview

 DTLS adds an additional roundtrip to the TLS [RFC5246] handshake to
 serve as a return-routability test for protection against certain
 types of DoS attacks. Thus a full blown DTLS handshake comprises up
 to 6 "flights" (i.e., logical message exchanges), each of which is
 then mapped on to one or more DTLS records using the segmentation and
 reassembly (SaR) scheme described in Section 4.2.3 of [RFC6347]. The
 overhead for said scheme is 6 bytes per Handshake message which,
 given a realistic 10+ messages handshake, would amount around 60
 bytes across the whole handshake sequence.

 Note that the DTLS SaR scheme is defined for handshake messages only.
 In fact, DTLS records are never fragmented and MUST fit within a
 single transport layer datagram.

 SMS provides an optional segmentation and reassembly scheme as well,
 known as Concatenated short messages (see Section 9.2.3.24.1 of
 [GSM-SMS]). However, since the SaR scheme in DTLS cannot be
 circumvented, the Concatenated short messages mechanism SHOULD NOT be
 used during handshake to avoid redundant overhead. Before starting
 the handshake phase (either actively or passively), the DTLS
 implementation MUST be explicitly configured with the PMTU of the SMS
 transport in order to correctly instrument its SaR function. The
 PMTU SHALL be 133 bytes if WDP-based multiplexing is used (see

Appendix A.3), 140 bytes otherwise.

 It is RECOMMENDED to use the established security context over the
 longest possible period (possibly until a Closure Alert message is
 received, or after a very long inactivity timeout) to avoid the
 expensive re-establishment of the security association.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.3

Tschofenig & Fossati Expires September 9, 2015 [Page 49]

Internet-Draft TLS/DTLS IoT Profile March 2015

A.2. Message Segmentation and Re-Assembly

 The content of an SMS message is carried in the TP-UserData field,
 and its size may be up to 140 bytes. As already mentioned in

Appendix A.1, longer (i.e., up to 34170 bytes) messages can be sent
 using Concatenated SMS.

 This scheme consumes 6-7 bytes (depending on whether the short or
 long segmentation format is used) of the TP-UserData field, thus
 reducing the space available for the actual content of the SMS
 message to 133-134 bytes per TPDU.

 Though in principle a PMTU value higher than 140 bytes could be used,
 which may look like an appealing option given its more efficient use
 of the transport, there are disadvantages to consider. First, there
 is an additional overhead of 7 bytes per TPDU to be paid to the SaR
 function (which is in addition to the overhead introduced by the DTLS
 SaR mechanism. Second, some networks only partially support the
 Concatenated SMS function and others do not support it at all.

 For these reasons, the Concatenated short messages mechanism SHOULD
 NOT be used, and it is RECOMMENDED to leave the same PMTU settings
 used during the handshake phase, i.e., 133 bytes if WDP- based
 multiplexing is enabled, 140 bytes otherwise.

 Note that, after DTLS handshake has completed, any fragmentation and
 reassembly logic that pertains the application layer (e.g.,
 segmenting CoAP messages into DTLS records and reassembling them
 after the crypto operations have been successfully performed) needs
 to be handled by the application that uses the established DTLS
 tunnel.

A.3. Multiplexing Security Associations

 Unlike IPsec ESP/AH, DTLS records do not contain any association
 identifiers. Applications must arrange to multiplex between
 associations on the same endpoint which, when using UDP/IP, is
 usually done with the host/port number.

 If the DTLS server allows more than one client to be active at any
 given time, then the WAP User Datagram Protocol [WAP-WDP] can be used
 to achieve multiplexing of the different security associations. (The
 use of WDP provides the additional benefit that upper layer protocols
 can operate independently of the underlying wireless network, hence
 achieving application-agnostic transport handover.)

 The total overhead cost for encoding the WDP source and destination
 ports is either 5 or 7 bytes out of the total available for the SMS

Tschofenig & Fossati Expires September 9, 2015 [Page 50]

Internet-Draft TLS/DTLS IoT Profile March 2015

 content depending on if 1-byte or 2-byte port identifiers are used,
 as shown in Figure 12 and Figure 13.

 0 1 2 3 4
 +--------+--------+--------+--------+--------+
 | ... | 0x04 | 2 | ... | ... |
 +--------+--------+--------+--------+--------+
 UDH IEI IE Dest Source
 Length Length Port Port

 Figure 12: Application Port Addressing Scheme (8 bit address).

 0 1 2 3 4 5 6
 +--------+--------+--------+--------+--------+--------+--------+
 | ... | 0x05 | 4 | ... | ... |
 +--------+--------+--------+--------+--------+--------+--------+
 UDH IEI IE Dest Source
 Length Length Port Port

 Figure 13: Application Port Addressing Scheme (16 bit address).

 The receiving side of the communication gets the source address from
 the originator address (TP-OA) field of the SMS-DELIVER TPDU. This
 way an unique 4-tuple identifying the security association can be
 reconstructed at both ends. (When replying to its DTLS peer, the
 sender will swaps the TP-OA and TP-DA parameters and the source and
 destination ports in the WDP.)

A.4. Timeout

 If SMS-STATUS-REPORT messages are enabled, their receipt is not to be
 interpreted as the signal that the specific handshake message has
 been acted upon by the receiving party. Therefore, it MUST NOT be
 taken into account by the DTLS timeout and retransmission function.

 Handshake messages MUST carry a validity period (TP-VP parameter in a
 SMS-SUBMIT TPDU) that is not less than the current value of the
 retransmission timeout. In order to avoid persisting messages in the
 network that will be discarded by the receiving party, handshake
 messages SHOULD carry a validity period that is the same as, or just
 slightly higher than, the current value of the retransmission
 timeout.

Tschofenig & Fossati Expires September 9, 2015 [Page 51]

Internet-Draft TLS/DTLS IoT Profile March 2015

Appendix B. DTLS Record Layer Per-Packet Overhead

 Figure 14 shows the overhead for the DTLS record layer for protecting
 data traffic when AES-128-CCM with an 8-octet Integrity Check Value
 (ICV) is used.

 DTLS Record Layer Header................13 bytes
 Nonce (Explicit).........................8 bytes
 ICV..................................... 8 bytes
 --
 Overhead................................29 bytes
 --

 Figure 14: AES-128-CCM-8 DTLS Record Layer Per-Packet Overhead.

 The DTLS record layer header has 13 octets and consists of

 o 1 octet content type field,

 o 2 octet version field,

 o 2 octet epoch field,

 o 6 octet sequence number,

 o 2 octet length field.

 The "nonce" input to the AEAD algorithm is exactly that of [RFC5288],
 i.e., 12 bytes long. It consists of a 4 octet salt and an 8 octet
 nonce. The salt is the "implicit" part of the nonce and is not sent
 in the packet. Since the nonce_explicit may be the 8 octet sequence
 number and, in DTLS, it is the 8 octet epoch concatenated with the 6
 octet sequence number.

RFC 6655 [RFC6655] allows the nonce_explicit to be a sequence number
 or something else. This document makes this use more restrictive for
 use with DTLS: the 64-bit none_explicit MUST be the 16-bit epoch
 concatenated with the 48-bit seq_num. The sequence number component
 of the nonce_explicit field at the AES-CCM layer is an exact copy of
 the sequence number in the record layer header field. This leads to
 a duplication of 8-bytes per record.

 To avoid this 8-byte duplication RFC 7400 [RFC7400] provides help
 with the use of the generic header compression technique for IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs). Note that
 this header compression technique is not available when DTLS is

https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc6655
https://datatracker.ietf.org/doc/html/rfc6655
https://datatracker.ietf.org/doc/html/rfc7400
https://datatracker.ietf.org/doc/html/rfc7400

Tschofenig & Fossati Expires September 9, 2015 [Page 52]

Internet-Draft TLS/DTLS IoT Profile March 2015

 exchanged over transports that do not use IPv6 or 6LoWPAN, such as
 the SMS transport described in Appendix A.

Appendix C. DTLS Fragmentation

 [Editor's Note: Proposed text that requires discussion.]

Section 4.2.3 of [RFC6347] advises DTLS implementations to not
 produce overlapping fragments, but requires receivers to be able to
 cope with them. The need for the latter requisite is explained in

Section 4.1.1.1 of [RFC6347]: accurate path MTU (PMTU) estimation may
 be traded for shorter handshake completion time. This approach may
 be beneficial in unconstrained networks where a PMTU of 1280 bytes
 can be pretty much universally assumed. However, an handshake that
 is carried over a narrow-band radio technology, such as IEEE
 802.15.4, Bluetooth Smart or GSM-SMS, and the client is lacking
 reliable PMTU data to inform fragmentation (e.g., using [RFC1981] or
 [RFC1191]) can place a cost on the constrained implementation in
 terms of memory (due to re-buffering) and latency (due to re-
 transmission) much higher than the benefit that it would get from a
 shorter handshake.

 In order to reduce the likelihood of producing different fragment
 sizes (and consequent overlaps) within the same handshake, this
 document RECOMMENDs:

 o for clients (handshake initiators), to perform PMTU discovery
 towards the server before handshake starts, and not rely on any
 guesses (unless the network path characteristics are reliably
 known from another source);

 o for servers, to mirror the fragment size selected by their
 clients.

Authors' Addresses

 Hannes Tschofenig (editor)
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge CB1 9NJ
 Great Britain

 Email: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.3
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.1.1
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc1191
http://www.tschofenig.priv.at

Tschofenig & Fossati Expires September 9, 2015 [Page 53]

Internet-Draft TLS/DTLS IoT Profile March 2015

 Thomas Fossati
 Alcatel-Lucent
 3 Ely Road
 Milton, Cambridge CB24 6DD
 UK

 Email: thomas.fossati@alcatel-lucent.com

Tschofenig & Fossati Expires September 9, 2015 [Page 54]

