
Internet Engineering Task Force Y. Bernet
Diffserv Working Group Microsoft
INTERNET-DRAFT A. Smith
Expires: September 2000 Extreme Networks
 S. Blake
 Ericsson
 D. Grossman
 Motorola
 March 2000

A Conceptual Model for Diffserv Routers

draft-ietf-diffserv-model-02.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This document is a product of the Diffserv working group. Comments
 on this draft should be directed to the Diffserv mailing list
 <diffserv@ietf.org>.

 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 DISCLAIMER - for reasons outside our control this version has been
 rushed out with formatting errors and not checked by all authors.

 This draft proposes a conceptual model of Differentiated Services
 (Diffserv) routers for use in their management and configuration.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 This model defines the general functional datapath elements
 (classifiers, meters, markers, droppers, monitors, replicators, muxes,
 queues), their possible configuration parameters, and how they might
 be interconnected to realize the range of classification, traffic
 conditioning, and per-hop behavior (PHB) functionalities described in

Bernet, et. al. Expires: September 2000 [page 1]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 [DSARCH]. The model is intended to be abstract and capable of
 representing the configuration parameters important to Diffserv
 functionality for a variety of specific router implementations. It
 is not intended as a guide to hardware implementation.

 This model should serve as a rationale for the design of a Diffserv
 MIB [DSMIB], as well for various configuration interfaces (such as
 [PIB]). Since these documents are all evolving simultaneously there
 are discrepancies between their current revisions; this should be
 resolved in a future revision of this draft.

Table of Contents

1. Introduction ... 3
2. Glossary .. 4
3. Conceptual Model ... 6
3.1 Elements of a Diffserv Router 6
3.1.1 Datapath .. 7
3.1.2 Configuration and Management Interface 8
3.1.3 Optional RSVP Module 8

3.2 Hierarchical Model of Diffserv Components 8
4. Classifiers .. 10
4.1 Definition .. 10
4.1.1 Filters ... 11
4.1.2 Overlapping Filters 12
4.1.3 Filter Groups ... 12

4.2 Examples .. 12
4.2.1 Behavior Aggregate (BA) Classifier 12
4.2.2 Multi-Field (MF) Classifier 13
4.2.3 IEEE802 MAC Address Classifier 13
4.2.4 Free-form Classifier 14
4.2.5 Other Possible Classifiers 14

4.3 MPLS .. 15
5. Meters ... 15
5.1 Definition .. 15
5.2 Examples .. 16
5.2.1 Average Rate Meter 16
5.2.2 Exponentially Weighted Moving Average (EWMA) Meter 17
5.2.3 Two-Parameter Token Bucket Meter 17
5.2.4 Multi-Stage Token Bucket Meter 18

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

5.2.5 Null Meter .. 19
 6. Action Elements .. 19*
 6.1 Marker .. 19*
 6.2 Dropper ... 20*
 6.3 Shaper .. 20*
 6.4 Replicating Element 20*
 6.5 Multiplexor ... 20*
 6.6 Monitor ... 21*
 6.7 Null Action ... 21*

7. Queues ... 21
7.1 Queue Sets and Scheduling 21
7.2 Shaping ... 23

Bernet, et. al. Expires: July 2000 [page 2]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

8. Traffic Conditioning Blocks (TCBs) 23
8.1 An Example TCB .. 24
8.2 An Example TCB to Support Multiple Customers 27
8.3 TCBs Supporting Microflow-based Services 28
8.4 Cascaded TCBs ... 31

9. Open Issues .. 31
10. Security Considerations 31
11. Acknowledgments .. 31
12. References ... 32
Appendix A. Simple Token Bucket Definition 33

1. Introduction

 Differentiated Services (Diffserv) [DSARCH] is a set of technologies
 which allow network service providers to offer differing levels of
 network quality-of-service (QoS) to different customers and their
 traffic streams. The premise of Diffserv networks is that routers
 within the core of the network handle packets in different traffic
 streams by forwarding them using different per-hop behaviors (PHBs).
 The PHB to be applied is indicated by a Diffserv codepoint (DSCP) in
 the IP header of each packet [DSFIELD]. Note that this document
 uses the terminology defined in [DSARCH, DSTERMS] and in Sec. 2.

 The advantage of such a scheme is that many traffic streams can be
 aggregated to one of a small number of behavior aggregates (BA)
 which are each forwarded using the same PHB at the router, thereby
 simplifying the processing and associated storage. In addition,
 there is no signaling, other than what is carried in the DSCP of
 each packet, and no other related processing that is required in the
 core of the Diffserv network since QoS is invoked on a packet-by-
 packet basis.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 The Diffserv architecture enables a variety of possible services
 which could be deployed in a network. These services are reflected
 to customers at the edges of the Diffserv network in the form of a
 Service Level Specification (SLS) [DSTERMS]. The ability to provide
 these services depends on the availability of cohesive management and
 configuration tools that can be used to provision and monitor a set
 of Diffserv routers in a coordinated manner. To facilitate the
 development of such configuration and management tools it is helpful
 to define a conceptual model of a Diffserv router that abstracts
 away implementation details of particular Diffserv routers from the
 parameters of interest for configuration and management. The purpose
 of this draft is to define such a model.

 The basic forwarding functionality of a Diffserv router is defined in
 other specifications; e.g., [DSARCH, DSFIELD, AF-PHB, EF-PHB].

 This document is not intended in any way to constrain or to dictate
 the implementation alternatives of Diffserv routers. We expect that
 router vendors will demonstrate a great deal of variability in their
 implementations. To the extent that vendors are able to model their

Bernet, et. al. Expires: September 2000 [page 3]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 implementations using the abstractions described in this draft,
 configuration and management tools will more readily be able to
 configure and manage networks incorporating Diffserv routers of
 various implementations.
 In Sec. 3 we start by describing the basic high-level functional
 elements of a Diffserv router and then describe the various
 components. We then focus on the Diffserv-specific components of
 the router and describe a hierarchical management model for these.

 In Sec. 4 we describe classification elements and in Sec. 5, we
 discuss the meter elements.

 In Sec. 6 we discuss action elements. In Sec. 7 we discuss the
 basic queueing elements and their functional behaviors (e.g.,
 shaping).

 In Sec. 8, we show how the basic classification, meter, action, and
 queueing elements can be combined to build modules called Traffic
 Conditioning Blocks (TCBs).

 In Sec. 9 we discuss open issues with this document and in Sec. 10 we
 discuss security concerns.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

Appendix A discusses token bucket implementation details.

2. Glossary

 Some of the terms used in this draft are defined in [DSARCH] and in
 [DSTERMS]. We define a few of them here again only to provide
 additional detail.

 Buffer An algorithm used to determine whether an arriving
 management packet should be stored in a queue, or discarded. This
 algorithm decision is usually a function of the instantaneous or
 average queue occupancy, but also may be a function of
 the aggregate queue occupancy in a queue set, or of
 other parameters.

 Classifier A functional datapath element which consists of filters
 which select packets based on the content of packet
 headers or other packet data, and/or on implicit or
 derived attributes associated with the packet, and
 forwards the packet along a particular datapath within
 the router. A classifier splits a single incoming
 traffic stream into multiple outgoing ones.

 Enqueueing The process of executing a buffer management algorithm
 to determine whether an arriving packet should be
 stored in a queue.

 Filter A set of (wildcard/prefix/masked/range/exact)
 conditions on the components of a packet's

Bernet, et. al. Expires: September 2000 [page 4]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 classification key. A filter is said to match only if
 each condition is satisfied.

 Replicating A functional datapath element which makes one or more
 element copies of a packet and forwards them on distinct
 datapaths; for example to a monitoring port.

 Monitor A functional datapath element which updates an octet
 and a packet counter for every packet which passes
 through it. Used for collecting statistics.

 Multiplexer A functional datapath element that merges multiple
 (Mux) traffic streams (datapaths) into a single traffic
 stream (datapath).

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 Non-work A property of a scheduling algorithm such that it does
 conserving not necessarily service a packet if available at every
 transmission opportunity.

 Queue A storage location for packets awaiting transmission or
 processing by the next functional element in the data-
 path. The queues represented in this model are
 abstract elements that may be implemented by multiple
 physical queues in series and/or in parallel in a
 specific implementation. Note that we assume that a
 queue is serviced such as to preserve the required
 ordering constraint for each Ordering Aggregate (OA)
 it queues [DSTERMS]. This can be achieved by a FIFO
 (first in, first out) service policy or by other means
 (e.g., multiple FIFOs exclusively servicing particular
 OAs).

 Queue set A set of queues which are serviced by a scheduling
 algorithm and which may share a buffer management
 algorithm.

 Scheduling An algorithm which determines which queue of a queue
 algorithm set to service next. This may be based on the relative
 priority of the queues, or on a weighted fair bandwidth
 sharing policy, or some other policy. A scheduling
 algorithm may be either work-conserving or non-work-
 conserving.

 Shaping The process of delaying packets within a traffic stream
 to cause it to conform to some defined traffic profile.
 Shaping can be implemented using a queue serviced by a
 non-work conserving scheduling algorithm.

 Traffic A logical datapath entity consisting of a number of
 Conditioning other functional datapath entities interconnected in
 Block (TCB) such a way as to perform a specific set of traffic
 conditioning functions on an incoming traffic stream.

Bernet, et. al. Expires: September 2000 [page 5]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 A TCB can be thought of as an entity with at least one
 input and output and a set of control parameters.

 Work A property of a scheduling algorithm such that it
 conserving services a packet if available at every transmission
 opportunity.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

3. Conceptual Model

 In this section we introduce a block diagram of a Diffserv router and
 describe the various components illustrated. Note that a Diffserv
 core router is assumed to include only a subset of these components:
 the model we present here is intended to cover the case of both
 Diffserv edge and core routers.

3.1 Elements of a Diffserv Router

 The conceptual model we define includes abstract definitions for the
 following:

 o The basic traffic classification components.

 o The basic traffic conditioning components.

 o Certain combinations of traffic classification and conditioning
 components.

 o Queueing components.

 The components and combinations of components described in this
 document form building blocks that need to be manageable by Diffserv
 configuration and management tools. One of the goals of this
 document is to show how a model of a Diffserv device can be built
 using these component blocks. This model is in the form of a
 connected directed acyclic graph (DAG) of functional datapath
 elements that describes the traffic conditioning and queueing
 behaviors that any particular packet will experience when forwarded
 to the Diffserv router.

 The following diagram illustrates the major functional blocks of a
 Diffserv router:

Bernet, et. al. Expires: September 2000 [page 6]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 +---------------+
 | Diffserv |
 Mgmt | configuration |
 <----+-->| & management |------------------+
 SNMP,| | interface | |
 COPS | +---------------+ |
 etc. | | |
 | | |
 | v v
 | +-------------+ +---------+ +-------------+
 data | | ingress i/f | | | | egress i/f |
 -------->| class., |-->| routing |-->| class., |---->
 | | TC, | | core | | TC, |
 | | queueing | | | | queueing |
 | +-------------+ +---------+ +-------------+
 | ^ ^
 | | |
 | | |
 | +------------+ |
 +-->| QOS agent | |
 -------->| (optional) |---------------------+
 QOS | (e.g. RSVP)|
 cntl +------------+
 msgs

 Figure 1: Diffserv Router Major Functional Blocks

3.1.1 Datapath

 An ingress interface, routing core, and egress interface are
 illustrated at the center of the diagram. In actual router
 implementations, there may be an arbitrary number of ingress and
 egress interfaces interconnected by the routing core. The routing
 core element serves as an abstraction of a router's normal routing
 and switching functionality. The routing core moves packets between
 interfaces according to policies outside the scope of Diffserv. The
 actual queueing delay and packet loss behavior of a specific router's
 switching fabric/backplane is not modeled by the routing core; these
 should be modeled using the functional elements described later. The
 routing core should be thought of as an infinite bandwidth, zero-
 delay backplane connecting ingress and egress interfaces.

 The components of interest on the ingress/egress interfaces are the
 traffic classifiers, traffic conditioning (TC) components, and the
 queueing components that support Diffserv traffic conditioning and
 per-hop behaviors [DSARCH]. These are the fundamental components
 comprising a Diffserv router and will be the focal point of our
 conceptual model.

Bernet, et. al. Expires: September 2000 [page 7]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

3.1.2 Configuration and Management Interface

 Diffserv operating parameters are monitored and provisioned through
 this interface. Monitored parameters include statistics regarding
 traffic carried at various Diffserv service levels. These statistics
 may be important for accounting purposes and/or for tracking
 compliance to traffic conditioning specifications (TCSs) [DSTERMS]
 negotiated with customers. Provisioned parameters are primarily
 classification rules, TC and PHB configuration parameters. The
 network administrator interacts with the Diffserv configuration and
 management interface via one or more management protocols, such as
 SNMP or COPS, or through other router configuration tools such as
 serial terminal or telnet consoles.

 Specific policy objectives are presumed to be installed by or
 retrieved from policy management mechanisms. However, diffserv
 routers are subject to implementation decisions which form a meta-
 policy that scopes the kinds of policies which can be created.

3.1.3 Optional RSVP Module

 Diffserv routers may snoop or participate in either per-microflow or
 per-flow-aggregate signaling of QoS requirements [E2E]. The example
 discussed here uses the RSVP protocol. Snooping of RSVP messages may
 be used, for example, to learn how to classify traffic without
 actually participating as a RSVP protocol peer. Diffserv routers may
 reject or admit RSVP reservation requests to provide a means of
 admission control to Diffserv-based services or they may use these
 requests to trigger provisioning changes for a flow-aggregation in
 the Diffserv network. A flow-aggregation in this context might be
 equivalent to a Diffserv BA or it may be more fine-grained, relying
 on a MF classifier [DSARCH]. Note that the conceptual model of such
 a router starts to look the same as a Integrated Services (intserv)
 router in its component makeup [E2E].

 Note that a RSVP component of a Diffserv router, if present, might
 be active only in the control plane and not in the data plane. In
 this scenario, RSVP is used strictly as a signaling protocol. The
 data plane of such a Diffserv router can still act purely on Diffserv
 DSCPs and PHBs in handling data traffic.

3.2 Hierarchical Model of Diffserv Components

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 We focus on the Diffserv specific functional components of the
 router: the classification, traffic conditioning, and queueing
 functionality. The diagram below is based on the larger block
 diagram shown above:

Bernet, et. al. Expires: September 2000 [page 8]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 Interface A Interface B
 +-------------+ +---------+ +-------------+
 | ingress i/f | | | | egress i/f |
 | class., | | | | class., |
 --->| meter, |---->| |---->| meter, |--->
 | action, | | | | action, |
 | queueing | | | | queueing |
 +-------------+ | routing | +-------------+
 | core |
 +-------------+ | | +-------------+
 | egress i/f | | | | ingress i/f |
 | class., | | | | class., |
 <---| meter, |<----| |<----| meter, |<---
 | action, | | | | action, |
 | queueing | +---------+ | queueing |
 +-------------+ +-------------+

 Figure 2. Traffic Conditioning and Queueing Elements

 This diagram illustrates two Diffserv router interfaces, each having
 an ingress and an egress component. It shows classification, meter,
 action, and queueing elements which might be instantiated on each
 interface's ingress and egress component. The TC functionality is
 implemented by a combination of classification, action, meter, and
 queueing elements. We show equivalent functional elements on both
 the ingress and egress components of an interface because we expect
 an N-port router to display the same Diffserv capabilities as a
 network of 2-port routers interconnected by LAN media [DSMIB]. Note
 that it is not mandatory that each of these functional elements be
 implemented on both ingress and egress components; it is dependent on
 the service requirements on a particular interface on a particular
 router. Further, we wish to point out that by showing these elements

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 on both ingress and egress components we do not mean to imply that
 they must be implemented in this way in a specific router. For
 example, a router may implement all shaping and PHB queueing on the
 interface egress component, or may instead implement it only on the
 ingress component. Further, the classification needed to map a
 packet to an egress component queue (if present) need not be
 implemented on the egress component but instead may be implemented on
 the ingress component, with the packet passed through the routing
 core with in-band control information to allow for egress queue
 selection.

 From a configuration and management perspective, the following
 hierarchy exists:

 At the top level, the network administrator manages interfaces. Each
 interface consists of an ingress component and an egress component.
 Each component may contain classifier, action, meter, and queueing
 elements.

Bernet, et. al. Expires: September 2000 [page 9]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 At the next level, the network administrator manages groups of
 functional elements interconnected in a DAG. These elements are
 organized in self-contained Traffic Conditioning Blocks (TCBs) which
 are used to implement some desired network policy (see Sec. 8). One
 or more TCBs may be instantiated on each ingress or egress component,
 may be connected in series, and/or may be connected in a
 parallel configuration on the multiple outputs of a classifier.
 We define the TCB to optionally include classification and queueing
 elements so as to allow for rich functionality. A TCB can be thought
 of as a "black box" with a single input and a single output (on the
 main data path). TCBs can be constructed out of a DAG of other TCBs,
 recursively. We do not assume the same TCB configuration on every
 interface (ingress or egress).

 At the lowest level are individual functional elements, each with
 their own configuration parameters and management counters and flags.

4. Classifiers

4.1 Definition

 Classification is performed by a classifier element. Classifiers are
 1:N (fan-out) devices: they take a single traffic stream as input and
 generate N logically separate traffic streams as output. Classifiers
 are parameterized by filters and output streams. Packets from the
 input stream are sorted into various output streams by filters which

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 match the contents of the packet or possibly match other attributes
 associated with the packet. Various types of classifiers are
 described in the following sections.

 We use the following diagram to illustrate a classifier, where the
 outputs connect to succeeding functional elements:

 unclassified classified
 traffic traffic
 +------------+
 | |--> match Filter1 --> output A
 ------->| classifier |--> match Filter2 --> output B
 | |--> no match --> output C
 +------------+

 Figure 3. An Example Classifier

 Note that we allow a mux (see Sec. 6.5) before the classifier to
 allow input from multiple traffic streams. For example, if multiple
 ingress sub-interfaces feed through a single classifier then the
 interface number can be considered by the classifier as a packet
 attribute and be included in the packet's classification key. This
 optimization may be important for scalability in the management
 plane. Another possible packet attribute could be an integer

Bernet, et. al. Expires: September 2000 [page 10]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 representing the BGP community string associated with the packet's
 best-matching route.

 The following classifier separates traffic into one of three output
 streams based on three filters:

 Filter Matched Output Stream
 -------------- ---------------
 Filter1 A
 Filter2 B
 Filter3 (no match) C

 Where Filters1 and Filter2 are defined to be the following BA filters
 ([DSARCH], see Sec. 4.2.1):

 Filter DSCP
 ------ ------
 1 101010
 2 111111
 3 ****** (wildcard)

4.1.1 Filters

 A filter consists of a set of conditions on the component values of
 a packet's classification key (the header values, contents, and
 attributes relevant for classification). In the BA classifier
 example above, the classification key consists of one packet header
 field, the DSCP, and both Filter1 and Filter2 specify exact-match
 conditions on the value of the DSCP. Filter3 is a wildcard default
 filter which matches every packet, but which is only selected in the
 event that no other more specific filter matches.

 In general there are a set of possible component conditions including
 exact, prefix, range, masked, and wildcard matches. Note that ranges
 can be represented (with less efficiency) as a set of prefixes and
 that prefix matches are just a special case of both masked and range
 matches.

 In the case of a MF classifier [DSARCH], the classification key
 consists of a number of packet header fields. The filter may
 specify a different condition for each key component, as illustrated
 in the example below for a IPv4/TCP classifier:

 Filter IP Src Addr IP Dest Addr TCP SrcPort TCP DestPort
 ------ ------------- ------------- ----------- ------------
 Filter4 172.31.8.1/32 172.31.3.X/24 X 5003

 In this example, the fourth octet of the destination IPv4 address
 and the source TCP port are wildcard or "don't cares".

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 MF filtering of fragmented packets is impossible. MTU size discovery
 is therefore prerequisite for proper operation of a diffserv network.

Bernet, et. al. Expires: September 2000 [page 11]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

4.1.2 Overlapping Filters

 Note that it is easy to define sets of overlapping filters in a
 classifier. For example:

 Filter5: Filter6:
 Type: Masked-DSCP Type: Masked-DSCP
 Value: 111000 Value: 000111 (binary)
 Mask: 111000 Mask: 000111 (binary)

 A packet containing DSCP = 111111 cannot be uniquely classified by
 this pair of filters and so a precedence must be established between
 Filter5 and Filter6 in order to break the tie. This precedence must
 be established either (a) by a manager which knows that the router
 can accomplish this particular ordering; e.g., by means of reported
 capabilities or (b) by the router along with a mechanism to report
 to a manager which precedence is being used. These ordering
 mechanisms must be supported by the configuration and management
 protocols although further discussion of this is outside the scope of
 this document.

 An unambiguous classifier requires that every possible classification
 key match at least one filter (including the wildcard default), and
 that any ambiguity between overlapping filters be resolved by
 precedence.

4.1.3 Filter Groups

 Filters may be logically combined. For example, consider the
 following DestMacAddress filter:

 Filter7:
 Type: DestMacAddress
 Value: 01-02-03-04-05-06
 Mask: FF-FF-FF-FF-FF-FF

 Classifier0 could then be declared as:

 Classifier0:
 Filter1 and Filter7: output A
 Filter2 and Filter7: output B
 Default (wildcard) filter: output C

4.2 Examples

4.2.1 Behaviour Aggregate (BA) Classifier

 The simplest Diffserv classifier is a behavior aggregate (BA)
 classifier [DSARCH]. A BA classifier uses only the Diffserv

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 codepoint (DSCP) in a packet's IP header to determine the logical
 output stream to which the packet should be directed. We allow only
 an exact-match condition on this field because the assigned DSCP

Bernet, et. al. Expires: September 2000 [page 12]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 values have no structure, and therefore no subset of DSCP bits are
 significant.

 The following defines a possible BA filter:

 Filter8:
 Type: BA
 Value: 111000

4.2.2 Multi-Field (MF) Classifier

 Another type of classifier is a multi-field (MF) classifier [DSARCH].
 This classifies packets based on one or more fields in the packet
 header (including the DSCP). A common type of MF classifier is a 6-
 tuple classifier that classifies based on six IP header fields
 (destination address, source address, IP protocol, source port,
 destination port, and DSCP). MF classifiers may classify on other
 fields such as MAC addresses, VLAN tags, link-layer traffic class
 fields or other higher-layer protocol fields.

 The following defines a possible MF filter:

 Filter9:
 Type: IPv4-6-tuple
 IPv4DestAddrValue: 0
 IPv4DestAddrMask: 0.0.0.0
 IPv4SrcAddrValue: 172.31.8.0
 IPv4SrcAddrMask: 255.255.255.0
 IPv4DSCP: 28
 IPv4Protocol: 6
 IPv4DestL4PortMin: 0
 IPv4DestL4PortMax: 65535
 IPv4SrcL4PortMin: 20
 IPv4SrcL4PortMax: 20

 A similar type of classifier can be defined for IPv6.

4.2.3 IEEE802 MAC Address Classifier

 A MacAddress filter is parameterized by a 6-byte {value, mask} pair
 for either source or destination MAC address. For example, the
 following classifier sends packets matching either DA =
 01-02-03-04-05-06 or SA = 00-E0-2B-XX-XX-XX to output A:

 Classifier1:
 Filter10: output A
 Filter11: output A
 Default: output B

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

Bernet, et. al. Expires: September 2000 [page 13]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 Filter10:
 Type: DestMacAddress
 Value: 01-02-03-04-05-06 (hex)
 Mask: FF-FF-FF-FF-FF-FF (hex)

 Filter11:
 Type: SrcMacAddress
 DestValue: 00-E0-2B-00-00-00 (hex)
 DestMask: FF-FF-FF-00-00-00 (hex)

4.2.4 Free-form Classifier

 A Free-form classifier is made up of a set of user definable
 arbitrary filters each made up of {bit-field size, offset (from head
 of packet), mask}:

 Classifier2:
 Filter12: output A
 Filter13: output B
 Default: output C

 Filter12:
 Type: FreeForm
 SizeBits: 3 (bits)
 Offset: 16 (bytes)
 Value: 100 (binary)
 Mask: 101 (binary)

 Filter13:
 Type: FreeForm
 SizeBits: 12 (bits)
 Offset: 16 (bytes)
 Value: 100100000000 (binary)
 Mask: 111111111111 (binary)

 Free-form filters can be combined into filter groups to form very
 powerful filters.

4.2.5 Other Possible Classifiers

 Classifier3:
 Filter14: output A
 Filter15: output B
 Default: output C

 Filter14:
 Type: IEEEPriority
 Value: 100 (binary)
 Mask: 101 (binary)

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

Bernet, et. al. Expires: September 2000 [page 14]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 Filter15:
 Type: IEEEVLAN
 Value: 100100000000 (binary)
 Mask: 111111111111 (binary)

 Classification may be performed based on implicit information
 associated with a packet (e.g. the incoming channel number on a
 channelized interface) or on information derived from a different
 non-Diffserv classification operation (e.g. the outgoing interface
 determined by the route lookup operation). Other vendor-specific
 filter formats are possible. We do not discuss these further here.

4.3 MPLS

 It is possible for an MPLS label-switched router (LSR) to function as
 a Diffserv router [MPLSDS]. The interaction between MPLS and Diffserv
 is not discussed further in this document.

5. Meters

5.1 Definition

 Metering is the function of monitoring the arrival times of packets
 of a traffic stream and determining the level of conformance of each
 packet to a pre-established traffic profile. Diffserv network
 providers may choose to offer services to customers based on a
 temporal (i.e., rate) profile within which the customer submits
 traffic for the service. In this event, a meter might be used to
 trigger real-time traffic conditioning actions (e.g., marking) by
 routing a non-conforming packet through an appropriate next-stage
 action element. Alternatively, it might also be used for out-of-band
 management functions like statistics monitoring for billing
 applications.

 Meters are logically 1:N (fan-out) devices (although a mux can be
 used in front of a meter). Meters are parameterized by a temporal
 profile and by conformance levels, each of which is associated with
 a meter's output. Each output can be connected to another functional
 element.

 Note that this model of a meter differs from that described in
 [DSARCH]. In that description the meter is not a datapath element
 but is instead used to monitor the traffic stream and send control

Bernet, et. al. Expires: September 2000 [page 15]

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 signals to action elements to dynamically modulate their behavior
 based on the conformance of the packet. We find the description here
 more powerful.

 We use the following diagram to illustrate a meter with 3 levels of
 conformance:

 unmetered metered
 traffic traffic

 +---------+
 | |--------> conformanceA
 --------->| meter |--------> conformanceB
 | |--------> conformanceC
 +---------+

 Figure 4. An Example Meter

 In some Diffserv examples, three levels of conformance are discussed
 in terms of colors, with green representing conforming, yellow
 representing partially conforming, and red representing non-
 conforming [AF-PHB]. These different conformance levels are used to
 trigger different buffer management actions. Other example meters
 use a binary notion of conformance; in the general case N levels of
 conformance can be supported. In general there is no constraint on
 the type of functional element following a meter output, but care
 must be taken not to inadvertently configure a datapath that results
 in packet reordering within an OA.

5.2 Examples

 The following is a non-exhaustive list of possible meters.

5.2.1 Average Rate Meter

 An example of a very simple meter is an average rate meter. This
 type of meter measures the average rate at which packets are
 submitted to it over a specified averaging time.

 An average rate profile may take the following form:

 Meter1:
 Type: AverageRate
 Profile1: output A
 NonConforming: output B

 Profile1:

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 Type: AverageRate
 AverageRate: 120 KBps
 Delta: 1.0 msec

Bernet, et. al. Expires: September 2000 [page 16]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 A meter measuring against this profile would continually maintain a
 count that indicates the total number of packets arriving between
 time T (now) and time T - 1.0 msecs. So long as an arriving packet
 does not push the count over 120 bytes, the packet would be deemed
 conforming. Any packet that pushes the count over 120 would be
 deemed non-conforming. Thus, this meter deems packets to correspond
 to one of two conformance levels: conforming or non-conforming.

5.2.2 Exponential Weighted Moving Average (EWMA) Meter

 The EWMA form of meter is easy to implement in hardware and can be
 parameterized as follows:

 avg_rate(t) = (1 - Gain) * avg_rate(t') + Gain * rate(t)
 t = t' + Delta

 For a packet arriving at time t:

 if (avg_rate(t) > AverageRate)
 non-conforming
 else
 conforming

 Gain controls the time constant (e.g. frequency response) of what is
 essentially a simple IIR low-pass filter. rate(t) measures the
 number of incoming bytes in a small fixed sampling interval, Delta.
 Any packet that arrives and pushes the average rate over a predefined
 rate AverageRate is deemed non-conforming. An EWMA meter profile
 might look as follows:

 Meter2:
 Type: ExpWeightedMovingAvg
 Profile2: output A
 NonConforming: output B

 Profile2:
 Type: ExpWeightedMovingAvg
 AverageRate: 25 KBps
 Delta: 10.0 usec
 Gain: 1/16

5.2.3 Two-Parameter Token Bucket Meter

 A more sophisticated meter might measure conformance to a token
 bucket (TB) profile. A TB profile generally has two parameters, an
 average token rate, a burst size. TB meters compare the arrival
 rate of packets to the average rate specified by the TB profile.
 Logically, byte tokens accumulate in a bucket at the average rate,
 up to a maximum credit which is the burst size. Packets of length

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 L bytes are considered conforming if L tokens are available in the
 bucket at the time of packet arrival. Packets are allowed to
 exceed the average rate in bursts up to the burst size. Packets

Bernet, et. al. Expires: September 2000 [page 17]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 which arrive to find a bucket with insufficient tokens in it are
 deemed non-conforming. A two-parameter TB meter has exactly two
 possible conformance levels (conforming, non-conforming). TB
 implementation details are discussed in Appendix A.

 A two-parameter RB meter profile might look as follows:

 Meter3:
 Type: SimpleTokenBucket
 Profile3: output A
 NonConforming: output B

 Profile3:
 Type: SimpleTokenBucket
 AverageRate: 100 KBps
 BurstSize: 100 KB

5.2.4 Multi-Stage Token Bucket Meter

 More complicated TB meters might define two burst sizes and three
 conformance levels. Packets found to exceed the larger burst size
 are deemed non-conforming. Packets found to exceed the smaller
 burst size are deemed partially conforming. Packets exceeding
 neither are deemed conforming. Token bucket meters designed for
 Diffserv networks are described in more detail in [SRTCM, TRTCM,
 GTC]; in some of these references three levels of conformance are
 discussed in terms of colors, with green representing conforming,
 yellow representing partially conforming and red representing non-
 conforming. Often these multi-conformance level meters can be
 implemented using an appropriate configuration of multiple two-
 parameter TB meters.

 A profile for a multi-stage TB meter with three levels of conformance
 might look as follows:

 Meter4:
 Type: MultiTokenBucket
 Profile4: output A
 Profile5: output B
 NonConforming: output C

 Profile4:
 Type: SimpleTokenBucket
 AverageRate: 100 KBps
 BurstSize: 20 KB

 Profile5:
 Type: SimpleTokenBucket
 AverageRate: 100 KBps

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 BurstSize: 100 KB

Bernet, et. al. Expires: September 2000 [page 18]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

5.2.5 Null Meter

 A null meter has only one output: always conforming, and no
 associated temporal profile. Such a meter is useful to define in the
 event that the configuration or management interface does not have
 the flexibility to omit a meter in a datapath segment.

6. Action Elements

 Classifiers and meters are fan-out elements which are generally used
 to determine the appropriate action to apply to a packet. The set of
 possible actions include:

 1) Marking
 2) Dropping
 2) Shaping
 3) Replicating
 4) Monitoring

 The corresponding action elements are described in the following
 paragraphs.

 Policing is a general term for the process of preventing a traffic
 stream from seizing more than its share of resources from a Diffserv
 network. Each of the first three actions described above may be used
 to police traffic. Markers do so by re-marking non-conforming
 packets to a DSCP value that is entitled to fewer network resources.
 Shapers and droppers do so by limiting the rate at which a particular
 traffic stream is submitted to the network.

6.1 Marker

 Markers are 1:1 elements which set the DSCP in an IP header (in
 the case of unlabeled packets). Markers may act on unmarked packets
 (submitted with DSCP of zero) or may re-mark previously marked
 packets. In particular, the model supports the application of
 marking based on a preceding classifier match. The DSCP set in a
 packet will determine its subsequent treatment in downstream nodes
 of a network, and possible in subsequent processing stages within the
 router (depending on configuration).

 Markers are normally parameterized by a single parameter: the 6-bit
 DSCP to be marked in the packet header.

 ActionElement1:
 Type: Marker
 Mark: 010010

 In the case of a MPLS labeled packet, the marker is parameterized

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 by a 3-bit EXP value to be marked in the MPLS shim header.

Bernet, et. al. Expires: September 2000 [page 19]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

6.2 Dropper

 Droppers simply discard packets. There are no parameters for
 droppers. Because a dropper is a terminating point of the datapath,
 it may be desirable to forward the packet through a monitor first
 for instrumentation purposes.

 Droppers are not the only elements than can cause a packet to be
 discarded. The other element is an enqueueing element (see Sec.
 6.6). However, since the enqueueing element's behavior is closely
 tied the state of one or more queues, we choose to distinguish them
 as separate functional elements.

6.3 Shaper

 Shapers are used to shape traffic streams to a certain temporal
 profile. For example, a shaper can be used to smooth traffic
 arriving in bursts. In [DSARCH] a shaper is described as a
 queueing element controlled by a meter which defines its temporal
 profile. This model of a shaper differs substantially from typical
 shaper implementations. Further, with the inclusion of queueing
 elements in the model a separate shaping element becomes confusing.
 Therefore, the function of a shaper is embedded in a queue and is
 covered in Sec. 7.

6.4 Replicating Element

 It is occasionally desirable to replicate traffic on one or more
 additional interfaces for data collection purposes. A replicating
 element is a 1:N (fan-out) element. However, each and every packet
 follows each output path simultaneously. A replicating element is
 parameterized by the number of outputs it supports.

6.5 Mux

 It is occasionally necessary to multiplex traffic streams into a 1:1
 or 1:N action element or classifier. A M:1 (fan-in) mux is a simple
 logical device for merging traffic streams. It is parameterized by
 its number of incoming ports.

Bernet, et. al. Expires: September 2000 [page 20]

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

6.6 Monitor

 One passive action is to account for the fact that a data packet was
 processed. The statistics that result might be used later for
 customer billing, service verification, or network engineering
 purposes. Monitors are 1:1 functional elements which update an
 octet counter by L and a packet counter by 1 every time a L-byte
 sized packet passes through it. Monitors can also be used to count
 packets on the verge of being dropped by a dropper.

6.7 Null Action

 A null action has one input and one output. The element performs no
 action on the packet. Such an element is useful to define in the
 event that the configuration or management interface does not have
 the flexibility to omit an action element in a datapath segment.

7. Queueing block

 The queueing block modulates the transmission of packets belonging to
 the different traffic streams and determines their ordering, possibly
 storing them temporarily or discarding them. Packets are usually
 stored either because there is a resource constraint (e.g., available
 bandwidth) which prevents immediate forwarding, or because the
 queueing block is being used to alter the temporal properties of a
 traffic stream (i.e., shaping). Packets are discarded either because
 of buffering limitations, because a buffer threshold is exceeded
 (including when shaping is performed), as a feedback control signal
 to reactive control protocols such as TCP, because a meter exceeds a
 configured rate (i.e., policing).

 The queueing block in this model is a logical abstraction of a
 queueing system, which is used to configure PHB-related parameters.
 There is no conformance to this model. The model can be used to
 represent a broad variety of possible implementations. However, it
 need not necessarily map one-to-one with physical queueing systems in
 a specific router implementation. Implementors should map the
 configurable parameters of the implementation's queueing systems to
 these queueing block parameters as appropriate to achieve equivalent
 behaviors.

7.1 Model

 Queuing is a function a which lends itself to innovation. It must be
 modelled to allow a broad range of possible implementations to be
 represented using common structures and parameters. This model uses
 functional decomposition as a tool to permit the needed lattitude.

 Queueing sytems, such as the queueing block defined in this model,

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 perform three distinct, but related, functions: they store packets,
 they modulate the departure of packets belonging to various traffic
 streams and they selectively discard packets. This model decomposes
 the queueing block into the component elements that perform each of
 these functions. These elements which may be connected together
 either dynamically or statically to construct queueing blocks. A
 queuing block is thus composed of of one or more FIFO, one or more
 scheduler, and one or more discarder. See figure TBA for an example
 of a queueing block.

 Note that the term FIFO is overloaded (i.e., has more than one
 meaning). In common usage it is taken to mean, among other things, a
 data structure that permits items to be removed only in the order in
 which they were inserted, and a service discipline which is non-
 reordering.

7.1.1 FIFO

 A FIFO element is a data structure which at any time may contain zero
 or more packets. It may have one or more threshold associated with
 it. A FIFO has one or more inputs and exactly one output. It must
 support an enqueue operation to add a packet to the tail of the
 queue, and a dequeue operation to remove a packet from the head of
 the queue. Packets must be dequeued in the order in which they were
 enqueued. A FIFO has a depth, which indicates the number of packets
 that it contains at a particular time; this is a traffic dependent
 variable and not used to configure a FIFO.

 Typically, the FIFO element of this model will be implemented as a
 FIFO data structure. However, this does not preclude implementations
 which are not strictly FIFO, in that they also support operations
 that remove or examine packets (e.g., for use by discarders) other
 than at the tail. However, such operations MUST NOT have the effect
 of reordering packets belonging to the same microflow.

 In an implementation, packets are presumably stored in one or more
 buffer. Buffers are allocated from one or more free buffer pool. If
 there are multiple instances of a FIFO, their packet buffers may or
 may not be allocated out of the same free buffer pool. Free buffer
 pools may also have one or more threshold associated with them, which
 may affect discarding and/or scheduling. Otherwise, buffering
 mechanisms are implementation specific and not part of this model.

 A FIFO might be represented using the following parameters:

 FIFO1:
 Type: FIFO
 Input: QueuingBlock.input1
 Output: Discarder2
 Threshold1: 3 packets

 Another FIFO may be represented using the following parameters:

 FIFO2:
 Type: FIFO
 Input: Discarder1
 Output: Scheduler1
 Threshold1: 3 packets
 Threshold2: 1000 octets
 Threshold3: 10 packets
 Threshold4: 2000 octets

7.1.2 Scheduler

 A scheduler is an element which gates the departure of each packet
 that arrives at one of its inputs, based on a service discipline. It
 has one or more input and exactly one output. Each input has an
 upstream element to which it is connected, and a set of parameters
 that affects the scheduling of packets received at that input.

 The service discipline (also known as a scheduling algorithm) is an
 algorithm which may take as its inputs static parameters (such as
 relative priority, and/or absolute token bucket parameters for
 maximum or minimum rates) associated with each of the scheduler's
 inputs; parameters (such as packet length or DSCP) associated with
 the packet present at its input; absolute time and/or local state.

 Possible service disciplines fall into a number of categories,
 including (but not limited to) first come, first served (FCFS),
 strict priority, weighted fair bandwidth sharing (e.g., WFQ, WRR,
 etc.), rate-limited strict priority, and rate-based. Service
 disciplines can be further distinguished by whether they are work
 conserving or non-work conserving. A work conserving service
 discipline transmits a packet at every transmission opportunity if
 one is available. A non-work conserving service discipline transmits
 packets no sooner than a scheduled departure time, even if it means
 leaving packets in a FIFO while the link is idle. Non-work
 conserving schedulers can be used to shape traffic streams by
 delaying packets that would be deemed non-conforming by some traffic
 profile. The packet is delayed until such time as it would conform
 to a meter using the same profile.

 [DSARCH] defines PHBs without specifying required scheduling
 algorithms. However, PHBs such as the class selctors [DSFIELD],
 EF [EF-PHB] and AF [AF-PHB] have descriptions or
 configuration parameters which strongly suggest the sort of
 scheduling discipline needed to implement them. This memo specifies
 a minimal set of queue parameters to enable realization of these per-
 hop behaviors. It does not attempt to specify an all-embracing
 set of parameters to cover all possible implementation models.
 The mimimum set includes a minimum service rate profile, a

 service priority and a maximum service rate profile (the latter is
 for use only with a non-work conserving service discipline). The
 minimum service rate allows rate guarantees for each traffic stream
 as required by EF and AF without specifying the details of how excess
 bandwidth between these traffic streams is shared. Additional
 parameters to control this behavior should be made available, but are
 dependent on the particular scheduling algorithm implemented. The
 service priority is used only after the MinRateProfiles of all inputs
 have been satisfied in order to decide how to allocate any remaining
 bandwidth. It could be used for the class selectors. For the EF PHB,
 using a strict priority scheduling algorithm on some links, and assuming
 that the aggregate EF rate has been appropriately bounded to avoid
 starvation, for this scheduler the MinRateProfile would be reported
 as zero and the MaxRateProfile reported as line rate. Setting the
 service priority of each input to the scheduler to the same value
 enables the scheduler to satisfy the minimum service rates for each
 input, so long as the sum of all minimum service rates is less than
 or equal to the line rate.

 A non-work conserving scheduler might be represented using the
 following parameters:

 Scheduler1:
 Type: Scheduler

 Input1: Discarder1
 MaxRateProfile: Profile1
 MinRateProfile: Profile2
 Priority: None

 Input2: Discarder1
 MaxRateProfile: Profile3
 MinRateProfile: Profile4
 Priority: None

 A work conserving scheduler might be represented using the
 following parameters:

 Scheduler2:
 Type: Scheduler

 Input1: Scheduler1,
 MaxRateProfile: WorkConserving
 MinRateProfile: Profile5
 Priority: 1

 Input2: FIFO2
 MaxRateProfile: WorkConserving
 MinRateProfile: Profile6
 Priority: 2

 Input3: FIFO3
 MaxRateProfile: WorkConserving
 MinRateProfile: None
 Priority: 3

7.1.3 Discarder

 A discarder is an element which selectively discards packets that
 arrive at its input, based on a discarding discipline. It has one
 input and one output. In this model (but not necessarily in a real
 implementation), a packet enters the discarder at the input, and
 either its buffer is returned to a free buffer pool or it exits the
 discarder at the output.

 Alternatively, a discarder may invoke operations on a FIFO which
 selectively remove packets, then return those packets to the free
 buffer pool, based on a discarding discipline. In this case, the
 discarder's operation is modelled as a side-effect on the FIFO upon
 which it operates, rather than as having a discrete input and output.

 A discarder has a trigger that causes the discarder to make a
 decision whether or not to drop one (or possibly more than one)
 packet. The trigger may internal (i.e., the arrival of a packet at
 the input to the discarder), or it may be external (i.e., resulting
 from one or more state change at another element, such as a FIFO
 depth exceeding a threshold or a scheduling event). A trigger may be
 a boolean combination of events (e.g., a FIFO depth exceeding a
 threshold OR a buffer pool depth falling below a threshold).

 The discarding discipline is an algorithm which makes a decision to
 forward or discard a packet. It takes as its parameters some set of
 dynamic parameters (e.g., averaged or instantaneous FIFO depth) and
 some set of static parameters (e.g. thresholds) and possibly
 parameters associated with the packet (e.g. its PHB, as determined by
 a classifier). It may also have internal state. RED, RIO, and drop-
 on-threhold are examples of a discarding discipline. Tail dropping
 and head dropping are effected by the location of the discarder
 relative to the FIFO.

Note that although a discarder may need to examine the DSCP or
possibly other fields in a packet, it may not modify them (i.e.,
it is not a marker).

A discarder might be represented using the following parameters:
 Discarder1:
 Type: Discarder
 Trigger: Internal
 Input: QueuingBlock.input2
 Output: FIFO1

 Discipline: RIO

 Parameters:
 In-MinTh: FIFO1.Threshold1
 In-MaxTh: FIFO1.Threshold2
 Out-Minth: FIFO1.Threshold3
 Out-Maxth: FIFO1.Threshold4
 InClassification: AFx1_PHB
 OutClassifcation: AFx2_PHB
 W_q .002
 Max_p .01

Another discarder might be represented using the following parameters:
 Discarder2:
 Type: Discarder
 Trigger:
 Input: FIFO2
 Output: Scheduler1.input1
 Discipline: Drop-on-threshold

 Parameters:
 Threshold FIFO2.Threshold1

Yet another discarder (not part of the example) might be represented
with the following parameters:
 Discarder3:
 Type: Discarder
 Operate_on FIFO3
 Trigger: FIFO3.depth > 100 packets
 Discipline: Drop-all-out-packets

 Parameters:
 Out-DSCP: AFx2_recommended_DSCP | AFx3_recommended_DSCP

7.1.4 Constructing queueing blocks from the elements

A queuing block is constructed by concatenation of these elements
so as to meet the meta-policy objectives of the implementation,
subject to the grammar rules specified in this section.

Elements of the same type may appear more than once in a queueing
block, either in parallel or in series. Typically, a queuing block
will have relatively many elements in parallel and few in series.
Iteration and recursion are not supported constructs in this
grammar. A queuing block must have at least one FIFO, at least
one discarder, and at least one scheduler. The following
connections are allowed:

The input of a FIFO may be the input of the queueing block, or it
may be connected to the output of a discarder or to an output of
a scheduler.

Each input of a scheduler may be connected to the output of a
FIFO, to the output of a discarder or to the output of another
scheduler.

The input of a discarder which has a discrete input and output
may be the input of the queue, or it may be connected to the
output of a FIFO (e.g., head dropping).

The output of the queueing block may be the output of a FIFO
element, a discarding element or a scheduling element.

Note, in particular, that schedulers may operate in series such
that a packet at the head of a FIFO feeding the concatenated
schedulers is serviced only after all of the scheduling criteria
are met. For example, a FIFO which carries EF traffic streams
may be served first by a non-work conserving scheduler to shape
the stream to a maximum rate, then by a work conserving scheduler
to mix EF traffic streams with other traffic streams. Alternatively,
there might be a FIFO and/or a discarder between the two schedulers.

7.2 Shaping
Traffic shaping is often used to condition traffic such that packets
will be deemed conforming by subsequent meters, e.g., in downstream
Diffserv nodes. Shaping may also be used to isolate certain traffic
streams from the effects of other traffic streams of the same BA.

A shaper is realized in this model by using a non-work conserving
scheduler. Some implementations may elect to have queues whose sole
purpose is shaping, while others may integrate the shaping function
with other buffering, discarding and scheduling associated with access
to a resource. Shapers operate by delaying the departure of packets
that would be deemed non-conforming by a meter configured to the shaper's
maximum service rate profile. The packet is scheduled to depart no
sooner than such time that it would become conforming.

8. Traffic Conditioning Blocks (TCBs)

 The classifiers, meters, action elements, and queueing elements
 described above can be combined into traffic conditioning blocks

Bernet, et. al. Expires: September 2000 [page 23]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 (TCBs). The TCB is an abstraction of a functional element that may
 be used to facilitate the definition of specific traffic conditioning
 functionality.

 One of the simplest possible TCBs would consist of the following
 stages:

 1. Classifier stage
 2. Enqueueing stage
 3. Queueing stage

 Note that a classifier is a 1:N element, while an enqueueing stage is
 a N:1 element and a queue is a 1:1 element. If the classifier split
 traffic across multiple enqueueing elements then the queueing stage
 may consist of a hierarchy of queue sets, all resulting in a 1:1
 abstract element.

 A more general TCB might consists of the following four stages:

 1. Classifier stage
 2. Metering stage
 3. Action stage
 4. Queueing stage

 where each stage may consist of a set of parallel datapaths
 consisting of pipelined elements.

 TCBs are constructed by connecting elements corresponding to these
 stages in any sensible order. It is possible to omit stages, to
 include null elements, or to concatenate multiple stages of the same
 type. TCB outputs may drive additional TCBs (on either the ingress
 or egress interfaces). Classifiers and meters are fan-out elements,
 muxes and enqueueing elements are fan-in elements.

8.1 An Example TCB

 The following diagram illustrates an example TCB:

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

Bernet, et. al. Expires: September 2000 [page 24]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 +------------> to Queue A
 +-----+ | (not shown)
 | |--+
 +->| |
 | | |--+ +-----+ +-----+
 | +-----+ | | | | |
 | meter +->| |--->| |
 | | | | |
 | +-----+ +-----+
 | monitor dropper
 |
 |
 |
 submitted +-----+ | +-----+ +-----+
 traffic | A |-----+ | | | |
 --->| B |------->| |---->| |---> to Queue B
 | C |-----+ | | | | (not shown)
 | X |--+ | +-----+ +-----+
 +-----+ | | marker shaper
 BA | | queue
 classifier| |
 | |
 | |
 | |
 | |
 | | +-----+ +-----+
 | | | |--------------->| | to Queue C
 | +->| | | |->
 | | |--+ +-----+ +->| | (not shown)
 | +-----+ | | | | +-----+
 | meter +->| |-+ mux
 | | |
 | +-----+
 | marker
 |
 +---------------------------> to Queue D
 (not shown)
 Figure 5: An Example Traffic Conditioning Block

 This sample TCB might be suitable for an ingress interface at a
 customer/provider boundary. A SLS is presumed to have been
 negotiated between the customer and the provider which specifies the
 handling of the customer's traffic by the provider's network. The
 agreement might be of the following form:

 DSCP PHB Profile Non-Conforming Packets
 ---- --- ------- ----------------------

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 001001 PHB1 Profile1 Discard
 001100 PHB2 Profile2 Wait in shaper queue
 001101 PHB3 Profile3 Re-mark to DSCP 001000

Bernet, et. al. Expires: September 2000 [page 25]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 It is implicit in this agreement that conforming packets are given
 the PHB originally indicated by the packets' DSCP field. It
 specifies that the customer may submit packets marked for DSCP
 001001 which will get PHB1 treatment so long as they remain
 conforming to Profile1 and will be discarded if they exceed this
 profile. Similar contract rules are applied for 001100 and 001101
 traffic.

 In this example, the classification stage consists of a single BA
 classifier. The BA classifier is used to separate traffic based on
 the Diffserv service level requested by the customer (as indicated
 by the DSCP in each submitted packet's IP header). We illustrate
 three DSCP filter values: A, B and C. The 'X' in the BA classifier
 is the default wildcard filter that matches every packet.

 A metering stage is next in the upper and lower branches. There is a
 separate meter for each set of packets corresponding to DSCPs A and
 C. Each meter uses a specific profile as specified in the TCS for
 the corresponding Diffserv service level. The meters in this
 example indicate one of two conforming levels, conforming or
 non-conforming. The middle branch has a marker which re-marks all
 packets received with DSCP B.

 Following the metering stage is the action stage in the upper and
 lower branches. Packets submitted for DSCP A that are deemed non-
 conforming and are counted and discarded. Packets that are
 conforming are passed on to Queue A. Packets submitted for DSCP C
 that are deemed non-conforming are re-marked, and then conforming and
 non-conforming packets are muxed together before being forwarded to
 Queue C. Packets submitted for DSCP B are shaped to Profile2 before
 being forwarded to Queue B.

 The interconnections of the TCB elements illustrated in Fig. 5 can be
 represented as follows:

 TCB1:

 Classifier1:
 Output A --> Meter1
 Output B --> Marker1
 Output C --> Meter2
 Output X --> QueueD

 Meter1:
 Output A --> QueueA
 Output B --> Monitor1

 Monitor1:
 Output A --> Dropper1

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 Marker1:
 Output A --> Shaper1

Bernet, et. al. Expires: September 2000 [page 26]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 Shaper1:
 Output A --> Queue B

 Meter2:
 Output A --> Mux1
 Output B --> Marker2

 Marker2:
 Output A --> Mux1

 Mux1:
 Output A --> Queue C

8.2 An Example TCB to Support Multiple Customers

 The TCB described above can be installed on an ingress interface to
 implement a provider/customer TCS if the interface is dedicated to
 the customer. However, if a single interface is shared between
 multiple customers, then the TCB above will not suffice, since it
 does not differentiate among traffic from different customers. Its
 classification stage uses only BA classifiers.

 The TCB is readily extended to support the case of multiple customers
 per interface, as follows. First, we define a TCB for each customer
 to reflect the TCS with that customer. TCB1, defined above is the
 TCB for customer 1. We add definitions for TCB2 and for TCB3 which
 reflect the agreements with customers 2 and 3 respectively.

 Finally, we add a classifier which provides a front end to separate
 the traffic from the three different customers. This forms a new
 TCB which incorporates TCB1, TCB2, and TCB3, and can be illustrated
 as follows:

 submitted +-----+
 traffic | A |--------> TCB1
 --->| B |--------> TCB2
 | C |--------> TCB3
 | X |--------> Dropper4
 +-----+
 Classifier4

 Figure 6: An Example of a Multi-Customer TCB

 A formal representation of this multi-customer TCB might be:

 TCB1:
 (as defined above)

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 TCB2:
 (similar to TCB1, perhaps with different numeric parameters)

Bernet, et. al. Expires: September 2000 [page 27]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 TCB3:
 (similar to TCB1, perhaps with different numeric parameters)

 TCB4:
 (the total TCB)

 Classifier4:
 Output A --> TCB1
 Output B --> TCB2
 Output C --> TCB3
 Output X --> Dropper4

 Where Classifier2 is defined as follows:

 Classifier4:
 Filter1: Output A
 Filter2: Output B
 Filter3: Output C
 No Match: Output X

 and the filters, based on each customer's source MAC address, are
 defined as follows:

 Filter1:
 Type: MacAddress
 SrcValue: 01-02-03-04-05-06 (source MAC address of customer 1)
 SrcMask: FF-FF-FF-FF-FF-FF
 DestValue: 00-00-00-00-00-00
 DestMask: 00-00-00-00-00-00

 Filter2:
 (similar to Filter1 but with customer 2's source MAC address as
 SrcValue)

 Filter3:
 (similar to Filter1 but with customer 3's source MAC address as
 SrcValue)

 In this example, Classifier4 separates traffic submitted from
 different customers based on the source MAC address in submitted
 packets. Those packets with recognized source MAC addresses are
 passed to the TCB implementing the TCS with the corresponding
 customer. Those packets with unrecognized source MAC addresses are
 passed to a dropper.

 TCB4 has a classification stage and an action element stage, which
 consists of either a dropper or another TCB.

8.3 TCBs Supporting Microflow-based Services

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 The TCB illustrated above describes a configuration that might be
 suitable for enforcing a SLS at a router's ingress. It assumes that

Bernet, et. al. Expires: September 2000 [page 28]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 the customer marks its own traffic for the appropriate service level.
 It then limits the rate of aggregate traffic submitted at each
 service level, thereby protecting the resources of the Diffserv
 network. It does not provide any isolation between the customer's
 individual microflows (other than from separated queueing).

 Next we present a TCB configuration that offers additional
 functionality to the customer. It recognizes individual customer
 microflows and marks each one independently. It also isolates the
 customer's individual microflows from each other in order to prevent
 a single microflow from seizing an unfair share of the resources
 available to the customer at a certain service level. This is
 illustrated in Figure 7 below:

 +-----+ +-----+
 | | | |---------------+
 +->| |-->| | +-----+ |
 +-----+ | | | | |---->| | |
 | |---- +-----+ +-----+ +-----+ |
 ->| |---- marker meter dropper | +-----+ to
 | |-+ | +-----+ +-----+ +-->| |
 +-----+ | | | | | |------------------>| |--->
 MF | +->| |-->| | +-----+ +-->| |
 class. | | | | |---->| | | +-----+ TCB2
 | +-----+ +-----+ +-----+ | mux
 | marker meter dropper |
 | +-----+ +-----+ |
 | | | | |---------------+
 |--->| |-->| | +-----+
 | | | | |---->| |
 | +-----+ +-----+ +-----+
 | marker meter dropper
 | . . .
 V V V V

 Figure 7: An Example of a Marking and Traffic Isolation TCB

 Traffic is first directed to a MF classifier which classifies traffic
 based on miscellaneous classification criteria, to a granularity
 sufficient to identify individual customer microflows. Each
 microflow can then be marked for a specific DSCP (in this particular
 example we assume that one of two different DSCPs is marked). The
 metering stage limits the contribution of each of the customer's
 microflows to the service level for which it was marked. Packets
 exceeding the allowable limit for the microflow are dropped.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 The TCB could be formally specified as follows:

Bernet, et. al. Expires: September 2000 [page 29]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 TCB1:
 Classifier1: (MF)
 Output A --> Marker1
 Output B --> Marker2
 Output C --> Marker3
 . . .

 Marker1 --> Meter1
 Marker2 --> Meter2
 Marker3 --> Meter3

 Meter1:
 Output A --> TCB2
 Output B --> ActionElement1 (dropper)

 Meter2:
 Output A --> TCB2
 Output B --> ActionElement2 (dropper)

 Meter3:
 Output A --> TCB2
 Output B --> ActionElement3 (dropper)

 The actual traffic element declarations are not shown here.

 Traffic is either dropped by TCB1 or emerges marked for one of two
 DSCPs. This traffic is then passed to TCB2, illustrated below:

 +-----+
 | |--------------->
 +->| | +-----+
 +-----+ | | |---->| |
 | |---+ +-----+ +-----+
 ->| | meter dropper
 | |---+ +-----+
 +-----+ | | |--------------->
 BA +->| | +-----+
 classifier | |---->| |
 +-----+ +-----+
 meter dropper

 Figure 8: Additional Example TCB

 TCB2 would be formally specified as follows:

 Classifier2: (BA)
 Output A --> Meter10

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 Output B --> Meter11

Bernet, et. al. Expires: September 2000 [page 30]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

 Meter10:
 Output A --> PHBQueueA
 Output B --> Dropper10

 Meter11:
 Output A --> PHBQueueB
 Output B --> Dropper11

8.4 Cascaded TCBs

 Conceptually, nothing prevents more complex scenarios in which one
 microflow TCB precedes another (for example, TCBs implementing
 separate TCS's for the source and for a set of destinations).

9. Open Issues

 o There is a difference in interpretation of token bucket behavior
 between this document (Appendix A) and [DSMIB]. Specifically,
 [DSMIB] allows a packet to conform if any smaller packet would
 conform.

 o The meter in [SRTCM] cannot be precisely modeled using two
 two-parameter token buckets because its two buckets do not
 accumulate credits independently. We intended to demonstrate how
 the [TRTCM] meter could be implemented but ran out of time.

 o Are the queue parameters (scheduling and buffer management)
 parameters defined sufficient?

 o Does Queue and Queue Set really belong in the model (and the MIB
 and PIB?), or should the model stick to the abstract PHB
 representation and leave the implementation details to the MIB and
 PIB?

 o Should a classifier be part of a TCB? We argue yes. This allows a
 TCB to be a one input/one output black box element.

 o Is the description of a shaper sufficient? Is it overbroad?

10. Security Considerations

 Security vulnerabilities of Diffserv network operation are discussed
 in [DSARCH]. This document describes an abstract functional model of
 Diffserv router elements. Certain denial-of-service attacks such as
 those resulting from resource starvation may be mitigated by
 appropriate configuration of these router elements; for example, by
 rate limiting certain traffic streams or by authenticating traffic
 marked for higher quality-of-service.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

11. Acknowledgments

 Concepts, terminology, and text have been borrowed liberally from
 [DSMIB] and [PIB]. We wish to thank the authors: Fred Baker,
 Michael Fine, Keith McCloghrie, John Seligson, Kwok Chan, and
 Scott Hahn, for their permission.

 This document has benefitted from the comments and suggestions of
 several participants of the Diffserv working group.

Bernet, et. al. Expires: September 2000 [page 31]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

12. References

 [DSARCH] M. Carlson, W. Weiss, S. Blake, Z. Wang, D. Black, and
 E. Davies, "An Architecture for Differentiated Services",

RFC 2475, December 1998

 [DSTERMS] D. Grossman, "New Terminology for Diffserv", Internet
 Draft <draft-ietf-diffserv-new-terms-00.txt>, October
 1999.

 [E2E] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang,
 M. Speer, K. Nichols, R. Braden, B. Davie, J. Wroclawski,
 and E. Felstaine, "Integrated Services Operation over
 Diffserv Networks", Internet Draft
 <draft-ietf-issll-diffserv-rsvp-02.txt>, September 1999.

 [DSFIELD] K. Nichols, S. Blake, F. Baker, and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474, December
 1998.

 [EF-PHB] V. Jacobson, K. Nichols, and K. Poduri, "An Expedited
 Forwarding PHB", RFC 2598, June 1999.

 [AF-PHB] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597, June 1999.

 [DSMIB] F. Baker, "Differentiated Services MIB", Internet Draft
 <draft-ietf-diffserv-mib-00.txt>, June 1999.

 [SRTCM] J. Heinanen, and R. Guerin, "A Single Rate Three Color
 Marker", RFC 2697, September 1999.

 [PIB] M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn,
 and A. Smith, "Quality of Service Policy Information
 Base", Internet Draft <draft-mfine-cops-pib-01.txt>,
 June 1999.

 [TRTCM] J. Heinanen, R. Guerin, "A Two Rate Three Color Marker",
RFC 2698, September 1999.

 [GTC] L. Lin, J. Lo, and F. Ou, "A Generic Traffic Conditioner",
 Internet Draft <draft-lin-diffserv-gtc-01.txt>, August
 1999.

 [MPLSDS] J. Heinanen, "Differentiated Services in MPLS Networks",
 Internet Draft <draft-heinanen-diffserv-mpls-00.txt>,
 June 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-new-terms-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-issll-diffserv-rsvp-02.txt
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2598
https://datatracker.ietf.org/doc/html/rfc2597
https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-mib-00.txt
https://datatracker.ietf.org/doc/html/rfc2697
https://datatracker.ietf.org/doc/html/draft-mfine-cops-pib-01.txt
https://datatracker.ietf.org/doc/html/rfc2698
https://datatracker.ietf.org/doc/html/draft-lin-diffserv-gtc-01.txt
https://datatracker.ietf.org/doc/html/draft-heinanen-diffserv-mpls-00.txt

Bernet, et. al. Expires: September 2000 [page 32]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

Appendix A. Simple Token Bucket Definition

 [DSMIB] presents a fairly detailed exposition on the operation of
 two-parameter token buckets for metering. However, the behavior
 described does not appear to be consistent with the behavior defined
 in [SRTCM] and [TRTCM]. Specifically, under the definition in
 [DSMIB], a packet is assumed to conform to the meter if any of its
 bytes would have been accepted, while in [SRTCM] and [TRTCM], a packet
 is assumed to conform only if sufficient tokens are available for
 every byte in the packet. Further, a packet has no effect on the
 token occupancy if it does not conform (no tokens are decremented).

 The behavior defined in [SRTCM] and [TRTCM] is not mandatory for
 compliance, but we give here a mathematical definition of two-
 parameter token bucket operation which is consistent with these
 documents, and which can be used to define a shaping profile.

 Define a token bucket with bucket size BS, token accumulation rate
 R, and instantaneous token occupancy T(t). Assume that T(0) = BS.

 Then after an arbitrary interval with no packet arrivals, T(t) will
 not change since the bucket is already full of tokens. Assume a
 packet of size B bytes at time t'. The bucket capacity T(t'-) = BS
 still. Then, as long as B <= BS, the packet conforms to the meter,
 and

 T(t') = BS - B.

 Assume an interval v = t - t' elapses before the next packet, of
 size C <= BS, arrives. T(t-) is given by the following equation:

 T(t-) = min { BS, T(t') + v*R }

 (the packet has accumulated v*R tokens over the interval, up to a
 maximum of BS tokens).

 If T(t-) - C >= 0, the packet conforms and T(t) = T(t-) - C.
 Otherwise, the packet does not conform and T(t) = T(t-).

 This function can be used to define a shaping profile. If a packet of
 size C arrives at time t, it will be eligible for transmission at time
 te given as follows (we still assume C <= BS):

 te = max { t, t" }

 where

 t" = (C - T(t') + t'*R)/R.

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

 T(t") = C, the time when C credits have accumulated in the bucket,
 and when the packet would conform if the token bucket were a meter.
 te != t" only if t > t".

Bernet, et. al. Expires: September 2000 [page 33]

INTERNET-DRAFT draft-ietf-diffserv-model-02.txt March 2000

Authors' Addresses

 Yoram Bernet
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 Phone: +1 425 936 9568
 E-mail: yoramb@microsoft.com

 Andrew Smith
 Extreme Networks
 3585 Monroe St.
 Santa Clara, CA 95051
 Phone: +1 408 579 2821
 E-mail: andrew@extremenetworks.com

 Steven Blake
 Ericsson
 920 Main Campus Drive, Suite 500
 Raleigh, NC 27606
 Phone: +1 919 472 9913
 E-mail: slblake@torrentnet.com

 Daniel Grossman
 Motorola Inc.
 20 Cabot Blvd.
 Mansfield, MA 02048
 Phone: +1 508 261 5312
 E-mail: dan@dma.isg.mot.com

https://datatracker.ietf.org/doc/html/draft-ietf-diffserv-model-02.txt

Bernet, et. al. Expires: September 2000 [page 34]

