
Workgroup: DISPATCH

Internet-Draft:

draft-ietf-dispatch-javascript-mjs-12

Obsoletes: 4329 (if approved)

Published: 8 December 2021

Intended Status: Informational

Expires: 11 June 2022

Authors: M. Miller M. Borins

GitHub

M. Bynens

Google

B. Farias

ECMAScript Media Types Updates

Abstract

This document describes the registration of media types for the

ECMAScript and JavaScript programming languages and conformance

requirements for implementations of these types. This document

obsoletes RFC4329, "Scripting Media Types", replacing the previous

registrations for "text/javascript" and "application/javascript"

with information and requirements aligned with implementation

experiences.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 June 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc4329
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Compatibility

3. Modules

4. Encoding

4.1. Charset Parameter

4.2. Character Encoding Scheme Detection

4.3. Character Encoding Scheme Error Handling

5. Security Considerations

6. IANA Considerations

6.1. Common JavaScript Media Types

6.1.1. text/javascript

6.2. Historic Javascript Media Types

6.2.1. application/ecmascript

6.2.2. application/javascript

6.2.3. application/x-ecmascript

6.2.4. application/x-javascript

6.2.5. text/ecmascript

6.2.6. text/javascript1.0

6.2.7. text/javascript1.1

6.2.8. text/javascript1.2

6.2.9. text/javascript1.3

6.2.10. text/javascript1.4

6.2.11. text/javascript1.5

6.2.12. text/jscript

6.2.13. text/livescript

6.2.14. text/x-ecmascript

6.2.15. text/x-javascript

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Acknowledgements

Appendix B. Changes from RFC 4329

Authors' Addresses

1. Introduction

This memo describes media types for the JavaScript and ECMAScript

programming languages. Refer to the sections "Introduction" and

"Overview" in [ECMA-262] for background information on these

languages. This document updates the descriptions and registrations

for these media types to reflect existing usage on the Internet, and

provides up-to-date security considerations.

¶

¶

This document replaces the media types registrations in [RFC4329],

and updates the requirements for implementations using those media

types defined in [RFC4329] based on current existing practices. As a

consequence, this document obsoletes [RFC4329].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Compatibility

This document defines equivalent processing requirements for the

types text/javascript, text/ecmascript, and application/javascript.

The most widely supported media type in use is text/javascript; all

others are considered historical and obsolete compared to text/

javascript.

The types defined in this document are applicable to scripts written

in [ECMA-262]. Later editions of [ECMA-262] are not directly

addressed, although it is expected that implementations will behave

as if applicability were extended to them. This document does not

address other extensions to [ECMA-262] or scripts written in other

languages.

This document may be updated to take other content into account.

Updates of this document may introduce new optional parameters;

implementations MUST consider the impact of such an update.

The definitions in this document reflect the current state of

implementation across the JavaScript ecosystem, in web browsers and

other environments such as Node.js alike, in order to guarantee

backwards compatibility with existing applications as much as

possible.

3. Modules

In order to formalize support for modular programs, [ECMA-262]

(starting with 6th Edition) defines two top-level goal symbols (or

roots to the abstract syntax tree) for the ECMAScript grammar:

Module and Script. The Script goal represents the original structure

where the code executes in the global scope, while the Module goal

represents the module system built into ECMAScript starting with 6th

Edition. See the section "ECMAScript Language: Scripts and Modules"

of [ECMA-262] for details.

¶

¶

¶

¶

¶

¶

¶

This separation means that (in the absence of additional

information) there are two possible interpretations for any given

ECMAScript source text.

The TC39 standards body for ECMAScript has determined that media

types are outside of their scope of work [TC39-MIME-ISSUE].

It is not possible to fully determine if a source text of ECMAScript

is meant to be parsed using the Module or Script grammar goals based

upon content or media type alone. Therefore, as permitted by the

media types in this document, scripting environments use out-of-band

information in order to determine what goal should be used. Some

scripting environments have chosen to adopt the file extension of

.mjs for this purpose.

This document does not define how fragment identifiers in resource

identifiers ([RFC3986], [RFC3987]) for documents labeled with one of

the media types defined in this document are resolved. An update of

this document may define processing of fragment identifiers.

4. Encoding

Refer to [RFC6365] for a discussion of terminology used in this

section. Source text (as defined in [ECMA-262], section "Source

Text") can be binary source text. Binary source text is a textual

data object that represents source text encoded using a character

encoding scheme. A textual data object is a whole text protocol

message or a whole text document, or a part of it, that is treated

separately for purposes of external storage and retrieval. An

implementation's internal representation of source text is not

considered binary source text.

Implementations need to determine a character encoding scheme in

order to decode binary source text to source text. The media types

defined in this document allow an optional charset parameter to

explicitly specify the character encoding scheme used to encode the

source text.

How implementations determine the character encoding scheme can be

subject to processing rules that are out of the scope of this

document. For example, transport protocols can require that a

specific character encoding scheme is to be assumed if the optional

charset parameter is not specified, or they can require that the

charset parameter is used in certain cases. Such requirements are

not defined by this document.

Implementations that support binary source text MUST support binary

source text encoded using the UTF-8 [RFC3629] character encoding

scheme. Module goal sources MUST be encoded as UTF-8, all other

encodings will fail. Source goal sources SHOULD be encoded as UTF-8;

¶

¶

¶

¶

¶

¶

¶

other character encoding schemes MAY be supported, but are

discouraged. Whether U+FEFF is processed as a Byte Order Mark (BOM)

signature or not depends on the host environment, and is not defined

by this document.

4.1. Charset Parameter

The charset parameter provides a means to specify the character

encoding scheme of binary source text. Its value SHOULD be a

registered charset [CHARSETS], and is considered valid if it matches

the mime-charset production defined in [RFC2978], section 2.3.

The charset parameter is only used when processing a Script goal

source; Module goal sources MUST always be processed as UTF-8.

4.2. Character Encoding Scheme Detection

It is possible that implementations cannot interoperably determine a

single character encoding scheme simply by complying with all

requirements of the applicable specifications. To foster

interoperability in such cases, the following algorithm is defined.

Implementations apply this algorithm until a single character

encoding scheme is determined.

If the binary source text is not already determined to be using

a Module goal and starts with a Unicode encoding form

signature, the signature determines the encoding. The following

octet sequences, at the very beginning of the binary source

text, are considered with their corresponding character

encoding schemes:

Implementations of this step MUST use these octet sequences to

determine the character encoding scheme, even if the determined

scheme is not supported. If this step determines the character

encoding scheme, the octet sequence representing the Unicode

encoding form signature MUST be ignored when decoding the

binary source text.

If a charset parameter is specified and its value is valid and

supported by the implementation, the value determines the

character encoding scheme.

¶

¶

¶

¶

1.

¶

 +------------------+----------+

 | Leading sequence | Encoding |

 |------------------+----------|

 | EF BB BF | UTF-8 |

 | FF FE | UTF-16LE |

 | FE FF | UTF-16BE |

 +------------------+----------+

¶

¶

2.

¶

If no other character encoding scheme is determined from the

previous steps, it is assumed to be UTF-8.

If the character encoding scheme is determined to be UTF-8 through

any means other than step 1 as defined above and the binary source

text starts with the octet sequence EF BB BF, the octet sequence is

ignored when decoding the binary source text.

4.3. Character Encoding Scheme Error Handling

Binary source text that is not properly encoded for the determined

character encoding can pose a security risk, as discussed in section

5. That said, because of the varied and complex environments scripts

are executed in, most of the error handling specifics are left to

the processors. The following are broad guidelines that processors

follow.

If binary source text is determined to have been encoded using a

certain character encoding scheme that the implementation is unable

to process, implementations can consider the resource unsupported

(i.e., do not decode the binary source text using a different

character encoding scheme).

Binary source text can be determined to have been encoded using a

certain character encoding scheme but contain octet sequences that

are not valid according to that scheme. Implementations can

substitute those invalid sequences with the replacement character

U+FFFD (properly encoded for the scheme), or stop processing

altogether.

5. Security Considerations

Refer to [RFC3552] for a discussion of terminology used in this

section. Examples in this section and discussions of interactions of

host environments with scripts, modules, and extensions to

[ECMA-262] are to be understood as non-exhaustive and of a purely

illustrative nature.

The programming language defined in [ECMA-262] is not intended to be

computationally self-sufficient, rather it is expected that the

computational environment provides facilities to programs to enable

specific functionality. Such facilities constitute unknown factors

and are thus not defined by this document.

Derived programming languages are permitted to include additional

functionality that is not described in [ECMA-262]; such

functionality constitutes an unknown factor and is thus not defined

by this document. In particular, extensions to [ECMA-262] defined

for the JavaScript programming language are not discussed in this

document.

3.

¶

¶

¶

¶

¶

¶

¶

¶

Uncontrolled execution of scripts can be exceedingly dangerous.

Implementations that execute scripts MUST give consideration to

their application's threat models and those of the individual

features they implement; in particular, they MUST ensure that

untrusted content is not executed in an unprotected environment.

Module scripts in ECMAScript can request the fetching and processing

of additional scripts, called importing. Implementations that

support modules need to process imported sources in the same way as

scripts. Further, there may be additional privacy and security

concerns depending on the location(s) the original script and its

imported modules are obtained from. For instance, a script obtained

from "host-a.example" could request to import a script from "host-

b.example", which could expose information about the executing

environment (e.g., IP address) to "host-b.example". See the section

"ECMAScript Language: Scripts and Modules" in [ECMA-262] for

details.

Specifications for host environment facilities and for derived

programming languages should include security considerations. If an

implementation supports such facilities, the respective security

considerations apply. In particular, if scripts can be referenced

from or included in specific document formats, the considerations

for the embedding or referencing document format apply.

For example, scripts embedded in application/xhtml+xml [RFC3236]

documents could be enabled through the host environment to

manipulate the document instance, which could cause the retrieval of

remote resources; security considerations regarding retrieval of

remote resources of the embedding document would apply in this case.

This circumstance can further be used to make information, that is

normally only available to the script, available to a web server by

encoding the information in the resource identifier of the resource,

which can further enable eavesdropping attacks. Implementation of

such facilities is subject to the security considerations of the

host environment, as discussed above.

The programming language defined in [ECMA-262] does include

facilities to loop, cause computationally complex operations, or

consume large amounts of memory; this includes, but is not limited

to, facilities that allow dynamically generated source text to be

executed (e.g., the eval() function); uncontrolled execution of such

features can cause denial of service, which implementations MUST

protect against.

With the addition of SharedArrayBuffer objects in ECMAScript version

8, it could be possible to implement a high-resolution timer which

could lead to certain types of timing and side-channel attacks

¶

¶

¶

¶

¶

¶

(e.g., [SPECTRE]). Implementations can take steps to mitigate this

concern, such as disabling or removing support for SharedArrayBuffer

objects, or take additional steps to ensure access to this shared

memory is only accessible between execution contexts that have some

form of mutual trust.

A host environment can provide facilities to access external input.

Scripts that pass such input to the eval() function or similar

language features can be vulnerable to code injection attacks.

Scripts are expected to protect against such attacks.

A host environment can provide facilities to output computed results

in a user-visible manner. For example, host environments supporting

a graphical user interface can provide facilities that enable

scripts to present certain messages to the user. Implementations

MUST take steps to avoid confusion of the origin of such messages.

In general, the security considerations for the host environment

apply in such a case as discussed above.

Implementations are required to support the UTF-8 character encoding

scheme; the security considerations of [RFC3629] apply. Additional

character encoding schemes may be supported; support for such

schemes is subject to the security considerations of those schemes.

Source text is expected to be in Unicode Normalization Form C.

Scripts and implementations MUST consider security implications of

unnormalized source text and data. For a detailed discussion of such

implications refer to the security considerations in [RFC3629].

Scripts can be executed in an environment that is vulnerable to code

injection attacks. For example, a CGI script [RFC3875] echoing user

input could allow the inclusion of untrusted scripts that could be

executed in an otherwise trusted environment. This threat scenario

is subject to security considerations that are out of the scope of

this document.

The "data" resource identifier scheme [RFC2397], in combination with

the types defined in this document, could be used to cause execution

of untrusted scripts through the inclusion of untrusted resource

identifiers in otherwise trusted content. Security considerations of

[RFC2397] apply.

Implementations can fail to implement a specific security model or

other means to prevent possibly dangerous operations. Such failure

could possibly be exploited to gain unauthorized access to a system

or sensitive information; such failure constitutes an unknown factor

and is thus not defined by this document.

¶

¶

¶

¶

¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications which use this media type:

6. IANA Considerations

The media type registrations herein are divided into two major

categories: the sole media type "text/javascript" which is now in

common usage, and all of the media types that are obsolete.

For both categories, the media types are updated to reference

[ECMA-262]. In addition, a new file extension of .mjs is added to

the list of file extensions with the restriction that contents

should be parsed using the Module goal. Finally, the [HTML]

specification uses "text/javascript" as the default media type of

ECMAScript when preparing script tags; therefore, "text/javascript"

intended usage is to be moved from OBSOLETE to COMMON.

These changes are to be reflected in the IANA Media Types registry

in accordance with [RFC6838]. All registrations will point to this

document as reference. The outdated note stating that the "text/

javascript" media type has been "OBSOLETED in favor of application/

javascript" is to be removed. The outdated note stating that the

"text/ecmascript" media type has been "OBSOLETED in favor of

application/ecmascript" is to be removed. IANA is requested to add

the note "OBSOLETED in favor of text/javascript" to all

registrations except "text/javascript".

6.1. Common JavaScript Media Types

6.1.1. text/javascript

text

javascript

N/A

charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document] and [RFC4329].

COMMON

The .mjs file extension signals that the

file represents a JavaScript module. Execution environments that

rely on file extensions to determine how to process inputs parse

.mjs files using the Module grammar of [ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2. Historic Javascript Media Types

The following media types are added or updated for historical

purposes. All herein have an intended usage of OBSOLETE, and are not

expected to be in use with modern implementations.

6.2.1. application/ecmascript

application

ecmascript

N/A

charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.es, .mjs

TEXT

See

Author's Address section of [this document] and [RFC4329].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.2. application/javascript

application

javascript

N/A

charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

section 4.1 of [this document] regarding the charset parameter.

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document] and [RFC4329].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>.

6.2.3. application/x-ecmascript

application

x-ecmascript

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.es, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.4. application/x-javascript

application

x-javascript

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.5. text/ecmascript

text

ecmascript

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.es, .mjs

TEXT

See

Author's Address section of [this document] and [RFC4329].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.6. text/javascript1.0

text

javascript1.0

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.7. text/javascript1.1

text

javascript1.1

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.8. text/javascript1.2

text

javascript1.2

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.9. text/javascript1.3

text

javascript1.3

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.10. text/javascript1.4

text

javascript1.4

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.11. text/javascript1.5

text

javascript1.5

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.12. text/jscript

text

jscript

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Published specification:

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.13. text/livescript

text

livescript

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

See various sections of [this

document].

[ECMA-262]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.14. text/x-ecmascript

text

x-ecmascript

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Script interpreters as

discussed in [this document].

n/a

.es, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

6.2.15. text/x-javascript

text

x-javascript

N/A

: charset, see section 4.1 of [this document].

Binary

See section 5 of [this document]..

It is expected that

implementations will behave as if this registration applies to

later editions of [ECMA-262], and its published specification

references may be updated accordingly from time to time. See also

various sections of [this document].

[ECMA-262]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Applications which use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

[CHARSETS]

[ECMA-262]

[RFC2119]

Script interpreters as

discussed in [this document].

n/a

.js, .mjs

TEXT

See

Author's Address section of [this document].

OBSOLETE

This media type is obsolete; current

implementations should use text/javascript as the only

JavaScript/ECMAScript media type. The .mjs file extension signals

that the file represents a JavaScript module. Execution

environments that rely on file extensions to determine how to

process inputs parse .mjs files using the Module grammar of

[ECMA-262].

See Author's Address section of [this document].

IESG <iesg@ietf.org>

7. References

7.1. Normative References

IANA, "Assigned character sets", n.d., <https://

www.iana.org/assignments/character-sets>.

Ecma International, "ECMAScript 2021 language

specification, ECMA-262 12th Edition, June 2021", June

2021, <https://262.ecma-international.org/12.0/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/character-sets
https://www.iana.org/assignments/character-sets
https://262.ecma-international.org/12.0/

[RFC2397]

[RFC2978]

[RFC3552]

[RFC3629]

[RFC4329]

[RFC6365]

[RFC6838]

[RFC8174]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Masinter, L., "The "data" URL scheme", RFC 2397, DOI

10.17487/RFC2397, August 1998, <https://www.rfc-

editor.org/info/rfc2397>.

Freed, N. and J. Postel, "IANA Charset Registration

Procedures", BCP 19, RFC 2978, DOI 10.17487/RFC2978,

October 2000, <https://www.rfc-editor.org/info/rfc2978>.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

info/rfc3552>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Hoehrmann, B., "Scripting Media Types", RFC 4329, DOI

10.17487/RFC4329, April 2006, <https://www.rfc-

editor.org/info/rfc4329>.

Hoffman, P. and J. Klensin, "Terminology Used in

Internationalization in the IETF", BCP 166, RFC 6365, DOI

10.17487/RFC6365, September 2011, <https://www.rfc-

editor.org/info/rfc6365>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/info/rfc6838>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc2978
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4329
https://www.rfc-editor.org/info/rfc4329
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc8174

[HTML]

[RFC3236]

[RFC3875]

[RFC3986]

[RFC3987]

[SPECTRE]

[TC39-MIME-ISSUE]

7.2. Informative References

WHATWG, "HTML Living Standard", August 2017, <https://

html.spec.whatwg.org/multipage/scripting.html#prepare-a-

script>.

Baker, M. and P. Stark, "The 'application/xhtml+xml'

Media Type", RFC 3236, DOI 10.17487/RFC3236, January

2002, <https://www.rfc-editor.org/info/rfc3236>.

Robinson, D. and K. Coar, "The Common Gateway Interface

(CGI) Version 1.1", RFC 3875, DOI 10.17487/RFC3875,

October 2004, <https://www.rfc-editor.org/info/rfc3875>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Duerst, M. and M. Suignard, "Internationalized Resource

Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,

January 2005, <https://www.rfc-editor.org/info/rfc3987>.

Kocher, P., Fogh, A., Gerkin, D., Gruss, D., Haas, W.,

Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,

Schwarz, M., and Y. Yarom, "Spectre Attacks: Exploiting

Speculative Execution", January 2018, <https://arxiv.org/

abs/1801.01203>.

TC39, "Add `application/javascript+module` mime to

remove ambiguity", August 2017, <https://web.archive.org/

web/20170814193912/https://github.com/tc39/ecma262/

issues/322>.

Appendix A. Acknowledgements

This work builds upon its antecedent document, authored by Bjoern

Hoehrmann. The authors would like to thank Adam Roach, Alexey

Melnikov, Allen Wirfs-Brock, Anne van Kesteren, Ben Campbell,

Francesca Palombini, James Snell, Kirsty Paine, Mark Nottingham,

Murray Kucherawy, Robert Sparks, and Suresh Krishnan for their

guidance and feedback throughout this process.

Appendix B. Changes from RFC 4329

Added a section discussing ECMAScript modules and the impact on

processing.

¶

*

¶

https://html.spec.whatwg.org/multipage/scripting.html#prepare-a-script
https://html.spec.whatwg.org/multipage/scripting.html#prepare-a-script
https://html.spec.whatwg.org/multipage/scripting.html#prepare-a-script
https://www.rfc-editor.org/info/rfc3236
https://www.rfc-editor.org/info/rfc3875
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01203
https://web.archive.org/web/20170814193912/https://github.com/tc39/ecma262/issues/322
https://web.archive.org/web/20170814193912/https://github.com/tc39/ecma262/issues/322
https://web.archive.org/web/20170814193912/https://github.com/tc39/ecma262/issues/322

Updated the Security Considerations to discuss concerns

associated with ECMAScript modules and SharedArrayBuffers.

Updated the character encoding scheme detection to remove

normative guidance on its use, to better reflect operational

reality.

Changed the intended usage of the media type text/javascript from

obsolete to common.

Changed the intended usage for all other script media types to

obsolete.

Updated various references where the original has been obsoleted.

Updated references to ECMA-262 to match the version at time of

publication.

Authors' Addresses

Matthew A. Miller

Email: linuxwolf+ietf@outer-planes.net

Myles Borins

GitHub

Email: mylesborins@github.com

Mathias Bynens

Google

Email: mths@google.com

Bradley Farias

Email: bradley.meck@gmail.com

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

mailto:linuxwolf+ietf@outer-planes.net
mailto:mylesborins@github.com
mailto:mths@google.com
mailto:bradley.meck@gmail.com

	ECMAScript Media Types Updates
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Compatibility
	3. Modules
	4. Encoding
	4.1. Charset Parameter
	4.2. Character Encoding Scheme Detection
	4.3. Character Encoding Scheme Error Handling

	5. Security Considerations
	6. IANA Considerations
	6.1. Common JavaScript Media Types
	6.1.1. text/javascript

	6.2. Historic Javascript Media Types
	6.2.1. application/ecmascript
	6.2.2. application/javascript
	6.2.3. application/x-ecmascript
	6.2.4. application/x-javascript
	6.2.5. text/ecmascript
	6.2.6. text/javascript1.0
	6.2.7. text/javascript1.1
	6.2.8. text/javascript1.2
	6.2.9. text/javascript1.3
	6.2.10. text/javascript1.4
	6.2.11. text/javascript1.5
	6.2.12. text/jscript
	6.2.13. text/livescript
	6.2.14. text/x-ecmascript
	6.2.15. text/x-javascript

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Acknowledgements
	Appendix B. Changes from RFC 4329
	Authors' Addresses

