
DKIM E. Allman
Internet-Draft Sendmail, Inc.
Expires: October 15, 2006 J. Callas
 PGP Corporation
 M. Delany
 M. Libbey
 Yahoo! Inc
 J. Fenton
 M. Thomas
 Cisco Systems, Inc.
 April 13, 2006

DomainKeys Identified Mail Signatures (DKIM)
draft-ietf-dkim-base-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October 15, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 DomainKeys Identified Mail (DKIM) defines a domain-level

Allman, et al. Expires October 15, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft DKIM Signing April 2006

 authentication framework for email using public-key cryptography and
 key server technology to permit verification of the source and
 contents of messages by either Mail Transfer Agents (MTAs) or Mail
 User Agents (MUAs). The ultimate goal of this framework is to permit
 a signing domain to assert responsibility for a message, thus proving
 and protecting message sender identity and the integrity of the
 messages they convey while retaining the functionality of Internet
 email as it is known today. Proof and protection of email identity,
 including repudiation and non-repudiation, may assist in the global
 control of "spam" and "phishing".

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Allman, et al. Expires October 15, 2006 [Page 2]

Internet-Draft DKIM Signing April 2006

Table of Contents

1. Introduction . 5
1.1 Overview . 5
1.2 Signing Identity . 6
1.3 Scalability . 6
1.4 Simple Key Management 6

2. Terminology and Definitions 6
2.1 Signers . 6
2.2 Verifiers . 7
2.3 White Space . 7
2.4 Common ABNF Tokens . 7
2.5 Imported ABNF Tokens 7

3. Protocol Elements . 8
3.1 Selectors . 8
3.2 Tag=Value Lists . 10
3.3 Signing and Verification Algorithms 11
3.4 Canonicalization . 12
3.5 The DKIM-Signature header field 16
3.6 Key Management and Representation 23
3.7 Computing the Message Hashes 27

4. Semantics of Multiple Signatures 29
5. Signer Actions . 30
5.1 Determine if the Email Should be Signed and by Whom . . . 30

 5.2 Select a private-key and corresponding selector
 information . 30

5.3 Normalize the Message to Prevent Transport Conversions . . 31
5.4 Determine the header fields to Sign 31
5.5 Compute the Message Hash and Signature 33
5.6 Insert the DKIM-Signature header field 34

6. Verifier Actions . 35
6.1 Extract the Signature from the Message 35
6.2 Get the Public Key . 36
6.3 Compute the Verification 37
6.4 Communicate Verification Results 39
6.5 Interpret Results/Apply Local Policy 39
6.6 MUA Considerations . 40

7. IANA Considerations . 41
8. Security Considerations 41
8.1 Misuse of Body Length Limits ("l=" Tag) 42
8.2 Misappropriated Private Key 42
8.3 Key Server Denial-of-Service Attacks 43
8.4 Attacks Against DNS 43
8.5 Replay Attacks . 44
8.6 Limits on Revoking Keys 44
8.7 Intentionally malformed Key Records 45
8.8 Intentionally Malformed DKIM-Signature header fields . . . 45
8.9 Information Leakage 45

Allman, et al. Expires October 15, 2006 [Page 3]

Internet-Draft DKIM Signing April 2006

9. References . 45
9.1 Normative References 45
9.2 Informative References 46

 Authors' Addresses . 47
A. Example of Use (INFORMATIVE) 48
A.1 The user composes an email 49
A.2 The email is signed 49
A.3 The email signature is verified 50

B. Usage Examples (INFORMATIVE) 51
B.1 Simple Message Forwarding 51
B.2 Outsourced Business Functions 51
B.3 PDAs and Similar Devices 51
B.4 Mailing Lists . 52
B.5 Affinity Addresses . 52
B.6 Third-party Message Transmission 53

C. Creating a public key (INFORMATIVE) 53
D. Acknowledgements . 55
E. Edit History . 55
E.1 Changes since -ietf-00 version 55
E.2 Changes since -allman-01 version 56
E.3 Changes since -allman-00 version 56

 Intellectual Property and Copyright Statements 57

Allman, et al. Expires October 15, 2006 [Page 4]

Internet-Draft DKIM Signing April 2006

1. Introduction

 [[Note: text in double square brackets (such as this text) will be
 deleted before publication.]]

1.1 Overview

 DomainKeys Identified Mail (DKIM) defines a mechanism by which email
 messages can be cryptographically signed, permitting a signing domain
 to claim responsibility for the introduction of a message into the
 mail stream. Message recipients can verify the signature by querying
 the signer's domain directly to retrieve the appropriate public key,
 and thereby confirm that the message was attested to by a party in
 possession of the private key for the signing domain.

 The approach taken by DKIM differs from previous approaches to
 message signing (e.g. S/MIME [RFC1847], OpenPGP [RFC2440]) in that:

 o the message signature is written to the message header fields so
 that neither human recipients nor existing MUA (Mail User Agent)
 software are confused by signature-related content appearing in
 the message body,

 o there is no dependency on public and private key pairs being
 issued by well-known, trusted certificate authorities,

 o there is no dependency on the deployment of any new Internet
 protocols or services for public key distribution or revocation,

 o it makes no attempt to include encryption as part of the
 mechanism.

 DKIM:

 o is compatible with the existing email infrastructure and
 transparent to the fullest extent possible

 o requires minimal new infrastructure

 o can be implemented independently of clients in order to reduce
 deployment time

 o does not require the use of a trusted third party (such as a
 certificate authority or other entity) which might impose
 significant costs or introduce delays to deployment

 o can be deployed incrementally

https://datatracker.ietf.org/doc/html/rfc1847
https://datatracker.ietf.org/doc/html/rfc2440

Allman, et al. Expires October 15, 2006 [Page 5]

Internet-Draft DKIM Signing April 2006

 o allows delegation of signing to third parties.

 A "selector" mechanism allows multiple keys per domain, including
 delegation of the right to authenticate a portion of the namespace to
 a trusted third party.

1.2 Signing Identity

 DKIM separates the question of the identity of the signer of the
 message from the purported author of the message. In particular, a
 signature includes the identity of the signer. Verifiers can use the
 signing information to decide how they want to process the message.

 INFORMATIVE RATIONALE: The signing address associated with a DKIM
 signature is not required to match a particular header field
 because of the broad methods of interpretation by recipient mail
 systems, including MUAs.

1.3 Scalability

 The email identification problem is characterized by extreme
 scalability requirements. There are currently over 70 million
 domains and a much larger number of individual addresses. It is
 important to preserve the positive aspects of the current email
 infrastructure, such as the ability for anyone to communicate with
 anyone else without introduction.

1.4 Simple Key Management

 DKIM differs from traditional hierarchical public-key systems in that
 no key signing infrastructure is required; the verifier requests the
 public key from the claimed signer directly.

 The DNS is proposed as the initial mechanism for publishing public
 keys. DKIM is designed to be extensible to other key fetching
 services as they become available.

2. Terminology and Definitions

 This section defines terms used in the rest of the document. Syntax
 descriptions use the form described in Augmented BNF for Syntax
 Specifications [RFC4234].

2.1 Signers

 Elements in the mail system that sign messages are referred to as
 signers. These may be MUAs (Mail User Agents), MSAs (Mail Submission

https://datatracker.ietf.org/doc/html/rfc4234

Allman, et al. Expires October 15, 2006 [Page 6]

Internet-Draft DKIM Signing April 2006

 Agents), MTAs (Mail Transfer Agents), or other agents such as mailing
 list exploders. In general any signer will be involved in the
 injection of a message into the message system in some way. The key
 issue is that a message must be signed before it leaves the
 administrative domain of the signer.

2.2 Verifiers

 Elements in the mail system that verify signatures are referred to as
 verifiers. These may be MTAs, Mail Delivery Agents (MDAs), or MUAs.
 In most cases it is expected that verifiers will be close to an end
 user (reader) of the message or some consuming agent such as a
 mailing list exploder.

2.3 White Space

 There are three forms of white space:

 o WSP represents simple white space, i.e., a space or a tab
 character, and is inherited from[RFC2822].

 o SWSP is streaming white space; it adds the CR and LF characters.

 o FWS, also from [RFC2822], is folding white space. It allows
 multiple lines separated by CRLF followed by at least one white
 space, to be joined.

 The formal ABNF for SWSP is:

 SWSP = CR / LF / WSP ; streaming white space

2.4 Common ABNF Tokens

 The following ABNF tokens are used elsewhere in this document.

 hyphenated-word = ALPHA [*(ALPHA / DIGIT / "-") (ALPHA / DIGIT)]
 base64string = 1*(ALPHA / DIGIT / "+" / "/" / "=" / SWSP)

2.5 Imported ABNF Tokens

 The following tokens are imported from other RFCs as noted. Those
 RFCs should be considered definitive. However, all tokens having
 names beginning with "obs-" should be excluded from this import, as
 they have been obsoleted and are expected to go away in future

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires October 15, 2006 [Page 7]

Internet-Draft DKIM Signing April 2006

 editions of those RFCs.

 The following tokens are imported from [RFC2821]:

 o Local-part (implementation warning: this permits quoted strings)

 o Domain (implementation warning: this permits address-literals)

 o sub-domain

 The following definitions are imported from [RFC2822]:

 o WSP (space or tab)

 o FWS (folding white space)

 o field-name (name of a header field)

 o dot-atom (in the local-part of an email address)

 The following tokens are imported from [RFC2045]:

 o qp-section (a single line of quoted-printable-encoded text)

 Other tokens not defined herein are imported from [RFC4234]. These
 are intuitive primitives such as SP, ALPHA, CRLF, etc.

3. Protocol Elements

 Protocol Elements are conceptual parts of the protocol that are not
 specific to either signers or verifiers. The protocol descriptions
 for signers and verifiers are described in later sections (Signer
 Actions (Section 5) and Verifier Actions (Section 6)). NOTE: This
 section must be read in the context of those sections.

3.1 Selectors

 To support multiple concurrent public keys per signing domain, the
 key namespace is subdivided using "selectors". For example,
 selectors might indicate the names of office locations (e.g.,
 "sanfrancisco", "coolumbeach", and "reykjavik"), the signing date
 (e.g., "january2005", "february2005", etc.), or even the individual
 user.

 INFORMATIVE IMPLEMENTERS' NOTE: reusing a selector with a new key
 (for example, changing the key associated with a user's name)
 makes it impossible to tell the difference between a message that
 didn't verify because the key is no longer valid versus a message

https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc4234

Allman, et al. Expires October 15, 2006 [Page 8]

Internet-Draft DKIM Signing April 2006

 that is actually forged. Signers should not change the key
 associated with a selector. When creating a new key, signers
 should associate it with a new selector.

 Selectors are needed to support some important use cases. For
 example:

 o Domains which want to delegate signing capability for a specific
 address for a given duration to a partner, such as an advertising
 provider or other outsourced function.

 o Domains which want to allow frequent travelers to send messages
 locally without the need to connect with a particular MSA.

 o "Affinity" domains (e.g., college alumni associations) which
 provide forwarding of incoming mail but which do not operate a
 mail submission agent for outgoing mail.

 Periods are allowed in selectors and are component separators. If
 keys are stored in DNS, the period defines sub-domain boundaries.
 Sub-selectors might be used to combine dates with locations; for
 example, "march2005.reykjavik". This can be used to allow delegation
 of a portion of the selector name-space.

 ABNF:
 selector = sub-domain *("." sub-domain)

 The number of public keys and corresponding selectors for each domain
 are determined by the domain owner. Many domain owners will be
 satisfied with just one selector whereas administratively distributed
 organizations may choose to manage disparate selectors and key pairs
 in different regions or on different email servers.

 Beyond administrative convenience, selectors make it possible to
 seamlessly replace public keys on a routine basis. If a domain
 wishes to change from using a public key associated with selector
 "january2005" to a public key associated with selector
 "february2005", it merely makes sure that both public keys are
 advertised in the public-key repository concurrently for the
 transition period during which email may be in transit prior to
 verification. At the start of the transition period, the outbound
 email servers are configured to sign with the "february2005" private-
 key. At the end of the transition period, the "january2005" public
 key is removed from the public-key repository.

 While some domains may wish to make selector values well known,
 others will want to take care not to allocate selector names in a way
 that allows harvesting of data by outside parties. E.g., if per-user

Allman, et al. Expires October 15, 2006 [Page 9]

Internet-Draft DKIM Signing April 2006

 keys are issued, the domain owner will need to make the decision as
 to whether to make this selector associated directly with the user
 name, or make it some unassociated random value, such as a
 fingerprint of the public key.

3.2 Tag=Value Lists

 DKIM uses a simple "tag=value" syntax in several contexts, including
 in messages, domain signature records, and policy records.

 Values are a series of strings containing either base64 text, plain
 text, or quoted printable text, as defined in [RFC2045], section 6.7.
 The name of the tag will determine the encoding of each value;
 however, no encoding may include the semicolon (";") character, since
 that separates tag-specs.

 Formally, the syntax rules are:
 tag-list = tag-spec 0*(";" tag-spec) [";"]
 tag-spec = [FWS] tag-name [FWS] "=" [FWS] tag-value [FWS]
 tag-name = ALPHA 0*ALNUMPUNC
 tag-value = 0*VALCHAR ; SWSP prohibited at beginning and end
 VALCHAR = %9 / %d32 - %d58 / %d60 - %d126
 ; HTAB and SP to TILDE except SEMICOLON
 ALNUMPUNC = ALPHA / DIGIT / "_"

 Note that WSP is allowed anywhere around tags; in particular, WSP
 between the tag-name and the "=", and any WSP before the terminating
 ";" is not part of the value.

 Tags MUST be interpreted in a case-sensitive manner. Values MUST be
 processed as case sensitive unless the specific tag description of
 semantics specifies case insensitivity.

 Tags with duplicate names MUST NOT be specified within a single tag-
 list.

 Whitespace within a value MUST be retained unless explicitly excluded
 by the specific tag description.

 Tag=value pairs that represent the default value MAY be included to
 aid legibility.

 Unrecognized tags MUST be ignored.

 Tags that have an empty value are not the same as omitted tags. An
 omitted tag is treated as having the default value; a tag with an
 empty value explicitly designates the empty string as the value. For
 example, "g=" does not mean "g=*", even though "g=*" is the default

https://datatracker.ietf.org/doc/html/rfc2045#section-6.7

Allman, et al. Expires October 15, 2006 [Page 10]

Internet-Draft DKIM Signing April 2006

 for that tag.

3.3 Signing and Verification Algorithms

 DKIM supports multiple key signing/verification algorithms. Two
 algorithms are defined by this specification at this time: rsa-sha1,
 and rsa-sha256. The rsa-sha256 algorithm is the default if no
 algorithm is specified. Verifiers MUST implement both rsa-sha1 and
 rsa-sha256. Signers MUST implement and SHOULD sign using rsa-sha256.

3.3.1 The rsa-sha1 Signing Algorithm

 The rsa-sha1 Signing Algorithm computes a message hash as described
 in Section 3.7 below using SHA-1 as the hash-alg. That hash is then
 encrypted by the signer using the RSA algorithm (defined in PKCS#1
 version 1.5 [RFC3447]) as the crypt-alg and the signer's private key.
 The hash MUST NOT be truncated or converted into any form other than
 the native binary form before being signed.

3.3.2 The rsa-sha256 Signing Algorithm

 The rsa-sha256 Signing Algorithm computes a message hash as described
 in Section 3.7 below using SHA-256 as the hash-alg. That hash is
 then encrypted by the signer using the RSA algorithm (actually PKCS#1
 version 1.5 [RFC3447]) as the crypt-alg and the signer's private key.
 The hash MUST NOT be truncated or converted into any form other than
 the native binary form before being signed.

3.3.3 Other algorithms

 Other algorithms MAY be defined in the future. Verifiers MUST ignore
 any signatures using algorithms that they do not understand.

3.3.4 Key sizes

 Selecting appropriate key sizes is a trade-off between cost,
 performance and risk. Since short RSA keys more easily succumb to
 off-line attacks, signers MUST use RSA keys of at least 1024 bits for
 long-lived keys. Verifiers MUST be able to validate signatures with
 keys ranging from 512 bits to 2048 bits, and they MAY be able to
 validate signatures with larger keys. Security policies may use the
 length of the signing key as one metric for determining whether a
 signature is acceptable.

 Factors that should influence the key size choice include:

 o The practical constraint that large keys may not fit within a 512
 byte DNS UDP response packet

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Allman, et al. Expires October 15, 2006 [Page 11]

Internet-Draft DKIM Signing April 2006

 o The security constraint that keys smaller than 1024 bits are
 subject to off-line attacks

 o Larger keys impose higher CPU costs to verify and sign email

 o Keys can be replaced on a regular basis, thus their lifetime can
 be relatively short

 o The security goals of this specification are modest compared to
 typical goals of public-key systems

 See RFC3766 [RFC3766] for further discussion of selecting key sizes.

3.4 Canonicalization

 Empirical evidence demonstrates that some mail servers and relay
 systems modify email in transit, potentially invalidating a
 signature. There are two competing perspectives on such
 modifications. For most signers, mild modification of email is
 immaterial to the authentication status of the email. For such
 signers a canonicalization algorithm that survives modest in-transit
 modification is preferred.

 Other signers demand that any modification of the email, however
 minor, result in an authentication failure. These signers prefer a
 canonicalization algorithm that does not tolerate in-transit
 modification of the signed email.

 Some signers may be willing to accept modifications to header fields
 that are within the bounds of email standards such as [RFC2822], but
 are unwilling to accept any modification to the body of messages.

 To satisfy all requirements, two canonicalization algorithms are
 defined for each of the header and the body: a "simple" algorithm
 that tolerates almost no modification and a "relaxed" algorithm that
 tolerates common modifications such as white-space replacement and
 header field line re-wrapping. A signer MAY specify either algorithm
 for header or body when signing an email. If no canonicalization
 algorithm is specified by the signer, the "simple" algorithm defaults
 for both header and body. Verifiers MUST implement both
 canonicalization algorithms. Further canonicalization algorithms MAY
 be defined in the future; verifiers MUST ignore any signatures that
 use unrecognized canonicalization algorithms.

 In all cases, the header fields of the message are presented to the
 signing algorithm first in the order indicated by the signature
 header field and canonicalized using the indicated algorithm. Only
 header fields listed as signed in the signature header field are

https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires October 15, 2006 [Page 12]

Internet-Draft DKIM Signing April 2006

 included. The CRLF separating the header field from the body is then
 presented, followed by the canonicalized body. Note that the header
 and body may use different canonicalization algorithms.

 Canonicalization simply prepares the email for presentation to the
 signing or verification algorithm. It MUST NOT change the
 transmitted data in any way. Canonicalization of header fields and
 body are described below.

 NOTE: This section assumes that the message is already in "network
 normal" format (e.g., text is ASCII encoded, lines are separated with
 CRLF characters, etc.). See also Section 5.3 for information about
 normalizing the message.

3.4.1 The "simple" Header Field Canonicalization Algorithm

 The "simple" header canonicalization algorithm does not change header
 fields in any way. Header fields MUST be presented to the signing or
 verification algorithm exactly as they are in the message being
 signed or verified. In particular, header field names MUST NOT be
 case folded and white space MUST NOT be changed.

3.4.2 The "relaxed" Header Field Canonicalization Algorithm

 The "relaxed" header canonicalization algorithm MUST apply the
 following steps in order:

 o Convert all header field names (not the header field values) to
 lower case. For example, convert "SUBJect: AbC" to "subject:
 AbC".

 o Unfold all header field continuation lines as described in
 [RFC2822]; in particular, lines with terminators embedded in
 continued header field values (that is, CRLF sequences followed by
 WSP) MUST be interpreted without the CRLF. Implementations MUST
 NOT remove the CRLF at the end of the header field value.

 o Convert all sequences of one or more WSP characters to a single SP
 character. WSP characters here include those before and after a
 line folding boundary.

 o Delete all WSP characters at the end of each unfolded header field
 value.

 o Delete any WSP characters remaining before and after the colon
 separating the header field name from the header field value. The
 colon separator MUST be retained.

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires October 15, 2006 [Page 13]

Internet-Draft DKIM Signing April 2006

 [NON-NORMATIVE DOCUMENTATION NOTE: The only difference between
 "relaxed" header field canonicalization and "nowsp" listed in the
 previous version of this draft is that nowsp reduces all strings
 of streaming white space to zero characters while "relaxed"
 reduces strings of white space to one space.]

3.4.3 The "simple" Body Canonicalization Algorithm

 The "simple" body canonicalization algorithm ignores all empty lines
 at the end of the message body. An empty line is a line of zero
 length after removal of the line terminator. It makes no other
 changes to the message body. In more formal terms, the "simple" body
 canonicalization algorithm reduces "CRLF 0*CRLF" at the end of the
 body to a single "CRLF".

3.4.4 The "relaxed" Body Canonicalization Algorithm

 [[This section may be deleted; see discussion below.]] The "relaxed"
 body canonicalization algorithm:

 o Ignores all white space at the end of lines. Implementations MUST
 NOT remove the CRLF at the end of the line.

 o Reduces all sequences of WSP within a line to a single SP
 character.

 o Ignores all empty lines at the end of the message body. "Empty
 line" is defined in Section 3.4.3.

 [[NON-NORMATIVE DISCUSSION: The authors are undecided whether to
 leave the "relaxed" body canonicalization algorithm in to the
 specification or delete it entirely. We believe that for the vast
 majority of cases, the "simple" body canonicalization algorithm
 should be sufficient. We simply do not have enough data to know
 whether to retain the "relaxed" body canonicalization algorithm or
 not.]]

3.4.5 Body Length Limits

 A body length count MAY be specified to limit the signature
 calculation to an initial prefix of the body text. If the body
 length count is not specified then the entire message body is signed
 and verified.

 INFORMATIVE IMPLEMENTATION NOTE: Body length limits could be
 useful in increasing signature robustness when sending to a

Allm an, et al. Expires October 15, 2006 [Page 14]

Internet-Draft DKIM Signing April 2006

 mailing list that both appends to content sent to it and does not
 sign its messages. However, using such limits enables an attack
 in which a sender with malicious intent modifies a message to
 include content that solely benefits the attacker. It is possible
 for the appended content to completely replace the original
 content in the end recipient's eyes and to defeat duplicate
 message detection algorithms. To avoid this attack, signers
 should be wary of using this tag, and verifiers might wish to
 ignore the tag or remove text that appears after the specified
 content length, perhaps based on other criteria.

 The body length count allows the signer of a message to permit data
 to be appended to the end of the body of a signed message. The body
 length count is made following the canonicalization algorithm; for
 example, any white space ignored by a canonicalization algorithm is
 not included as part of the body length count.

 INFORMATIVE RATIONALE: This capability is provided because it is
 very common for mailing lists to add trailers to messages (e.g.,
 instructions how to get off the list). Until those messages are
 also signed, the body length count is a useful tool for the
 verifier since it may as a matter of policy accept messages having
 valid signatures with extraneous data.

 Signers of MIME messages that include a body length count SHOULD be
 sure that the length extends to the closing MIME boundary string.

 INFORMATIVE IMPLEMENTATION NOTE: A signer wishing to ensure that
 the only acceptable modifications are to add to the MIME postlude
 would use a body length count encompassing the entire final MIME
 boundary string, including the final "--CRLF". A signer wishing
 to allow additional MIME parts but not modification of existing
 parts would use a body length count extending through the final
 MIME boundary string, omitting the final "--CRLF".

 A body length count of zero means that the body is completely
 unsigned.

 Note that verifiers MAY choose to reject or truncate messages that
 have body content beyond that specified by the body length count.

 Signers wishing to ensure that no modification of any sort can occur
 should specify the "simple" algorithm and omit the body length count.

3.4.6 Example

 (In the following examples, actual white space is used only for
 clarity. The actual input and output text is designated using

Allman, et al. Expires October 15, 2006 [Page 15]

Internet-Draft DKIM Signing April 2006

 bracketed descriptors: "<SP>" for a space character, "<TAB>" for a
 tab character, and "<CRLF>" for a carriage-return/line-feed sequence.
 For example, "X <SP> Y" and "X<SP>Y" represent the same three
 characters.)

 A message reading:
 A: <SP> X <CRLF>
 B <SP> : <SP> Y <TAB><CRLF>
 <TAB> Z <SP><SP><CRLF>
 <CRLF>
 <SP> C <SP><CRLF>
 D <SP><TAB><SP> E <CRLF>
 <CRLF>
 <CRLF>

 when canonicalized using relaxed canonicalization for both header and
 body results in:
 a:X <CRLF>
 b:Y <SP> Z <CRLF>
 <CRLF>
 <SP> C <CRLF>
 D <SP> E <CRLF>

 The same message canonicalized using simple canonicalization for both
 header and body results in:
 A: <SP> X <CRLF>
 B <SP> : <SP> Y <TAB><CRLF>
 <TAB> Z <SP><SP><CRLF>
 <CRLF>
 <SP> C <SP><CRLF>
 D <SP><TAB><SP> E <CRLF>

 When processed using relaxed header canonicalization and simple body
 canonicalization, the canonicalized version reads:
 a:X <CRLF>
 b:Y <SP> Z <CRLF>
 <CRLF>
 <SP> C <SP><CRLF>
 D <SP><TAB><SP> E <CRLF>

3.5 The DKIM-Signature header field

 The signature of the email is stored in the "DKIM-Signature:" header
 field. This header field contains all of the signaturee and key-
 fetching data. The DKIM-Signature value is a tag-list as described
 in Section 3.2.

 The "DKIM-Signature:" header field SHOULD be treated as though it

Allman, et al. Expires October 15, 2006 [Page 16]

Internet-Draft DKIM Signing April 2006

 were a trace header field as defined in section 3.6 of [RFC2822], and
 hence SHOULD NOT be reordered and SHOULD be prepended to the message.
 In particular, the "DKIM-Signature" header field SHOULD precede the
 original email header fields presented to the canonicalization and
 signature algorithms.

 The "DKIM-Signature:" header field is always included in the
 signature calculation, after the body of the message; however, when
 calculating or verifying the signature, the value of the b= tag
 (signature value) MUST be treated as though it were the null string.
 Unknown tags MUST be signed and verified but MUST be otherwise
 ignored by verifiers.

 The encodings for each field type are listed below. Tags described
 as quoted-printable are as described in section 6.7 of MIME Part One
 [RFC2045], with the additional conversion of semicolon characters to
 "=3B".

 Tags on the DKIM-Signature header field along with their type and
 requirement status are shown below. Defined tags are described
 below. Unrecognized tags MUST be ignored.

 v= Version (MUST NOT be included). This tag is reserved for future
 use to indicate a possible new, incompatible version of the
 specification. It MUST NOT be included in the DKIM-Signature
 header field.

 ABNF:

 sig-v-tag =

 a= The algorithm used to generate the signature (plain-text;
 REQUIRED). Verifiers MUST support "rsa-sha1" and "rsa-sha256";
 signers SHOULD sign using "rsa-sha256". See Section 3.3 for a
 description of algorithms.

 ABNF:

 sig-a-tag = %x61 [FWS] "=" [FWS] sig-a-tag-alg
 sig-a-tag-alg = "rsa-sha1" / "rsa-sha256" / x-sig-a-tag-alg
 x-sig-a-tag-alg = hyphenated-word ; for later extension

https://datatracker.ietf.org/doc/html/rfc2822#section-3.6
https://datatracker.ietf.org/doc/html/rfc2045

Allman, et al. Expires October 15, 2006 [Page 17]

Internet-Draft DKIM Signing April 2006

 b= The signature data (base64; REQUIRED). Whitespace is ignored in
 this value and MUST be ignored when re-assembling the original
 signature. In particular, the signing process can safely insert
 FWS in this value in arbitrary places to conform to line-length
 limits. See Signer Actions (Section 5) for how the signature is
 computed.

 ABNF:

 sig-b-tag = %x62 [FWS] "=" [FWS] sig-b-tag-data
 sig-b-tagg-data = base64string

 bh= The hash of the body part of the message (base64; REQUIRED).
 Whitespace is ignored in this value and MUST be ignored when re-
 assembling the original signature. In particular, the signing
 process can safely insert FWS in this value in arbitrary places
 to conform to line-length limits. See Section 3.7 for how the
 body hash is computed.

 c= Message canonicalization (plain-text; OPTIONAL, default is
 "simple/simple"). This tag informs the verifier of the type of
 canonicalization used to prepare the message for signing. It
 consists of two names separated by a "slash" (%d47) character,
 corresponding to the header and body canonicalization algorithms
 respectively. These algorithms are described in Section 3.4. If
 only one algorithm is named, that algorithm is used for the
 header and "simple" is used for the body. For example,
 "c=relaxed" is treated the same as "c=relaxed/simple".

 ABNF:

 sig-c-tag = %x63 [FWS] "=" [FWS] sig-c-tag-alg
 ["/" sig-c-tag-alg]
 sig-c-tag-alg = "simple" / "relaxed" / x-sig-c-tag-alg
 x-sig-c-tag-alg = hyphenated-word ; for later extension

 d= The domain of the signing entity (plain-text; REQUIRED). This
 is the domain that will be queried for the public key. This
 domain MUST be the same as or a parent domain of the "i=" tag
 (the signing identity, as described below). When presented with
 a signature that does not meet this requirement, verifiers MUST
 either ignore the signature or reject the message.

Allman, et al. Expires October 15, 2006 [Page 18]

Internet-Draft DKIM Signing April 2006

 ABNF:

 sig-d-tag = %x64 [FWS] "=" [FWS] Domain

 h= Signed header fields (plain-text, but see description;
 REQUIRED). A colon-separated list of header field names that
 identify the header fields presented to the signing algorithm.
 The field MUST contain the complete list of header fields in the
 order presented to the signing algorithm. The field MAY contain
 names of header fields that do not exist when signed; nonexistent
 header fields do not contribute to the signature computation
 (that is, they are treated as the null input, including the
 header field name, the separating colon, the header field value,
 and any CRLF terminator). The field MUST NOT include the DKIM-
 Signature header field that is being created or verified.
 Folding white space (FWS) MAY be included on either side of the
 colon separator. Header ffield names MUST be compared against
 actual header field names in a case insensitive manner. This
 list MUST NOT be empty. See Section 5.4 for a discussion of
 choosing header fields to sign.

 ABNF:

 sig-h-tag = %x68 [FWS] "=" [FWS] hdr-name
 0*(*FWS ":" *FWS hdr-name)
 hdr-name = field-name

 INFORMATIVE EXPLANATION: By "signing" header fields that do
 not actually exist, a signer can prevent insertion of those
 header fields before verification. However, since a sender
 cannot possibly know what header fields might be created in
 the future, and that some MUAs might present header fields
 that are embedded inside a message (e.g., as a message/rfc822
 content type), the security of this solution is not total.

 INFORMATIVE EXPLANATION: The exclusion of the header field
 name and colon as well as the header field value for non-
 existent header fields prevents an attacker from inserting an
 actual header field with a null value.

 i= Identity of the user or agent (e.g., a mailing list manager) on
 behalf of which this message is signed (quoted-printable;
 OPTIONAL, default is an empty local-part followed by an "@"
 followed by the domain from the "d=" tag). The syntax is a
 standard email address where the local-part MAY be omitted. The
 domain part of the address MUST be the same as or a subdomain of

Allman, et al. Expires October 15, 2006 [Page 19]

Internet-Draft DKIM Signing April 2006

 the value of the "d=" tag.

 ABNF:

 sig-i-tag = %x69 [FWS] "=" [FWS] [Local-part] "@" Domain

 INFORMATIVE NOTE: The local-part of the "i=" tag is optional
 because in some cases a signer may not be able to establish a
 verified individual identity. In such cases, the signer may
 wish to assert that although it is willing to go as far as
 signing for the domain, it is unable or unwilling to commit
 to an individual user name within their domain. It can do so
 by including the domain part but not the local-part of the
 identity.

 INFORMATIVE DISCUSSION: This document does not require the
 value of the "i=" tag to match the identity in any message
 header field fields. This is considered to be a verifier
 policy issue, described in another document [XREF-TBD].
 Constraints between the value of the "i=" tag and other
 identities in other header fields seek to apply basic
 aauthentication into the semantics of trust associated with a
 role such as content author. Trust is a broad and complex
 topic and trust mechanisms are subject to highly creative
 attacks. The real-world efficacy of any but the most basic
 bindings between the "i=" value and other identities is not
 well established, nor is its vulnerability to subversion by
 an attacker. Hence reliance on the use of these options
 should be strictly limited. In particular it is not at all
 clear to what extent a typical end-user recipient can rely on
 any assurances that might be made by successful use of the
 "i=" options.

 l= Body count (plain-text decimal integer; OPTIONAL, default is
 entire body). This tag informs the verifier of the number of
 bytes in the body of the email after canonicalization included in
 the cryptographic hash, starting from 0 immediately following the
 CRLF preceding the body.

 INFORMATIVE IMPLEMENTATION WARNING: Use of the l= tag might
 allow display of fraudulent content without appropriate
 warning to end users. The l= tag is intended for increasing
 signature robustness when sending to mailing lists that both
 modify their content and do not sign their messages.
 However, using the l= tag enables man-in-the-middle attacks
 in which an intermediary with malicious intent modifies a
 message to include content that solely benefits the attacker.

Allman, et al. Expires October 15, 2006 [Page 20]

Internet-Draft DKIM Signing April 2006

 It is possible for the appended content to completely replace
 the original content in the end recipient's eyes and to
 defeat duplicate message detection algorithms. Examples are
 described in Security Considerations (Section 8).

 To avoid this attack, signers should be extremely wary of
 using this tag, and verifiers might wish to ignore the tag or
 remove text that appears after the specified content length.

 ABNF:

 sig-l-tag = %x6c [FWS] "=" [FWS] 1*DIGIT

 q= A colon-separated list of query methods used to retrieve the
 public key (plain-text; OPTIONAL, default is "dns"). Each query
 method is of the form "type[/options]", where the syntax and
 semantics of the options depends on the type. If there are
 multiple query mechanisms listed, the choice of query mechanism
 MUST NOT change the interpretation of the signature. Currently
 the only valid value iis "dns" which defines the DNS lookup
 algorithm described elsewhere in this document. No options are
 defined for the "dns" query type, but the string "dns" MAY have a
 trailing "/" character. Verifiers and signers MUST support
 "dns".

 INFORMATIVE RATIONALE: Explicitly allowing a trailing "/" on
 "dns" allows for the possibility of adding options later and
 makes it clear that matching of the query type must terminate
 on either "/" or end of string.

 ABNF:

 sig-q-tag = %x71 [FWS] "=" [FWS] sig-q-tag-method
 *([FWS] ":" [FWS] sig-q-tag-method)
 sig-q-tag-method = sig-q-tag-type ["/" sig-q-tag-args]
 sig-q-tag-type = "dns" / x-sig-q-tag-type
 x-sig-q-tag-type = hyphenated-word ; for future extension
 x-sig-q-tag-args = qp-hdr-value

 s= The selector subdividing the namespace for the "d=" (domain) tag
 (plain-text; REQUIRED).

 ABNF:

 sig-s-tag = %x73 [FWS] "=" [FWS] Domain

Allman, et al. Expires October 15, 2006 [Page 21]

Internet-Draft DKIM Signing April 2006

 t= Signature Timestamp (plain-text; RECOMMENDED, default is an
 unknown creation time). The time that this signature was
 created. The format is the number of seconds since 00:00:00 on
 January 1, 1970 in the UTC time zone. The value is expressed as
 an unsigned integer in decimal ASCII. This value is not
 constrained to fit into a 31- or 32-bit integer. Implementations
 SHOULD be prepared to handle values up to at least 10^12 (until
 approximately AD 200,000; this fits into 40 bits). To avoid
 denial of service attacks, implementations MAY consider any value
 longer than 12 digits to be infinite.

 ABNF:

 sig-t-tag = %x74 [FWS] "=" [FWS] 1*12DIGIT

 x= Signature Expiration (plain-text; RECOMMENDED, default is no
 expiration). The format is the same as in the "t=" tag,
 represented as an absolute date, not as a time delta from the
 signing timestamp. Signatures MUST NOT be considered valid if
 the current time at the verifier is past the expiration date.
 The value is expressed as an unsigned integer in decimal ASCII,
 with the same contraints on the value in the "t=" tag. The value
 of the "x=" tag MUST be greater than the value of the "t=" tag if
 both are present.

 INFORMATIVE NOTE: The x= tag is not intended as an anti-
 replay defense.

 ABNF:

 sig-x-tag = %x78 [FWS] "=" [FWS] 1*12DIGIT

 z= Copied header fields (plain-text, but see description; OPTIONAL,
 default is null). A vertical-bar-separated list of header field
 names and copies of header field values that identify the header
 fields present when the message was signed. This field need not
 contain the same header fields listed in the "h=" tag. Copied
 header field values MUST immediately follow the header field name
 with a colon separator (no white space permitted). Header field
 values MUST be represented as Quoted-Printable [RFC2045] with
 vertical bars, colons, semicolons, and white space encoded in
 addition to the usual requirements.

https://datatracker.ietf.org/doc/html/rfc2045

Allman, et al. Expires October 15, 2006 [Page 22]

Internet-Draft DKIM Signing April 2006

 Verifiers MUST NOT use the header field names or copied values
 for checking the signature in any way. Copied header field
 values are for diagnostic use only.

 Header fields with characters requiring conversion (perhaps from
 legacy MTAs which are not [RFC2822] compliant) SHOULD be
 converted as described in MIME Part Three [RFC2047].

 ABNF:
 sig-z-tag = %x7A [FWS] "=" [FWS] sig-z-tag-copy
 *([FWS] "|" sig-z-tag-copy)
 sig-z-tag-copy = hdr-name ":" [FWS] qp-hdr-value
 qp-hdr-value = <quoted-printable text with WS, "|", ":",
 and ";" encoded>
 ; needs to be updated with real definition
 ; (could be messy)

 INFORMATIVE EXAMPLE of a signature header field spread across
 multiple continuation lines:

 DKIM-Signature: a=rsa-sha1; d=example.net; s=brisbane
 c=simple; q=dns; i=@eng.example.net; t=1117574938; x=1118006938;
 h=from:to:subject:date;
 z=From:foo@eng.example.net|To:joe@example.com|
 Subject:demo%20run|Date:July%205,%202005%203:44:08%20PM%20-0700
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR

3.6 Key Management and Representation

 Signature applications require some level of assurance that the
 verification public key is associated with the claimed signer. Many
 applications achieve this by using public key certificates issued by
 a trusted third party. However, DKIM can achieve a sufficient level
 of security, with significantly enhanced scalability, by simply
 having the verifier query the purported signer's DNS entry (or some
 security-equivalent) in order to retrieve the public key.

 DKIM keys can potentially be stored in multiple types of key servers
 and in multiple formats. The storage and format of keys are
 irrelevant to the remainder of the DKIM algorithm.

 Parameters to the key lookup algorithm are the type of the lookup
 (the "q=" tag), the domain of the responsible signer (the "d=" tag of
 the DKIM-Signature header field), the signing identity (the "i="
 tag), and the selector (the "s=" tag). The "i=" tag value could be
 ignored by some key services.

https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2047

Allman, et al. Expires October 15, 2006 [Page 23]

Internet-Draft DKIM Signing April 2006

 public_key = dkim_find_key(q_val, d_val, i_val, s_val)

 This document defines a single binding, using DNS to distribute the
 keys.

3.6.1 Textual Representation

 It is expected that many key servers will choose to present the keys
 in an otherwise unstructured text format (for example, an XML form
 would not be considered to be unstructured text for this purpose).
 The following definition MUST be used for any DKIM key represented in
 an otherwise unstructured textual form.

 The overall syntax is a key-value-list as described in Section 3.2.
 The current valid tags are described below. Other tags MAY be
 present and MUST be ignored by any implementation that does not
 understand them.

 v= Version of the DKIM key record (plain-text; RECOMMENDED, default
 is "DKIM1"). If specified, this tag MUST be set to "DKIM1"
 (without the quotes). This tag MUST be the first tag in the
 response. Responses beginning with a "v=" tag with any other
 value MUST be discarded.

 ABNF:

 key-v-tag = %x76 [FWS] "=" [FWS] "DKIM1"

 g= granularity of the key (plain-text; OPTIONAL, default is "*").
 This value MUST match the local part of the signing address, with
 a "*" character acting as a wildcard. The intent of this tag is
 to constrain which signing address can legitimately use this
 selector. An email with a signing address that does not match
 the value of this tag constitutes a failed verification.
 Wildcarding allows matching for addresses such as "user+*". An
 empty "g=" value never matches any addresses.

 ABNF:

 key-g-tag = %x67 [FWS] "=" [FWS] key-g-tag-lpart
 key-g-tag-lpart = [dot-atom] ["*"] [dot-atom]

 [[NON-NORMATIVE DISCUSSION POINT: "*" is legal in a dot-
 atom. This should probably use a different character for
 wildcarding. Unfortunately, the options are non-mnemonic

Allman, et al. Expires October 15, 2006 [Page 24]

Internet-Draft DKIM Signing April 2006

 (e.g., "@", "(", ":"). Alternatively we could insist on
 escaping a "*" intended as a literal "*" in the address.]]

 h= Accceptable hash algorithms (plain-text; OPTIONAL, defaults to
 allowing all algorithms). A colon-separated list of hash
 algorithms that might be used. Signers and Verifiers MUST
 support the "sha1" hash algorithm.

 ABNF:

 key-h-tag = %x68 [FWS] "=" [FWS] key-h-tag-alg
 0*([FWS] ":" [FWS] key-h-tag-alg)
 key-h-tag-alg = "sha1" / "sha256" / x-key-h-tag-alg
 x-key-h-tag-alg = hyphenated-word ; for future extension

 k= Key type (plain-text; OPTIONAL, default is "rsa"). Signers and
 verifiers MUST support the "rsa" key type. The "rsa" key type
 indicates that an RSA public key, as defined in [RFC3447],
 sections 3.1 and A.1.1, is being used in the p= tag. (Note: the
 p= tag further encodes the value using the base64 algorithm.)

 ABNF:

 key-k-tag = %x76 [FWS] "=" [FWS] key-k-tag-type
 key-k-tag-type = "rsa" / x-key-k-tag-type
 x-key-k-tag-type = hyphenated-word ; for future extension

 [[NON-NORMATIVE DISCUSSION NOTE: In some cases it can be
 hard to separate h= and k=; for example DSA implies that
 SHA-1 will be used. This might be an actual change to the
 spec depending on how we decide to fix this.]]

 n= Notes that might be of interest to a human (quoted-printable;
 OPTIONAL, default is empty). No interpretation is made by any
 program. This tag should be used sparingly in any key server
 mechanism that has space limitations (notably DNS).

 ABNF:

 key-n-tag = %x6e [FWS] "=" [FWS] qp-section

https://datatracker.ietf.org/doc/html/rfc3447

Allman, et al. Expires October 15, 2006 [Page 25]

Internet-Draft DKIM Signing April 2006

 p= Public-key data (base64; REQUIRED). An empty value means that
 this public key has been revoked. The syntax and semantics of
 this tag value before being encoded in base64 is defined by the
 k= tag.

 ABNF:

 key-p-tag = %x70 [FWS] "=" [FWS] base64string

 s= Service Type (plain-text; OPTIONAL; default is "*"). A colon-
 separated list of service types to which this record applies.
 Verifiers for a given service type MUST ignore this record if the
 appropriate type is not listed. Currently defined service types
 are:

 * matches all service types

 email electronic mail (not necessarily limited to SMTP)

 This tag is intended to permit senders to constrain the use of
 delegated keys, e.g., where a company is willing to delegate the
 right to send mail in their name to an outsourcer, but not to
 send IM or make VoIP calls. (This of courrse presumes that these
 keys are used in other services in the future.)

 ABNF:

 key-s-tag = %x73 [FWS] "=" [FWS] key-s-tag-type
 key-s-tag-type = "email" / "*" / x-key-s-tag-type
 x-key-s-tag-type = hyphenated-word ; for future extension

 t= Flags, represented as a colon-separated list of names (plain-
 text; OPTIONAL, default is no flags set). The defined flags are:

 y This domain is testing DKIM. Verifiers MUST NOT treat
 messages from signers in testing mode differently from
 unsigned email, even should the signature fail to verify.
 Verifiers MAY wish to track testing mode results to assist
 the signer.

 ABNF:

Allman, et al. Expires October 15, 2006 [Page 26]

Internet-Draft DKIM Signing April 2006

 key-t-tag = %x74 [FWS] "=" [FWS] key-t-tag-flag
 0*([FWS] ":" [FWS] key-t-tag-flag)
 key-t-tag-flag = "y" / x-key-t-tag-flag
 x-key-t-tag-flag = hyphenated-word ; for future extension

 Unrecognized flags MUST be ignored.

3.6.2 DNS binding

 A binding using DNS as a key service is hereby defined. All
 implementations MUST support this binding.

3.6.2.1 Name Space

 All DKIM keys are stored in a subdomain named ""_domainkey"". Given
 a DKIM-Signature field with a "d=" tag of ""example.com"" and an "s="
 tag of ""sample"", the DNS query will be for
 ""sample._domainkey.example.com"".

 The value of the "i=" tag is not used by the DNS binding.

3.6.2.2 Resource Record Types for Key Storage

 [[This section needs to be fleshed out. ACTUALLY: will be addressed
 in another document.]]

 Two RR types are used: DKK and TXT.

 The DKK RR is expected to be a non-text, binary representation
 intended to allow the largest possible keys to be represented and
 transmitted in a UDP DNS packet. Details of this RR are described in
 [ID-DKIM-RR].

 TXT records are encoded as described in Section 3.6.1.

 Verifiers SHOULD search for a DKK RR first, if possible, followed by
 a TXT RR. If the verifier is unable to search for a DKK RR or a DKK
 RR is not found, the verifier MUST search for a TXT RR.

3.7 Computing the Message Hashes

 Both signing and verifying message signatures starts with a step of
 computing two cryptographic hash over the message. Signers will
 choose the parameters of the signature as described in Signer Actions
 (Section 5); verifiers will use the parameters specified in the
 "DKIM-Signature" header field being verified. In the following
 discussion, the names of the tags in the "DKIM-Signature" header

Allman, et al. Expires October 15, 2006 [Page 27]

Internet-Draft DKIM Signing April 2006

 field which either exists (when verifying) or will be created (when
 signing) are used. Note that canonicalization (Section 3.4) is only
 used to prepare the email for signing or verifying; it does not
 affect the transmitted email in any way.

 The signer or verifier must compute two hashes, one over the body of
 the message and one over the header of the message. Signers MUST
 compute them in the order shown. Verifiers MAY compute them in any
 order convenient to the verifier, provided that the result is
 semantically identical to the semantics that would be the case had
 they been computed in this order.

 In hash step 1, the signer or verifier MUST hash the message body,
 canonicalized using the header canonicalization algorithm specified
 in the "c=" tag and truncated to the length specified in the "l="
 tag. That hash value is then converted to base64 form and inserted
 into the "XXX=" tag of the DKIM-Signature: header field.

 In hash step 2, the signer or verifier MUST pass the following to the
 hash algorithm in the indicated order.

 1. The header fields specified by the "h=" tag, in the order
 specified in that tag, and canonicalized using the header
 canonicalization algorithm specified in the "c=" tag. Each
 header field must be terminated with a single CRLF.

 2. The "DKIM-Signature" header field that exists (verifying) or will
 be inserted (signing) in the message, with the value of the "b="
 tag deleted (i.e., treated as the empty string), canonicalized
 using the header canonicalization algorithm specified in the "c="
 tag, and without a trailing CRLF.

 After the body is processed, a single CRLF followed by the "DKIM-
 Signature" header field being created or verified is presented to the
 algorithm. The value portion of the "b=" tag (that is, the portion
 after the "=" sign) must be treated as though it were empty, and the
 header field must be canonicalized according to the algorithm that is
 specified in the "c=" tag. Any final CRLF on the "DKIM-Signature"
 header field MUST NOT be included in the signature computation.

 All tags and their values in the DKIM-Signature header field are
 included in the cryptographic hash with the sole exception of the
 value portion of the "b=" (signature) tag, which MUST be treated as
 the null string. All tags MUST be included even if they might not be
 understood by the verifier. The header field MUST be presented to
 the hash algorithm after the body of the message rather than with the
 rest of the headder fields and MUST be canonicalized as specified in
 the "c=" (canonicalization) tag. The DKIM-Signature header field

Allman, et al. Expires October 15, 2006 [Page 28]

Internet-Draft DKIM Signing April 2006

 MUST NOT be included in its own h= tag.

 When calculating the hash on messages that will be transmitted using
 base64 or quoted-printable encoding, signers MUST compute the hash
 after the encoding. Likewise, the verifier MUST incorporate the
 values into the hash before decoding the base64 or quoted-printable
 text. However, the hash MUST be computed before transport level
 encodings such as SMTP "dot-stuffing."

 With the exception of the canonicalization procedure described in
Section 3.4, the DKIM signing process treats the body of messages as

 simply a string of characters. DKIM messages MAY be either in plain-
 text or in MIME format; no special treatment is afforded to MIME
 content. Message attachments in MIME format MUST be included in the
 content which is signed.

 More formally, the algorithm for the signature is:
 body-hash = hash-alg(canon_body)
 header-hash = crypt-alg(hash-alg(canon_header || DKIM-SIG), key)

 where crypt-alg is the encryption algorithm specified by the "a="
 tag, hash-alg is the hash algorithm specified by the "a=" tag,
 canon_header and canon_body are the canonicalized message header and
 body (respectively) as defined in Section 3.4 (excluding the DKIM-
 Signature header field), and DKIM-SIG is the canonicalized DKIM-
 Signature header field sans the signature value itself, but with
 body-hash included as the "bh=" tag.

4. Semantics of Multiple Signatures

 A signer that is adding a signature to a message merely creates a new
 DKIM-Signature header, using the usual semantics of the h= option. A
 signer MAY sign previously existing DKIM-Signature headers using the
 method described in section NN to sign trace headers. Signers should
 be cognizant that signing DKIM-Signature headers may result in
 signature failures with intermediaries that do not recognize that
 DKIM-Signature's are trace headers and unwittingly reorder them.

 When evaluating a message with multiple signatures, a receiver should
 evaluate signatures independently and on their own merits. For
 example, a receiver that by policy chooses not to accept signatures
 with deprecated crypto algorithms should consider such signatures
 invalid. As with messages with a single signature, receievers are at
 liberty to use the presence of valid signatures as an input to local
 policy; likewise, the interpretation of multiple valid signatures in
 combination is a local policy decision of the receiver.

 Signers SHOULD NOT remove any DKIM-Signature headers from messages

Allman, et al. Expires October 15, 2006 [Page 29]

Internet-Draft DKIM Signing April 2006

 they are signing, even if they know that the headers cannot be
 verified.

5. Signer Actions

 The following steps are performed in order by signers.

5.1 Determine if the Email Should be Signed and by Whom

 A signer can obviously only sign email for domains for which it has a
 private-key and the necessary knowledge of the corresponding public
 key and selector information. However there are a number of other
 reasons beyond the lack of a private key why a signer could choose
 not to sign an email.

 A SUBMISSION server MAY sign if the sender is authenticated by some
 secure means, e.g., SMTP AUTH. Within a trusted enclave the signing
 address MAY be derived from the header field according to local
 signer policy. Within a trusted enclave an MTA MAY do the signing.

 INFORMATIVE IMPLEMENTER ADVICE: SUBMISSION servers should not
 sign Received header fields if the outgoing gateway MTA obfuscates
 Received header fields, for example to hide the details of
 internal topology.

 A signer MUST NOT sign an email if it is unwilling to be held
 responsible for the message; in particular, the signer SHOULD ensure
 that the submitter has a bona fide relationship with the signer and
 that the submitter has the right to use the address being claimed.

 If an email cannot be signed for some reason, it is a local policy
 decision as to what to do with that email.

5.2 Select a private-key and corresponding selector information

 This specification does not define the basis by which a signer should
 choose which private-key and selector information to use. Currently,
 all selectors are equal as far as this specification is concerned, so
 the decision should largely be a matter of administrative
 convenience. Distribution and management of private-keys is also
 outside the scope of this document.

 A signer SHOULD NOT sign with a key that is expected to expire within
 seven days; that is, when rotating to a new key, signing should
 immediately commence with the new key and the old key SHOULD be
 retained for at least seven days before being removed from the key
 server.

Allman, et al. Expires October 15, 2006 [Page 30]

Internet-Draft DKIM Signing April 2006

5.3 Normalize the Message to Prevent Transport Conversions

 Some messages, particularly those using 8-bit characters, are subject
 to modification during transitt, notably conversion to 7-bit form.
 Such conversions will break DKIM signatures. In order to minimize
 the chances of such breakage, signers SHOULD convert the message to a
 suitable MIME content transfer encoding such as quoted-printable or
 base64 as described in MIME Part One [RFC2045] before signing. Such
 conversion is outside the scope of DKIM; the actual message SHOULD be
 converted to 7-bit MIME by an MUA or MSA prior to presentation to the
 DKIM algorithm.

 Should the message be submitted to the signer with any local encoding
 that will be modified before transmission, such conversion to
 canonical form MUST be done before signing. In particular, some
 systems use local line separator conventions (such as the Unix
 newline character) internally rather than the SMTP-standard CRLF
 sequence. All such local conventions MUST be converted to canonical
 format before signing.

 More generally, the signer MUST sign the message as it will be
 received by the verifier rather than in some local or internal form.

5.4 Determine the header fields to Sign

 The From header field MUST be signed (that is, included in the h= tag
 of the resulting DKIM-Signature header field); any header field that
 describes the role of the signer (for example, the Sender or Resent-
 From header field if the signature is on behalf of the corresponding
 address and that address is different from the From address) MUST
 also be included. The signed header fields SHOULD also include the
 Subject and Date header fields as well as all MIME header fields.
 Signers SHOULD NOT sign an existing header field likely to be
 legitimately modified or removed in transit. In particular,
 [RFC2821] explicitly permits modification or removal of the "Return-
 Path" header field in transit. Signers MAY include any other header
 fields present at the time of signing at the discretion of the
 signer. It is RECOMMENDED that all other existing, non-repeatable
 header fields be signed.

 The DKIM-Signature header field is always implicitly signed and MUST
 NOT be included in the h= tag except to indicate that other
 preexisting signatures are also signed.

 Signers MUST sign any header fields that the signers wish to assert
 were present at the time of signing. Put another way, verifiers MAY
 treat unsigned header fields with extreme skepticism, up to and
 including refusing to display them to the end user.

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2821

Allman, et al. Expires October 15, 2006 [Page 31]

Internet-Draft DKIM Signing April 2006

 Signers MAY claim to have signed header fields that do not exist
 (that is, signers MAY include the header field name in the h=D tag
 even if that header field does not exist in the message). When
 computing the signature, the non-existing header field MUST be
 treated as the null string (including the header field name, header
 field value, all punctuation, and the trailing CRLF).

 INFORMATIVE RATIONALE: This allows signers to explicitly assert
 the absence of a header field; if that header field is added later
 the signature will fail.

 Signers choosing to sign an existing replicated header field (such as
 Received) MUST sign the physically last instance of that header field
 in the header field block. Signers wishing to sign multiple
 instances of an existing replicated header field MUST include the
 header field name multiple times in the h= tag of the DKIM-Signature
 header field, and MUST sign such header fields in order from the
 bottom of the header field block to the top. The signer MAY include
 more header field names than there are actual corresponding header
 fields to indicate that additional header fields of that name SHOULD
 NOT be added.

 INFORMATIVE EXAMPLE:

 If the signer wishes to sign two existing Received header fields,
 and the existing header contains:

 Received: <A>
 Received:
 Received: <C>

 then the resulting DKIM-Signature header field should read:

 DKIM-Signature: ... h=Received : Received : ...

 and Received header fields <C> and will be signed in that
 order.

 Signers SHOULD NOT sign header fields that might be replicated
 (either at the time of signing or potentially in the future), with
 the exception of trace header fields such as Received. Comment and
 non standard header fields (including X-* header fields) are
 permitted by [RFC2822] to be replicated; however, many such header
 fields are, by convention, not replicated. Signers need to

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires October 15, 2006 [Page 32]

Internet-Draft DKIM Signing April 2006

 understand the implications of signing header fields that might later
 be replicated, especially in the face of header field reordering. In
 particular, [RFC2822] only requires that trace header fields retain
 the original order.

 INFORMATIVE RATIONALE: Received: is allowed because these header
 fields, as well as Resent-* header fields, are already order-
 sensitive.

 INFORMATIVE ADMONITION: Despite the fact that [RFC2822] permits
 header field blocks to be reordered (with the exception of
 Received header fields), reordering of signed replicated header
 fields by intermediate MTAs will cause DKIM signatures to be
 broken; such anti-social behavior shoulld be avoided.

 INFORMATIVE IMPLEMENTER'S NOTE: Although not required by this
 specification, all end-user visible header fields should be signed
 to avoid possible "indirect spamming." For example, if the
 "Subject" header field is not signed, a spammer can resend a
 previously signed mail, replacing the legitimate subject with a
 one-line spam.

 INFORMATIVE NOTE: There has been some discussion that a Sender
 Signing Policy include the list of header fields that the signer
 always signs. N.B. In theory this is unnecessary, since as long
 as the signer really always signs the indicated header fields
 there is no possibility of an attacker replaying an existing
 message that has such an unsigned header field.

5.5 Compute the Message Hash and Signature

 The signer MUST compute the message hash as described in Section 3.7
 and then sign it using the selected public-key algorithm. This will
 result in a DKIM-Signature header field which will include the body
 hash and a signature of the header hash, where that header includes
 the DKIM-Signature header field itself.

 To avoid possible ambiguity, a signer SHOULD either sign or remove
 any preexisting header fields which convey the results of previous
 verifications of the message signature prior to preparation for
 signing and transmission. Such header fields MUST NOT be signed if
 the signer is uncertain of the authenticity of the preexisting header
 field, for example, if it is not locally generated or signed by a
 previous DKIM-Signature line that the current signer has verified.

 Entities such as mailing list managers that implement DKIM and which
 modify the message or a header field (for example, inserting

https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires October 15, 2006 [Page 33]

Internet-Draft DKIM Signing April 2006

 unsubscribe information) before retransmitting the message SHOULD
 check any existing signature on input and MUST make such
 modifications before re-signing the message; such signing SHOULD
 include any prior verification status, if any, that was inserted upon
 message receipt.

 The signer MAY elect to limit the number of bytes of the body that
 will be included in the hash and hence signed. The length actually
 hashed should be inserted in the "l=" tag of the "DKIM-Signature"
 header field.

 INFORMATIVE NOTE: A possible value to include in the "l=" tag
 would include the entire length of the message being signed,
 thereby allowing intermediate agents to append further information
 to the message without breaking the signature (e.g., a mailing
 list manager might add unsubscribe innformation to the body). A
 signer wishing to permit such intermediate agents to add another
 MIME body part to a "multipart/mixed" message should use a length
 that covers the entire presented message except for the trailing
 "--CRLF" characters; this is known as the "N-4" approach. Note
 that more than four characters may need to be stripped, since
 there could be postlude information that needs to be ignored.

5.6 Insert the DKIM-Signature header field

 Finally, the signer MUST insert the "DKIM-Signature:" header field
 created in the previous step prior to transmitting the email. The
 "DKIM-Signature" header field MUST be the same as used to compute the
 hash as described above, except that the value of the "b=" tag MUST
 be the appropriately signed hash computed in the previous step,
 signed using the algorithm specified in the "a=" tag of the "DKIM-
 Signature" header field and using the private key corresponding to
 the selector given in the "s=" tag of the "DKIM-Signature" header
 field, as chosen above in Section 5.2

 The "DKIM-Signature" SHOULD be inserted before any header fields that
 it signs in the header block.

 INFORMATIVE IMPLEMENTATION NOTE: The easiest way to achieve this
 is to insert the "DKIM-Signature" header field at the beginning of
 the header block. In particular, it may be placed before any
 existing Received header fields. This is consistent with treating
 "DKIM-Signature" as a trace header.

Allman, et al. Expires October 15, 2006 [Page 34]

Internet-Draft DKIM Signing April 2006

6. Verifier Actions

 Since a signer MAY expire a public key at any time, it is recommended
 that verification occur in a timely manner with the most timely place
 being during acceptance by the border MTA.

 A border or intermediate MTA MAY verify the message signatures and
 add a verification header field to incoming messages. This
 considerably simplifies things for the user, who can now use an
 existing mail user agent. Most MUAs have the ability to filter
 messages based on message header fields or content; these filters
 would be used to implement whatever policy the user wishes with
 respect to unsigned mail.

 A verifying MTA MAY implement a policy with respect to unverifiable
 mail, regardless of whether or not it applies the verification header
 field to signed messages.

 Verifiers MUST apply the following steps in the order listed. In
 many cases these steps say that a "DKIM-Signature" header field must
 be ignored, e.g., because it is malformed or because the signature
 verification failed. In such cases verifiers SSHOULD proceed to the
 next signature, and treat the message as verified if any signature
 succeeded, ignoring the bad signatures. The order in which
 signatures are tried is a matter of local policy for the verifier and
 is not defined here. A verifier MAY treat a message that has one or
 more bad signatures and no good signatures differently from a message
 with no signature at all; again, this is local policy and is beyond
 the scope of this document.

6.1 Extract the Signature from the Message

 The signature and associated signing identity is included in the
 value of the DKIM-Signature header field.

 Verifiers MUST ignore DKIM-Signature header fields with a "v=" tag.
 Existence of such a tag indicates a new, incompatible version of the
 DKIM-Signature header field.

 If the "DKIM-Signature" header field does not contain the "i=" tag,
 the verifier MUST behave as though the value of that tag were "@d",
 where "d" is the value from the "d=" tag (which MUST exist).

 Verifiers MUST confirm that the domain specified in the "d=" tag is
 the same as or a superdomain of the domain part of the "i=" tag. If
 not, the DKIM-Signature header field MUST be ignored.

 Implementers MUST meticulously validate the format and values in the

Allman, et al. Expires October 15, 2006 [Page 35]

Internet-Draft DKIM Signing April 2006

 "DKIM-Signature:" header field; any inconsistency or unexpected
 values MUST cause the header field to be completely ignored. Being
 "liberal in what you accept" is definitely a bad strategy in this
 security context. Note however that this does not include the
 existence of unknown tags in a "DKIM-Signature" header field, which
 are explicitly permitted.

 Verifiers MUST NOT attribute ultimate meaning to the order of
 multiple DKIM-Signature header fields. In particular, there is
 reason to believe that some relays will reorder the header field in
 potentially arbitrary ways.

 INFORMATIVE IMPLEMENTATION NOTE: Verifiers might use the order as
 a clue to signing order in the absence of any other information.
 However, other clues as to the semantics of multiple signatures
 must be considered before using ordering.

 Since there can be multiple signatures in a message, a verifier
 SHOULD ignore an invalid signature (regardless if caused by a
 syntactic or semantic problem) and try other signatures. A verifier
 MAY choose to treat a message with one or more invalid signatures and
 no valid signatures with more suspicion than a message with no
 signature at all.

6.2 Get the Public Key

 The public key is needed to complete the verificatiion process. The
 process of retrieving the public key depends on the query type as
 defined by the "q=" tag in the "DKIM-Signature:" header field line.
 Obviously, a public key should only be retrieved if the process of
 extracting the signature information is completely successful.
 Details of key management and representation are described in

Section 3.6. The verifier MUST validate the key record and MUST
 ignore any public key records that are malformed.

 When validating a message, a verifier MUST perform the following
 steps in a manner that is semantically the same as performing them in
 the order indicated (in some cases the implementation may parallelize
 or reorder these steps, as long as the semantics remain unchanged):

 1. Retrieve the public key as described in (Section 3.6) using the
 domain from the "d=" tag and the selector from the "s=" tag.

 2. If the query for the public key fails to respond, the verifier
 SHOULD defer acceptance of this email (normally this will be
 achieved with a 451/4.7.5 SMTP reply code).

Allman, et al. Expires October 15, 2006 [Page 36]

Internet-Draft DKIM Signing April 2006

 3. If the query for the public key fails because the corresponding
 RR does not exist, the verifier MUST ignore the signature.

 4. If the result returned from the query does not adhere to the
 format defined in this specification, the verifier MUST ignore
 the signature.

 5. If the "g=" tag in the public key does not match the local part
 of the "i=" tag on the message signature, the verifier MUST
 ignore the signature. If the local part of the "i=" tag on the
 message signature is not present, the g= tag must be * (valid for
 all addresses in the domain) or not present (which defaults to
 *), otherwise the verifier MUST ignore the signature. Other than
 this test, verifiers MUST NOT treat a message signed with a key
 record having a g= tag any differently than one without; in
 particular, verifiers MUST NOT prefer messages that seem to have
 an individual signature by virtue of a g= tag vs. a domain
 signature.

 6. If the "h=" tag exists in the public key record and the hash
 algorithm implied by the a= tag in the DKIM-Signature header is
 not included in the "h=" tag, the verifier MUST ignore the
 signature.

 7. If the public key data (the "p=" tag) is empty then this key has
 been revoked and the verifier MUST treat this as a failed
 signature check.

 8. If the public key data is not suitable for use with the algorithm
 type defined by the "a=" tag in the "DKIM-Signature" header
 field, the verifier MUST ignore the signature.

 If the signature is to be ignored, verifiers SHOULD search for
 another signature in the message.

6.3 Compute the Verification

 Given a signer and a public key, verifying a signature consists of
 the following steps.

 1. Based on the algorithm defined in the "c=" tag, the body length
 specified in the "l=" tag, and the header field names in the "h="
 tag, create a canonicalized copy of the email as is described in

Section 3.7. When matching header field names in the "h=" tag
 against the actual message header field, comparisons MUST be
 case-insensitive.

Allman, et al. Expires October 15, 2006 [Page 37]

Internet-Draft DKIM Signing April 2006

 2. Based on the algorithm indicated in the "a=" tag,

 * Compute the message hashes from the canonical copy as
 described in Section 3.7.

 * Decrypt the signature using the signer's public key.

 3. Compare the decrypted signature to the message hash. If they are
 identical, the hash computed by the signer must be the same as
 the hash computed by the verifier, and hence the signature
 verifies; otherwise, the signature fails.

 INFORMATIVE IMPLEMENTER'S NOTE: Implementations might wish to
 initiate the public-key query in parallel with calculating the
 hash as the public key is not needed until the final decryption is
 calculated. Implementations may also verify the signature on the
 message header before validating that the message hash listed in
 the "bh=" tag in the DKIM-Signature header field matches that of
 the actual message body; however, if the body hash does match, the
 entire signature must be considered to have failed.

 Verifiers SHOULD ignore any DKIM-Signature header fields where the
 signature does not validate. Verifiers that are prepared to validate
 multiple signature header fields SHOULD proceed to the next signature
 header field, should it exist. However, verifiers MAY make note of
 the fact that an invalid signature was present for consideration at a
 later step.

 INFORMATIVE NOTE: The rationale of this requirement is to permit
 messages that have invalid signatures but also a valid signature
 to work. For example, a mailing list exploder might opt to leave
 the original submitter signature in place even though the exploder
 knows that it is modifying the message in some way that will break
 that signature, and the exploder inserts its own signature. In
 this case the message should succeed eveen in the presence of the
 known-broken signature.

 If a body length is specified in the "l=" tag of the signature,
 verifiers MUST only verify the number of bytes indicated in the body
 length. Verifiers MAY decide to treat a message containing bytes
 beyond the indicated body length with suspicion. Verifiers MAY
 truncate the message at the indicated body length or reject the
 signature outright.

 INFORMATIVE IMPLEMENTATION NOTE: Verifiers that truncate the body
 at the indicated body length might pass on a malformed MIME
 message if the signer used the "N-4" trick described in the
 informative note inSection 5.5. Such verifiers may wish to check

Allman, et al. Expires October 15, 2006 [Page 38]

Internet-Draft DKIM Signing April 2006

 for this case and include a trailing "--CRLF" to avoid breaking
 the MIME structure. A simple way to achieve this might be to
 append "--CRLF" to any "multipart" message with a body length; if
 the MIME structure is already correctly formed, this will appear
 in the postlude and will not be displayed to the end user.

6.4 Communicate Verification Results

 Verifiers wishing to communicate the results of verification to other
 parts of the mail system may do so in whatever manner they see fit.
 For example, implementations might choose to add an email header
 field to the message before passing it on. An example proposal for a
 header field is the Authentication-Results header field [ID-AUTH-
 RES]. Any such header field SHOULD be inserted before any existing
 DKIM-Signature or Authentication-Results header fields in the header
 field block.

 INFORMATIVE ADVICE to MUA filter writers: Patterns intended to
 search for results header fields to visibly mark authenticated
 mail for end users should verify that such header field was added
 by the appropriate verifying domain and that the verified identity
 matches the sender identity that will be displayed by the MUA. In
 particular, MUA patterns should not be influenced by bogus results
 header fields added by attackers.

6.5 Interpret Results/Apply Local Policy

 It is beyond the scope of this specification to describe what actions
 a verifier system should make, but an authenticated email presents an
 opportunity to a receiving system that unauthenticated email cannot.
 Specifically, an authenticated email creates a predictable identifier
 by which other decisions can reliably be managed, such as trust and
 reputation. Conversely, unauthenticated email lacks a reliable
 identifier that can be used to assign trust and reputation. It is

 reasonable to treat unauthenticated email as lacking any trust and
 having no positive reputation.

 If the verifying MTA is capable of verifying the public key of the
 signer and check the signature on the message synchronously with the
 SMTP session and such signature is missing or does not verify the MTA
 MAY reject the message with an error such as:

 550 5.7.1 Unsigned messages not accepted

 550 5.7.5 Message signature incorrect

Allman, et al. Expires October 15, 2006 [Page 39]

Internet-Draft DKIM Signing April 2006

 If it is not possible to fetch the public key, perhaps because the
 key server is not available, a temporary failure message MAY be
 generated, such as:

 451 4.7.5 Unable to verify signature - key server unavailable

 Once the signature has been verified, that information MUST be
 conveyed to higher level systems (such as explicit allow/white lists
 and reputation systems) and/or to the end user. If the message is
 signed on behalf of any address other than that in the From: header
 field, the mail system SHOULD take pains to ensure that the actual
 signing identity is clear to the reader.

 INFORMATIVE NOTE: If the authentication status is to be stored in
 the message header field, the Authentication-Results header field
 [ID-AUTH-RES] may be used to convey this information.

 The verifier MAY treat unsigned header fields with extreme
 skepticism, including marking them as untrusted or even deleting them
 before display to the end user.

 While the symptoms of a failed verification are obvious -- the
 signature doesn't verify -- establishing the exact cause can be more
 difficult. If a selector cannot be found, is that because the
 selector has been removed or was the value changed somehow in
 transit? If the signature line is missing is that because it was
 never there, or was it removed by an over-zealous filter? For
 diagnostic purposes, the exact reason why the verification fails
 SHOULD be recorded in the "Authentication-Results" header field and
 possibly the system logs. However in terms of presentation to the
 end user, the result SHOULD be presented as a simple binary result:
 either the email is verified or it is not. If the email cannot be
 verified, then it SHOULD be rendered the same as all unverified email
 regardless of whether it looks like it was signed or not.

6.6 MUA Considerations

 In order to retain the current semantics and visibility of the From
 header field, verifying mail agents SHOULD take steps to ensure that
 the signing address is prominently visible to the user if it is
 different from the From address. MUAs MAY visually mark the
 unverified part of the body in a distinctive font or color to the end
 user.

 If MUA implementations that highlight the signed address are not
 available, this MAY be done by the validating MTA or MDA by rewriting
 the From address in a manner which remains compliant with [RFC2822].
 Such modifications MUST be performed after the final verification

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires October 15, 2006 [Page 40]

Internet-Draft DKIM Signing April 2006

 step since they will break the signature. If performed, the
 rewriting SHOULD include the name of the signer in the address. For
 example:

 From: John Q. User <user@example.com>

 might be converted to

 From: "John Q. User via <asrg-admin@ietf.org>" <user@example.com>

 This sort of address inconsistency is expected for mailing lists, but
 might be otherwise used to mislead the verifier, for example if a
 message supposedly from administration@your-bank.com had a Sender
 address of fraud@badguy.com.

 Under no circumstances should an unsigned header field be displayed
 in any context that might be construed by the end user as having been
 signed. Notably, unsigned header fields SHOULD be hidden from the
 end user to the extent possible.

 The MUA MAY hide or mark portions of the message body that are not
 signed wh en using the "l=" tag.

7. IANA Considerations

 Use of the _domainkey prefix in DNS records will require registration
 by IANA.

 To avoid conflicts, tag names for the DKIM-Signature header and key
 records should be registered with IANA.

 Tag values for the "a=", "c=", and "q=" tags in the DKIM-Signature
 header field, and the "h=", "k=", "s=", and "t" tags in key records
 should be registered with IANA for the same reason.

 The DKK RR type must be registered by IANA.

8. Security Considerations

 It has been observed that any mechanism that is introduced which
 attempts to stem the flow of spam is subject to intensive attack.
 DKIM needs to be carefully scrutinized to identify potential attack
 vectors and the vulnerability to each. See also [ID-DKIM-THREATS].

Allman, et al. Expires October 15, 2006 [Page 41]

Internet-Draft DKIM Signing April 2006

8.1 Misuse of Body Length Limits ("l=" Tag)

 Body length limits (in the form of the "l=" tag) are subject to
 several potential attacks.

8.1.1 Addition of new MIME parts to multipart/*

 If the body length limit does not cover a closing MIME multipart
 section (including the trailing ""--CRLF"" portion), then it is
 possible for an attacker to intercept a properly signed multipart
 message and add a new body part. Depending on the details of the
 MIME type and the implementation of the verifying MTA and the
 receiving MUA, this could allow an attacker to change the information
 displayed to an end user from an apparently trusted source.

 *** Example appropriate here ***

8.1.2 Addition of new HTML content to existing content

 Several receiving MUA implementations do not cease display after a
 ""</html>"" tag. In particular, this allows attacks involving
 overlaying images on top of existing text.

 INFORMATIVE EXAMPLE: Appending the following text to an existing,
 properly closed message will in many MUAs result in inappropriate
 data being rendered on top of existing, correct data:
 <div style="position: relative; bottom: 350px; z-index: 2;">
 <img src="http://www.ietf.org/images/ietflogo2e.gif"
 width=578 height=370>
 </div>

8.2 Misappropriated Private Key

 If the private key for a user is resident on their computer and is
 not protected by an appropriately secure mechanism, it is possible
 for malware to send mail as that user and any other user sharing the
 same private key. The malware would, however, not be able to
 generate signed spoofs of other signers' addresses, which would aid
 in identification of the infected user and would limit the
 possibilities for certain types of attacks involving socially-
 engineered messages.

 A larger problem occurs if malware on many users' computers obtains
 the private keys for those users and transmits them via a covert
 channel to a site where they can be shared. The compromised users
 would likely not know of the misappropriation until they receive
 "bounce" messages from messages they are purported to have sent.

Allman, et al. Expires October 15, 2006 [Page 42]

Internet-Draft DKIM Signing April 2006

 Many users might not understand the significance of these bounce
 messages and would not take action.

 One countermeasure is to use a user-entered passphrase to encrypt the
 private key, although users tend to choose weak passphrases and often
 reuse them for different purposes, possibly allowing an attack
 against DKIM to be extended into other domains. Nevertheless, the
 decoded private key might be briefly available to compromise by
 malware when it is entered, or might be discovered via keystroke
 logging. The added complexity of entering a passphrase each time one
 sends a message would also tend to discourage the use of a secure
 passphrase.

 A somewhat more effective countermeasure is to send messages through
 an outgoing MTA that can authenticate the submitter using existing

 techniques (e.g., SMTP Authentication), possibly validate the message
 itself (e.g., verify that the header is legitimate and that the
 content passes a spam content check), and sign the message using a
 key appropriate for the submitter address. Such an MTA can also
 apply controls on the volume of outgoing mail each user is permitted
 to originate in order to further limit the ability of malware to
 generate bulk email.

8.3 Key Server Denial-of-Service Attacks

 Since the key servers are distributed (potentially separate for each
 domain), the number of servers that would need to be attacked to
 defeat this mechanism on an Internet-wide basis is very large.
 Nevertheless, key servers for individual domains could be attacked,
 impeding the verification of messages from that domain. This is not
 significantly different from the ability of an attacker to deny
 service to the mail exchangers for a given domain, although it
 affects outgoing, not incoming, mail.

 A variation on this attack is that if a very large amount of mail
 were to be sent using spoofed addresses from a given domain, the key
 servers for that domain could be overwhelmed with requests. However,
 given the low overhead of verification compared with handling of the
 email message itself, such an attack would be difficult to mount.

8.4 Attacks Against DNS

 Since DNS is a required binding for key services, specific attacks
 against DNS must be considered.

 While the DNS is currently insecure [RFC3833], it is expected that
 the security problems should and will be solved by DNSSEC [RFC4033],
 and all users of the DNS will reap the benefit of that work.

https://datatracker.ietf.org/doc/html/rfc3833
https://datatracker.ietf.org/doc/html/rfc4033

Allman, et al. Expires October 15, 2006 [Page 43]

Internet-Draft DKIM Signing April 2006

 Secondly, the types of DNS attacks relevant to DKIM are very costly
 and are far less rewarding than DNS attacks on other Internet
 applications.

 To systematically thwart the intent of DKIM, an attacker must conduct
 a very costly and very extensive attack on many parts of the DNS over
 an extended period. No one knows for sure how attackers will
 respond, however the cost/benefit of conducting prolonged DNS attacks
 of this nature is expected to be uneconomical.

 Finally, DKIM is only intended as a "sufficient" method of proving
 authenticity. It is not intended to provide strong cryptographic
 proof about authorship or contents. Other technologies such as
 OpenPGP [RFC2440] and S/MIME [RFC3851] address those requirements.

 A second security issue related to the DNS revolves around the
 increased DNS traffic as a consequence of fetching Selector-based
 data as well as fetching siggning domain policy. Widespread
 deployment of DKIM will result in a significant increase in DNS
 queries to the claimed signing domain. In the case of forgeries on a
 large scale, DNS servers could see a substantial increase in queries.

8.5 Replay Attacks

 In this attack, a spammer sends a message to be spammed to an
 accomplice, which results in the message being signed by the
 originating MTA. The accomplice resends the message, including the
 original signature, to a large number of recipients, possibly by
 sending the message to many compromised machines that act as MTAs.
 The messages, not having been modified by the accomplice, have valid
 signatures.

 Partial solutions to this problem involve the use of reputation
 services to convey the fact that the specific email address is being
 used for spam, and that messages from that signer are likely to be
 spam. This requires a real-time detection mechanism in order to
 react quickly enough. However, such measures might be prone to
 abuse, if for example an attacker resent a large number of messages
 received from a victim in order to make them appear to be a spammer.

 Large verifiers might be able to detect unusually large volumes of
 mails with the same signature in a short time period. Smaller
 verifiers can get substantially the same volume information via
 existing collaborative systems.

8.6 Limits on Revoking Keys

 When a large domain detects undesirable behavior on the part of one

https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc3851

Allman, et al. Expires October 15, 2006 [Page 44]

Internet-Draft DKIM Signing April 2006

 of its users, it might wish to revoke the key used to sign that
 user's messages in order to disavow responsibility for messages which
 have not yet been verified or which are the subject of a replay
 attack. However, the ability of the domain to do so can be limited
 if the same key, for scalability reasons, is used to sign messages
 for many other users. Mechanisms for explicitly revoking keys on a
 per-address basis have been proposed but require further study as to
 their utility and the DNS load they represent.

8.7 Intentionally malformed Key Records

 It is possible for an attacker to publish key records in DNS which
 are intentionally malformed, with the intent of causing a denial-of-
 service attack on a non-robust verifier implementation. The attacker
 could then cause a verifier to read the malformed key record by
 sending a message to one of its users referencing the malformed
 record in a (not necessarily valid) signature. Verifiers MUST
 thoroughly verify all key records retrieved from DNS and be robust
 against intentionally as well as unintentiionally malformed key
 records.

8.8 Intentionally Malformed DKIM-Signature header fields

 Verifiers MUST be prepared to receive messages with malformed DKIM-
 Signature header fields, and thoroughly verify the header field
 before depending on any of its contents.

8.9 Information Leakage

 An attacker could determine when a particular signature was verified
 by using a per-message selector and then monitoring their DNS traffic
 for the key lookup. This would act as the equivalent of a "web bug"
 for verification time rather than when the message was read.

9. References

9.1 Normative References

 [ID-DKIM-RR]
 "DKIM Key Resource Records (To be written)",

draft-dkim-dkk-rr-xx (work in progress), 2005.

 [ID-SHA] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", draft-eastlake-sha2-02 (work in
 progress), January 2006.

 [OPENSSL] Team, C&D., "OpenSSL Documents",
http://www.openssl.org/docs/,

https://datatracker.ietf.org/doc/html/draft-dkim-dkk-rr-xx
https://datatracker.ietf.org/doc/html/draft-eastlake-sha2-02
http://www.openssl.org/docs/

Allman, et al. Expires October 15, 2006 [Page 45]

Internet-Draft DKIM Signing April 2006

 <http://www.openssl.org/docs/>.

 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421, February 1993.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message header field Extensions for Non-ASCII
 Text", RFC 2047, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821,
 April 2001.

 [RFC2822] Resnick, P., "Internet Message Format", RFC 2822,
 April 2001.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
 Profile for Internationalized Domain Names (IDN)",

RFC 3491, March 2003.

 [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

9.2 Informative References

 [ID-AUTH-RES]
 Kucherawy, M., "Message header field for Indicating Sender
 Authentication Status",

draft-kucherawy-sender-auth-header-02 (work in progress),
 May 2005.

 [ID-DKIM-THREATS]
 Fenton, J., "Analysis of Threats Motivating DomainKeys
 Identified Mail (DKIM)", draft-fenton-dkim-threats-02
 (work in progress), December 2005.

 [RFC1847] Galvin, J., Murphy, S., Crocker, S., and N. Freed,

http://www.openssl.org/docs/
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3491
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/draft-kucherawy-sender-auth-header-02
https://datatracker.ietf.org/doc/html/draft-fenton-dkim-threats-02

Allman, et al. Expires October 15, 2006 [Page 46]

Internet-Draft DKIM Signing April 2006

 "Security Multiparts for MIME: Multipart/Signed and
 Multipart/Encrypted", RFC 1847, October 1995.

 [RFC2440] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
 "OpenPGP Message Format", RFC 2440, November 1998.

 [RFC3766] "", 2005.

 [RFC3833] Atkins, D. and R. Austein, "Threat Analysis of the Domain
 Name System (DNS)", RFC 3833, August 2004.

 [RFC3851] Ramsdell, B., "S/MIME Version 3 Message Specification",
RFC 3851, June 1999.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, March 2005.

Authors' Addresses

 Eric Allman
 Sendmail, Inc.
 6425 Christie Ave, Suite 400
 Emeryville, CA 94608
 USA

 Phone: +1 510 594 5501
 Email: eric+dkim@sendmail.org
 URI:

 Jon Callas
 PGP Corporation
 3460 West Bayshore
 Palo Alto, CA 94303
 USA

 Phone: +1 650 319 9016
 Email: jon@pgp.com

https://datatracker.ietf.org/doc/html/rfc1847
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc3833
https://datatracker.ietf.org/doc/html/rfc3851
https://datatracker.ietf.org/doc/html/rfc4033

Allman, et al. Expires October 15, 2006 [Page 47]

Internet-Draft DKIM Signing April 2006

 Mark Delany
 Yahoo! Inc
 701 First Avenue
 Sunnyvale, CA 95087
 USA

 Phone: +1 408 349 6831
 Email: markd+dkim@yahoo-inc.com
 URI:

 Miles Libbey
 Yahoo! Inc
 701 First Avenue
 Sunnyvale, CA 95087
 USA

 Email: mlibbeymail-mailsig@yahoo.com
 URI:

 Jim Fenton
 Cisco Systems, Inc.
 MS SJ-24/2
 170 W. Tasman Drive
 San Jose, CA 95134-1706
 USA

 Phone: +1 408 526 5914
 Email: fenton@cisco.com
 URI:

 Michael Thomas
 Cisco Systems, Inc.
 MS SJ-9/2
 170 W. Tasman Drive
 San Jose, CA 95134-1706

 Phone: +1 408 525 5386
 Email: mat@cisco.com

Appendix A. Example of Use (INFORMATIVE)

 This section shows the complete flow of an email from submission to
 final delivery, demonstrating how the various components fit
 together.

Allman, et al. Expires October 15, 2006 [Page 48]

Internet-Draft DKIM Signing April 2006

A.1 The user composes an email

 From: Joe SixPack <joe@foootball.example.com>
 To: Suzie Q <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

A.2 The email is signed

 This email is signed by the example.com outbound email server and now
 looks like this:

 DKIM-Signature: a=rsa-sha1; s=brisbane; d=example.com;
 c=simple; q=dns; i=joe@football.example.com;
 h=Received : From : To : Subject : Date : Message-ID;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR;
 Received: from dsl-10.2.3.4.football.example.com [10.2.3.4]
 by submitserver.example.com with SUBMISSION;
 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)
 From: Joe SixPack <joe@football.example.com>
 To: Suzie Q <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

 The signing email server requires access to the private-key
 associated with the "brisbane" selector to generate this signature.

Allman, et al. Expires October 15, 2006 [Page 49]

Internet-Draft DKIM Signing April 2006

A.3 The email signature is verified

 The signature is normally verified by an inbound SMTP server or
 possibly the final delivery agent. However, intervening MTAs can
 also perform this verification if they choose to do so. The
 verification process uses the domain "example.com" extracted from the
 "d=" tag and the selector "brisbane" from the "s=" tag in the "DKIM-
 Signature" header field to form the DNS DKIM query for:

 brisbane._dkim.example.com

 Signature verification starts with the physically last "Received"
 header field, the "From" header field, and so forth, in the order
 listed in the "h=" tag. Verification follows with a single CRLF
 followed by the body (starting with "Hi."). The email is canonically
 prepared for verifying with the "simple" method. The result of the
 query and subsequent verification of the signature is stored in the
 "Authentication-Results" header field line. After successful
 verification, the email looks like this:

 Authentication-Results: shopping.example.net
 header.from=joe@football.example.com; dkim=pass
 Received: from mout23.football.example.com (192.168.1.1)
 by shopping.example.net with SMTP;
 Fri, 11 Jul 2003 21:01:59 -0700 (PDT)
 DKIM-Signature: a=rsa-sha1; s=brisbane; d=example.com;
 c=simple; q=dns; i=joe@football.example.com;
 h=Received : From : To : Subject : Date : Message-ID;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR
 Received: from dsl-10.2.3.4.network.example.com [10.2.3.4]
 by submitserver.example.com with SUBMISSION;
 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)
 From: Joe SixPack <joe@football.example.com>
 To: Suzie Q <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

Allman, et al. Expires October 15, 2006 [Page 50]

Internet-Draft DKIM Signing April 2006

Appendix B. Usage Examples (INFORMATIVE)

 Studies in this appendix are for informational purposes only. In no
 case should these examples be used as guidance when creating an
 implementation.

B.1 Simple Message Forwarding

 In some cases the recipient may request forwarding of email messages
 from the original address to another, through the use of a Unix
 .forward file or equivalent. In this case messages are typically
 forwarded without modification, except for the addition of a Received
 header field to the message and a change in the Envelope-to address.
 In this case, the eventual recipient should be able to verify the
 original signature since the signed content has not changed, and
 attribute the message correctly.

B.2 Outsourced Business Functions

 Outsourced business functions represent a use case that motivates the
 need for selectors (the "s=" signature tag) and granularity (the "g="
 key tag). Examples of outsourced business functions are legitimate
 email marketing providers and corporate benefits providers. In
 either case, the outsourced function would like to be able to send
 messages using the email domain of the client company. At the same
 time, the client may be reluctant to register a key for the provider
 that grants the ability to send messages for any address in the
 domain.

 The outsourcing company can generate a keypair and the client company
 can register the public key using a unique selector for a specific
 address such as winter-promotions@example.com by specifying a
 granularity of "g=winter-promotions" or "g=*-promotions" (to allow a
 range of addresses). This would enable the provider to send messages
 using that specific address and have them verify properly. The
 client company retains control over the email address because it
 retains the ability to revoke the key at any time.

B.3 PDAs and Similar Devices

 PDAs are one example of the use of multiple keys per user. Suppose
 that John Doe wanted to be able to send messages using his corporate
 email address, jdoe@example.com, and the device did not have the
 ability to make a VPN connection to the corporate network. If the
 device was equipped with a private key registered for
 jdoe@example.com by the administrator of that domain, and appropriate
 software to sign messages, John could send signed messages through
 the outgoing network of the PDA service provider.

Allman, et al. Expires October 15, 2006 [Page 51]

Internet-Draft DKIM Signing April 2006

B.4 Mailing Lists

 There is a wide range of behavior in forwarders and mailing lists
 (collectively called "forwarders" below), ranging from those which
 make no modification to the message itself (other than to add a
 Received header field and change the envelope information) to those
 which may add header fields, change the Subject header field, add
 content to the body (typically at the end), or reformat the body in
 some manner.

 Forwarders which do not modify the body or signed header fields of a
 message with a valid signature may re-sign the message as described
 below.

 Forwarders which make any modification to a message that could result
 in its signature becoming invalid should sign or re-sign using an
 appropriate identification (e.g., mailing-list-name@example.net).
 Since in so doing the (re-)signer is taking responsibility for the
 content of the message, modifying forwarders may elect to forward or
 re-sign only for messages which were received with valid signatures
 or other indications that the messages being signed are not spoofed.

 Forwarders which wish to re-sign a message must apply a Sender header
 field to the message to identify the address being used to sign the
 message and must remove any preexisting Sender header field as
 required by [RFC2822]. The forwarder applies a new DKIM-Signature
 header field with the signature, public key, and related information
 of the forwarder.

B.5 Affinity Addresses

 "Affinity addresses" are email addresses that users employ to have an
 email address that is independent of any changes in email service
 provider they may choose to make. They are typically associated with
 college alumni associations, professional organizations, and
 recreational organizations with which they expect to have a long-term
 relationship. These domains usually provide forwarding of incoming
 email, but (currently) usually depend on the user to send outgoing
 messages through their own service provider's MTA. They usually have
 an aassociated Web application which authenticates the user and allows
 the forwarding address to be changed.

 With DKIM, affinity domains could use the Web application to allow
 users to register their own public keys to be used to sign messages
 on behalf of their affinity address. This is another application
 that takes advantage of user-level keying, and domains used for
 affinity addresses would typically have a very large number of user-
 level keys. Alternatively, the affinity domain could handle outgoing

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires October 15, 2006 [Page 52]

Internet-Draft DKIM Signing April 2006

 mail, operating a mail submission agent that authenticates users
 before accepting and signing messages for them. This is of course
 dependent on the user's service provider not blocking the relevant
 TCP ports used for mail submission.

B.6 Third-party Message Transmission

 Third-party message transmission refers to the authorized sending of
 mail by an Internet application on behalf of a user. For example, a
 website providing news may allow the reader to forward a copy of the
 message to a friend; this is typically done using the reader's email
 address. This is sometimes referred to as the "Evite problem", named
 after the website of the same name that allows a user to send
 invitations to friends.

 One way this can be handled is to continue to put the reader's email
 address in the From field of the message, but put an address owned by
 the site into the Sender field, and sign the message on behalf of the
 Sender. A verifying MTA should accept this and rewrite the From
 field to indicate the address that was verified, i.e., From: John
 Doe via news@news-site.com <jdoe@example.com>.

Appendix C. Creating a public key (INFORMATIVE)

 XXX Update to 1024 bit key and SHA-256 and adjust examples
 accordingly. XXX

 The default signature is an RSA signed SHA1 digest of the complete
 email. For ease of explanation, the openssl command is used to
 describe the mechanism by which keys and signatures are managed. One
 way to generate a 768 bit private-key suitable for DKIM, is to use
 openssl like this:

 $ openssl genrsa -out rsa.private 768

 This results in the file rsa.private containing the key information
 similar to this:

Allman, et al. Expires October 15, 2006 [Page 53]

Internet-Draft DKIM Signing April 2006

 -----BEGIN RSA PRIVATE KEY-----
 MIIByQIBAAJhAKJ2lzDLZ8XlVambQfMXn3LRGKOD5o6lMIgulclWjZwP56LRqdg5
 ZX15bhc/GsvW8xW/R5Sh1NnkJNyL/cqY1a+GzzL47t7EXzVc+nRLWT1kwTvFNGIo
 AUsFUq+J6+OpprwIDAQABAmBOX0UaLdWWusYzNol++nNZ0RLAtr1/LKMX3tk1MkLH
 +Ug13EzB2RZjjDOWlUOY98yxW9/hX05Uc9V5MPo+q2Lzg8wBtyRLqlORd7pfxYCn
 Kapi2RPMcR1CxEJdXOkLCFECMQDTO0fzuShRvL8q0m5sitIHlLA/L+0+r9KaSRM/
 3WQrmUpV+fAC3C31XGjhHv2EuAkCMQDE5U2nP2ZWVlSbxOKBqX724amoL7rrkUew
 ti9TEjfaBndGKF2yYF7/+g53ZowRkfcCME/xOJr58VN17pejSl1T8Icj88wGNHCs
 FDWGAH4EKNwDSMnfLMG4WMBqd9rzYpkvGQIwLhAHDq2CX4hq2tZAt1zT2yYH7tTb
 weiHAQxeHe0RK+x/UuZ2pRhuoSv63mwbMLEZAjAP2vy6Yn+f9SKw2mKuj1zLjEhG
 6ppw+nKD50ncnPoP322UMxVNG4Eah0GYJ4DLP0U=
 -----END RSA PRIVATE KEY-----

 To extract the public-key component from the private-key, use openssl
 like this:

 $ openssl rsa -in rsa.private -out rsa.public -pubout -outform PEM

 This results in the file rsa.public containing the key information
 similar to this:

 -----BEGIN PUBLIC KEY-----
 MHwwDQYJKoZIhvcNAQEBBQADawAwaAJhAKJ2lzDLZ8XlVambQfMXn3LRGKOD5o6l
 MIgulclWjZwP56LRqdg5ZX15bhc/GsvW8xW/R5Sh1NnkJNyL/cqY1a+GzzL47t7E
 XzVc+nRLWT1kwTvFNGIoAUsFUq+J6+OprwIDAQAB
 -----END PUBLIC KEY-----

 This public-key data (without the BEGIN and END tags) is placed in
 the DNS. With the signature, canonical email contents and public
 key, a verifying system can test the validity of the signature. The
 openssl invocation to verify a signature looks like this:

 openssl dgst -verify rsa.public -sha1 -signature signature.file \
 <input.file

 Once a private-key has been generated, the openssl command can be
 used to sign an appropriately prepared email, like this:

 $ openssl dgst -sign rsa.private -sha1 <input.file

 This results in signature data similar to this when represented in
 Base64 [MIME] format:

Allman, et al. Expires October 15, 2006 [Page 54]

Internet-Draft DKIM Signing April 2006

 aoiDeX42BB/gP4ScqTdIQJcpAObYr+54yvctqc4rSEFYby9+omKD3pJ/TVxATeTz
 msybuW3WZiamb+mvn7f3rhmnozHJ0yORQbnn4qJQhPbbPbWEQKW09AMJbyz/0lsl

 How this signature is added to the email is discussed elsewhere in
 this document.

Appendix D. Acknowledgements

 The authors wish to thank Russ Allbery, Edwin Aoki, Claus Assmann,
 Steve Atkins, Fred Baker, Mark Baugher, Nathaniel Borenstein, Dave
 Crocker, Michael Cudahy, Dennis Dayman, Jutta Degener, Patrik
 Faltstrom, Duncan Findlay, Elliot Gillum, Phillip Hallam-Baker, Tony
 Hansen, Arvel Hathcock, Amir Herzberg, Craig Hughes, Don Johnsen,
 Harry Katz, Murray S. Kucherawy, Barry Leiba, John Levine, Simon
 Longsdale, David Margrave, Justin Mason, David Mayne, Steve Murphy,
 Russell Nelson, Dave Oran, Doug Otis, Shamim Pirzada, Juan Altmayer
 Pizzorno, Sanjay Pol, Blake Ramsdell, Christian Renaud, Scott Renfro,
 Dave Rossetti, Hector Santos, the Spamhaus..org team, Malte S. Stretz,
 Robert Sanders, Rand Wacker, and Dan Wing for their valuable
 suggestions and constructive criticism.

 The DomainKeys specification was a primary source from which this
 specification has been derived. Further information about DomainKeys
 is at
 <http://domainkeys.sourceforge.net/license/patentlicense1-1.html>.

Appendix E. Edit History

 [[This section to be removed before publication.]]

E.1 Changes since -ietf-00 version

 The following changes were made between draft-ietf-dkim-base-00 and
draft-ietf-dkim-base-01:

 o Added section 8.9 (Information Leakage).

 o Replace section 4 (Multiple Signatures) with much less vague text.

 o Fixed ABNF for base64string.

 o Added rsa-sha256 signing algorithm.

 o Expanded several examples.

 o Changed signing algorithm to use separate hash of the body of the
 message; this is represented as the "bh=" tag in the DKIM-

http://domainkeys.sourceforge.net/license/patentlicense1-1.html
https://datatracker.ietf.org/doc/html/draft-ietf-dkim-base-00
https://datatracker.ietf.org/doc/html/draft-ietf-dkim-base-01

Allman, et al. Expires October 15, 2006 [Page 55]

Internet-Draft DKIM Signing April 2006

 Signature header field.

 o Changed "z=" tag so that it need not have the same header field
 names as the "h=" tag.

 o Significant wordsmithing.

E.2 Changes since -allman-01 version

 The following changes were made between draft-allman-dkim-base-01 and
draft-ietf-dkim-base-00:

 o Remove references to Sender Signing Policy document. Such
 consideration is implicitly included in Section 6.5.

 o Added ABNF for all tags.

 o Updated references (still includes some references to expired
 drafts, notably [ID-AUTH-RES].

 o Significant wordsmithing.

E.3 Changes since -allman-00 version

 The following changes were made between draft-allman-dkim-base-00 and
draft-allman-dkim-base-01:

 o Changed "c=" tag to separate out header from body
 canonicalization.

 o Eliminated "nowsp" canonicalization in favor of "relaxed", which
 is somewhat less relaxed (but more secure) than "nowsp".

 o Moved the (empty) Compliance section to the Sender Signing Policy
 document.

 o Added several IANA Considerations.

 o Fixed a number of grammar and formatting errors.

https://datatracker.ietf.org/doc/html/draft-allman-dkim-base-01
https://datatracker.ietf.org/doc/html/draft-ietf-dkim-base-00
https://datatracker.ietf.org/doc/html/draft-allman-dkim-base-00
https://datatracker.ietf.org/doc/html/draft-allman-dkim-base-01

Allman, et al. Expires October 15, 2006 [Page 56]

Internet-Draft DKIM Signing April 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might oor might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Allman, et al. Expires October 15, 2006 [Page 57]

Internet-Draft DKIM Signing April 2006

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Allman, et al. Expires October 15, 2006 [Page 58]

