
Network Working Group D. Crocker, Ed.

Internet-Draft Brandenburg InternetWorking

Obsoletes: 4871 (if approved) T. Hansen, Ed.

Intended status: Standards Track AT&T Laboratories

Expires: August 20, 2011 M. Kucherawy, Ed.

Cloudmark

February 16, 2011

DomainKeys Identified Mail (DKIM) Signatures

draft-ietf-dkim-rfc4871bis-03

Abstract

DomainKeys Identified Mail (DKIM) permits a person, role, or

organization that owns the signing domain to claim some responsibility

for a message by associating the domain with the message. This can be

an author's organization, an operational relay or one of their agents.

DKIM separates the question of the identity of the signer of the

message from the purported author of the message. Assertion of

responsibility is validated through a cryptographic signature and

querying the signer's domain directly to retrieve the appropriate

public key. Message transit from author to recipient is through relays

that typically make no substantive change to the message content and

thus preserve the DKIM signature.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on August 20, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Signing Identity

1.2. Scalability

1.3. Simple Key Management

1.4. Data Integrity

2. Terminology and Definitions

2.1. Signers

2.2. Verifiers

2.3. Identity

2.4. Identifier

2.5. Signing Domain Identifier (SDID)

2.6. Agent or User Identifier (AUID)

2.7. Identity Assessor

2.8. Whitespace

2.9. Common ABNF Tokens

2.10. Imported ABNF Tokens

2.11. DKIM-Quoted-Printable

3. Protocol Elements

3.1. Selectors

3.2. Tag=Value Lists

3.3. Signing and Verification Algorithms

3.3.1. The rsa-sha1 Signing Algorithm

3.3.2. The rsa-sha256 Signing Algorithm

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

3.3.3. Key Sizes

3.3.4. Other Algorithms

3.4. Canonicalization

3.4.1. The "simple" Header Canonicalization Algorithm

3.4.2. The "relaxed" Header Canonicalization Algorithm

3.4.3. The "simple" Body Canonicalization Algorithm

3.4.4. The "relaxed" Body Canonicalization Algorithm

3.4.5. Body Length Limits

3.4.6. Canonicalization Examples (INFORMATIVE)

3.5. The DKIM-Signature Header Field

3.6. Key Management and Representation

3.6.1. Textual Representation

3.6.2. DNS Binding

3.6.2.1. Namespace

3.6.2.2. Resource Record Types for Key Storage

3.7. Computing the Message Hashes

3.8. Signing by Parent Domains

3.9. Relationship between SDID and AUID

4. Semantics of Multiple Signatures

4.1. Example Scenarios

4.2. Interpretation

5. Signer Actions

5.1. Determine Whether the Email Should Be Signed and by Whom

5.2. Select a Private Key and Corresponding Selector Information

5.3. Normalize the Message to Prevent Transport Conversions

5.4. Determine the Header Fields to Sign

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

5.5. Recommended Signature Content

5.6. Compute the Message Hash and Signature

5.7. Insert the DKIM-Signature Header Field

6. Verifier Actions

6.1. Extract Signatures from the Message

6.1.1. Validate the Signature Header Field

6.1.2. Get the Public Key

6.1.3. Compute the Verification

6.2. Communicate Verification Results

6.3. Interpret Results/Apply Local Policy

7. IANA Considerations

7.1. DKIM-Signature Tag Specifications

7.2. DKIM-Signature Query Method Registry

7.3. DKIM-Signature Canonicalization Registry

7.4. _domainkey DNS TXT Record Tag Specifications

7.5. DKIM Key Type Registry

7.6. DKIM Hash Algorithms Registry

7.7. DKIM Service Types Registry

7.8. DKIM Selector Flags Registry

7.9. DKIM-Signature Header Field

8. Security Considerations

8.1. Misuse of Body Length Limits ("l=" Tag)

8.1.1. Addition of New MIME Parts to Multipart/*

8.1.2. Addition of new HTML content to existing content

8.2. Misappropriated Private Key

8.3. Key Server Denial-of-Service Attacks

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

8.4. Attacks Against the DNS

8.5. Replay Attacks

8.6. Limits on Revoking Keys

8.7. Intentionally Malformed Key Records

8.8. Intentionally Malformed DKIM-Signature Header Fields

8.9. Information Leakage

8.10. Remote Timing Attacks

8.11. Reordered Header Fields

8.12. RSA Attacks

8.13. Inappropriate Signing by Parent Domains

8.14. Attacks Involving Addition of Header Fields

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Example of Use (INFORMATIVE)

Appendix A.1. The User Composes an Email

Appendix A.2. The Email is Signed

Appendix A.3. The Email Signature is Verified

Appendix B. Usage Examples (INFORMATIVE)

Appendix B.1. Alternate Submission Scenarios

Appendix B.1.1. Delegated Business Functions

Appendix B.1.2. PDAs and Similar Devices

Appendix B.1.3. Roaming Users

Appendix B.1.4. Independent (Kiosk) Message Submission

Appendix B.2. Alternate Delivery Scenarios

Appendix B.2.1. Affinity Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Appendix B.2.2. Simple Address Aliasing (.forward)

Appendix B.2.3. Mailing Lists and Re-Posters

Appendix C. Creating a Public Key (INFORMATIVE)

Appendix D. MUA Considerations

Appendix E. Acknowledgements

Authors' Addresses

1. Introduction

DomainKeys Identified Mail (DKIM) permits a person, role, or

organization to claim some responsibility for a message by associating

a domain name [RFC1034] with the message [RFC5322]. This can be an

author's organization, an operational relay or one of their agents.

Assertion of responsibility is validated through a cryptographic

signature and querying the signer's domain directly to retrieve the

appropriate public key. Message transit from author to recipient is

through relays that typically make no substantive change to the message

content and thus preserve the DKIM signature. A message can contain

multiple signatures, from the same or different organizations involved

with the message.

The approach taken by DKIM differs from previous approaches to message

signing (e.g., Secure/Multipurpose Internet Mail Extensions (S/MIME)

[RFC1847], OpenPGP [RFC4880]) in that:

the message signature is written as a message header field so

that neither human recipients nor existing MUA (Mail User Agent)

software is confused by signature-related content appearing in

the message body;

there is no dependency on public and private key pairs being

issued by well-known, trusted certificate authorities;

there is no dependency on the deployment of any new Internet

protocols or services for public key distribution or revocation;

signature verification failure does not force rejection of the

message;

no attempt is made to include encryption as part of the

mechanism;

message archiving is not a design goal.

*

*

*

*

*

*

*

*

*

*

*

*

DKIM:

is compatible with the existing email infrastructure and

transparent to the fullest extent possible;

requires minimal new infrastructure;

can be implemented independently of clients in order to reduce

deployment time;

can be deployed incrementally;

allows delegation of signing to third parties.

1.1. Signing Identity

DKIM separates the question of the identity of the signer of the

message from the purported author of the message. In particular, a

signature includes the identity of the signer. Verifiers can use the

signing information to decide how they want to process the message. The

signing identity is included as part of the signature header field.

INFORMATIVE RATIONALE: The signing identity specified by a DKIM

signature is not required to match an address in any particular

header field because of the broad methods of interpretation by

recipient mail systems, including MUAs.

1.2. Scalability

DKIM is designed to support the extreme scalability requirements that

characterize the email identification problem. There are currently over

70 million domains and a much larger number of individual addresses.

DKIM seeks to preserve the positive aspects of the current email

infrastructure, such as the ability for anyone to communicate with

anyone else without introduction.

1.3. Simple Key Management

DKIM differs from traditional hierarchical public-key systems in that

no Certificate Authority infrastructure is required; the verifier

requests the public key from a repository in the domain of the claimed

signer directly rather than from a third party.

The DNS is proposed as the initial mechanism for the public keys. Thus,

DKIM currently depends on DNS administration and the security of the

DNS system. DKIM is designed to be extensible to other key fetching

services as they become available.

*

*

*

*

*

*

1.4. Data Integrity

A DKIM signature associates the d= name with the computed hash of some

or all of the message (see Section 3.7) in order to prevent the re-use

of the signature with different messages. Verifying the signature

asserts that the hashed content has not changed since it was signed,

and asserts nothing else about "protecting" the end-to-end integrity of

the message.

2. Terminology and Definitions

This section defines terms used in the rest of the document.

DKIM is designed to operate within the Internet Mail service, as

defined in [RFC5598]. Basic email terminology is taken from that

specification.

Syntax descriptions use Augmented BNF (ABNF) [RFC5234].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2.1. Signers

Elements in the mail system that sign messages on behalf of a domain

are referred to as signers. These may be MUAs (Mail User Agents), MSAs

(Mail Submission Agents), MTAs (Mail Transfer Agents), or other agents

such as mailing list exploders. In general, any signer will be involved

in the injection of a message into the message system in some way. The

key issue is that a message must be signed before it leaves the

administrative domain of the signer.

2.2. Verifiers

Elements in the mail system that verify signatures are referred to as

verifiers. These may be MTAs, Mail Delivery Agents (MDAs), or MUAs. In

most cases it is expected that verifiers will be close to an end user

(reader) of the message or some consuming agent such as a mailing list

exploder.

2.3. Identity

A person, role, or organization. In the context of DKIM, examples

include author, author's organization, an ISP along the handling path,

an independent trust assessment service, and a mailing list operator.

2.4. Identifier

A label that refers to an identity.

2.5. Signing Domain Identifier (SDID)

A single domain name that is the mandatory payload output of DKIM and

that refers to the identity claiming responsibility for introduction of

a message into the mail stream. For DKIM processing, the name has only

basic domain name semantics; any possible owner-specific semantics are

outside the scope of DKIM. It is specified in Section 3.5.

2.6. Agent or User Identifier (AUID)

A single identifier that refers to the agent or user on behalf of whom

the Signing Domain Identifier (SDID) has taken responsibility. The AUID

comprises a domain name and an optional <Local-part>. The domain name

is the same as that used for the SDID or is a sub-domain of it. For

DKIM processing, the domain name portion of the AUID has only basic

domain name semantics; any possible owner-specific semantics are

outside the scope of DKIM. It is specified in Section 3.5 .

2.7. Identity Assessor

A module that consumes DKIM's mandatory payload, which is the

responsible Signing Domain Identifier (SDID). The module is dedicated

to the assessment of the delivered identifier. Other DKIM (and non-

DKIM) values can also be delivered to this module as well as to a more

general message evaluation filtering engine. However, this additional

activity is outside the scope of the DKIM signature specification.

2.8. Whitespace

There are three forms of whitespace:

WSP represents simple whitespace, i.e., a space or a tab

character (formal definition in [RFC5234]).

LWSP is linear whitespace, defined as WSP plus CRLF (formal

definition in [RFC5234]).

FWS is folding whitespace. It allows multiple lines separated by

CRLF followed by at least one whitespace, to be joined.

The formal ABNF for these are (WSP and LWSP are given for information

only):

WSP = SP / HTAB

LWSP = *(WSP / CRLF WSP)

FWS = [*WSP CRLF] 1*WSP

The definition of FWS is identical to that in [RFC5322] except for the

exclusion of obs-FWS.

*

*

*

2.9. Common ABNF Tokens

The following ABNF tokens are used elsewhere in this document:

hyphenated-word = ALPHA [*(ALPHA / DIGIT / "-") (ALPHA / DIGIT)]

ALPHADIGITPS = (ALPHA / DIGIT / "+" / "/")

base64string = ALPHADIGITPS *([FWS] ALPHADIGITPS)

 [[FWS] "=" [[FWS] "="]]

hdr-name = field-name

qp-hdr-value = dkim-quoted-printable ; with "|" encoded

2.10. Imported ABNF Tokens

The following tokens are imported from other RFCs as noted. Those RFCs

should be considered definitive.

The following tokens are imported from [RFC5321]:

"Local-part" (implementation warning: this permits quoted

strings)

"sub-domain"

The following tokens are imported from [RFC5322]:

"field-name" (name of a header field)

"dot-atom-text" (in the Local-part of an email address)

The following tokens are imported from [RFC2045]:

"qp-section" (a single line of quoted-printable-encoded text)

"hex-octet" (a quoted-printable encoded octet)

INFORMATIVE NOTE: Be aware that the ABNF in [RFC2045] does not

obey the rules of [RFC5234] and must be interpreted accordingly,

particularly as regards case folding.

Other tokens not defined herein are imported from [RFC5234]. These are

intuitive primitives such as SP, HTAB, WSP, ALPHA, DIGIT, CRLF, etc.

2.11. DKIM-Quoted-Printable

The DKIM-Quoted-Printable encoding syntax resembles that described in

Quoted-Printable [RFC2045], Section 6.7: any character MAY be encoded

as an "=" followed by two hexadecimal digits from the alphabet

"0123456789ABCDEF" (no lowercase characters permitted) representing the

hexadecimal-encoded integer value of that character. All control

characters (those with values < %x20), 8-bit characters (values >

%x7F), and the characters DEL (%x7F), SPACE (%x20), and semicolon (";",

*

*

*

*

*

*

*

%x3B) MUST be encoded. Note that all whitespace, including SPACE, CR,

and LF characters, MUST be encoded. After encoding, FWS MAY be added at

arbitrary locations in order to avoid excessively long lines; such

whitespace is NOT part of the value, and MUST be removed before

decoding.

ABNF:

dkim-quoted-printable = *(FWS / hex-octet / dkim-safe-char)

 ; hex-octet is from RFC2045

dkim-safe-char = %x21-3A / %x3C / %x3E-7E

 ; '!' - ':', '<', '>' - '~'

 ; Characters not listed as "mail-safe" in

 ; [RFC2049] are also not recommended.

INFORMATIVE NOTE: DKIM-Quoted-Printable differs from Quoted-

Printable as defined in [RFC2045] in several important ways:

Whitespace in the input text, including CR and LF, must be

encoded. [RFC2045] does not require such encoding, and does

not permit encoding of CR or LF characters that are part of

a CRLF line break.

Whitespace in the encoded text is ignored. This is to allow

tags encoded using DKIM-Quoted-Printable to be wrapped as

needed. In particular, [RFC2045] requires that line breaks

in the input be represented as physical line breaks; that is

not the case here.

The "soft line break" syntax ("=" as the last non-whitespace

character on the line) does not apply.

DKIM-Quoted-Printable does not require that encoded lines be

no more than 76 characters long (although there may be other

requirements depending on the context in which the encoded

text is being used).

3. Protocol Elements

Protocol Elements are conceptual parts of the protocol that are not

specific to either signers or verifiers. The protocol descriptions for

signers and verifiers are described in later sections (Signer Actions

(Section 5) and Verifier Actions (Section 6)). NOTE: This section must

be read in the context of those sections.

3.1. Selectors

To support multiple concurrent public keys per signing domain, the key

namespace is subdivided using "selectors". For example, selectors might

indicate the names of office locations (e.g., "sanfrancisco",

**

1.

2.

3.

4.

"coolumbeach", and "reykjavik"), the signing date (e.g., "january2005",

"february2005", etc.), or even an individual user.

Selectors are needed to support some important use cases. For example:

Domains that want to delegate signing capability for a specific

address for a given duration to a partner, such as an advertising

provider or other outsourced function.

Domains that want to allow frequent travelers to send messages

locally without the need to connect with a particular MSA.

"Affinity" domains (e.g., college alumni associations) that

provide forwarding of incoming mail, but that do not operate a

mail submission agent for outgoing mail.

Periods are allowed in selectors and are component separators. When

keys are retrieved from the DNS, periods in selectors define DNS label

boundaries in a manner similar to the conventional use in domain names.

Selector components might be used to combine dates with locations, for

example, "march2005.reykjavik". In a DNS implementation, this can be

used to allow delegation of a portion of the selector namespace.

ABNF:

selector = sub-domain *("." sub-domain)

The number of public keys and corresponding selectors for each domain

is determined by the domain owner. Many domain owners will be satisfied

with just one selector, whereas administratively distributed

organizations may choose to manage disparate selectors and key pairs in

different regions or on different email servers.

Beyond administrative convenience, selectors make it possible to

seamlessly replace public keys on a routine basis. If a domain wishes

to change from using a public key associated with selector

"january2005" to a public key associated with selector "february2005",

it merely makes sure that both public keys are advertised in the

public-key repository concurrently for the transition period during

which email may be in transit prior to verification. At the start of

the transition period, the outbound email servers are configured to

sign with the "february2005" private key. At the end of the transition

period, the "january2005" public key is removed from the public-key

repository.

INFORMATIVE NOTE: A key may also be revoked as described below.

The distinction between revoking and removing a key selector

record is subtle. When phasing out keys as described above, a

signing domain would probably simply remove the key record after

the transition period. However, a signing domain could elect to

revoke the key (but maintain the key record) for a further

*

*

*

*

*

period. There is no defined semantic difference between a revoked

key and a removed key.

While some domains may wish to make selector values well known, others

will want to take care not to allocate selector names in a way that

allows harvesting of data by outside parties. For example, if per-user

keys are issued, the domain owner will need to make the decision as to

whether to associate this selector directly with the name of a

registered end-user, or make it some unassociated random value, such as

a fingerprint of the public key.

INFORMATIVE OPERATIONS NOTE: Reusing a selector with a new key

(for example, changing the key associated with a user's name)

makes it impossible to tell the difference between a message that

didn't verify because the key is no longer valid versus a message

that is actually forged. For this reason, signers are ill-advised

to reuse selectors for new keys. A better strategy is to assign

new keys to new selectors.

3.2. Tag=Value Lists

DKIM uses a simple "tag=value" syntax in several contexts, including in

messages and domain signature records.

Values are a series of strings containing either plain text, "base64"

text (as defined in [RFC2045], Section 6.8), "qp-section" (ibid,

Section 6.7), or "dkim-quoted-printable" (as defined in Section 2.6).

The name of the tag will determine the encoding of each value.

Unencoded semicolon (";") characters MUST NOT occur in the tag value,

since that separates tag-specs.

INFORMATIVE IMPLEMENTATION NOTE: Although the "plain text"

defined below (as "tag-value") only includes 7-bit characters, an

implementation that wished to anticipate future standards would

be advised not to preclude the use of UTF8-encoded text in

tag=value lists.

Formally, the ABNF syntax rules are as follows:

tag-list = tag-spec 0*(";" tag-spec) [";"]

tag-spec = [FWS] tag-name [FWS] "=" [FWS] tag-value [FWS]

tag-name = ALPHA 0*ALNUMPUNC

tag-value = [tval 0*(1*(WSP / FWS) tval)]

 ; WSP and FWS prohibited at beginning and end

tval = 1*VALCHAR

VALCHAR = %x21-3A / %x3C-7E

 ; EXCLAMATION to TILDE except SEMICOLON

ALNUMPUNC = ALPHA / DIGIT / "_"

*

*

*

Note that WSP is allowed anywhere around tags. In particular, any WSP

after the "=" and any WSP before the terminating ";" is not part of the

value; however, WSP inside the value is significant.

Tags MUST be interpreted in a case-sensitive manner. Values MUST be

processed as case sensitive unless the specific tag description of

semantics specifies case insensitivity.

Tags with duplicate names MUST NOT occur within a single tag-list; if a

tag name does occur more than once, the entire tag-list is invalid.

Whitespace within a value MUST be retained unless explicitly excluded

by the specific tag description.

Tag=value pairs that represent the default value MAY be included to aid

legibility.

Unrecognized tags MUST be ignored.

Tags that have an empty value are not the same as omitted tags. An

omitted tag is treated as having the default value; a tag with an empty

value explicitly designates the empty string as the value.

3.3. Signing and Verification Algorithms

DKIM supports multiple digital signature algorithms. Two algorithms are

defined by this specification at this time: rsa-sha1 and rsa-sha256.

Signers MUST implement and SHOULD sign using rsa-sha256. Verifiers MUST

implement rsa-sha256.

INFORMATIVE NOTE: Although sha256 is strongly encouraged, some

senders of low-security messages (such as routine newsletters)

may prefer to use sha1 because of reduced CPU requirements to

compute a sha1 hash. In general, sha256 should always be used

whenever possible.

3.3.1. The rsa-sha1 Signing Algorithm

The rsa-sha1 Signing Algorithm computes a message hash as described in

Section 3.7 below using SHA-1 [FIPS-180-2-2002] as the hash-alg. That

hash is then signed by the signer using the RSA algorithm (defined in

PKCS#1 version 1.5 [RFC3447]) as the crypt-alg and the signer's private

key. The hash MUST NOT be truncated or converted into any form other

than the native binary form before being signed. The signing algorithm

SHOULD use a public exponent of 65537.

3.3.2. The rsa-sha256 Signing Algorithm

The rsa-sha256 Signing Algorithm computes a message hash as described

in Section 3.7 below using SHA-256 [FIPS-180-2-2002] as the hash-alg.

That hash is then signed by the signer using the RSA algorithm (defined

in PKCS#1 version 1.5 [RFC3447]) as the crypt-alg and the signer's

private key. The hash MUST NOT be truncated or converted into any form

other than the native binary form before being signed.

*

3.3.3. Key Sizes

Selecting appropriate key sizes is a trade-off between cost,

performance, and risk. Since short RSA keys more easily succumb to off-

line attacks, signers MUST use RSA keys of at least 1024 bits for long-

lived keys. Verifiers MUST be able to validate signatures with keys

ranging from 512 bits to 2048 bits, and they MAY be able to validate

signatures with larger keys. Verifier policies may use the length of

the signing key as one metric for determining whether a signature is

acceptable.

Factors that should influence the key size choice include the

following:

The practical constraint that large (e.g., 4096 bit) keys may not

fit within a 512-byte DNS UDP response packet

The security constraint that keys smaller than 1024 bits are

subject to off-line attacks

Larger keys impose higher CPU costs to verify and sign email

Keys can be replaced on a regular basis, thus their lifetime can

be relatively short

The security goals of this specification are modest compared to

typical goals of other systems that employ digital signatures

See [RFC3766] for further discussion on selecting key sizes.

3.3.4. Other Algorithms

Other algorithms MAY be defined in the future. Verifiers MUST ignore

any signatures using algorithms that they do not implement.

3.4. Canonicalization

Some mail systems modify email in transit, potentially invalidating a

signature. For most signers, mild modification of email is immaterial

to validation of the DKIM domain name's use. For such signers, a

canonicalization algorithm that survives modest in-transit modification

is preferred.

Other signers demand that any modification of the email, however minor,

result in a signature verification failure. These signers prefer a

canonicalization algorithm that does not tolerate in-transit

modification of the signed email.

Some signers may be willing to accept modifications to header fields

that are within the bounds of email standards such as [RFC5322], but

are unwilling to accept any modification to the body of messages.

To satisfy all requirements, two canonicalization algorithms are

defined for each of the header and the body: a "simple" algorithm that

*

*

*

*

*

tolerates almost no modification and a "relaxed" algorithm that

tolerates common modifications such as whitespace replacement and

header field line rewrapping. A signer MAY specify either algorithm for

header or body when signing an email. If no canonicalization algorithm

is specified by the signer, the "simple" algorithm defaults for both

header and body. Verifiers MUST implement both canonicalization

algorithms. Note that the header and body may use different

canonicalization algorithms. Further canonicalization algorithms MAY be

defined in the future; verifiers MUST ignore any signatures that use

unrecognized canonicalization algorithms.

Canonicalization simply prepares the email for presentation to the

signing or verification algorithm. It MUST NOT change the transmitted

data in any way. Canonicalization of header fields and body are

described below.

NOTE: This section assumes that the message is already in "network

normal" format (text is ASCII encoded, lines are separated with CRLF

characters, etc.). See also Section 5.3 for information about

normalizing the message.

3.4.1. The "simple" Header Canonicalization Algorithm

The "simple" header canonicalization algorithm does not change header

fields in any way. Header fields MUST be presented to the signing or

verification algorithm exactly as they are in the message being signed

or verified. In particular, header field names MUST NOT be case folded

and whitespace MUST NOT be changed.

3.4.2. The "relaxed" Header Canonicalization Algorithm

The "relaxed" header canonicalization algorithm MUST apply the

following steps in order:

Convert all header field names (not the header field values) to

lowercase. For example, convert "SUBJect: AbC" to "subject: AbC".

Unfold all header field continuation lines as described in

[RFC5322]; in particular, lines with terminators embedded in

continued header field values (that is, CRLF sequences followed

by WSP) MUST be interpreted without the CRLF. Implementations

MUST NOT remove the CRLF at the end of the header field value.

Convert all sequences of one or more WSP characters to a single

SP character. WSP characters here include those before and after

a line folding boundary.

Delete all WSP characters at the end of each unfolded header

field value.

*

*

*

*

Delete any WSP characters remaining before and after the colon

separating the header field name from the header field value. The

colon separator MUST be retained.

3.4.3. The "simple" Body Canonicalization Algorithm

The "simple" body canonicalization algorithm ignores all empty lines at

the end of the message body. An empty line is a line of zero length

after removal of the line terminator. If there is no body or no

trailing CRLF on the message body, a CRLF is added. It makes no other

changes to the message body. In more formal terms, the "simple" body

canonicalization algorithm converts "0*CRLF" at the end of the body to

a single "CRLF".

Note that a completely empty or missing body is canonicalized as a

single "CRLF"; that is, the canonicalized length will be 2 octets.

uoq1oCgLlTqpdDX/iUbLy7J1Wic=

frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN/XKdLCPjaYaY=

3.4.4. The "relaxed" Body Canonicalization Algorithm

Reduce whitespace:

Ignore all whitespace at the end of lines. Implementations

MUST NOT remove the CRLF at the end of the line.

Reduce all sequences of WSP within a line to a single SP

character.

Ignore all empty lines at the end of the message body. "Empty

line" is defined in Section 3.4.3.

2jmj7l5rSw0yVb/vlWAYkK/YBwk=

47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=

INFORMATIVE NOTE: It should be noted that the relaxed body

canonicalization algorithm may enable certain types of extremely

crude "ASCII Art" attacks where a message may be conveyed by

adjusting the spacing between words. If this is a concern, the

"simple" body canonicalization algorithm should be used instead.

*

a.

*

*

b.

*

3.4.5. Body Length Limits

A body length count MAY be specified to limit the signature calculation

to an initial prefix of the body text, measured in octets. If the body

length count is not specified, the entire message body is signed.

INFORMATIVE RATIONALE: This capability is provided because it is

very common for mailing lists to add trailers to messages (e.g.,

instructions how to get off the list). Until those messages are

also signed, the body length count is a useful tool for the

verifier since it may as a matter of policy accept messages

having valid signatures with extraneous data.

INFORMATIVE IMPLEMENTATION NOTE: Using body length limits enables

an attack in which an attacker modifies a message to include

content that solely benefits the attacker. It is possible for the

appended content to completely replace the original content in

the end recipient's eyes and to defeat duplicate message

detection algorithms. To avoid this attack, signers should be

wary of using this tag, and verifiers might wish to ignore the

tag or remove text that appears after the specified content

length, perhaps based on other criteria.

The body length count allows the signer of a message to permit data to

be appended to the end of the body of a signed message. The body length

count MUST be calculated following the canonicalization algorithm; for

example, any whitespace ignored by a canonicalization algorithm is not

included as part of the body length count. Signers of MIME messages

that include a body length count SHOULD be sure that the length extends

to the closing MIME boundary string.

INFORMATIVE IMPLEMENTATION NOTE: A signer wishing to ensure that

the only acceptable modifications are to add to the MIME postlude

would use a body length count encompassing the entire final MIME

boundary string, including the final "--CRLF". A signer wishing

to allow additional MIME parts but not modification of existing

parts would use a body length count extending through the final

MIME boundary string, omitting the final "--CRLF". Note that this

only works for some MIME types, e.g., multipart/mixed but not

multipart/signed.

A body length count of zero means that the body is completely unsigned.

Signers wishing to ensure that no modification of any sort can occur

should specify the "simple" canonicalization algorithm for both header

and body and omit the body length count.

3.4.6. Canonicalization Examples (INFORMATIVE)

In the following examples, actual whitespace is used only for clarity.

The actual input and output text is designated using bracketed

*

*

*

descriptors: "<SP>" for a space character, "<HTAB>" for a tab

character, and "<CRLF>" for a carriage-return/line-feed sequence. For

example, "X <SP> Y" and "X<SP>Y" represent the same three characters.

Example 1: A message reading:

A: <SP> X <CRLF>

B <SP> : <SP> Y <HTAB><CRLF>

 <HTAB> Z <SP><SP><CRLF>

<CRLF>

<SP> C <SP><CRLF>

D <SP><HTAB><SP> E <CRLF>

<CRLF>

<CRLF>

when canonicalized using relaxed canonicalization for both header and

body results in a header reading:

a:X <CRLF>

b:Y <SP> Z <CRLF>

and a body reading:

<SP> C <CRLF>

D <SP> E <CRLF>

Example 2: The same message canonicalized using simple canonicalization

for both header and body results in a header reading:

A: <SP> X <CRLF>

B <SP> : <SP> Y <HTAB><CRLF>

 <HTAB> Z <SP><SP><CRLF>

and a body reading:

<SP> C <SP><CRLF>

D <SP><HTAB><SP> E <CRLF>

Example 3: When processed using relaxed header canonicalization and

simple body canonicalization, the canonicalized version has a header

of:

a:X <CRLF>

b:Y <SP> Z <CRLF>

and a body reading:

<SP> C <SP><CRLF>

D <SP><HTAB><SP> E <CRLF>

3.5. The DKIM-Signature Header Field

The signature of the email is stored in the DKIM-Signature header

field. This header field contains all of the signature and key-

fetching data. The DKIM-Signature value is a tag-list as described in

Section 3.2.

The DKIM-Signature header field SHOULD be treated as though it were a

trace header field as defined in Section 3.6 of [RFC5322], and hence

SHOULD NOT be reordered and SHOULD be prepended to the message.

The DKIM-Signature header field being created or verified is always

included in the signature calculation, after the rest of the header

fields being signed; however, when calculating or verifying the

signature, the value of the "b=" tag (signature value) of that DKIM-

Signature header field MUST be treated as though it were an empty

string. Unknown tags in the DKIM-Signature header field MUST be

included in the signature calculation but MUST be otherwise ignored by

verifiers. Other DKIM-Signature header fields that are included in the

signature should be treated as normal header fields; in particular, the

"b=" tag is not treated specially.

The encodings for each field type are listed below. Tags described as

qp-section are encoded as described in Section 6.7 of MIME Part One

[RFC2045], with the additional conversion of semicolon characters to

"=3B"; intuitively, this is one line of quoted-printable encoded text.

The dkim-quoted-printable syntax is defined in Section 2.11.

Tags on the DKIM-Signature header field along with their type and

requirement status are shown below. Unrecognized tags MUST be ignored.

ABNF:

sig-v-tag = %x76 [FWS] "=" [FWS] "1"

ABNF:

sig-a-tag = %x61 [FWS] "=" [FWS] sig-a-tag-alg

sig-a-tag-alg = sig-a-tag-k "-" sig-a-tag-h

sig-a-tag-k = "rsa" / x-sig-a-tag-k

sig-a-tag-h = "sha1" / "sha256" / x-sig-a-tag-h

x-sig-a-tag-k = ALPHA *(ALPHA / DIGIT)

 ; for later extension

x-sig-a-tag-h = ALPHA *(ALPHA / DIGIT)

 ; for later extension

ABNF:

sig-b-tag = %x62 [FWS] "=" [FWS] sig-b-tag-data

sig-b-tag-data = base64string

ABNF:

sig-bh-tag = %x62 %x68 [FWS] "=" [FWS] sig-bh-tag-data

sig-bh-tag-data = base64string

ABNF:

sig-c-tag = %x63 [FWS] "=" [FWS] sig-c-tag-alg

 ["/" sig-c-tag-alg]

sig-c-tag-alg = "simple" / "relaxed" / x-sig-c-tag-alg

x-sig-c-tag-alg = hyphenated-word ; for later extension

ABNF:

sig-d-tag = %x64 [FWS] "=" [FWS] domain-name

domain-name = sub-domain 1*("." sub-domain)

 ; from RFC 5321 Domain, but excluding address-literal

ABNF:

sig-h-tag = %x68 [FWS] "=" [FWS] hdr-name

 0*([FWS] ":" [FWS] hdr-name)

ABNF:

sig-i-tag = %x69 [FWS] "=" [FWS] [Local-part]

 "@" domain-name

ABNF:

sig-l-tag = %x6c [FWS] "=" [FWS]

 1*76DIGIT

ABNF:

sig-q-tag = %x71 [FWS] "=" [FWS] sig-q-tag-method

 *([FWS] ":" [FWS] sig-q-tag-method)

sig-q-tag-method = "dns/txt" / x-sig-q-tag-type

 ["/" x-sig-q-tag-args]

x-sig-q-tag-type = hyphenated-word ; for future extension

x-sig-q-tag-args = qp-hdr-value

ABNF:

sig-s-tag = %x73 [FWS] "=" [FWS] selector

ABNF:

sig-t-tag = %x74 [FWS] "=" [FWS] 1*12DIGIT

ABNF:

sig-x-tag = %x78 [FWS] "=" [FWS]

 1*12DIGIT

v=

a=

b=

bh=

ABNF:

sig-z-tag = %x7A [FWS] "=" [FWS] sig-z-tag-copy

 *("|" [FWS] sig-z-tag-copy)

sig-z-tag-copy = hdr-name [FWS] ":" qp-hdr-value

INFORMATIVE EXAMPLE of a signature header field spread across multiple

continuation lines:

DKIM-Signature: v=1; a=rsa-sha256; d=example.net; s=brisbane;

 c=simple; q=dns/txt; i=@eng.example.net;

 t=1117574938; x=1118006938;

 h=from:to:subject:date;

 z=From:foo@eng.example.net|To:joe@example.com|

 Subject:demo=20run|Date:July=205,=202005=203:44:08=20PM=20-0700;

 bh=MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=;

 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZVoG4ZHRNiYzR

Version (MUST be included). This tag defines the version of this

specification that applies to the signature record. It MUST have the

value "1". Note that verifiers must do a string comparison on this

value; for example, "1" is not the same as "1.0".

INFORMATIVE NOTE: DKIM-Signature version numbers are expected

to increase arithmetically as new versions of this

specification are released.

The algorithm used to generate the signature (plain-text;

REQUIRED). Verifiers MUST support "rsa-sha1" and "rsa-sha256";

signers SHOULD sign using "rsa-sha256".

The signature data (base64; REQUIRED). Whitespace is ignored in

this value and MUST be ignored when reassembling the original

signature. In particular, the signing process can safely insert FWS

in this value in arbitrary places to conform to line-length limits.

See Signer Actions (Section 5) for how the signature is computed.

The hash of the canonicalized body part of the message as limited

by the "l=" tag (base64; REQUIRED). Whitespace is ignored in this

value and MUST be ignored when reassembling the original signature.

In particular, the signing process can safely insert FWS in this

value in arbitrary places to conform to line-length limits. See

Section 3.7 for how the body hash is computed.

**

*

*

*

c=

d=

h=

Message canonicalization (plain-text; OPTIONAL, default is "simple/

simple"). This tag informs the verifier of the type of

canonicalization used to prepare the message for signing. It

consists of two names separated by a "slash" (%d47) character,

corresponding to the header and body canonicalization algorithms

respectively. These algorithms are described in Section 3.4. If only

one algorithm is named, that algorithm is used for the header and

"simple" is used for the body. For example, "c=relaxed" is treated

the same as "c=relaxed/simple".

The SDID claiming responsibility for an introduction of a message

into the mail stream (plain-text; REQUIRED). Hence, the SDID value

is used to form the query for the public key. The SDID MUST

correspond to a valid DNS name under which the DKIM key record is

published. The conventions and semantics used by a signer to create

and use a specific SDID are outside the scope of the DKIM Signing

specification, as is any use of those conventions and semantics.

When presented with a signature that does not meet these

requirements, verifiers MUST consider the signature invalid.

Internationalized domain names MUST be encoded as described in

[RFC3490].

Signed header fields (plain-text, but see description; REQUIRED). A

colon-separated list of header field names that identify the header

fields presented to the signing algorithm. The field MUST contain

the complete list of header fields in the order presented to the

signing algorithm. The field MAY contain names of header fields that

do not exist when signed; nonexistent header fields do not

contribute to the signature computation (that is, they are treated

as the null input, including the header field name, the separating

colon, the header field value, and any CRLF terminator). The field

MUST NOT include the DKIM-Signature header field that is being

created or verified, but may include others. Folding whitespace

(FWS) MAY be included on either side of the colon separator. Header

field names MUST be compared against actual header field names in a

case-insensitive manner. This list MUST NOT be empty. See Section

5.4 for a discussion of choosing header fields to sign.

INFORMATIVE EXPLANATION: By "signing" header fields that do

not actually exist, a signer can prevent insertion of those

header fields before verification. However, since a signer

cannot possibly know what header fields might be created in

the future, and that some MUAs might present header fields

*

*

**

i=

that are embedded inside a message (e.g., as a message/rfc822

content type), the security of this solution is not total.

INFORMATIVE EXPLANATION: The exclusion of the header field

name and colon as well as the header field value for non-

existent header fields prevents an attacker from inserting an

actual header field with a null value.

The Agent or User Identifier (AUID) on behalf of which the SDID is

taking responsibility (dkim-quoted-printable; OPTIONAL, default is

an empty Local-part followed by an "@" followed by the domain from

the "d=" tag).

The syntax is a standard email address where the Local-part MAY be

omitted. The domain part of the address MUST be the same as, or a

subdomain of, the value of the "d=" tag.

Internationalized domain names MUST be converted using the steps

listed in Section 4 of [RFC3490] using the "ToASCII" function.

The AUID is specified as having the same syntax as an email address,

but is not required to have the same semantics. Notably, the domain

name is not required to be registered in the DNS -- so it might not

resolve in a query -- and the Local-part MAY be drawn from a

namespace unrelated to any mailbox. The details of the structure and

semantics for the namespace are determined by the Signer. Any

knowledge or use of those details by verifiers or assessors is

outside the scope of the DKIM Signing specification. The Signer MAY

choose to use the same namespace for its AUIDs as its users' email

addresses or MAY choose other means of representing its users.

However, the signer SHOULD use the same AUID for each message

intended to be evaluated as being within the same sphere of

responsibility, if it wishes to offer receivers the option of using

the AUID as a stable identifier that is finer grained than the SDID.

INFORMATIVE NOTE: The Local-part of the "i=" tag is optional

because in some cases a signer may not be able to establish a

verified individual identity. In such cases, the signer might

wish to assert that although it is willing to go as far as

signing for the domain, it is unable or unwilling to commit to

an individual user name within their domain. It can do so by

including the domain part but not the Local-part of the

identity.

INFORMATIVE DISCUSSION: This specification does not require

the value of the "i=" tag to match the identity in any message

header fields. This is considered to be a verifier policy

issue. Constraints between the value of the "i=" tag and other

*

*

*

*

l=

q=

identities in other header fields seek to apply basic

authentication into the semantics of trust associated with a

role such as content author. Trust is a broad and complex

topic and trust mechanisms are subject to highly creative

attacks. The real-world efficacy of any but the most basic

bindings between the "i=" value and other identities is not

well established, nor is its vulnerability to subversion by an

attacker. Hence reliance on the use of these options should be

strictly limited. In particular, it is not at all clear to

what extent a typical end-user recipient can rely on any

assurances that might be made by successful use of the "i="

options.

Body length count (plain-text unsigned decimal integer; OPTIONAL,

default is entire body). This tag informs the verifier of the number

of octets in the body of the email after canonicalization included

in the cryptographic hash, starting from 0 immediately following the

CRLF preceding the body. This value MUST NOT be larger than the

actual number of octets in the canonicalized message body.

INFORMATIVE IMPLEMENTATION WARNING: Use of the "l=" tag might

allow display of fraudulent content without appropriate

warning to end users. The "l=" tag is intended for increasing

signature robustness when sending to mailing lists that both

modify their content and do not sign their messages. However,

using the "l=" tag enables attacks in which an intermediary

with malicious intent modifies a message to include content

that solely benefits the attacker. It is possible for the

appended content to completely replace the original content in

the end recipient's eyes and to defeat duplicate message

detection algorithms. Examples are described in Security

Considerations Section 8. To avoid this attack, signers should

be extremely wary of using this tag, and verifiers might wish

to ignore the tag or remove text that appears after the

specified content length.

INFORMATIVE NOTE: The value of the "l=" tag is constrained to

76 decimal digits. This constraint is not intended to predict

the size of future messages or to require implementations to

use an integer representation large enough to represent the

maximum possible value, but is intended to remind the

implementer to check the length of this and all other tags

during verification and to test for integer overflow when

decoding the value. Implementers may need to limit the actual

value expressed to a value smaller than 10^76, e.g., to allow

a message to fit within the available storage space.

A colon-separated list of query methods used to retrieve the public

key (plain-text; OPTIONAL, default is "dns/txt"). Each query method

*

*

*

s=

t=

x=

is of the form "type[/options]", where the syntax and semantics of

the options depend on the type and specified options. If there are

multiple query mechanisms listed, the choice of query mechanism MUST

NOT change the interpretation of the signature. Implementations MUST

use the recognized query mechanisms in the order presented.

Currently, the only valid value is "dns/txt", which defines the DNS

TXT record lookup algorithm described elsewhere in this document.

The only option defined for the "dns" query type is "txt", which

MUST be included. Verifiers and signers MUST support "dns/txt".

The selector subdividing the namespace for the "d=" (domain) tag

(plain-text; REQUIRED).

Signature Timestamp (plain-text unsigned decimal integer;

RECOMMENDED, default is an unknown creation time). The time that

this signature was created. The format is the number of seconds

since 00:00:00 on January 1, 1970 in the UTC time zone. The value is

expressed as an unsigned integer in decimal ASCII. This value is not

constrained to fit into a 31- or 32-bit integer. Implementations

SHOULD be prepared to handle values up to at least 10^12 (until

approximately AD 200,000; this fits into 40 bits). To avoid denial-

of-service attacks, implementations MAY consider any value longer

than 12 digits to be infinite. Leap seconds are not counted.

Implementations MAY ignore signatures that have a timestamp in the

future.

Signature Expiration (plain-text unsigned decimal integer;

RECOMMENDED, default is no expiration). The format is the same as in

the "t=" tag, represented as an absolute date, not as a time delta

from the signing timestamp. The value is expressed as an unsigned

integer in decimal ASCII, with the same constraints on the value in

the "t=" tag. Signatures MAY be considered invalid if the

verification time at the verifier is past the expiration date. The

verification time should be the time that the message was first

received at the administrative domain of the verifier if that time

is reliably available; otherwise the current time should be used.

The value of the "x=" tag MUST be greater than the value of the "t="

tag if both are present.

INFORMATIVE NOTE: The "x=" tag is not intended as an anti-

replay defense.

*

*

*

*

*

z= Copied header fields (dkim-quoted-printable, but see description;

OPTIONAL, default is null). A vertical-bar-separated list of

selected header fields present when the message was signed,

including both the field name and value. It is not required to

include all header fields present at the time of signing. This field

need not contain the same header fields listed in the "h=" tag. The

header field text itself must encode the vertical bar ("|", %x7C)

character (i.e., vertical bars in the "z=" text are meta-characters,

and any actual vertical bar characters in a copied header field must

be encoded). Note that all whitespace must be encoded, including

whitespace between the colon and the header field value. After

encoding, FWS MAY be added at arbitrary locations in order to avoid

excessively long lines; such whitespace is NOT part of the value of

the header field, and MUST be removed before decoding.

The header fields referenced by the "h=" tag refer to the fields in

the [RFC5322] header of the message, not to any copied fields in the

"z=" tag. Copied header field values are for diagnostic use.

Header fields with characters requiring conversion (perhaps from

legacy MTAs that are not [RFC5322] compliant) SHOULD be converted as

described in MIME Part Three [RFC2047].

3.6. Key Management and Representation

Signature applications require some level of assurance that the

verification public key is associated with the claimed signer. Many

applications achieve this by using public key certificates issued by a

trusted third party. However, DKIM can achieve a sufficient level of

security, with significantly enhanced scalability, by simply having the

verifier query the purported signer's DNS entry (or some security-

equivalent) in order to retrieve the public key.

DKIM keys can potentially be stored in multiple types of key servers

and in multiple formats. The storage and format of keys are irrelevant

to the remainder of the DKIM algorithm.

public_key = dkim_find_key(q_val, d_val, s_val)

Parameters to the key lookup algorithm are the type of the lookup (the

"q=" tag), the domain of the signer (the "d=" tag of the DKIM-

Signature header field), and the selector (the "s=" tag).

This document defines a single binding, using DNS TXT records to

distribute the keys. Other bindings may be defined in the future.

*

**

v=

3.6.1. Textual Representation

It is expected that many key servers will choose to present the keys in

an otherwise unstructured text format (for example, an XML form would

not be considered to be unstructured text for this purpose). The

following definition MUST be used for any DKIM key represented in an

otherwise unstructured textual form.

The overall syntax is a tag-list as described in Section 3.2. The

current valid tags are described below. Other tags MAY be present and

MUST be ignored by any implementation that does not understand them.

key-v-tag = %x76 [FWS] "=" [FWS] %x44 %x4B %x49 %x4D %x31

ABNF:

key-h-tag = %x68 [FWS] "=" [FWS] key-h-tag-alg

 0*([FWS] ":" [FWS] key-h-tag-alg)

key-h-tag-alg = "sha1" / "sha256" / x-key-h-tag-alg

x-key-h-tag-alg = hyphenated-word ; for future extension

ABNF:

key-k-tag = %x76 [FWS] "=" [FWS] key-k-tag-type

key-k-tag-type = "rsa" / x-key-k-tag-type

x-key-k-tag-type = hyphenated-word ; for future extension

ABNF:

key-n-tag = %x6e [FWS] "=" [FWS] qp-section

ABNF:

key-p-tag = %x70 [FWS] "=" [[FWS] base64string]

ABNF:

key-s-tag = %x73 [FWS] "=" [FWS] key-s-tag-type

 0*([FWS] ":" [FWS] key-s-tag-type)

key-s-tag-type = "email" / "*" / x-key-s-tag-type

x-key-s-tag-type = hyphenated-word ; for future extension

ABNF:

key-t-tag = %x74 [FWS] "=" [FWS] key-t-tag-flag

 0*([FWS] ":" [FWS] key-t-tag-flag)

key-t-tag-flag = "y" / "s" / x-key-t-tag-flag

x-key-t-tag-flag = hyphenated-word ; for future extension

ABNF: *

h=

k=

n=

p=

s=

*

Acceptable hash algorithms (plain-text; OPTIONAL, defaults to

allowing all algorithms). A colon-separated list of hash algorithms

that might be used. Signers and Verifiers MUST support the "sha256"

hash algorithm. Verifiers MUST also support the "sha1" hash

algorithm.

Key type (plain-text; OPTIONAL, default is "rsa"). Signers and

verifiers MUST support the "rsa" key type. The "rsa" key type

indicates that an ASN.1 DER-encoded [ITU-X660-1997] RSAPublicKey

[RFC3447] (see Sections Section 3.1 and A.1.1) is being used in the

"p=" tag. (Note: the "p=" tag further encodes the value using the

base64 algorithm.)

Notes that might be of interest to a human (qp-section; OPTIONAL,

default is empty). No interpretation is made by any program. This

tag should be used sparingly in any key server mechanism that has

space limitations (notably DNS). This is intended for use by

administrators, not end users.

Public-key data (base64; REQUIRED). An empty value means that this

public key has been revoked. The syntax and semantics of this tag

value before being encoded in base64 are defined by the "k=" tag.

INFORMATIVE RATIONALE: If a private key has been compromised

or otherwise disabled (e.g., an outsourcing contract has been

terminated), a signer might want to explicitly state that it

knows about the selector, but all messages using that selector

should fail verification. Verifiers should ignore any DKIM-

Signature header fields with a selector referencing a revoked

key.

INFORMATIVE NOTE: A base64string is permitted to include white

space (FWS) at arbitrary places; however, any CRLFs must be

followed by at least one WSP character. Implementors and

administrators are cautioned to ensure that selector TXT

records conform to this specification.

Service Type (plain-text; OPTIONAL; default is "*"). A colon-

separated list of service types to which this record applies.

Verifiers for a given service type MUST ignore this record if the

appropriate type is not listed.

matches all service types

*

*

*

*

**

email

t=

y

s

electronic mail (not necessarily limited to SMTP)

This tag is intended to constrain the use of keys for other

purposes, should use of DKIM be defined by other services in the

future.

Flags, represented as a colon-separated list of names (plain- text;

OPTIONAL, default is no flags set).

This domain is testing DKIM. Verifiers MUST NOT treat messages from

signers in testing mode differently from unsigned email, even should

the signature fail to verify. Verifiers MAY wish to track testing

mode results to assist the signer.

Any DKIM-Signature header fields using the "i=" tag MUST have the

same domain value on the right-hand side of the "@" in the "i=" tag

and the value of the "d=" tag. That is, the "i=" domain MUST NOT be

a subdomain of "d=". Use of this flag is RECOMMENDED unless

subdomaining is required.

Unrecognized flags MUST be ignored.

3.6.2. DNS Binding

A binding using DNS TXT records as a key service is hereby defined. All

implementations MUST support this binding.

3.6.2.1. Namespace

All DKIM keys are stored in a subdomain named "_domainkey". Given a

DKIM-Signature field with a "d=" tag of "example.com" and an "s=" tag

of "foo.bar", the DNS query will be for

"foo.bar._domainkey.example.com".

INFORMATIVE OPERATIONAL NOTE: Wildcard DNS records (e.g.,

*.bar._domainkey.example.com) do not make sense in this context

and should not be used. Note also that wildcards within domains

(e.g., s._domainkey.*.example.com) are not supported by the DNS.

3.6.2.2. Resource Record Types for Key Storage

The DNS Resource Record type used is specified by an option to the

query-type ("q=") tag. The only option defined in this base

specification is "txt", indicating the use of a TXT Resource Record

(RR). A later extension of this standard may define another RR type.

*

*

*

Strings in a TXT RR MUST be concatenated together before use with no

intervening whitespace. TXT RRs MUST be unique for a particular

selector name; that is, if there are multiple records in an RRset, the

results are undefined.

TXT RRs are encoded as described in Section 3.6.1

3.7. Computing the Message Hashes

Both signing and verifying message signatures start with a step of

computing two cryptographic hashes over the message. Signers will

choose the parameters of the signature as described in Signer Actions

Section 5; verifiers will use the parameters specified in the DKIM-

Signature header field being verified. In the following discussion, the

names of the tags in the DKIM-Signature header field that either exists

(when verifying) or will be created (when signing) are used. Note that

canonicalization (Section 3.4) is only used to prepare the email for

signing or verifying; it does not affect the transmitted email in any

way.

The signer/verifier MUST compute two hashes, one over the body of the

message and one over the selected header fields of the message.

Signers MUST compute them in the order shown. Verifiers MAY compute

them in any order convenient to the verifier, provided that the result

is semantically identical to the semantics that would be the case had

they been computed in this order.

In hash step 1, the signer/verifier MUST hash the message body,

canonicalized using the body canonicalization algorithm specified in

the "c=" tag and then truncated to the length specified in the "l="

tag. That hash value is then converted to base64 form and inserted into

(signers) or compared to (verifiers) the "bh=" tag of the DKIM-

Signature header field.

In hash step 2, the signer/verifier MUST pass the following to the hash

algorithm in the indicated order.

The header fields specified by the "h=" tag, in the order

specified in that tag, and canonicalized using the header

canonicalization algorithm specified in the "c=" tag. Each

header field MUST be terminated with a single CRLF.

The DKIM-Signature header field that exists (verifying) or will

be inserted (signing) in the message, with the value of the

"b=" tag (including all surrounding whitespace) deleted (i.e.,

treated as the empty string), canonicalized using the header

canonicalization algorithm specified in the "c=" tag, and

without a trailing CRLF.

All tags and their values in the DKIM-Signature header field are

included in the cryptographic hash with the sole exception of the value

portion of the "b=" (signature) tag, which MUST be treated as the null

string. All tags MUST be included even if they might not be understood

1.

2.

by the verifier. The header field MUST be presented to the hash

algorithm after the body of the message rather than with the rest of

the header fields and MUST be canonicalized as specified in the "c="

(canonicalization) tag. The DKIM-Signature header field MUST NOT be

included in its own h= tag, although other DKIM-Signature header fields

MAY be signed (see Section 4).

When calculating the hash on messages that will be transmitted using

base64 or quoted-printable encoding, signers MUST compute the hash

after the encoding. Likewise, the verifier MUST incorporate the values

into the hash before decoding the base64 or quoted-printable text.

However, the hash MUST be computed before transport level encodings

such as SMTP "dot-stuffing" (the modification of lines beginning with a

"." to avoid confusion with the SMTP end-of-message marker, as

specified in [RFC5321]).

With the exception of the canonicalization procedure described in

Section 3.4, the DKIM signing process treats the body of messages as

simply a string of octets. DKIM messages MAY be either in plain-text or

in MIME format; no special treatment is afforded to MIME content.

Message attachments in MIME format MUST be included in the content that

is signed.

More formally, the ABNF of the algorithm for the signature is as

follows:

body-hash = bh-hash-alg (canon-body, l-param)

data-hash = a-hash-alg (h-headers, D-SIG, content-hash)

signature = sig-alg (d-domain, selector, data-hash)

where: **

body-hash:

bh-hash-alg:

canon-body:

l-param:

data-hash:

a-hash-alg:

h-headers:

D-SIG:

canon-body:

signature:

sig-alg:

d-domain:

selector:

NOTE:

is the output of a function to hash the Body.

is the hashing algorithm specified in the "bh"

parameter.

is a canonicalized representation of the body.

is the value of the l= length parameter.

is the output from hashing the header, the

DOSETA‑Signature header, and the Content hash.

is the hash algorithm specified by the "a=" tag,

is the list of headers to be signed, as specified in

the h= parameter.

is the canonicalized DOSETA‑Signature field sans the

signature value itself.

is the canonicalized Body as defined in Section 3.4

(excluding the DKIM‑Signature field).

is the signature value produced by the signing

algorithm.

is the signature algorithm specified by the "a=" tag,

is the domain name specified in the d= parameter.

is the value of the s= selector parameter

Many digital signature APIs provide both hashing and application

of the RSA private key using a single "sign()" primitive. When using

such an API, the last two steps in the algorithm would probably be

combined into a single call that would perform both the "a-hash-alg"

and the "sig-alg".

3.8. Signing by Parent Domains

In some circumstances, it is desirable for a domain to apply a

signature on behalf of any of its subdomains without the need to

maintain separate selectors (key records) in each subdomain. By

default, private keys corresponding to key records can be used to sign

messages for any subdomain of the domain in which they reside; for

example, a key record for the domain example.com can be used to verify

messages where the AUID ("i=" tag of the signature) is sub.example.com,

or even sub1.sub2.example.com. In order to limit the capability of such

keys when this is not intended, the "s" flag MAY be set in the "t=" tag

of the key record, to constrain the validity of the domain of the AUID.

If the referenced key record contains the "s" flag as part of the "t="

tag, the domain of the AUID ("i=" flag) MUST be the same as that of the

SDID (d=) domain. If this flag is absent, the domain of the AUID MUST

be the same as, or a subdomain of, the SDID.

3.9. Relationship between SDID and AUID

DKIM's primary task is to communicate from the Signer to a recipient-

side Identity Assessor a single Signing Domain Identifier (SDID) that

refers to a responsible identity. DKIM MAY optionally provide a single

responsible Agent or User Identifier (AUID).

Hence, DKIM's mandatory output to a receive-side Identity Assessor is a

single domain name. Within the scope of its use as DKIM output, the

name has only basic domain name semantics; any possible owner-specific

semantics are outside the scope of DKIM. That is, within its role as a

DKIM identifier, additional semantics cannot be assumed by an Identity

Assessor.

Upon successfully verifying the signature, a receive-side DKIM verifier

MUST communicate the Signing Domain Identifier (d=) to a consuming

Identity Assessor module and MAY communicate the Agent or User

Identifier (i=) if present.

To the extent that a receiver attempts to intuit any structured

semantics for either of the identifiers, this is a heuristic function

that is outside the scope of DKIM's specification and semantics. Hence,

it is relegated to a higher-level service, such as a delivery handling

filter that integrates a variety of inputs and performs heuristic

analysis of them.

INFORMATIVE DISCUSSION: This document does not require the value

of the SDID or AUID to match an identifier in any other message

header field. This requirement is, instead, an assessor policy

issue. The purpose of such a linkage would be to authenticate the

value in that other header field. This, in turn, is the basis for

applying a trust assessment based on the identifier value. Trust

is a broad and complex topic and trust mechanisms are subject to

highly creative attacks. The real-world efficacy of any but the

most basic bindings between the SDID or AUID and other identities

is not well established, nor is its vulnerability to subversion

by an attacker. Hence, reliance on the use of such bindings

should be strictly limited. In particular, it is not at all clear

to what extent a typical end-user recipient can rely on any

assurances that might be made by successful use of the SDID or

AUID.

*

4. Semantics of Multiple Signatures

4.1. Example Scenarios

There are many reasons why a message might have multiple signatures.

For example, a given signer might sign multiple times, perhaps with

different hashing or signing algorithms during a transition phase.

INFORMATIVE EXAMPLE: Suppose SHA-256 is in the future found to be

insufficiently strong, and DKIM usage transitions to SHA-1024. A

signer might immediately sign using the newer algorithm, but

continue to sign using the older algorithm for interoperability

with verifiers that had not yet upgraded. The signer would do

this by adding two DKIM-Signature header fields, one using each

algorithm. Older verifiers that did not recognize SHA-1024 as an

acceptable algorithm would skip that signature and use the older

algorithm; newer verifiers could use either signature at their

option, and all other things being equal might not even attempt

to verify the other signature.

Similarly, a signer might sign a message including all headers and no

"l=" tag (to satisfy strict verifiers) and a second time with a limited

set of headers and an "l=" tag (in anticipation of possible message

modifications in route to other verifiers). Verifiers could then choose

which signature they preferred.

INFORMATIVE EXAMPLE: A verifier might receive a message with two

signatures, one covering more of the message than the other. If

the signature covering more of the message verified, then the

verifier could make one set of policy decisions; if that

signature failed but the signature covering less of the message

verified, the verifier might make a different set of policy

decisions.

Of course, a message might also have multiple signatures because it

passed through multiple signers. A common case is expected to be that

of a signed message that passes through a mailing list that also signs

all messages. Assuming both of those signatures verify, a recipient

might choose to accept the message if either of those signatures were

known to come from trusted sources.

INFORMATIVE EXAMPLE: Recipients might choose to whitelist mailing

lists to which they have subscribed and that have acceptable

anti- abuse policies so as to accept messages sent to that list

even from unknown authors. They might also subscribe to less

trusted mailing lists (e.g., those without anti-abuse protection)

and be willing to accept all messages from specific authors, but

insist on doing additional abuse scanning for other messages.

*

*

*

Another related example of multiple signers might be forwarding

services, such as those commonly associated with academic alumni sites.

INFORMATIVE EXAMPLE: A recipient might have an address at

members.example.org, a site that has anti-abuse protection that

is somewhat less effective than the recipient would prefer. Such

a recipient might have specific authors whose messages would be

trusted absolutely, but messages from unknown authors that had

passed the forwarder's scrutiny would have only medium trust.

4.2. Interpretation

A signer that is adding a signature to a message merely creates a new

DKIM-Signature header, using the usual semantics of the h= option. A

signer MAY sign previously existing DKIM-Signature header fields using

the method described in Section 5.4 to sign trace header fields.

INFORMATIVE NOTE: Signers should be cognizant that signing DKIM-

Signature header fields may result in signature failures with

intermediaries that do not recognize that DKIM-Signature header

fields are trace header fields and unwittingly reorder them, thus

breaking such signatures. For this reason, signing existing DKIM-

Signature header fields is unadvised, albeit legal.

INFORMATIVE NOTE: If a header field with multiple instances is

signed, those header fields are always signed from the bottom up.

Thus, it is not possible to sign only specific DKIM-Signature

header fields. For example, if the message being signed already

contains three DKIM-Signature header fields A, B, and C, it is

possible to sign all of them, B and C only, or C only, but not A

only, B only, A and B only, or A and C only.

A signer MAY add more than one DKIM-Signature header field using

different parameters. For example, during a transition period a signer

might want to produce signatures using two different hash algorithms.

Signers SHOULD NOT remove any DKIM-Signature header fields from

messages they are signing, even if they know that the signatures cannot

be verified.

When evaluating a message with multiple signatures, a verifier SHOULD

evaluate signatures independently and on their own merits. For example,

a verifier that by policy chooses not to accept signatures with

deprecated cryptographic algorithms would consider such signatures

invalid. Verifiers MAY process signatures in any order of their choice;

for example, some verifiers might choose to process signatures

corresponding to the From field in the message header before other

*

*

*

signatures. See Section 6.1 for more information about signature

choices.

INFORMATIVE IMPLEMENTATION NOTE: Verifier attempts to correlate

valid signatures with invalid signatures in an attempt to guess

why a signature failed are ill-advised. In particular, there is

no general way that a verifier can determine that an invalid

signature was ever valid.

Verifiers SHOULD ignore failed signatures as though they were not

present in the message. Verifiers SHOULD continue to check signatures

until a signature successfully verifies to the satisfaction of the

verifier. To limit potential denial-of-service attacks, verifiers MAY

limit the total number of signatures they will attempt to verify.

5. Signer Actions

The following steps are performed in order by signers.

5.1. Determine Whether the Email Should Be Signed and by Whom

A signer can obviously only sign email for domains for which it has a

private key and the necessary knowledge of the corresponding public key

and selector information. However, there are a number of other reasons

beyond the lack of a private key why a signer could choose not to sign

an email.

INFORMATIVE NOTE: Signing modules may be incorporated into any

portion of the mail system as deemed appropriate, including an

MUA, a SUBMISSION server, or an MTA. Wherever implemented,

signers should beware of signing (and thereby asserting

responsibility for) messages that may be problematic. In

particular, within a trusted enclave the signing address might be

derived from the header according to local policy; SUBMISSION

servers might only sign messages from users that are properly

authenticated and authorized.

INFORMATIVE IMPLEMENTER ADVICE: SUBMISSION servers should not

sign Received header fields if the outgoing gateway MTA

obfuscates Received header fields, for example, to hide the

details of internal topology.

If an email cannot be signed for some reason, it is a local policy

decision as to what to do with that email.

5.2. Select a Private Key and Corresponding Selector Information

This specification does not define the basis by which a signer should

choose which private key and selector information to use. Currently,

all selectors are equal as far as this specification is concerned, so

*

*

*

the decision should largely be a matter of administrative convenience.

Distribution and management of private keys is also outside the scope

of this document.

INFORMATIVE OPERATIONS ADVICE: A signer should not sign with a

private key when the selector containing the corresponding public

key is expected to be revoked or removed before the verifier has

an opportunity to validate the signature. The signer should

anticipate that verifiers may choose to defer validation, perhaps

until the message is actually read by the final recipient. In

particular, when rotating to a new key pair, signing should

immediately commence with the new private key and the old public

key should be retained for a reasonable validation interval

before being removed from the key server.

5.3. Normalize the Message to Prevent Transport Conversions

Some messages, particularly those using 8-bit characters, are subject

to modification during transit, notably conversion to 7-bit form. Such

conversions will break DKIM signatures. In order to minimize the

chances of such breakage, signers SHOULD convert the message to a

suitable MIME content transfer encoding such as quoted-printable or

base64 as described in [RFC2045] before signing. Such conversion is

outside the scope of DKIM; the actual message SHOULD be converted to 7-

bit MIME by an MUA or MSA prior to presentation to the DKIM algorithm.

Similarly, a message that is not compliant with RFC5322, RFC2045 and

RFC2047, can be subject to attempts by intermediaries to correct or

interpret such content. See Section 8 of [RFC4409] for examples of

changes that are commonly made. Such "corrections" may break DKIM

signatures or have other undesirable effects. Therefore, a verifier

SHOULD NOT validate a message that is not compliant with those

specifications.

If the message is submitted to the signer with any local encoding that

will be modified before transmission, that modification to canonical

[RFC5322] form MUST be done before signing. In particular, bare CR or

LF characters (used by some systems as a local line separator

convention) MUST be converted to the SMTP-standard CRLF sequence before

the message is signed. Any conversion of this sort SHOULD be applied to

the message actually sent to the recipient(s), not just to the version

presented to the signing algorithm.

More generally, the signer MUST sign the message as it is expected to

be received by the verifier rather than in some local or internal form.

5.4. Determine the Header Fields to Sign

The From header field MUST be signed (that is, included in the "h=" tag

of the resulting DKIM-Signature header field). Signers SHOULD NOT sign

an existing header field likely to be legitimately modified or removed

in transit. In particular, [RFC5321] explicitly permits modification or

*

removal of the Return-Path header field in transit. Signers MAY include

any other header fields present at the time of signing at the

discretion of the signer.

INFORMATIVE OPERATIONS NOTE: The choice of which header fields to

sign is non-obvious. One strategy is to sign all existing, non-

repeatable header fields. An alternative strategy is to sign only

header fields that are likely to be displayed to or otherwise be

likely to affect the processing of the message at the receiver. A

third strategy is to sign only "well known" headers. Note that

verifiers may treat unsigned header fields with extreme

skepticism, including refusing to display them to the end user or

even ignoring the signature if it does not cover certain header

fields. For this reason, signing fields present in the message

such as Date, Subject, Reply-To, Sender, and all MIME header

fields are highly advised.

The DKIM-Signature header field is always implicitly signed and MUST

NOT be included in the "h=" tag except to indicate that other

preexisting signatures are also signed.

Signers MAY claim to have signed header fields that do not exist (that

is, signers MAY include the header field name in the "h=" tag even if

that header field does not exist in the message). When computing the

signature, the non-existing header field MUST be treated as the null

string (including the header field name, header field value, all

punctuation, and the trailing CRLF).

INFORMATIVE RATIONALE: This allows signers to explicitly assert

the absence of a header field; if that header field is added

later the signature will fail.

INFORMATIVE NOTE: A header field name need only be listed once

more than the actual number of that header field in a message at

the time of signing in order to prevent any further additions.

For example, if there is a single Comments header field at the

time of signing, listing Comments twice in the "h=" tag is

sufficient to prevent any number of Comments header fields from

being appended; it is not necessary (but is legal) to list

Comments three or more times in the "h=" tag.

Received: <A>

Received:

Received: <c>

Signers choosing to sign an existing header field that occurs more than

once in the message (such as Received) MUST sign the physically last

instance of that header field in the header block. Signers wishing to

sign multiple instances of such a header field MUST include the header

field name multiple times in the h= tag of the DKIM-Signature header

*

*

*

field, and MUST sign such header fields in order from the bottom of the

header field block to the top. The signer MAY include more instances of

a header field name in h= than there are actual corresponding header

fields to indicate that additional header fields of that name SHOULD

NOT be added.

then the resulting DKIM-Signature header field should read:

DKIM-Signature: ... h=Received : Received :...

INFORMATIVE EXAMPLE:

If the signer wishes to sign two existing Received header fields,

and the existing header contains:

Signers should be careful of signing header fields that might have

additional instances added later in the delivery process, since such

header fields might be inserted after the signed instance or otherwise

reordered. Trace header fields (such as Received) and Resent-* blocks

are the only fields prohibited by [RFC5322] from being reordered. In

particular, since DKIM-Signature header fields may be reordered by some

intermediate MTAs, signing existing DKIM- Signature header fields is

error-prone.

INFORMATIVE ADMONITION: Despite the fact that [RFC5322] permits

header fields to be reordered (with the exception of Received

header fields), reordering of signed header fields with multiple

instances by intermediate MTAs will cause DKIM signatures to be

broken; such anti-social behavior should be avoided.

INFORMATIVE IMPLEMENTER'S NOTE: Although not required by this

specification, all end-user visible header fields should be

signed to avoid possible "indirect spamming". For example, if the

Subject header field is not signed, a spammer can resend a

previously signed mail, replacing the legitimate subject with a

one-line spam.

5.5. Recommended Signature Content

In order to maximize compatibility with a variety of verifiers, it is

recommended that signers follow the practices outlined in this section

when signing a message. However, these are generic recommendations

applying to the general case; specific senders may wish to modify these

guidelines as required by their unique situations. Verifiers MUST be

capable of verifying signatures even if one or more of the recommended

header fields is not signed (with the exception of From, which must

always be signed) or if one or more of the dis-recommended header

fields is signed. Note that verifiers do have the option of ignoring

signatures that do not cover a sufficient portion of the header or

body, just as they may ignore signatures from an identity they do not

trust.

*

*

*

*

The following header fields SHOULD be included in the signature, if

they are present in the message being signed:

From (REQUIRED in all signatures)

Sender, Reply-To

Subject

Date, Message-ID

To, Cc

MIME-Version

Content-Type, Content-Transfer-Encoding, Content-ID, Content-

Description

Resent-Date, Resent-From, Resent-Sender, Resent-To, Resent-Cc,

Resent-Message-ID

In-Reply-To, References

List-Id, List-Help, List-Unsubscribe, List-Subscribe, List-Post,

List-Owner, List-Archive

The following header fields SHOULD NOT be included in the signature:

Return-Path

Received

Comments, Keywords

Bcc, Resent-Bcc

DKIM-Signature

Optional header fields (those not mentioned above) normally SHOULD NOT

be included in the signature, because of the potential for additional

header fields of the same name to be legitimately added or reordered

prior to verification. There are likely to be legitimate exceptions to

this rule, because of the wide variety of application- specific header

fields that may be applied to a message, some of which are unlikely to

be duplicated, modified, or reordered.

Signers SHOULD choose canonicalization algorithms based on the types of

messages they process and their aversion to risk. For example, e-

commerce sites sending primarily purchase receipts, which are not

expected to be processed by mailing lists or other software likely to

modify messages, will generally prefer "simple" canonicalization. Sites

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

sending primarily person-to-person email will likely prefer to be more

resilient to modification during transport by using "relaxed"

canonicalization.

Signers SHOULD NOT use "l=" unless they intend to accommodate

intermediate mail processors that append text to a message. For

example, many mailing list processors append "unsubscribe" information

to message bodies. If signers use "l=", they SHOULD include the entire

message body existing at the time of signing in computing the count. In

particular, signers SHOULD NOT specify a body length of 0 since this

may be interpreted as a meaningless signature by some verifiers.

5.6. Compute the Message Hash and Signature

The signer MUST compute the message hash as described in Section 3.7

and then sign it using the selected public-key algorithm. This will

result in a DKIM-Signature header field that will include the body hash

and a signature of the header hash, where that header includes the

DKIM-Signature header field itself.

Entities such as mailing list managers that implement DKIM and that

modify the message or a header field (for example, inserting

unsubscribe information) before retransmitting the message SHOULD check

any existing signature on input and MUST make such modifications before

re-signing the message.

The signer MAY elect to limit the number of bytes of the body that will

be included in the hash and hence signed. The length actually hashed

should be inserted in the "l=" tag of the DKIM-Signature header field.

5.7. Insert the DKIM-Signature Header Field

Finally, the signer MUST insert the DKIM-Signature header field created

in the previous step prior to transmitting the email. The DKIM-

Signature header field MUST be the same as used to compute the hash as

described above, except that the value of the "b=" tag MUST be the

appropriately signed hash computed in the previous step, signed using

the algorithm specified in the "a=" tag of the DKIM- Signature header

field and using the private key corresponding to the selector given in

the "s=" tag of the DKIM-Signature header field, as chosen above in

Section 5.2

The DKIM-Signature header field MUST be inserted before any other DKIM-

Signature fields in the header block.

INFORMATIVE IMPLEMENTATION NOTE: The easiest way to achieve this

is to insert the DKIM-Signature header field at the beginning of

the header block. In particular, it may be placed before any

existing Received header fields. This is consistent with treating

DKIM-Signature as a trace header field.

*

6. Verifier Actions

Since a signer MAY remove or revoke a public key at any time, it is

recommended that verification occur in a timely manner. In many

configurations, the most timely place is during acceptance by the

border MTA or shortly thereafter. In particular, deferring verification

until the message is accessed by the end user is discouraged.

A border or intermediate MTA MAY verify the message signature(s). An

MTA who has performed verification MAY communicate the result of that

verification by adding a verification header field to incoming

messages. This considerably simplifies things for the user, who can now

use an existing mail user agent. Most MUAs have the ability to filter

messages based on message header fields or content; these filters would

be used to implement whatever policy the user wishes with respect to

unsigned mail.

A verifying MTA MAY implement a policy with respect to unverifiable

mail, regardless of whether or not it applies the verification header

field to signed messages.

Verifiers MUST produce a result that is semantically equivalent to

applying the following steps in the order listed. In practice, several

of these steps can be performed in parallel in order to improve

performance.

6.1. Extract Signatures from the Message

The order in which verifiers try DKIM-Signature header fields is not

defined; verifiers MAY try signatures in any order they like. For

example, one implementation might try the signatures in textual order,

whereas another might try signatures by identities that match the

contents of the From header field before trying other signatures.

Verifiers MUST NOT attribute ultimate meaning to the order of multiple

DKIM-Signature header fields. In particular, there is reason to believe

that some relays will reorder the header fields in potentially

arbitrary ways.

INFORMATIVE IMPLEMENTATION NOTE: Verifiers might use the order as

a clue to signing order in the absence of any other information.

However, other clues as to the semantics of multiple signatures

(such as correlating the signing host with Received header

fields) may also be considered.

A verifier SHOULD NOT treat a message that has one or more bad

signatures and no good signatures differently from a message with no

signature at all; such treatment is a matter of local policy and is

beyond the scope of this document.

When a signature successfully verifies, a verifier will either stop

processing or attempt to verify any other signatures, at the discretion

*

of the implementation. A verifier MAY limit the number of signatures it

tries to avoid denial-of-service attacks.

INFORMATIVE NOTE: An attacker could send messages with large

numbers of faulty signatures, each of which would require a DNS

lookup and corresponding CPU time to verify the message. This

could be an attack on the domain that receives the message, by

slowing down the verifier by requiring it to do a large number of

DNS lookups and/or signature verifications. It could also be an

attack against the domains listed in the signatures, essentially

by enlisting innocent verifiers in launching an attack against

the DNS servers of the actual victim.

In the following description, text reading "return status

(explanation)" (where "status" is one of "PERMFAIL" or "TEMPFAIL")

means that the verifier MUST immediately cease processing that

signature. The verifier SHOULD proceed to the next signature, if any is

present, and completely ignore the bad signature. If the status is

"PERMFAIL", the signature failed and should not be reconsidered. If the

status is "TEMPFAIL", the signature could not be verified at this time

but may be tried again later. A verifier MAY either defer the message

for later processing, perhaps by queueing it locally or issuing a

451/4.7.5 SMTP reply, or try another signature; if no good signature is

found and any of the signatures resulted in a TEMPFAIL status, the

verifier MAY save the message for later processing. The "(explanation)"

is not normative text; it is provided solely for clarification.

Verifiers SHOULD ignore any DKIM-Signature header fields where the

signature does not validate. Verifiers that are prepared to validate

multiple signature header fields SHOULD proceed to the next signature

header field, should it exist. However, verifiers MAY make note of the

fact that an invalid signature was present for consideration at a later

step.

INFORMATIVE NOTE: The rationale of this requirement is to permit

messages that have invalid signatures but also a valid signature

to work. For example, a mailing list exploder might opt to leave

the original submitter signature in place even though the

exploder knows that it is modifying the message in some way that

will break that signature, and the exploder inserts its own

signature. In this case, the message should succeed even in the

presence of the known-broken signature.

For each signature to be validated, the following steps should be

performed in such a manner as to produce a result that is semantically

equivalent to performing them in the indicated order.

*

*

6.1.1. Validate the Signature Header Field

Implementers MUST meticulously validate the format and values in the

DKIM-Signature header field; any inconsistency or unexpected values

MUST cause the header field to be completely ignored and the verifier

to return PERMFAIL (signature syntax error). Being "liberal in what you

accept" is definitely a bad strategy in this security context. Note

however that this does not include the existence of unknown tags in a

DKIM-Signature header field, which are explicitly permitted. Verifiers

MUST ignore DKIM-Signature header fields with a "v=" tag that is

inconsistent with this specification and return PERMFAIL (incompatible

version).

INFORMATIVE IMPLEMENTATION NOTE: An implementation may, of

course, choose to also verify signatures generated by older

versions of this specification.

If any tag listed as "required" in Section 3.5 is omitted from the

DKIM-Signature header field, the verifier MUST ignore the DKIM-

Signature header field and return PERMFAIL (signature missing required

tag).

INFORMATIONAL NOTE: The tags listed as required in Section 3.5

are "v=", "a=", "b=", "bh=", "d=", "h=", and "s=". Should there

be a conflict between this note and Section 3.5, Section 3.5 is

normative.

If the DKIM-Signature header field does not contain the "i=" tag, the

verifier MUST behave as though the value of that tag were "@d", where

"d" is the value from the "d=" tag.

Verifiers MUST confirm that the domain specified in the "d=" tag is the

same as or a parent domain of the domain part of the "i=" tag. If not,

the DKIM-Signature header field MUST be ignored and the verifier should

return PERMFAIL (domain mismatch).

If the "h=" tag does not include the From header field, the verifier

MUST ignore the DKIM-Signature header field and return PERMFAIL (From

field not signed).

Verifiers MAY ignore the DKIM-Signature header field and return

PERMFAIL (signature expired) if it contains an "x=" tag and the

signature has expired.

Verifiers MAY ignore the DKIM-Signature header field if the domain used

by the signer in the "d=" tag is not associated with a valid signing

entity. For example, signatures with "d=" values such as "com" and

"co.uk" may be ignored. The list of unacceptable domains SHOULD be

configurable.

Verifiers MAY ignore the DKIM-Signature header field and return

PERMFAIL (unacceptable signature header) for any other reason, for

example, if the signature does not sign header fields that the verifier

views to be essential. As a case in point, if MIME header fields are

*

*

NOTE:

not signed, certain attacks may be possible that the verifier would

prefer to avoid.

6.1.2. Get the Public Key

The public key for a signature is needed to complete the verification

process. The process of retrieving the public key depends on the query

type as defined by the "q=" tag in the DKIM-Signature header field.

Obviously, a public key need only be retrieved if the process of

extracting the signature information is completely successful. Details

of key management and representation are described in Section 3.6. The

verifier MUST validate the key record and MUST ignore any public key

records that are malformed.

The use of wildcard TXT records in the DNS will produce a

response to a DKIM query that is unlikely to be valid DKIM key

record. This problem applies to many other types of queries, and

client software that processes DNS responses needs to take this

problem into account.

When validating a message, a verifier MUST perform the following steps

in a manner that is semantically the same as performing them in the

order indicated -- in some cases the implementation may parallelize or

reorder these steps, as long as the semantics remain unchanged:

Retrieve the public key as described in Section 3.6 using the

algorithm in the "q=" tag, the domain from the "d=" tag, and

the selector from the "s=" tag.

If the query for the public key fails to respond, the verifier

MAY defer acceptance of this email and return TEMPFAIL (key

unavailable). If verification is occurring during the incoming

SMTP session, this MAY be achieved with a 451/4.7.5 SMTP reply

code. Alternatively, the verifier MAY store the message in the

local queue for later trial or ignore the signature. Note that

storing a message in the local queue is subject to denial-of-

service attacks.

If the query for the public key fails because the corresponding

key record does not exist, the verifier MUST immediately return

PERMFAIL (no key for signature).

If the query for the public key returns multiple key records,

the verifier may choose one of the key records or may cycle

through the key records performing the remainder of these steps

on each record at the discretion of the implementer. The order

of the key records is unspecified. If the verifier chooses to

cycle through the key records, then the "return ..." wording in

the remainder of this section means "try the next key record,

1.

2.

3.

4.

if any; if none, return to try another signature in the usual

way".

If the result returned from the query does not adhere to the

format defined in this specification, the verifier MUST ignore

the key record and return PERMFAIL (key syntax error).

Verifiers are urged to validate the syntax of key records

carefully to avoid attempted attacks. In particular, the

verifier MUST ignore keys with a version code ("v=" tag) that

they do not implement.

If the "h=" tag exists in the public key record and the hash

algorithm implied by the a= tag in the DKIM-Signature header

field is not included in the contents of the "h=" tag, the

verifier MUST ignore the key record and return PERMFAIL

(inappropriate hash algorithm).

If the public key data (the "p=" tag) is empty, then this key

has been revoked and the verifier MUST treat this as a failed

signature check and return PERMFAIL (key revoked). There is no

defined semantic difference between a key that has been revoked

and a key record that has been removed.

If the public key data is not suitable for use with the

algorithm and key types defined by the "a=" and "k=" tags in

the DKIM- Signature header field, the verifier MUST immediately

return PERMFAIL (inappropriate key algorithm).

6.1.3. Compute the Verification

Given a signer and a public key, verifying a signature consists of

actions semantically equivalent to the following steps.

Based on the algorithm defined in the "c=" tag, the body length

specified in the "l=" tag, and the header field names in the

"h=" tag, prepare a canonicalized version of the message as is

described in Section 3.7 (note that this version does not

actually need to be instantiated). When matching header field

names in the "h=" tag against the actual message header field,

comparisons MUST be case-insensitive.

Based on the algorithm indicated in the "a=" tag, compute the

message hashes from the canonical copy as described in Section

3.7.

Verify that the hash of the canonicalized message body computed

in the previous step matches the hash value conveyed in the

"bh=" tag. If the hash does not match, the verifier SHOULD

ignore the signature and return PERMFAIL (body hash did not

verify).

5.

6.

7.

8.

1.

2.

3.

Using the signature conveyed in the "b=" tag, verify the

signature against the header hash using the mechanism

appropriate for the public key algorithm described in the "a="

tag. If the signature does not validate, the verifier SHOULD

ignore the signature and return PERMFAIL (signature did not

verify).

Otherwise, the signature has correctly verified.

INFORMATIVE IMPLEMENTER'S NOTE: Implementations might wish to

initiate the public-key query in parallel with calculating the

hash as the public key is not needed until the final decryption

is calculated. Implementations may also verify the signature on

the message header before validating that the message hash listed

in the "bh=" tag in the DKIM-Signature header field matches that

of the actual message body; however, if the body hash does not

match, the entire signature must be considered to have failed.

A body length specified in the "l=" tag of the signature limits the

number of bytes of the body passed to the verification algorithm. All

data beyond that limit is not validated by DKIM. Hence, verifiers might

treat a message that contains bytes beyond the indicated body length

with suspicion, such as by truncating the message at the indicated body

length, declaring the signature invalid (e.g., by returning PERMFAIL

(unsigned content)), or conveying the partial verification to the

policy module.

INFORMATIVE IMPLEMENTATION NOTE: Verifiers that truncate the body

at the indicated body length might pass on a malformed MIME

message if the signer used the "N-4" trick (omitting the final

"--CRLF") described in the informative note in Section 3.4.5.

Such verifiers may wish to check for this case and include a

trailing "--CRLF" to avoid breaking the MIME structure. A simple

way to achieve this might be to append "--CRLF" to any

"multipart" message with a body length; if the MIME structure is

already correctly formed, this will appear in the postlude and

will not be displayed to the end user.

6.2. Communicate Verification Results

Verifiers wishing to communicate the results of verification to other

parts of the mail system may do so in whatever manner they see fit. For

example, implementations might choose to add an email header field to

the message before passing it on. Any such header field SHOULD be

inserted before any existing DKIM-Signature or preexisting

authentication status header fields in the header field block. The

4.

5.

*

*

Authentication-Results: header field ([RFC5451]) MAY be used for this

purpose.

INFORMATIVE ADVICE to MUA filter writers: Patterns intended to

search for results header fields to visibly mark authenticated

mail for end users should verify that such header field was added

by the appropriate verifying domain and that the verified

identity matches the author identity that will be displayed by

the MUA. In particular, MUA filters should not be influenced by

bogus results header fields added by attackers. To circumvent

this attack, verifiers may wish to delete existing results header

fields after verification and before adding a new header field.

6.3. Interpret Results/Apply Local Policy

It is beyond the scope of this specification to describe what actions

an Identity Assessor can make, but mail carrying a validated SDID

presents an opportunity to an Identity Assessor that unauthenticated

email does not. Specifically, an authenticated email creates a

predictable identifier by which other decisions can reliably be

managed, such as trust and reputation. Conversely, unauthenticated

email lacks a reliable identifier that can be used to assign trust and

reputation. It is reasonable to treat unauthenticated email as lacking

any trust and having no positive reputation.

In general, verifiers SHOULD NOT reject messages solely on the basis of

a lack of signature or an unverifiable signature; such rejection would

cause severe interoperability problems. However, if the verifier does

opt to reject such messages (for example, when communicating with a

peer who, by prior agreement, agrees to only send signed messages), and

the verifier runs synchronously with the SMTP session and a signature

is missing or does not verify, the MTA SHOULD use a 550/5.7.x reply

code.

If it is not possible to fetch the public key, perhaps because the key

server is not available, a temporary failure message MAY be generated

using a 451/4.7.5 reply code, such as:

451 4.7.5 Unable to verify signature - key server unavailable

Temporary failures such as inability to access the key server or other

external service are the only conditions that SHOULD use a 4xx SMTP

reply code. In particular, cryptographic signature verification

failures MUST NOT return 4xx SMTP replies.

Once the signature has been verified, that information MUST be conveyed

to the Identity Assessor (such as an explicit allow/ whitelist and

reputation system) and/or to the end user. If the SDID is not the same

as the address in the From: header field, the mail system SHOULD take

pains to ensure that the actual SDID is clear to the reader.

*

The verifier MAY treat unsigned header fields with extreme skepticism,

including marking them as untrusted or even deleting them before

display to the end user.

While the symptoms of a failed verification are obvious -- the

signature doesn't verify -- establishing the exact cause can be more

difficult. If a selector cannot be found, is that because the selector

has been removed, or was the value changed somehow in transit? If the

signature line is missing, is that because it was never there, or was

it removed by an overzealous filter? For diagnostic purposes, the exact

reason why the verification fails SHOULD be made available to the

policy module and possibly recorded in the system logs. If the email

cannot be verified, then it SHOULD be rendered the same as all

unverified email regardless of whether or not it looks like it was

signed.

7. IANA Considerations

DKIM has registered new namespaces with IANA. In all cases, new values

are assigned only for values that have been documented in a published

RFC that has IETF Consensus [RFC5226].

7.1. DKIM-Signature Tag Specifications

A DKIM-Signature provides for a list of tag specifications. IANA has

established the DKIM-Signature Tag Specification Registry for tag

specifications that can be used in DKIM-Signature fields.

The initial entries in the registry comprise:

TYPE REFERENCE

v (this document)

a (this document)

b (this document)

bh (this document)

c (this document)

d (this document)

h (this document)

i (this document)

l (this document)

q (this document)

s (this document)

t (this document)

x (this document)

z (this document)

DKIM-Signature Tag

Specification

Registry Initial

Values

7.2. DKIM-Signature Query Method Registry

The "q=" tag-spec (specified in Section 3.5) provides for a list of

query methods.

IANA has established the DKIM-Signature Query Method Registry for

mechanisms that can be used to retrieve the key that will permit

validation processing of a message signed using DKIM.

The initial entry in the registry comprises:

TYPE OPTION REFERENCE

dns txt (this document)

DKIM-Signature Query Method

Registry Initial Values

7.3. DKIM-Signature Canonicalization Registry

The "c=" tag-spec (specified in Section 3.5) provides for a specifier

for canonicalization algorithms for the header and body of the message.

IANA has established the DKIM-Signature Canonicalization Algorithm

Registry for algorithms for converting a message into a canonical form

before signing or verifying using DKIM.

The initial entries in the body registry comprise:

TYPE REFERENCE

simple (this document)

relaxed (this document)

DKIM-Signature Body

Canonicalization

Algorithm Registry

Initial Values

7.4. _domainkey DNS TXT Record Tag Specifications

A _domainkey DNS TXT record provides for a list of tag specifications.

IANA has established the DKIM _domainkey DNS TXT Tag Specification

Registry for tag specifications that can be used in DNS TXT Records.

The initial entries in the registry comprise:

TYPE REFERENCE

v (this document)

g (this document)

TYPE REFERENCE

h (this document)

k (this document)

n (this document)

p (this document)

s (this document)

t (this document)

DKIM _domainkey DNS

TXT Record Tag

Specification

Registry Initial

Values

The initial entries in the body registry comprise:

TYPE REFERENCE

simple (this document)

relaxed (this document)

DKIM-Signature Body

Canonicalization

Algorithm Registry

Initial Values

7.5. DKIM Key Type Registry

The "k=" <key-k-tag> (specified in Section 3.6.1) and the "a=" <sig- a-

tag-k> (specified in Section 3.5) tags provide for a list of mechanisms

that can be used to decode a DKIM signature.

IANA has established the DKIM Key Type Registry for such mechanisms.

The initial entry in the registry comprises:

TYPE REFERENCE

rsa [RFC3447]

DKIM Key Type

Initial Values

7.6. DKIM Hash Algorithms Registry

The "h=" <key-h-tag> (specified in Section 3.6.1) and the "a=" <sig- a-

tag-h> (specified in Section 3.5) tags provide for a list of mechanisms

that can be used to produce a digest of message data.

IANA has established the DKIM Hash Algorithms Registry for such

mechanisms.

The initial entries in the registry comprise:

TYPE REFERENCE

sha1 [FIPS-180-2-2002]

sha256 [FIPS-180-2-2002]

DKIM Hash Algorithms

Initial Values

7.7. DKIM Service Types Registry

The "s=" <key-s-tag> tag (specified in Section 3.6.1) provides for a

list of service types to which this selector may apply.

IANA has established the DKIM Service Types Registry for service types.

The initial entries in the registry comprise:

TYPE REFERENCE

email (this document)

* (this document)

DKIM Service Types

Registry Initial

Values

7.8. DKIM Selector Flags Registry

The "t=" <key-t-tag> tag (specified in Section 3.6.1) provides for a

list of flags to modify interpretation of the selector.

IANA has established the DKIM Selector Flags Registry for additional

flags.

The initial entries in the registry comprise:

TYPE REFERENCE

y (this document)

s (this document)

DKIM Selector Flags

Registry Initial

Values

7.9. DKIM-Signature Header Field

IANA has added DKIM-Signature to the "Permanent Message Header Fields"

registry (see [RFC3864]) for the "mail" protocol, using this document

as the reference.

8. Security Considerations

It has been observed that any mechanism that is introduced that

attempts to stem the flow of spam is subject to intensive attack. DKIM

needs to be carefully scrutinized to identify potential attack vectors

and the vulnerability to each. See also [RFC4686].

8.1. Misuse of Body Length Limits ("l=" Tag)

Body length limits (in the form of the "l=" tag) are subject to several

potential attacks.

8.1.1. Addition of New MIME Parts to Multipart/*

If the body length limit does not cover a closing MIME multipart

section (including the trailing "--CRLF" portion), then it is possible

for an attacker to intercept a properly signed multipart message and

add a new body part. Depending on the details of the MIME type and the

implementation of the verifying MTA and the receiving MUA, this could

allow an attacker to change the information displayed to an end user

from an apparently trusted source.

For example, if attackers can append information to a "text/html" body

part, they may be able to exploit a bug in some MUAs that continue to

read after a "</html>" marker, and thus display HTML text on top of

already displayed text. If a message has a "multipart/alternative" body

part, they might be able to add a new body part that is preferred by

the displaying MUA.

8.1.2. Addition of new HTML content to existing content

<div style="position: relative; bottom: 350px; z-index: 2;">

 </div>

Several receiving MUA implementations do not cease display after a ""</

html>"" tag. In particular, this allows attacks involving overlaying

images on top of existing text.

INFORMATIVE EXAMPLE: Appending the following text to an existing,

properly closed message will in many MUAs result in inappropriate

data being rendered on top of existing, correct data:

8.2. Misappropriated Private Key

If the private key for a user is resident on their computer and is not

protected by an appropriately secure mechanism, it is possible for

malware to send mail as that user and any other user sharing the same

private key. The malware would not, however, be able to generate signed

spoofs of other signers' addresses, which would aid in identification

of the infected user and would limit the possibilities for certain

types of attacks involving socially engineered messages. This threat

applies mainly to MUA-based implementations; protection of private keys

*

-

on servers can be easily achieved through the use of specialized

cryptographic hardware.

A larger problem occurs if malware on many users' computers obtains the

private keys for those users and transmits them via a covert channel to

a site where they can be shared. The compromised users would likely not

know of the misappropriation until they receive "bounce" messages from

messages they are purported to have sent. Many users might not

understand the significance of these bounce messages and would not take

action.

One countermeasure is to use a user-entered passphrase to encrypt the

private key, although users tend to choose weak passphrases and often

reuse them for different purposes, possibly allowing an attack against

DKIM to be extended into other domains. Nevertheless, the decoded

private key might be briefly available to compromise by malware when it

is entered, or might be discovered via keystroke logging. The added

complexity of entering a passphrase each time one sends a message would

also tend to discourage the use of a secure passphrase.

A somewhat more effective countermeasure is to send messages through an

outgoing MTA that can authenticate the submitter using existing

techniques (e.g., SMTP Authentication), possibly validate the message

itself (e.g., verify that the header is legitimate and that the content

passes a spam content check), and sign the message using a key

appropriate for the submitter address. Such an MTA can also apply

controls on the volume of outgoing mail each user is permitted to

originate in order to further limit the ability of malware to generate

bulk email.

8.3. Key Server Denial-of-Service Attacks

Since the key servers are distributed (potentially separate for each

domain), the number of servers that would need to be attacked to defeat

this mechanism on an Internet-wide basis is very large. Nevertheless,

key servers for individual domains could be attacked, impeding the

verification of messages from that domain. This is not significantly

different from the ability of an attacker to deny service to the mail

exchangers for a given domain, although it affects outgoing, not

incoming, mail.

A variation on this attack is that if a very large amount of mail were

to be sent using spoofed addresses from a given domain, the key servers

for that domain could be overwhelmed with requests. However, given the

low overhead of verification compared with handling of the email

message itself, such an attack would be difficult to mount.

8.4. Attacks Against the DNS

Since the DNS is a required binding for key services, specific attacks

against the DNS must be considered.

While the DNS is currently insecure [RFC3833], these security problems

are the motivation behind DNS Security (DNSSEC) [RFC4033], and all

users of the DNS will reap the benefit of that work.

DKIM is only intended as a "sufficient" method of proving authenticity.

It is not intended to provide strong cryptographic proof about

authorship or contents. Other technologies such as OpenPGP [RFC4880]

and S/MIME [RFC5751] address those requirements.

A second security issue related to the DNS revolves around the

increased DNS traffic as a consequence of fetching selector-based data

as well as fetching signing domain policy. Widespread deployment of

DKIM will result in a significant increase in DNS queries to the

claimed signing domain. In the case of forgeries on a large scale, DNS

servers could see a substantial increase in queries.

A specific DNS security issue that should be considered by DKIM

verifiers is the name chaining attack described in Section 2.3 of

[RFC3833]. A DKIM verifier, while verifying a DKIM-Signature header

field, could be prompted to retrieve a key record of an attacker's

choosing. This threat can be minimized by ensuring that name servers,

including recursive name servers, used by the verifier enforce strict

checking of "glue" and other additional information in DNS responses

and are therefore not vulnerable to this attack.

8.5. Replay Attacks

In this attack, a spammer sends a message to be spammed to an

accomplice, which results in the message being signed by the

originating MTA. The accomplice resends the message, including the

original signature, to a large number of recipients, possibly by

sending the message to many compromised machines that act as MTAs. The

messages, not having been modified by the accomplice, have valid

signatures.

Partial solutions to this problem involve the use of reputation

services to convey the fact that the specific email address is being

used for spam and that messages from that signer are likely to be spam.

This requires a real-time detection mechanism in order to react quickly

enough. However, such measures might be prone to abuse, if for example

an attacker resent a large number of messages received from a victim in

order to make them appear to be a spammer.

Large verifiers might be able to detect unusually large volumes of

mails with the same signature in a short time period. Smaller verifiers

can get substantially the same volume of information via existing

collaborative systems.

8.6. Limits on Revoking Keys

When a large domain detects undesirable behavior on the part of one of

its users, it might wish to revoke the key used to sign that user's

messages in order to disavow responsibility for messages that have not

yet been verified or that are the subject of a replay attack. However,

the ability of the domain to do so can be limited if the same key, for

scalability reasons, is used to sign messages for many other users.

Mechanisms for explicitly revoking keys on a per-address basis have

been proposed but require further study as to their utility and the DNS

load they represent.

8.7. Intentionally Malformed Key Records

It is possible for an attacker to publish key records in DNS that are

intentionally malformed, with the intent of causing a denial-of-

service attack on a non-robust verifier implementation. The attacker

could then cause a verifier to read the malformed key record by sending

a message to one of its users referencing the malformed record in a

(not necessarily valid) signature. Verifiers MUST thoroughly verify all

key records retrieved from the DNS and be robust against intentionally

as well as unintentionally malformed key records.

8.8. Intentionally Malformed DKIM-Signature Header Fields

Verifiers MUST be prepared to receive messages with malformed DKIM-

Signature header fields, and thoroughly verify the header field before

depending on any of its contents.

8.9. Information Leakage

An attacker could determine when a particular signature was verified by

using a per-message selector and then monitoring their DNS traffic for

the key lookup. This would act as the equivalent of a "web bug" for

verification time rather than when the message was read.

8.10. Remote Timing Attacks

In some cases it may be possible to extract private keys using a remote

timing attack [BONEH03]. Implementations should consider obfuscating

the timing to prevent such attacks.

8.11. Reordered Header Fields

Existing standards allow intermediate MTAs to reorder header fields. If

a signer signs two or more header fields of the same name, this can

cause spurious verification errors on otherwise legitimate messages. In

particular, signers that sign any existing DKIM- Signature fields run

the risk of having messages incorrectly fail to verify.

8.12. RSA Attacks

An attacker could create a large RSA signing key with a small exponent,

thus requiring that the verification key have a large exponent. This

will force verifiers to use considerable computing resources to verify

the signature. Verifiers might avoid this attack by refusing to verify

signatures that reference selectors with public keys having

unreasonable exponents.

In general, an attacker might try to overwhelm a verifier by flooding

it with messages requiring verification. This is similar to other MTA

denial-of-service attacks and should be dealt with in a similar

fashion.

8.13. Inappropriate Signing by Parent Domains

The trust relationship described in Section 3.8 could conceivably be

used by a parent domain to sign messages with identities in a subdomain

not administratively related to the parent. For example, the ".com"

registry could create messages with signatures using an "i=" value in

the example.com domain. There is no general solution to this problem,

since the administrative cut could occur anywhere in the domain name.

For example, in the domain "example.podunk.ca.us" there are three

administrative cuts (podunk.ca.us, ca.us, and us), any of which could

create messages with an identity in the full domain.

INFORMATIVE NOTE: This is considered an acceptable risk for the

same reason that it is acceptable for domain delegation. For

example, in the example above any of the domains could

potentially simply delegate "example.podunk.ca.us" to a server of

their choice and completely replace all DNS-served information.

Note that a verifier MAY ignore signatures that come from an

unlikely domain such as ".com", as discussed in Section 6.1.1.

8.14. Attacks Involving Addition of Header Fields

Many email implementations do not enforce [RFC5322] with strictness. As

discussed in Section 5.3 DKIM processing is predicated on a valid mail

message as its input. However, DKIM implementers should be aware of the

potential effect of having loose enforcement by email components

interacting with DKIM modules.

For example, a message with multiple From: header fields violates

Section 3.6 of [RFC5322]. With the intent of providing a better user

experience, many agents tolerate these violations and deliver the

message anyway. An MUA then might elect to render to the user the value

of the last, or "top", From: field. This may also be done simply out of

the expectation that there is only one, where a "find first" algorithm

would have the same result. Such code in an MUA can be exploited to

fool the user if it is also known that the other From: field is the one

checked by arriving message filters. Such is the case with DKIM;

although the From: field must be signed, a malformed message bearing

more than one From: field might only have the first ("bottom") one

signed, in an attempt to show the message with some "DKIM passed"

annotation while also rendering the From: field that was not

authenticated. (This can also be taken as a demonstration that DKIM is

not designed to support author validation.)

*

To resist this specific attack the signed header field list can include

an additional reference for each field that was present at signing. For

example, a proper message with one From: field could be signed using

"h=From:From:..." Due to the way header fields are canonicalized for

input to the hash function, the extra field references will prevent

instances of the cited fields from being added after signing, as doing

so would render the signature invalid.

The From: field is used above to illustrate this issue, but it is only

one of > several fields that Section 3.6 of [RFC5322] constrains in

this way. In reality any agent that forgives malformations, or is

careless about identifying which parts of a message were authenticated,

is open to exploitation.

9. References

9.1. Normative References

, "

[FIPS-180-2-2002]
U.S. Department of Commerce, , "Secure Hash

Standard", FIPS PUB 180-2, August 2002.

[ITU-X660-1997]

Information Technology - ASN.1 encoding rules:

Specification of Basic Encoding Rules (BER),

Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER)", 1997.

[RFC1034]
Mockapetris, P., "DOMAIN NAMES - CONCEPTS AND

FACILITIES", RFC 1034, November 1987.

[RFC2045]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part One:

Format of Internet Message Bodies", RFC 2045,

November 1996.

[RFC2047]

Moore, K., "MIME (Multipurpose Internet Mail

Extensions) Part Three: Message Header

Extensions for Non-ASCII Text", RFC 2047,

November 1996.

[RFC2049]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part Five:

Conformance Criteria and Examples", RFC 2049,

November 1996.

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[RFC5321]
Klensin, J., "Simple Mail Transfer Protocol",

RFC 5321, October 2008.

[RFC5322]
Resnick, P., "Internet Message Format", RFC

5322, October 2008.

[RFC3447]

Jonsson, J. and B. Kaliski, "Public-Key

Cryptography Standards (PKCS) #1: RSA

http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1034
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
mailto:moore@cs.utk.edu
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2047
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2049
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447

Cryptography Specifications Version 2.1", RFC

3447, February 2003.

[RFC3490]

Faltstrom, P., Hoffman, P. and A. Costello,

"Internationalizing Domain Names in

Applications (IDNA)", RFC 3490, March 2003.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", RFC 4234, January

2008.

[RFC5598]
Crocker, D., "Internet Mail Architecture", RFC

5598, July 2009.

9.2. Informative References

, "

[BONEH03]
Remote Timing Attacks are Practical", Proceedings 12th

USENIX Security Symposium, 2003.

[RFC1847]

Galvin, J., Murphy, S., Crocker, S. and N. Freed,

"Security Multiparts for MIME: Multipart/Signed and

Multipart/Encrypted", RFC 1847, October 1995.

[RFC5226]

Narten, T. and H.T. Alvestrand, "Guidelines for Writing

an IANA Considerations Section in RFCs", BCP 26, RFC

5226, May 2008.

[RFC4880]
Callas, J., Donnerhacke, L., Finney, H. and R. Thayer,

"OpenPGP Message Format", RFC 4880, November 2007.

[RFC3766]

Orman, H. and P. Hoffman, "Determining Strengths For

Public Keys Used For Exchanging Symmetric Keys", BCP

86, RFC 3766, April 2004.

[RFC3833]
Atkins, D. and R. Austein, "Threat Analysis of the

Domain Name System (DNS)", RFC 3833, August 2004.

[RFC5751]

Ramsdell, B., "Secure/Multipurpose Internet Mail

Extensions (S/MIME) Version 3.1 Message Specification",

RFC 5751, January 2010.

[RFC3864]

Klyne, G., Nottingham, M. and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC

3864, September 2004.

[RFC4033]

Arends, R., Austein, R., Larson, M., Massey, D. and S.

Rose, "DNS Security Introduction and Requirements", RFC

4033, March 2005.

[RFC4409]
Gellens, R. and J. Klensin, "Message Submission for

Mail", RFC 4409, April 2006.

[RFC4686]
Fenton, J., "Analysis of Threats Motivating DomainKeys

Identified Mail (DKIM)", RFC 4686, September 2006.

[RFC4870]

Delany, M., "Domain-Based Email Authentication Using

Public Keys Advertised in the DNS (DomainKeys)", RFC

4870, May 2007.

[RFC4871]

http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3490
http://tools.ietf.org/html/rfc3490
mailto:dcrocker@bbiw.net
mailto:paul.overell@thus.net
http://tools.ietf.org/html/rfc4234
http://tools.ietf.org/html/rfc4234
http://tools.ietf.org/html/rfc5598
mailto:galvin@tis.com
mailto:sandy@tis.com
mailto:crocker@cybercash.com
mailto:ned@innosoft.com
http://tools.ietf.org/html/rfc1847
http://tools.ietf.org/html/rfc1847
mailto:narten@raleigh.ibm.com
mailto:Harald@Alvestrand.no
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
mailto:jon@pgp.com
mailto:lutz@iks-jena.de
mailto:hal@pgp.com
mailto:rodney@unitran.com
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc3766
http://tools.ietf.org/html/rfc3766
http://tools.ietf.org/html/rfc3833
http://tools.ietf.org/html/rfc3833
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4409
http://tools.ietf.org/html/rfc4409
http://tools.ietf.org/html/rfc4686
http://tools.ietf.org/html/rfc4686
http://tools.ietf.org/html/rfc4870
http://tools.ietf.org/html/rfc4870

Allman, E., Callas, J., Delany, M., Libbey, M., Fenton,

J. and M. Thomas, "DomainKeys Identified Mail (DKIM)

Signatures", RFC 4871, May 2007.

[RFC5451]
Kucherawy, M., "Message Header Field for Indicating

Message Authentication Status", RFC 5451, April 2009.

Appendix A. Example of Use (INFORMATIVE)

This section shows the complete flow of an email from submission to

final delivery, demonstrating how the various components fit together.

The key used in this example is shown in Appendix Appendix C.

Appendix A.1. The User Composes an Email

From: Joe SixPack <joe@football.example.com>

To: Suzie Q <suzie@shopping.example.net>

Subject: Is dinner ready?

Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)

Message-ID: <;20030712040037.46341.5F8J@football.example.com>

Hi.

We lost the game. Are you hungry yet?

Joe.

Appendix A.2. The Email is Signed

This email is signed by the example.com outbound email server and now

looks like this:

http://tools.ietf.org/html/rfc4871
http://tools.ietf.org/html/rfc4871
http://tools.ietf.org/html/rfc5451
http://tools.ietf.org/html/rfc5451

DKIM-Signature: v=1; a=rsa-sha256; s=brisbane; d=example.com;

 c=simple/simple; q=dns/txt; i=joe@football.example.com;

 h=Received : From : To : Subject : Date : Message-ID;

 bh=2jUSOH9NhtVGCQWNr9BrIAPreKQjO6Sn7XIkfJVOzv8=;

 b=AuUoFEfDxTDkHlLXSZEpZj79LICEps6eda7W3deTVFOk4yAUoqOB

 4nujc7YopdG5dWLSdNg6xNAZpOPr+kHxt1IrE+NahM6L/LbvaHut

 KVdkLLkpVaVVQPzeRDI009SO2Il5Lu7rDNH6mZckBdrIx0orEtZV

 4bmp/YzhwvcubU4=;

Received: from client1.football.example.com [192.0.2.1]

 by submitserver.example.com with SUBMISSION;

 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)

From: Joe SixPack <joe@football.example.com>

To: Suzie Q <suzie@shopping.example.net>

Subject: Is dinner ready?

Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)

Message-ID: <20030712040037.46341.5F8J@football.example.com>

Hi.

We lost the game. Are you hungry yet?

Joe.

The signing email server requires access to the private key associated

with the "brisbane" selector to generate this signature.

Appendix A.3. The Email Signature is Verified

The signature is normally verified by an inbound SMTP server or

possibly the final delivery agent. However, intervening MTAs can also

perform this verification if they choose to do so. The verification

process uses the domain "example.com" extracted from the "d=" tag and

the selector "brisbane" from the "s=" tag in the DKIM- Signature header

field to form the DNS DKIM query for: brisbane._domainkey.example.com

X-Authentication-Results: shopping.example.net

 header.from=joe@football.example.com; dkim=pass

Received: from mout23.football.example.com (192.168.1.1)

 by shopping.example.net with SMTP;

 Fri, 11 Jul 2003 21:01:59 -0700 (PDT)

DKIM-Signature: v=1; a=rsa-sha256; s=brisbane; d=example.com;

 c=simple/simple; q=dns/txt; i=joe@football.example.com;

 h=Received : From : To : Subject : Date : Message-ID;

 bh=2jUSOH9NhtVGCQWNr9BrIAPreKQjO6Sn7XIkfJVOzv8=;

 b=AuUoFEfDxTDkHlLXSZEpZj79LICEps6eda7W3deTVFOk4yAUoqOB

 4nujc7YopdG5dWLSdNg6xNAZpOPr+kHxt1IrE+NahM6L/LbvaHut

 KVdkLLkpVaVVQPzeRDI009SO2Il5Lu7rDNH6mZckBdrIx0orEtZV

 4bmp/YzhwvcubU4=;

Received: from client1.football.example.com [192.0.2.1]

 by submitserver.example.com with SUBMISSION;

 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)

From: Joe SixPack <joe@football.example.com>

To: Suzie Q <suzie@shopping.example.net>

Subject: Is dinner ready?

Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)

Message-ID: <20030712040037.46341.5F8J@football.example.com>

Hi.

We lost the game. Are you hungry yet?

Joe.

Signature verification starts with the physically last Received header

field, the From header field, and so forth, in the order listed in the

"h=" tag. Verification follows with a single CRLF followed by the body

(starting with "Hi."). The email is canonically prepared for verifying

with the "simple" method. The result of the query and subsequent

verification of the signature is stored (in this example) in the X-

Authentication-Results header field line. After successful

verification, the email looks like this:

Appendix B. Usage Examples (INFORMATIVE)

DKIM signing and validating can be used in different ways, for

different operational scenarios. This Appendix discusses some common

examples.

NOTE: Descriptions in this Appendix are for informational

purposes only. They describe various ways that DKIM can be used,

given particular constraints and needs. In no case are these

examples intended to be taken as providing explanation or

guidance concerning DKIM specification details, when creating an

implementation.

*

Appendix B.1. Alternate Submission Scenarios

In the most simple scenario, a user's MUA, MSA, and Internet (boundary)

MTA are all within the same administrative environment, using the same

domain name. Therefore, all of the components involved in submission

and initial transfer are related. However, it is common for two or more

of the components to be under independent administrative control. This

creates challenges for choosing and administering the domain name to

use for signing, and for its relationship to common email identity

header fields.

Appendix B.1.1. Delegated Business Functions

Some organizations assign specific business functions to discrete

groups, inside or outside the organization. The goal, then, is to

authorize that group to sign some mail, but to constrain what

signatures they can generate. DKIM selectors (the "s=" signature tag)

facilitate this kind of restricted authorization. Examples of these

outsourced business functions are legitimate email marketing providers

and corporate benefits providers.

Here, the delegated group needs to be able to send messages that are

signed, using the email domain of the client company. At the same time,

the client often is reluctant to register a key for the provider that

grants the ability to send messages for arbitrary addresses in the

domain.

There are multiple ways to administer these usage scenarios. In one

case, the client organization provides all of the public query service

(for example, DNS) administration, and in another it uses DNS

delegation to enable all ongoing administration of the DKIM key record

by the delegated group.

If the client organization retains responsibility for all of the DNS

administration, the outsourcing company can generate a key pair,

supplying the public key to the client company, which then registers it

in the query service, using a unique selector. The client company

retains control over the use of the delegated key because it retains

the ability to revoke the key at any time.

If the client wants the delegated group to do the DNS administration,

it can have the domain name that is specified with the selector point

to the provider's DNS server. The provider then creates and maintains

all of the DKIM signature information for that selector. Hence, the

client cannot provide constraints on the Local-part of addresses that

get signed, but it can revoke the provider's signing rights by removing

the DNS delegation record.

Appendix B.1.2. PDAs and Similar Devices

PDAs demonstrate the need for using multiple keys per domain. Suppose

that John Doe wanted to be able to send messages using his corporate

email address, jdoe@example.com, and his email device did not have the

ability to make a Virtual Private Network (VPN) connection to the

corporate network, either because the device is limited or because

there are restrictions enforced by his Internet access provider. If the

device was equipped with a private key registered for jdoe@example.com

by the administrator of the example.com domain, and appropriate

software to sign messages, John could sign the message on the device

itself before transmission through the outgoing network of the access

service provider.

Appendix B.1.3. Roaming Users

Roaming users often find themselves in circumstances where it is

convenient or necessary to use an SMTP server other than their home

server; examples are conferences and many hotels. In such

circumstances, a signature that is added by the submission service will

use an identity that is different from the user's home system.

Ideally, roaming users would connect back to their home server using

either a VPN or a SUBMISSION server running with SMTP AUTHentication on

port 587. If the signing can be performed on the roaming user's laptop,

then they can sign before submission, although the risk of further

modification is high. If neither of these are possible, these roaming

users will not be able to send mail signed using their own domain key.

Appendix B.1.4. Independent (Kiosk) Message Submission

Stand-alone services, such as walk-up kiosks and web-based information

services, have no enduring email service relationship with the user,

but users occasionally request that mail be sent on their behalf. For

example, a website providing news often allows the reader to forward a

copy of the article to a friend. This is typically done using the

reader's own email address, to indicate who the author is. This is

sometimes referred to as the "Evite problem", named after the website

of the same name that allows a user to send invitations to friends.

A common way this is handled is to continue to put the reader's email

address in the From header field of the message, but put an address

owned by the email posting site into the Sender header field. The

posting site can then sign the message, using the domain that is in the

Sender field. This provides useful information to the receiving email

site, which is able to correlate the signing domain with the initial

submission email role.

Receiving sites often wish to provide their end users with information

about mail that is mediated in this fashion. Although the real efficacy

of different approaches is a subject for human factors usability

research, one technique that is used is for the verifying system to

rewrite the From header field, to indicate the address that was

verified. For example: From: John Doe via news@news-site.com

<jdoe@example.com>. (Note that such rewriting will break a signature,

unless it is done after the verification pass is complete.)

Appendix B.2. Alternate Delivery Scenarios

Email is often received at a mailbox that has an address different from

the one used during initial submission. In these cases, an intermediary

mechanism operates at the address originally used and it then passes

the message on to the final destination. This mediation process

presents some challenges for DKIM signatures.

Appendix B.2.1. Affinity Addresses

"Affinity addresses" allow a user to have an email address that remains

stable, even as the user moves among different email providers. They

are typically associated with college alumni associations, professional

organizations, and recreational organizations with which they expect to

have a long-term relationship. These domains usually provide forwarding

of incoming email, and they often have an associated Web application

that authenticates the user and allows the forwarding address to be

changed. However, these services usually depend on users sending

outgoing messages through their own service providers' MTAs. Hence,

mail that is signed with the domain of the affinity address is not

signed by an entity that is administered by the organization owning

that domain.

With DKIM, affinity domains could use the Web application to allow

users to register per-user keys to be used to sign messages on behalf

of their affinity address. The user would take away the secret half of

the key pair for signing, and the affinity domain would publish the

public half in DNS for access by verifiers.

This is another application that takes advantage of user-level keying,

and domains used for affinity addresses would typically have a very

large number of user-level keys. Alternatively, the affinity domain

could handle outgoing mail, operating a mail submission agent that

authenticates users before accepting and signing messages for them.

This is of course dependent on the user's service provider not blocking

the relevant TCP ports used for mail submission.

Appendix B.2.2. Simple Address Aliasing (.forward)

In some cases a recipient is allowed to configure an email address to

cause automatic redirection of email messages from the original address

to another, such as through the use of a Unix .forward file. In this

case, messages are typically redirected by the mail handling service of

the recipient's domain, without modification, except for the addition

of a Received header field to the message and a change in the envelope

recipient address. In this case, the recipient at the final address'

mailbox is likely to be able to verify the original signature since the

signed content has not changed, and DKIM is able to validate the

message signature.

Appendix B.2.3. Mailing Lists and Re-Posters

There is a wide range of behaviors in services that take delivery of a

message and then resubmit it. A primary example is with mailing lists

(collectively called "forwarders" below), ranging from those that make

no modification to the message itself, other than to add a Received

header field and change the envelope information, to those that add

header fields, change the Subject header field, add content to the body

(typically at the end), or reformat the body in some manner. The simple

ones produce messages that are quite similar to the automated alias

services. More elaborate systems essentially create a new message.

A Forwarder that does not modify the body or signed header fields of a

message is likely to maintain the validity of the existing signature.

It also could choose to add its own signature to the message.

Forwarders which modify a message in a way that could make an existing

signature invalid are particularly good candidates for adding their own

signatures (e.g., mailing-list-name@example.net). Since (re-)signing is

taking responsibility for the content of the message, these signing

forwarders are likely to be selective, and forward or re-sign a message

only if it is received with a valid signature or if they have some

other basis for knowing that the message is not spoofed.

A common practice among systems that are primarily redistributors of

mail is to add a Sender header field to the message, to identify the

address being used to sign the message. This practice will remove any

preexisting Sender header field as required by [RFC5322]. The forwarder

applies a new DKIM-Signature header field with the signature, public

key, and related information of the forwarder.

Appendix C. Creating a Public Key (INFORMATIVE)

$ openssl genrsa -out rsa.private 1024

The default signature is an RSA signed SHA256 digest of the complete

email. For ease of explanation, the openssl command is used to describe

the mechanism by which keys and signatures are managed. One way to

generate a 1024-bit, unencrypted private key suitable for DKIM is to

use openssl like this:

The "genrsa" step results in the file rsa.private containing the key

information similar to this:

-----BEGIN RSA PRIVATE KEY-----

MIICXwIBAAKBgQDwIRP/UC3SBsEmGqZ9ZJW3/DkMoGeLnQg1fWn7/zYtIxN2SnFC

jxOCKG9v3b4jYfcTNh5ijSsq631uBItLa7od+v/RtdC2UzJ1lWT947qR+Rcac2gb

to/NMqJ0fzfVjH4OuKhitdY9tf6mcwGjaNBcWToIMmPSPDdQPNUYckcQ2QIDAQAB

AoGBALmn+XwWk7akvkUlqb+dOxyLB9i5VBVfje89Teolwc9YJT36BGN/l4e0l6QX

/1//6DWUTB3KI6wFcm7TWJcxbS0tcKZX7FsJvUz1SbQnkS54DJck1EZO/BLa5ckJ

gAYIaqlA9C0ZwM6i58lLlPadX/rtHb7pWzeNcZHjKrjM461ZAkEA+itss2nRlmyO

n1/5yDyCluST4dQfO8kAB3toSEVc7DeFeDhnC1mZdjASZNvdHS4gbLIA1hUGEF9m

3hKsGUMMPwJBAPW5v/U+AWTADFCS22t72NUurgzeAbzb1HWMqO4y4+9Hpjk5wvL/

eVYizyuce3/fGke7aRYw/ADKygMJdW8H/OcCQQDz5OQb4j2QDpPZc0Nc4QlbvMsj

7p7otWRO5xRa6SzXqqV3+F0VpqvDmshEBkoCydaYwc2o6WQ5EBmExeV8124XAkEA

qZzGsIxVP+sEVRWZmW6KNFSdVUpk3qzK0Tz/WjQMe5z0UunY9Ax9/4PVhp/j61bf

eAYXunajbBSOLlx4D+TunwJBANkPI5S9iylsbLs6NkaMHV6k5ioHBBmgCak95JGX

GMot/L2x0IYyMLAz6oLWh2hm7zwtb0CgOrPo1ke44hFYnfc=

-----END RSA PRIVATE KEY-----

To extract the public-key component from the private key, use openssl

like this:

$ openssl rsa -in rsa.private -out rsa.public -pubout -outform PEM

This results in the file rsa.public containing the key information

similar to this:

-----BEGIN PUBLIC KEY-----

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDwIRP/UC3SBsEmGqZ9ZJW3/DkM

oGeLnQg1fWn7/zYtIxN2SnFCjxOCKG9v3b4jYfcTNh5ijSsq631uBItLa7od+v/R

tdC2UzJ1lWT947qR+Rcac2gbto/NMqJ0fzfVjH4OuKhitdY9tf6mcwGjaNBcWToI

MmPSPDdQPNUYckcQ2QIDAQAB

-----END PUBLIC KEY-----

This public-key data (without the BEGIN and END tags) is placed in the

DNS:

brisbane IN TXT ("v=DKIM1; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQ"

 "KBgQDwIRP/UC3SBsEmGqZ9ZJW3/DkMoGeLnQg1fWn7/zYt"

 "IxN2SnFCjxOCKG9v3b4jYfcTNh5ijSsq631uBItLa7od+v"

 "/RtdC2UzJ1lWT947qR+Rcac2gbto/NMqJ0fzfVjH4OuKhi"

 "tdY9tf6mcwGjaNBcWToIMmPSPDdQPNUYckcQ2QIDAQAB")

Appendix D. MUA Considerations

When a DKIM signature is verified, the processing system sometimes

makes the result available to the recipient user's MUA. How to present

this information to the user in a way that helps them is a matter of

continuing human factors usability research. The tendency is to have

the MUA highlight the SDID, in an attempt to show the user the identity

that is claiming responsibility for the message. An MUA might do this

with visual cues such as graphics, or it might include the address in

an alternate view, or it might even rewrite the original From address

using the verified information. Some MUAs might indicate which header

fields were protected by the validated DKIM signature. This could be

done with a positive indication on the signed header fields, with a

negative indication on the unsigned header fields, by visually hiding

the unsigned header fields, or some combination of these. If an MUA

uses visual indications for signed header fields, the MUA probably

needs to be careful not to display unsigned header fields in a way that

might be construed by the end user as having been signed. If the

message has an l= tag whose value does not extend to the end of the

message, the MUA might also hide or mark the portion of the message

body that was not signed.

The aforementioned information is not intended to be exhaustive. The

MUA may choose to highlight, accentuate, hide, or otherwise display any

other information that may, in the opinion of the MUA author, be deemed

important to the end user.

Appendix E. Acknowledgements

The previous IETF version of DKIM [RFC4871] was edited by: Eric Allman,

Jon Callas, Mark Delany, Miles Libbey, Jim Fenton and Michael Thomas.

That specification was the result of an extended, collaborative effort,

including participation by: Russ Allbery, Edwin Aoki, Claus Assmann,

Steve Atkins, Rob Austein, Fred Baker, Mark Baugher, Steve Bellovin,

Nathaniel Borenstein, Dave Crocker, Michael Cudahy, Dennis Dayman,

Jutta Degener, Frank Ellermann, Patrik Faeltstroem, Mark Fanto, Stephen

Farrell, Duncan Findlay, Elliot Gillum, Olafur Gu[eth]mundsson, Phillip

Hallam-Baker, Tony Hansen, Sam Hartman, Arvel Hathcock, Amir Herzberg,

Paul Hoffman, Russ Housley, Craig Hughes, Cullen Jennings, Don Johnsen,

Harry Katz, Murray S. Kucherawy, Barry Leiba, John Levine, Charles

Lindsey, Simon Longsdale, David Margrave, Justin Mason, David Mayne,

Thierry Moreau, Steve Murphy, Russell Nelson, Dave Oran, Doug Otis,

Shamim Pirzada, Juan Altmayer Pizzorno, Sanjay Pol, Blake Ramsdell,

Christian Renaud, Scott Renfro, Neil Rerup, Eric Rescorla, Dave

Rossetti, Hector Santos, Jim Schaad, the Spamhaus.org team, Malte S.

Stretz, Robert Sanders, Rand Wacker, Sam Weiler, and Dan Wing.

The earlier DomainKeys was a primary source from which DKIM was

derived. Further information about DomainKeys is at [RFC4870].

Authors' Addresses

D. Crocker editor Crocker Brandenburg InternetWorking

675 Spruce Dr. Sunnyvale, USA Phone: +1.408.246.8253 EMail:

dcrocker@bbiw.net URI: http://bbiw.net

Tony Hansen editor Hansen AT&T Laboratories 200 Laurel Ave. South

Middletown, NJ 07748 USA EMail: tony+dkimov@maillennium.att.com

M. Kucherawy editor Kucherawy Cloudmark 128 King St., 2nd Floor San

Francisco, CA 94107 USA EMail: msk@cloudmark.com

mailto:dcrocker@bbiw.net
http://bbiw.net
mailto:tony+dkimov@maillennium.att.com
mailto:msk@cloudmark.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Signing Identity
	1.2. Scalability
	1.3. Simple Key Management
	1.4. Data Integrity
	2. Terminology and Definitions
	2.1. Signers
	2.2. Verifiers
	2.3. Identity
	2.4. Identifier
	2.5. Signing Domain Identifier (SDID)
	2.6. Agent or User Identifier (AUID)
	2.7. Identity Assessor
	2.8. Whitespace
	2.9. Common ABNF Tokens
	2.10. Imported ABNF Tokens
	2.11. DKIM-Quoted-Printable
	3. Protocol Elements
	3.1. Selectors
	3.2. Tag=Value Lists
	3.3. Signing and Verification Algorithms
	3.3.1. The rsa-sha1 Signing Algorithm
	3.3.2. The rsa-sha256 Signing Algorithm
	3.3.3. Key Sizes
	3.3.4. Other Algorithms
	3.4. Canonicalization
	3.4.1. The "simple" Header Canonicalization Algorithm
	3.4.2. The "relaxed" Header Canonicalization Algorithm
	3.4.3. The "simple" Body Canonicalization Algorithm
	3.4.4. The "relaxed" Body Canonicalization Algorithm
	3.4.5. Body Length Limits
	3.4.6. Canonicalization Examples (INFORMATIVE)
	3.5. The DKIM-Signature Header Field
	3.6. Key Management and Representation
	3.6.1. Textual Representation
	3.6.2. DNS Binding
	3.6.2.1. Namespace
	3.6.2.2. Resource Record Types for Key Storage
	3.7. Computing the Message Hashes
	3.8. Signing by Parent Domains
	3.9. Relationship between SDID and AUID
	4. Semantics of Multiple Signatures
	4.1. Example Scenarios
	4.2. Interpretation
	5. Signer Actions
	5.1. Determine Whether the Email Should Be Signed and by Whom
	5.2. Select a Private Key and Corresponding Selector Information
	5.3. Normalize the Message to Prevent Transport Conversions
	5.4. Determine the Header Fields to Sign
	5.5. Recommended Signature Content
	5.6. Compute the Message Hash and Signature
	5.7. Insert the DKIM-Signature Header Field
	6. Verifier Actions
	6.1. Extract Signatures from the Message
	6.1.1. Validate the Signature Header Field
	6.1.2. Get the Public Key
	6.1.3. Compute the Verification
	6.2. Communicate Verification Results
	6.3. Interpret Results/Apply Local Policy
	7. IANA Considerations
	7.1. DKIM-Signature Tag Specifications
	7.2. DKIM-Signature Query Method Registry
	7.3. DKIM-Signature Canonicalization Registry
	7.4. _domainkey DNS TXT Record Tag Specifications
	7.5. DKIM Key Type Registry
	7.6. DKIM Hash Algorithms Registry
	7.7. DKIM Service Types Registry
	7.8. DKIM Selector Flags Registry
	7.9. DKIM-Signature Header Field
	8. Security Considerations
	8.1. Misuse of Body Length Limits ("l=" Tag)
	8.1.1. Addition of New MIME Parts to Multipart/*
	8.1.2. Addition of new HTML content to existing content
	8.2. Misappropriated Private Key
	8.3. Key Server Denial-of-Service Attacks
	8.4. Attacks Against the DNS
	8.5. Replay Attacks
	8.6. Limits on Revoking Keys
	8.7. Intentionally Malformed Key Records
	8.8. Intentionally Malformed DKIM-Signature Header Fields
	8.9. Information Leakage
	8.10. Remote Timing Attacks
	8.11. Reordered Header Fields
	8.12. RSA Attacks
	8.13. Inappropriate Signing by Parent Domains
	8.14. Attacks Involving Addition of Header Fields
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Example of Use (INFORMATIVE)
	Appendix A.1. The User Composes an Email
	Appendix A.2. The Email is Signed
	Appendix A.3. The Email Signature is Verified
	Appendix B. Usage Examples (INFORMATIVE)
	Appendix B.1. Alternate Submission Scenarios
	Appendix B.1.1. Delegated Business Functions
	Appendix B.1.2. PDAs and Similar Devices
	Appendix B.1.3. Roaming Users
	Appendix B.1.4. Independent (Kiosk) Message Submission
	Appendix B.2. Alternate Delivery Scenarios
	Appendix B.2.1. Affinity Addresses
	Appendix B.2.2. Simple Address Aliasing (.forward)
	Appendix B.2.3. Mailing Lists and Re-Posters
	Appendix C. Creating a Public Key (INFORMATIVE)
	Appendix D. MUA Considerations
	Appendix E. Acknowledgements
	Authors' Addresses

