
INTERNET-DRAFT Stuart Kwan
<draft-ietf-dnsext-gss-tsig-00.txt> Praerit Garg
 James Gilroy
 Levon Esibov
 Microsoft Corp.
 July 2000
 Expires January 2001

GSS Algorithm for TSIG (GSS-TSIG)

Status of this Memo

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

The TSIG protocol provides transaction level authentication for DNS.
TSIG is extensible through the definition of new algorithms. This
document specifies an algorithm based on the Generic Security Service
Application Program Interface (GSS-API) (RFC2743).

https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-gss-tsig-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2743

Expires January 2001 [Page 1]

INTERNET-DRAFT GSS-TSIG July 2000

Table of Contents

1: Introduction..2
2: Algorithm Overview..3
 2.1: GSS Details...4
3: Client Protocol Details...4
 3.1: Negotiating Context...4
 3.1.1: Call GSS_Init_sec_context.................................5
 3.1.2: Send TKEY Query to Server.................................6
 3.1.3: Receive TKEY Query-Response from Server...................7
 3.2: Context Established...9
4: Server Protocol Details...9
 4.1: Negotiating Context...9
 4.1.1: Receive TKEY Query from Client...........................10
 4.1.2: Call GSS_Accept_sec_context..............................10
 4.1.3: Send TKEY Query-Response to Client.......................11
 4.2: Context Established..12
 4.2.1: Terminating a Context....................................12
5: Sending and Verifying Signed Messages............................12
 5.1: Sending a Signed Message - Call GSS_GetMIC...................12
 5.2: Verifying a Signed Message - Call GSS_VerifyMIC..............13
6: Example usage of GSS-TSIG algorithm..............................14
7: Security Considerations..18
8: IANA Considerations..18
9: Conformance..18
10:Acknowledgements...18
11:References...19

1. Introduction

The Secret Key Transaction Signature for DNS (TSIG) [RFC2845] protocol
was developed to provide a lightweight end to end authentication and
integrity off messages between two DNS entities, such as client and
server or server and server. TSIG can be used to protect dynamic update
messages, authenticate regular message or to off-load complicated
DNSSEC [RFC2535] processing from a client to a server and still allow
the client to be assured of the integrity off the answers.

The TSIG protocol [RFC2845] is extensible through the definition of new
algorithms. This document specifies an algorithm based on the Generic
Security Service Application Program Interface (GSS-API) [RFC2743].
GSS-API is a framework that provides an abstraction of security to the
application protocol developer. The security services offered can
include authentication, integrity, and confidentiality.

The GSS-API framework has several benefits:
* Mechanism and protocol independence. The underlying mechanisms that

https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2743

realize the security services can be negotiated on the fly and varied
over time. For example, a client and server may use Kerberos [RFC1964]
for one transaction, whereas that same server may use SPKM [RFC2025]
with a different client.

Expires January 2001 [Page 2]

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2025

INTERNET-DRAFT GSS-TSIG July 2000

* The protocol developer is removed from the responsibility of
creating and managing a security infrastructure. For example, the
developer does not need to create new key distribution or key
management systems. Instead the developer relies on the security
service mechanism to manage this on its behalf.

The scope of this document is limited to the description of an
authentication mechanism only. It does not discuss and/or propose an
authorization mechanism. Readers that are unfamiliar with GSS-API
concepts are encouraged to read the characteristics and concepts section
of [RFC2743] before examining this protocol in detail. It is also
assumed that the reader is familiar with [RFC2845], [TKEY], [RFC1034]
and [RFC1035].

The key words "MUST", "REQUIRED", "SHOULD", "RECOMMENDED", and
"MAY" in this document are to be interpreted as described in RFC 2119
[RFC2119].

2. Algorithm Overview

In GSS, client and server interact to create a "security context".
The security context can be used to create and verify transaction
signatures on messages between the two parties. A unique security
context is required for each unique connection between client and
server.

Creating a security context involves a negotiation between client and
server. Once a context has been established, it has a finite lifetime
for which it can be used to secure messages. Thus there are three
states of a context associated with a connection:

 +----------+
 | |
 V |
 +---------------+ |
 | Uninitialized | |
 | | |
 +---------------+ |
 | |
 V |
 +---------------+ |
 | Negotiating | |
 | Context | |
 +---------------+ |
 | |
 V |
 +---------------+ |
 | Context | |

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

 | Established | |
 +---------------+ |
 | |
 +----------+

Expires January 2001 [Page 3]

INTERNET-DRAFT GSS-TSIG July 2000

Every connection begins in the uninitialized state.

2.1 GSS Details

Client and server MUST be locally authenticated and have acquired
default credentials before using this protocol as specified in
Section 1.1.1 "Credentials" in RFC 2743 [RFC2743].

The GSS-TSIG algorithm consists of two stages:

I. Establish security context. The Client and Server use the
GSS_Init_sec_context and GSS_Accept_sec_context APIs to generate the
tokens that they pass to each other using [TKEY] as a transport
mechanism.

II. Once the security context is established it is used to generate and
verify signatures using GSS_GetMIC and GSS_VerifyMIC APIs. These
signatures are exchanged by the Client and Server as a part of the TSIG
records exchanged in DNS messages sent between the Client and Server,
as described in [RFC2845].

3. Client Protocol Details

A unique context is required for each server to which the client sends
secure messages. A context is identified by a context handle. A
client maintains a mapping of servers to handles,

 (target_name, key_name, context_handle)

The value key_name also identifies a context handle. The key_name is
the owner name of the TKEY and TSIG records sent between a client and a
server to indicate to each other which context MUST be used to process
the current request.

3.1 Negotiating Context

In GSS, establishing a security context involves the passing of opaque
tokens between the client and the server. The client generates the
initial token and sends it to the server. The server processes the
token and if necessary, returns a subsequent token to the client. The
client processes this token, and so on, until the negotiation is
complete. The number of times the client and server exchange tokens
depends on the underlying security mechanism. A completed negotiation
results in a context handle.

The TKEY resource record [TKEY] is used as the vehicle to transfer

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2845

tokens between client and server. The TKEY record is a general
mechanism for establishing secret keys for use with TSIG. For more
information, see [TKEY].

Expires January 2001 [Page 4]

INTERNET-DRAFT GSS-TSIG July 2000

3.1.1 Call GSS_Init_sec_context

To obtain the first token to be sent to a server, a client MUST call
GSS_Init_sec_context API.
The following input parameters MUST be used. The outcome of the call is
indicated with the output values below. Consult Sections 2.2.1
"GSS_Init_sec_context call" of [RFC2743] for syntax definitions.

 INPUTS
 CREDENTIAL HANDLE claimant_cred_handle = NULL (NULL specifies "use
 default"). Client MAY instead specify some other valid handle
 to its credentials.
 CONTEXT HANDLE input_context_handle = 0
 INTERNAL NAME targ_name = "DNS/<target_server_name>"
 OBJECT IDENTIFIER mech_type = Underlying security
 mechanism chosen by implementers. To guarantee
 interoperability of the implementations of the GSS-TSIG
 mechanism client MUST specify a valid underlying security
 mechanism that enables use of Kerberos v5.
 OCTET STRING input_token = NULL
 BOOLEAN replay_det_req_flag = TRUE
 BOOLEAN mutual_req_flag = TRUE
 BOOLEAN deleg_req_flag = TRUE
 BOOLEAN sequence_req_flag = TRUE
 BOOLEAN anon_req_flag = FALSE
 BOOLEAN conf_req_flag = TRUE
 BOOLEAN integ_req_flag = TRUE
 INTEGER lifetime_req = 0 (0 requests a default
 value). Client MAY instead specify another upper bound for the
 lifetime of the context to be established in seconds.
 OCTET STRING chan_bindings = Any valid channel bindings
 as specified in Section 1.1.6 "Channel Bindings" in [RFC2734]

 OUTPUTS
 INTEGER major_status
 CONTEXT HANDLE output_context_handle
 OCTET STRING output_token
 BOOLEAN replay_det_state
 BOOLEAN mutual_state
 INTEGER minor_status
 OBJECT IDENTIFIER mech_type
 BOOLEAN deleg_state
 BOOLEAN sequence_state
 BOOLEAN anon_state
 BOOLEAN trans_state
 BOOLEAN prot_ready_state
 BOOLEAN conf_avail
 BOOLEAN integ_avail

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2734

 INTEGER lifetime_rec

Expires January 2001 [Page 5]

INTERNET-DRAFT GSS-TSIG July 2000

The client MUST abandon the algorithm if returned major_status is set to
one of the following errors:

 GSS_S_DEFECTIVE_TOKEN
 GSS_S_DEFECTIVE_CREDENTIAL
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_NO_CRED
 GSS_S_CREDENTIALS_EXPIRED
 GSS_S_BAD_BINDINGS
 GSS_S_OLD_TOKEN
 GSS_S_DUPLICATE_TOKEN
 GSS_S_NO_CONTEXT
 GSS_S_BAD_NAMETYPE
 GSS_S_BAD_NAME
 GSS_S_BAD_MECH
 GSS_S_FAILURE

Success values of major_status are GSS_S_CONTINUE_NEEDED and
GSS_S_COMPLETE. The exact success code is important during later
processing.

The values of replay_det_state and mutual_state indicate if the
security package provides replay detection and mutual
authentication, respectively. If one or both of these values
are FALSE, the client MUST abandon this algorithm.

Client's behavior MAY depend on other OUTPUT parameters according
to the policy local to the client.

The handle output_context_handle is unique to this negotiation and
is stored in the client's mapping table as the context_handle that
maps to target_name.

3.1.2 Send TKEY Query to Server

An opaque output_token returned by GSS_Init_sec_context is transmitted
to the server in a query request with QTYPE=TKEY. The token itself
will be placed in a Key Data field of the RDATA field in the TKEY
resource record in the additional records section of the query. The
owner name of the TKEY resource record set queried for and the owner
name of the supplied TKEY resource record in the additional records
section MUST be the same. This name uniquely identifies the security
context to both the client and server, and thus the client SHOULD use
a value which is globally unique as described in [TKEY].

Expires January 2001 [Page 6]

INTERNET-DRAFT GSS-TSIG July 2000

 TKEY Record
 NAME = client-generated globally unique domain name string
 (as described in [TKEY])
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [TKEY])
 Key Size = size of output_token in octets
 Key Data = output_token

The remaining fields in the TKEY RDATA, i.e. Inception, Expiration,
Error, Other Size and Data Fields, MUST be set according to [TKEY].

The query is transmitted to the server.

Note: if the original client call to GSS_Init_sec_context returned any
major_status other than GSS_S_CONTINUE_NEEDED or GSS_S_COMPLETE, then
the client MUST NOT send TKEY query.

3.1.3 Receive TKEY Query-Response from Server

Upon the reception of the TKEY query DNS server MUST respond according
to the description in Section 4. This Section specifies the behavior
of the client after it receives the matching response to its query.

The next processing step depends on the value of major_status from the
most recent call that client performed to GSS_Init_sec_context: either
GSS_S_COMPLETE or GSS_S_CONTINUE.

3.1.3.1 Value of major_status == GSS_S_COMPLETE

If the last call to GSS_Init_sec_context yielded a major_status value
of GSS_S_COMPLETE and a non-NULL output_token was sent to the server,
then the client side component of the negotiation is complete and the
client is awaiting confirmation from the server.

Confirmation is in the form of a query response with RCODE=NOERROR
and with the last client supplied TKEY record in the answer section
of the query. The response MUST be signed with a TSIG record. The
signature in the TSIG record MUST be verified using the procedure
detailed in section 5, Sending and Verifying Signed Messages. If the
response is not signed, OR if the response is signed but signature is
invalid, then an attacker has tampered with the message in transit or
has attempted to send the client a false response. The client MUST
continue waiting for a response to its last TKEY query until the time
period since the client sent last TKEY query expires. Such a time period
is specified by the policy local to the client.

Expires January 2001 [Page 7]

INTERNET-DRAFT GSS-TSIG July 2000

If the signature is verified the context state is advanced to Context
Established. Proceed to section 3.2 for usage of the security context.

3.1.3.2 Value of major_status == GSS_S_CONTINUE

If the last call to GSS_Init_sec_context yielded a major_status value
of GSS_S_CONTINUE, then the negotiation is not yet complete. The server
will return to the client a query-response with a TKEY record in the
Answer section. Since the message is not signed, the client MUST
disregard the error code of the DNS message and the TKEY record. The
client MUST pass a token specified in the Key Data field in the TKEY
resource record to GSS_Init_sec_context using the same parameters values
as in previous call except values for CONTEXT HANDLE
input_context_handle and OCTET STRING input_token as described below:

 INPUTS
 CONTEXT HANDLE input_context_handle = context_handle (this is the
 context_handle corresponding to the key_name which is the
 owner name of the TKEY record in the answer section in the
 TKEY query response)
 OCTET STRING input_token = token from Key field of
 TKEY record

Depending on the following OUTPUT values of GSS_Init_sec_context
 INTEGER major_status
 OCTET STRING output_token
the client MUST take one of the following actions:

If OUTPUT major_status is set to one of the following values
 GSS_S_DEFECTIVE_TOKEN
 GSS_S_DEFECTIVE_CREDENTIAL
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_NO_CRED
 GSS_S_CREDENTIALS_EXPIRED
 GSS_S_BAD_BINDINGS
 GSS_S_OLD_TOKEN
 GSS_S_DUPLICATE_TOKEN
 GSS_S_NO_CONTEXT
 GSS_S_BAD_NAMETYPE
 GSS_S_BAD_NAME
 GSS_S_BAD_MECH
 GSS_S_FAILURE

then client MUST abandon this negotiation sequence. The client MAY
repeat the negotiation sequence starting with the uninitialized state as
described in section 3.1. To prevent infinite looping the number of
attempts to establish a security context must be limited.

If OUTPUT major_status is GSS_S_CONTINUE_NEEDED OR GSS_S_COMPLETE then
client MUST act as described below.

Expires January 2001 [Page 8]

INTERNET-DRAFT GSS-TSIG July 2000

If major_status is GSS_S_CONTINUE_NEEDED the negotiation is not yet
finished. The token output_token MUST be passed to the server in a TKEY
record by repeating the negotiation sequence beginning with section
3.1.2. The client MUST place a limit on the number of continuations in
a context negotiation to prevent endless looping. Such limit SHOULD NOT
exceed value of 10.

If major_status is GSS_S_COMPLETE and output_token is non-NULL, the
client-side component of the negotiation is complete but the token
output_token MUST be passed to the server by repeating the negotiation
sequence beginning with section 3.1.2.

If major_status is GSS_S_COMPLETE and output_token is NULL, context
negotiation is complete. The context state is advanced to Context
Established. Proceed to section 3.2 for usage of the security context.

3.2 Context Established

When context negotiation is complete, the handle context_handle MUST be
used for the generation and verification of transaction signatures.

The procedures for sending and receiving signed messages are described
in section 5, Sending and Verifying Signed Messages.

4. Server Protocol Details

As on the client-side, the result of a successful context negotiation
is a context handle used in future generation and verification of the
transaction signatures.

A server MAY be managing several contexts with several clients.
Clients identify their contexts by providing a key name in their
request. The server maintains a mapping of key names to handles:

 (key_name, context_handle)

4.1 Negotiating Context

A server MUST recognize TKEY queries as security context negotiation
messages.

Expires January 2001 [Page 9]

INTERNET-DRAFT GSS-TSIG July 2000

4.1.1 Receive TKEY Query from Client

Upon receiving a query with QTYPE = TKEY, the server MUST examine
whether the Mode and Algorithm Name fields of the TKEY record in the
additional records section of the message contain values of 3 and
gss-tsig, respectively. If they do, then the (key_name, context_handle)
mapping table is searched for the key_name matching the owner name of
the TKEY record in the additional records section of the query. If the
name is found in the table, the corresponding context_handle is used in
subsequent GSS operations. If the name is not found, then the server
interprets this as a start of new security context negotiation.

4.1.2 Call GSS_Accept_sec_context

The server performs its side of a context negotiation by calling
GSS_Accept_sec_context. The following input parameters MUST be used. The
outcome of the call is indicated with the output values below. Consult
Sections 2.2.2 "GSS_Accept_sec_context call" of the RFC 2743[RFC2743]
for syntax definitions.

 INPUTS
 CONTEXT HANDLE input_context_handle = 0 if new negotiation,
 context_handle matching
 key_name if ongoing negotiation
 OCTET STRING input_token = token specified in the Key
 field from TKEY RR (from Additional records Section of
 the client's query)

 CREDENTIAL HANDLE acceptor_cred_handle = NULL (NULL specifies "use
 default"). Server MAY instead specify some other valid handle
 to its credentials.
 OCTET STRING chan_bindings = Any valid channel bindings
 as specified in Section 1.1.6 "Channel Bindings" in [RFC2734]

 OUTPUTS
 INTEGER major_status
 CONTEXT_HANDLE output_context_handle
 OCTET STRING output_token
 INTEGER minor_status
 INTERNAL NAME src_name
 OBJECT IDENTIFIER mech_type
 BOOLEAN deleg_state
 BOOLEAN mutual_state
 BOOLEAN replay_det_state
 BOOLEAN sequence_state
 BOOLEAN anon_state
 BOOLEAN trans_state
 BOOLEAN prot_ready_state

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2734

 BOOLEAN conf_avail
 BOOLEAN integ_avail
 INTEGER lifetime_rec
 CONTEXT_HANDLE delegated_cred_handle

Expires January 2001 [Page 10]

INTERNET-DRAFT GSS-TSIG July 2000

If this is the first call to GSS_Accept_sec_context in a new
negotiation, then output_context_handle is stored in the server's
key-mapping table as the context_handle that maps to the name of the
TKEY record.

4.1.3 Send TKEY Query-Response to Client

The server MUST respond to the client with a TKEY query response with
RCODE = NOERROR, that contains a TKEY record in the answer section.

If OUTPUT major_status is one of the following errors the error field
in the TKEY record set to BADKEY.

 GSS_S_DEFECTIVE_TOKEN
 GSS_S_DEFECTIVE_CREDENTIAL
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_DUPLICATE_TOKEN
 GSS_S_OLD_TOKEN
 GSS_S_NO_CRED
 GSS_S_CREDENTIALS_EXPIRED
 GSS_S_BAD_BINDINGS
 GSS_S_NO_CONTEXT
 GSS_S_BAD_MECH
 GSS_S_FAILURE

If OUTPUT major_status is set to GSS_S_COMPLETE or
GSS_S_CONTINUE_NEEDED then server MUST act as described below.

If major_status is GSS_S_COMPLETE the server component of the
negotiation is finished. If output_token is non-NULL, then it MUST be
returned to the client in a Key Data field of the RDATA in TKEY. The
error field in the TKEY record is set to NOERROR.

If major_status is GSS_S_COMPLETE and output_token is NULL, then the
TKEY record received from the client MUST be returned in the Answer
section of the response. The message MUST be signed with a TSIG record
as described in section 5, Sending and Verifying Signed Messages. The
context state is advanced to Context Established. Section 4.2 discusses
the usage of the security context.

If major_status is GSS_S_CONTINUE, the server component of the
negotiation is not yet finished. The server responds to the TKEY
query with a standard query response, placing in the answer section a
TKEY record containing output_token in the Key Data RDATA field. The
error field in the TKEY record is set to NOERROR. The server MUST limit
the number of times that a given context is allowed to repeat, to
prevent endless looping. Such limit SHOULD NOT exceed value of 10.

Expires January 2001 [Page 11]

INTERNET-DRAFT GSS-TSIG July 2000

In all cases except if major_status is GSS_S_COMPLETE and output_token
is NULL other TKEY record fields MUST contain the following values:
 NAME = key_name
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [TKEY])
 Key Size = size of output_token in octets

The remaining fields in the TKEY RDATA, i.e. Inception, Expiration,
Error, Other Size and Data Fields, MUST be set according to [TKEY].

4.2 Context Established

When context negotiation is complete, the handle context_handle
is used for the generation and verification of transaction signatures.
The handle is valid for a finite amount of time determined by the
underlying security mechanism. A server MAY unilaterally terminate
a context at any time (see section 4.2.1).

The procedures for sending and receiving signed messages are given in
section 5, Sending and Verifying Signed Messages.

4.2.1 Terminating a Context

A server can terminate any established context at any time. The
server MAY hint to the client that the context is being deleted
by including a TKEY RR in a response with the Mode field set to 5, i.e.
"key deletion" [TKEY].
An active context is deleted by calling GSS_Delete_sec_context
providing the associated context_handle.

5. Sending and Verifying Signed Messages

5.1 Sending a Signed Message - Call GSS_GetMIC

The procedure for sending a signature-protected message is specified
in [RFC2845]. The data to be passed to the signature routine includes
the whole DNS message with specific TSIG variables appended. For the
exact format, see [RFC2845]. For this protocol, use the following
TSIG variable values:

 TSIG Record
 NAME = key_name that identifies this context
 RDATA
 Algorithm Name = gss-tsig

https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2845

Assign the remaining fields in the TSIG RDATA appropriate values
as described in [RFC2845].

Expires January 2001 [Page 12]

https://datatracker.ietf.org/doc/html/rfc2845

INTERNET-DRAFT GSS-TSIG July 2000

The signature is generated by calling GSS_GetMIC. The following input
parameters MUST be used. The outcome of the call is indicated with the
output values specified below. Consult Sections 2.3.1 "GSS_GetMIC
call" of the RFC 2743[RFC2743] for syntax definitions.

 INPUTS
 CONTEXT HANDLE context_handle = context_handle for key_name
 OCTET STRING message = outgoing message plus TSIG
 variables (per [RFC2845])
 INTEGER qop_req = 0 (0 requests a default
 value). Caller MAY instead specify other valid value (for
 details see Section 1.2.4 in [RFC2743])

 OUTPUTS
 INTEGER major_status
 INTEGER minor_status
 OCTET STRING per_msg_token

If major_status is GSS_S_COMPLETE, then signature generation
succeeded. The signature in per_msg_token is inserted into the
Signature field of the TSIG RR and the message is transmitted.

If major_status is GSS_S_CONTEXT_EXPIRED, GSS_S_CREDENTIALS_EXPIRED or
GSS_S_FAILURE the caller MUST delete the security context, return to the
uninitialized state and SHOULD negotiate a new security context, as
described above in Section 3.1

If major_status is GSS_S_NO_CONTEXT, the caller MUST remove the entry
for key_name from the (target_ name, key_name, context_handle) mapping
table, return to the uninitialized state and SHOULD negotiate a new
security context, as described above in Section 3.1

If major_status is GSS_S_BAD_QOP, the caller SHOULD repeat the
GSS_GetMIC call with allowed QOP value. The number of such repetitions
MUST be limited to prevent infinite loops.

5.2 Verifying a Signed Message - Call GSS_VerifyMIC

The procedure for verifying a signature-protected message is specified
in [RFC2845].
The NAME of the TSIG record determines which context_handle maps to
the context that MUST be used to verify the signature. If the NAME
does not map to an established context, the server MUST send a
standard TSIG error response to the client indicating BADKEY in the
TSIG error field (as described in [RFC2845]).

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2743#section-1.2.4
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2845

Expires January 2001 [Page 13]

INTERNET-DRAFT GSS-TSIG July 2000

For the GSS algorithm, a signature is verified by using GSS_VerifyMIC:

 INPUTS
 CONTEXT HANDLE context_handle = context_handle for key_name
 OCTET STRING message = incoming message plus TSIG
 variables (per [RFC2845])
 OCTET STRING per_msg_token = Signature field from TSIG RR

 OUTPUTS
 INTEGER major_status
 INTEGER minor_status
 INTEGER qop_state

If major_status is GSS_S_COMPLETE, the signature is authentic and the
message was delivered intact. Per [RFC2845], the timer values of the
TSIG record MUST also be valid before considering the message to be
authentic. The caller MUST not act on the request or response in the
message until these checks are verified.

If major_status is set to one of the following values, the negotiated
context is no longer valid.
 GSS_S_DEFECTIVE_TOKEN
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_DUPLICATE_TOKEN
 GSS_S_OLD_TOKEN
 GSS_S_UNSEQ_TOKEN
 GSS_S_GAP_TOKEN
 GSS_S_CONTEXT_EXPIRED
 GSS_S_NO_CONTEXT
 GSS_S_FAILURE

If this failure occurs when a server is processing a client request,
the server MUST send a standard TSIG error response to the client
indicating BADKEY in the TSIG error field as described in [RFC2845].

If the timer values of the TSIG record are invalid, the message MUST
NOT be considered authentic. If this error checking fails when a server
is processing a client request, the appropriate error response MUST be
sent to the client according to [RFC2845].

6. Example usage of GSS-TSIG algorithm

This Section describes an example where a Client, client.example.com,
and a Server, server.example.com, establish a security context according
to the algorithm described above.

https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2845

Expires January 2001 [Page 14]

INTERNET-DRAFT GSS-TSIG July 2000

 I. Client initializes security context negotiation
 To establish a security context with a server, server.example.com, the
 Client calls GSS_Init_sec_context with the following parameters
 (Note that some INPUT and OUTPUT parameters not critical for this
 algorithm are not described in this example)
 CONTEXT HANDLE input_context_handle = 0
 INTERNAL NAME targ_name = "DNS/ server.example.com"
 OCTET STRING input_token = NULL
 BOOLEAN replay_det_req_flag = TRUE
 BOOLEAN mutual_req_flag = TRUE

 The OUTPUTS parameters returned by GSS_Init_sec_context include
 INTEGER major_status = GSS_S_CONTINUE_NEEDED
 CONTEXT HANDLE output_context_handle context_handle
 OCTET STRING output_token output_token
 BOOLEAN replay_det_state = TRUE
 BOOLEAN mutual_state = TRUE

 Client verifies that replay_det_state and mutual_state values are
 TRUE. Since the major_status is GSS_S_CONTINUE_NEEDED, which is a
 success OUTPUT major_status value, client stores context_handle that
 maps to "DNS/server.example.com" and proceeds to the next step.

 II. Client sends a query with QTYPE = TKEY to server
 Client sends a query with QTYPE = TKEY for a client-generated globally
 unique domain name string, 789.client.example.com.server.example.com.
 Query contains a TKEY record in its Additional records section with
 the following fields (Note that some fields not specific to this
 algorithm are not specified)
 NAME = 789.client.example.com.server.example.com.
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [TKEY])
 Key Size = size of output_token in octets
 Key Data = output_token

 After the key_name 789.client.example.com.server.example.com.
 is generated it is stored in the client's (target_name, key_name,
 context_handle) mapping table.

 III. Server receives a query with QTYPE = TKEY
 When server receives a query with QTYPE = TKEY, the server verifies
 that Mode and Algorithm fields in the TKEY record in the Additional
 records section of the query are set to 3 and "gss-tsig" respectively.
 It finds that the key_name 789.client.example.com.server.example.com.
 is not listed in its (key_name, context_handle) mapping table.

Expires January 2001 [Page 15]

INTERNET-DRAFT GSS-TSIG July 2000

 IV. Server calls GSS_Accept_sec_context
 To continue security context negotiation server calls
 GSS_Accept_sec_context with the following parameters (Note that some
 INPUT and OUTPUT parameters not critical for this algorithm are not
 described in this example)
 INPUTS
 CONTEXT HANDLE input_context_handle = 0
 OCTET STRING input_token = token specified in the Key
 field from TKEY RR (from Additional
 records section of the client's query)
 The OUTPUTS parameters returned by GSS_Accept_sec_context include
 INTEGER major_status = GSS_S_CONTINUE_NEEDED
 CONTEXT_HANDLE output_context_handle context_handle
 OCTET STRING output_token output_token

 Server stores the mapping of the
 789.client.example.com.server.example.com. to OUTPUT context_handle
 in its (key_name, context_handle) mapping table.

 V. Server responds to the TKEY query
 Since the major_status = GSS_S_CONTINUE_NEEDED in the last server's
 call to GSS_Accept_sec_context, the server responds to the TKEY query
 placing in the answer section a TKEY record containing output_token in
 the Key Data RDATA field. The error field in the TKEY record is set to
 0. The RCODE in the query response is set to NOERROR.

 VI. Client processes token returned by server
 When the client receives the TKEY query response from the server, the
 client calls GSS_Init_sec_context with the following parameters (Note
 that some INPUT and OUTPUT parameters not critical for this algorithm
 are not described in this example)
 CONTEXT HANDLE input_context_handle = the context_handle stored
 in the client's mapping table entry (DNS/server.example.com.,
 789.client.example.com.server.example.com., context_handle)
 INTERNAL NAME targ_name = "DNS/server.example.com"
 OCTET STRING input_token = token from Key field of TKEY
 record from the Answer section of the server's response
 BOOLEAN replay_det_req_flag = TRUE
 BOOLEAN mutual_req_flag = TRUE

 The OUTPUTS parameters returned by GSS_Init_sec_context include
 INTEGER major_status = GSS_S_COMPLETE
 CONTEXT HANDLE output_context_handle = context_handle
 OCTET STRING output_token = output_token
 BOOLEAN replay_det_state = TRUE
 BOOLEAN mutual_state = TRUE

 Since the major_status is set to GSS_S_COMPLETE the client side
 security context is established, but since the output_token is not
 NULL client MUST send a TKEY query to the server as described below.

Expires January 2001 [Page 16]

INTERNET-DRAFT GSS-TSIG July 2000

 VII. Client sends a query with QTYPE = TKEY to server
 Client sends to the server a TKEY query for the
 789.client.example.com.server.example.com. name. Query contains a TKEY
 record in its Additional records section with the following fields
 (Note that some INPUT and OUTPUT parameters not critical to this
 algorithm are not described in this example)
 NAME = 789.client.example.com.server.example.com.
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [TKEY])
 Key Size = size of output_token in octets
 Key Data = output_token

 VIII. Server receives a TKEY query
 When the server receives a TKEY query, the server verifies that Mode
 and Algorithm fields in the TKEY record in the Additional records
 section of the query are set to 3 and gss-tsig, repectively. It
 finds that the key_name 789.client.example.com.server.example.com. is
 listed in its (key_name, context_handle) mapping table.

 IX. Server calls GSS_Accept_sec_context
 To continue security context negotiation server calls
 GSS_Accept_sec_context with the following parameters (Note that some
 INPUT and OUTPUT parameters not critical for this algorithm are not
 described in this example)
 INPUTS
 CONTEXT HANDLE input_context_handle = context_handle from the
 (789.client.example.com.server.example.com., context_handle)
 entry in the server's mapping table
 OCTET STRING input_token = token specified in the Key
 field of TKEY RR (from Additional records Section of
 the client's query)

 The OUTPUTS parameters returned by GSS_Accept_sec_context include
 INTEGER major_status = GSS_S_COMPLETE
 CONTEXT_HANDLE output_context_handle = context_handle
 OCTET STRING output_token = NULL

 Since major_status = GSS_S_COMPLETE, the security context on the
 server side is established, but the server still needs to respond to
 the client's TKEY query, as described below. The security context
 state is advanced to Context Established.

Expires January 2001 [Page 17]

INTERNET-DRAFT GSS-TSIG July 2000

 X. Server responds to the TKEY query
 Since the major_status = GSS_S_COMPLETE in the last server's call to
 GSS_Accept_sec_context and the output_token is NULL, the server
 responds to the TKEY query placing in the answer section a TKEY record
 that was sent by the client in the Additional records section of the
 client's latest TKEY query. In addition to this server places a
 TSIG record in additional records section of its response. Server
 calls GSS_GetMIC to generate a signature to include it in the TSIG
 record. The server specifies the following GSS_GetMIC INPUT
 parameters:
 CONTEXT HANDLE context_handle = context_handle from the
 (789.client.example.com.server.example.com., context_handle)
 entry in the server's mapping table
 OCTET STRING message = outgoing message plus TSIG
 variables (as described in [RFC2845])

 The OUTPUTS parameters returned by GSS_GetMIC include
 INTEGER major_status = GSS_S_COMPLETE
 OCTET STRING per_msg_token

 Signature field in the TSIG record is set to per_msg_token.

 XI. Client processes token returned by server
 Client receives the TKEY query response from the server. Since the
 major_status was GSS_S_COMPLETE in the last client's call to
 GSS_Init_sec_context, the client verifies that the server's response
 is signed. To validate the signature client calls GSS_VerifyMIC with
 the following parameters:

 INPUTS
 CONTEXT HANDLE context_handle = context_handle for
 789.client.example.com.server.example.com. key_name
 OCTET STRING message = incoming message plus TSIG
 variables (as described in [RFC2845])
 OCTET STRING per_msg_token = Signature field from TSIG RR
 included in the server's query response

 Since the OUTPUTS parameter major_status = GSS_S_COMPLETE, the
 signature is validated, security negotiation is complete and the
 security context state is advanced to Context Established. These
 client and server will use the established security context to sign
 and validate the signatures when they exchange packets with each
 other until the context expires.

7. Security Considerations

This document describes a protocol for DNS security using GSS-API.

https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2845

The security provided by this protocol is only as effective as the
security provided by the underlying GSS mechanisms.

Expires January 2001 [Page 18]

INTERNET-DRAFT GSS-TSIG July 2000

8. IANA Considerations

The authors request that the IANA reserve the TSIG Algorithm name
gss-tsig for the use in the Algorithm fields of TKEY and TSIG resource
records. This Algorithm name refers to the algorithm described in this
document. The requirement to have this name registered with IANA is
specified in RFC 2845.

9. Conformance

The GSS API provides maximum flexibility to choose the underlying
security mechanisms that enables security context negotiation. GSS API
enables client and server to negotiate and choose such underlying
security mechanisms on the fly. At the same time, in order to guarantee
interoperability between clients and servers that support GSS-TSIG it is
required that a GSS APIs called by such client and server MUST support
Kerberos v5 as an underlying security mechanisms. In addition to this,
GSS APIs used by client and server MAY also support other underlying
security mechanisms.

10. Acknowledgements

The authors of this document would like to thank the following people
for their contribution to this specification: Chuck Chan, Mike Swift,
Ram Viswanathan, Olafur Gudmundsson and Donald E. Eastlake 3rd.

11. References

[RFC2743] J. Linn, "Generic Security Service Application Program
 Interface, Version 2 , Update 1", RFC 2743, RSA Laboratories,
 January 2000.

[RFC2845] P. Vixie, O. Gudmundsson, D. Eastlake, B. Wellington,
 "Secret Key Transaction Signatures for DNS (TSIG)," RFC 2845,
 ISC, NAI Labs, Motorola, Nominum, May, 2000,

[TKEY] D. Eastlake 3rd, "Secret Key Establishment for DNS (TKEY
 RR)," draft-ietf-dnsext-tkey-*.txt.

[RFC2535] D. Eastlake 3rd, "Domain Name System Security Extensions,"
RFC 2535, IBM, March 1999.

[RFC2137] D. Eastlake 3rd, "Secure Domain Name System Dynamic Update,"
RFC 2137, CyberCash, April 1997.

https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-tkey
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2137

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Expires January 2001 [Page 19]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

INTERNET-DRAFT GSS-TSIG July 2000

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, November 1987.

[RFC1035] Mockapetris, P., "Domain Names - Implementation and
 Specification", STD 13, RFC 1034, November 1987.

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964, OpenVision Technologies, June 1996.

[RFC2025] Adams, C., "The Simple Public-Key GSS-API Mechanism (SPKM)",
RFC 2025, Bell-Northern Research, October 1996.

12. Author's Addresses

Stuart Kwan Praerit Garg
Microsoft Corporation Microsoft Corporation
One Microsoft Way One Microsoft Way
Redmond, WA 98052 Redmond, WA 98052
USA USA
skwan@microsoft.com

James Gilroy Levon Esibov
Microsoft Corporation Microsoft Corporation
One Microsoft Way One Microsoft Way
Redmond, WA 98052 Redmond, WA 98052
USA USA
 levone@microsoft.com

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2025

Expires January 2001 [Page 20]

