INTERNET-DRAFT Donald Eastlake
Obsoletes: 6195 Huawei

Updates: <u>1183</u>, <u>2845</u>, <u>2930</u>, <u>3597</u>

Intended status: Best Current Practice

Expires: January 14, 2013 July 15, 2012

Domain Name System (DNS) IANA Considerations <draft-ietf-dnsext-rfc6195bis-04.txt>

Abstract

This document specifies Internet Assigned Number Authority (IANA) parameter assignment considerations for the allocation of Domain Name System (DNS) resource record types, CLASSes, operation codes, error codes, DNS protocol message header bits, and AFSDB resource record subtypes. It obsoletes RFC 6195 and updates RFCs 1183, 2845, 2930, and 3597.

Status of This Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of \underline{BCP} 78 and \underline{BCP} 79.

Distribution of this draft is unlimited. It is intended to become the new $\underline{\mathsf{BCP}}$ 42 obsoleting $\underline{\mathsf{RFC}}$ 6195. Comments should be sent to the DNS Extensions Working Group mailing list <dnsext@ietf.org>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/lid-abstracts.html. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

D. Eastlake 3rd [Page 1]

Table of Contents

1. Introduction	<u>3</u>
1.1 Terminology	3
1.2 Acknowledgement	<u>3</u>
2. DNS Query/Response Headers	4
<u>2.1</u> One Spare Bit?	5
2.2 OpCode Assignment	5
2.3 RCODE Assignment	
3. DNS Resource Records	<u>8</u>
3.1 RRTYPE IANA Considerations	9
3.1.1 DNS RRTYPE Allocation Policy1	
3.1.2 DNS RRTYPE Expert Guidelines1	
3.1.3 Special Note on the OPT RR1	
3.1.4 The AFSDB RR Subtype Field	
3.2 RR CLASS IANA Considerations1	
3.3. Label Considerations1	
3.3.1 Label Types	
3.3.2 Label Contents and Use	
3.3.2 Laber Contents and use	#
4. Security Considerations <u>1</u>	6
<u>5</u> . IANA Considerations <u>1</u>	<u>6</u>
Appendix A: RRTYPE Allocation Template1	7
<u>Appendix B</u> : Changes From <u>RFC 6195</u> <u>1</u>	8
Normative References	9
Informative References2	

D. Eastlake 3rd [Page 2]

1. Introduction

The Domain Name System (DNS) provides replicated distributed secure hierarchical databases that store "resource records" (RRs) under domain names. DNS data is structured into CLASSes and zones that can be independently maintained. Familiarity with [RFC1034], [RFC1035], [RFC2136], [RFC2181], and [RFC4033] is assumed.

This document provides, either directly or by reference, the general IANA parameter assignment considerations that apply across DNS query and response headers and all RRs. There may be additional IANA considerations that apply to only a particular RRTYPE or query/response OpCode. See the specific RFC defining that RRTYPE or query/response OpCode for such considerations if they have been defined, except for AFSDB RR considerations [RFC1183], which are included herein. This RFC obsoletes [RFC6195]; however, the only significant changes are those to the RRTYPE IANA allocation process, aimed at streamlining it and clarifying the expected behavior of the parties involved, and the closing of the AFSDB sub-type registry.

IANA currently maintains a web page of DNS parameters available from http://www.iana.org.

1.1 Terminology

"Standards Action", "IETF Review", "Specification Required", and "Private Use" are as defined in [RFC5226]. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.2 Acknowledgement

Alfred Hoenes contributions are gratefully acknowledged as are those by Mark Andrews, Dick Franks, and Michael Sheldon.

D. Eastlake 3rd [Page 3]

2. DNS Query/Response Headers

The header for DNS queries and responses contains field/bits in the following diagram taken from [RFC2136] and [RFC6195]:

										1	1	1	1	1	1	
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	
+	+	+	+	+	+	+	+	- +	+	+	+	+	+	+	+	+
							1	ΙD								
+++++++++++++																
QR	QR OpCode AA TC RD RA Z AD CD RCODE															
+	+++++++++++++															
QDCOUNT/ZOCOUNT																
+	+	+	+	+	+	+	+	-+	+	+	+	+	+	+	+	+
					Δ	NCC	UN	Γ/PF	RCOL	JNT						
+	+	+	+	+	+	+	+	- +	+	+	+	+	+	+	+	+
					Ν	ISCO	UN	Γ/UF	COL	JNT						
+	+	+	+	+	+	+	+	- +	+	+	+	+	+	+	+	+
							AR	COUN	ΙT							
+	+	+	+	+	+	+	+	-+	+	+	+	+	+	+	+	-+

The ID field identifies the query and is echoed in the response so they can be matched.

The QR bit indicates whether the header is for a query or a response.

The AA, TC, RD, RA, and CD bits are each theoretically meaningful only in queries or only in responses, depending on the bit. The AD bit was only meaningful in responses but is expected to have a separate but related meaning in queries (see Section 5.7 of [RFCdnssecbisup]). Only the RD and CD bits are expected to be copied from the query to the response; however, some DNS implementations copy all the query header as the initial value of the response header. Thus, any attempt to use a "query" bit with a different meaning in a response or to define a query meaning for a "response" bit may be dangerous, given existing implementation. Meanings for these bits may only be assigned by a Standards Action.

The unsigned integer fields query count (QDCOUNT), answer count (ANCOUNT), authority count (NSCOUNT), and additional information count (ARCOUNT) express the number of records in each section for all OpCodes except Update [RFC2136]. These fields have the same structure and data type for Update but are instead the counts for the zone (ZOCOUNT), prerequisite (PRCOUNT), update (UPCOUNT), and additional information (ARCOUNT) sections.

D. Eastlake 3rd [Page 4]

2.1 One Spare Bit?

There have been ancient DNS implementations for which the Z bit being on in a query meant that only a response from the primary server for a zone is acceptable. It is believed that current DNS implementations ignore this bit.

Assigning a meaning to the Z bit requires a Standards Action.

2.2 OpCode Assignment

Currently, DNS OpCodes are assigned as follows:

(OpCode	Name	Reference
	0	Query	[<u>RFC1035</u>]
	1	<pre>IQuery (Inverse Query, Obsolete)</pre>	[<u>RFC3425</u>]
	2	Status	[<u>RFC1035</u>]
	3	available for assignment	
	4	Notify	[RFC1996]
	5	Update	[<u>RFC2136</u>]
	6-15	available for assignment	

Although the Status OpCode is reserved in [RFC1035], its behavior has not been specified. New OpCode assignments require a Standards Action as modified by [RFC4020].

2.3 RCODE Assignment

It would appear from the DNS header above that only four bits of RCODE, or response/error code, are available. However, RCODEs can appear not only at the top level of a DNS response but also inside TSIG RRs [RFC2845], TKEY RRs [RFC2930], and extended by OPT RRs [RFC2671bis]. The OPT RR provides an 8-bit extension to the 4 header bits resulting in a 12-bit RCODE field, and the TSIG and TKEY RRs have a 16-bit field designated in their RFCs as the "Error" field.

Error codes appearing in the DNS header and in these other RR types all refer to the same error code space with the exception of error code 16, which has a different meaning in the OPT RR than in the TSIG RR, and error code 9 whose variations are described after the table below. The duplicate assignment of 16 was accidental. To the extent that any prior RFCs imply any sort of different error number space for the OPT, TSIG, or TKEY RRs, they are superseded by this unified DNS error number space. (This paragraph is the reason this document

updates $[{\tt RFC2845}]$ and $[{\tt RFC2930}]$.) With the existing exceptions of

D. Eastlake 3rd [Page 5]

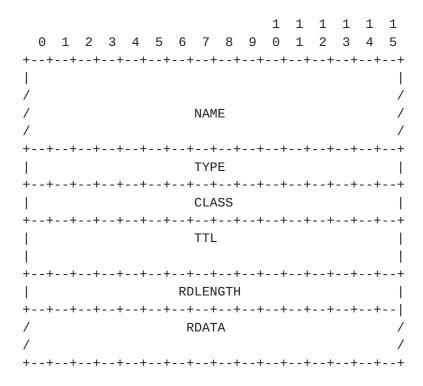
error numbers 9 and 16, the same error number MUST NOT be assigned for different errors even if they would only occur in different RR types. See table below.

RCOD Deci		Description	Reference
0 1 2 3	NoError FormErr ServFail NXDomain	No Error Format Error Server Failure Non-Existent Domain	[RFC1035] [RFC1035] [RFC1035] [RFC1035]
4 5 6	NotImp Refused YXDomain	Not Implemented Query Refused Name Exists when it should not	[RFC1035] [RFC1035] [RFC2136]
7 8 9	YXRRSet NXRRSet NotAuth	RR Set Exists when it should not RR Set that should exist does not See note below after table	[RFC2136] [RFC2136]
10 11 -	NotZone 15	Name not contained in zone	[<u>RFC2136</u>]
0xB -	0xF	Available for assignment	
16 16 17 18 19 20 21	BADVERS BADSIG BADKEY BADTIME BADMODE BADNAME BADALG BADTRUC	Bad OPT Version TSIG Signature Failure Key not recognized Signature out of time window Bad TKEY Mode Duplicate key name Algorithm not supported Bad Truncation	[RFC2671bis] [RFC2845] [RFC2845] [RFC2845] [RFC2930] [RFC2930] [RFC2930] [RFC4635]
23 - 0x0017 -	3,840 0x0F00	Available for assignment	
3,841 - 0x0F01 -	•	Private Use	
4,096 - 0x1000 -		Available for assignment	
65,535 0xFFFF		Reserved, can only be allocated by Action.	a Standards

Note on error number 9 (NOTAUTH): This error number means either "Not Authoritative" [RFC2136] or "Not Authorized" [RFC2845]. If 9 appears as the RCODE in the header of a DNS response without a TSIG RR or with a TSIG RR having a zero error field, then it means

"Not	Authoritative".	Τf	9	appears	as	the	RCODE	in	the	header	οf	а
1100			_	uppcui 3	us	CIIC	NOODE		CIIC	HOUGE	01	·

D. Eastlake 3rd [Page 6]


DNS response that includes a TSIG RR with a non-zero error field, then it means "Not Authorized".

Since it is important that RCODEs be understood for interoperability, assignment of a new RCODE in the ranges listed above as "Available for assignment" requires an IETF Review.

D. Eastlake 3rd [Page 7]

3. DNS Resource Records

All RRs have the same top-level format, shown in the figure below taken from [RFC1035].

NAME is an owner name, i.e., the name of the node to which this resource record pertains. NAMEs are specific to a CLASS as described in <u>Section 3.2</u>. NAMEs consist of an ordered sequence of one or more labels, each of which has a label type [RFC1035] [RFC2671bis].

TYPE is a 2-octet unsigned integer containing one of the RRTYPE codes. See <u>Section 3.1</u>.

CLASS is a 2-octet unsigned integer containing one of the RR CLASS codes. See <u>Section 3.2</u>.

TTL is a 4-octet (32-bit) unsigned integer that specifies, for data TYPEs, the number of seconds that the resource record may be cached before the source of the information should again be consulted. Zero is interpreted to mean that the RR can only be used for the transaction in progress.

RDLENGTH is an unsigned 16-bit integer that specifies the length in octets of the RDATA field.

RDATA is a variable-length string of octets that constitutes the resource. The format of this information varies according to the TYPE and, in some cases, the CLASS of the resource record.

D. Eastlake 3rd [Page 8]

3.1 RRTYPE IANA Considerations

There are three subcategories of RRTYPE numbers: data TYPEs, QTYPEs, and Meta-TYPEs.

Data TYPEs are the means of storing data. QTYPES can only be used in queries. Meta-TYPEs designate transient data associated with a particular DNS message and, in some cases, can also be used in queries. Thus far, data TYPEs have been assigned from 1 upward, plus the block from 100 through 103, and from 32,768 upward, while Q and Meta-TYPEs have been assigned from 255 downward except for the OPT Meta-RR, which is assigned TYPE 41. There have been DNS implementations that made caching decisions based on the top bit of the bottom byte of the RRTYPE.

There are currently three Meta-TYPEs assigned: OPT [RFC2671bis], TSIG [RFC2845], and TKEY [RFC2930]. There are currently five QTYPEs assigned: * (ALL/ANY), MAILA, MAILB, AXFR, and IXFR.

Allocated RRTYPEs have mnemonics that must be completely disjoint from the mnemonics used for CLASSes and that must match the regular expression below. In addition, the generic CLASS and RRTYPE names specified in Section 5 of [RFC3597] cannot be assigned as new RRTYPE mnemonics.

[A-Z][A-Z0-9\-]*[A-Z0-9] but not (TYPE|CLASS)[0-9]*

Considerations for the allocation of new RRTYPEs are as follows:

Decimal

Hexadecimal Assignment Policy

0

0x0000 RRTYPE zero is used as a special indicator for the

SIG (0) RR [<u>RFC2931</u>] [<u>RFC4034</u>] and in other

circumstances, and it must never be allocated for

ordinary use.

1 - 127

0x0001 - 0x007F Remaining RRTYPEs in this range are assigned for

data TYPEs by the DNS RRTYPE Allocation Policy as

specified in Section 3.1.1.

128 - 255

0x0080 - 0x00FF Remaining RRTYPEs in this range are assigned for Q

and Meta-TYPEs by the DNS RRTYPE Allocation Policy

as specified in <u>Section 3.1.1</u>.

D. Eastlake 3rd [Page 9]

256 - 61,439	
0x0100 - 0xEFFF	Remaining RRTYPEs in this range are assigned for data RRTYPEs by the DNS RRTYPE Allocation Policy as specified in <u>Section 3.1.1</u> . (32,768 and 32,769 (0x8000 and 0x8001) have been assigned.)
61,440 - 65,279	
0xF000 - 0xFEFF	Reserved for future use. IETF Review required to define use.
65,280 - 65,534	
0xFF00 - 0xFFFE	Private Use.
65,535	
0xFFFF	Reserved, can only be assigned by a Standards

3.1.1 DNS RRTYPE Allocation Policy

Action.

Parameter values specified in <u>Section 3.1</u> above as assigned based on DNS RRTYPE Allocation Policy, are allocated by Expert Review if they meet the two requirements listed below. There will be a pool of a small number of Experts appointed by the IESG. Each application will be judged by an Expert selected by IANA. In any case where the selected Expert is unavailable or states they have a conflict of interest, IANA may select another Expert from the pool. Some guidelines for the Experts are given in <u>Section 3.1.2</u>.

RRTYPEs that do not meet the requirements below may nonetheless be allocated by a Standards Action as modified by [RFC4020].

1. A complete template as specified in <u>Appendix A</u> has been posted to the dns-rrtype-applications@ietf.org mailing list and received by the Expert.

Note that the posting of partially completed, draft, or formally submitted templates to dnsext@ietf.org by the applicant or Expert for comment and discussion is highly encouraged. Formal submission of an RRTYPE template without consideration of some community review can be expected to increase the probability of initial rejection leading to a need to re-submit after modification.

2. The RR for which an RRTYPE code is being requested is either (a) a data TYPE that can be handled as an Unknown RR as described in [RFC3597] or (b) a Meta-TYPE whose processing is optional, i.e., it is safe to simply discard RRs with that Meta-TYPE in queries or responses.

D. Eastlake 3rd [Page 10]

provided such processing is optional.

After the applicant submits their formal application to IANA by sending the completed template specified in Appendix A to the dns-rrtype-applications@ietf.org mailing list, IANA appoints an Expert and sends the completed template to the Expert copying the applicant. No more than two weeks after receiving the application the Expert shall explicitly approve or reject the application, informing IANA, the applicant, and the dnsext@ietf.org mailing list. The Expert should consult with other technical experts and the dnsext@ietf.org mailing list as necessary. If the Expert does not approve the application within this period, it is considered rejected. IANA should report non-responsive Experts to the IESG.

IANA shall maintain a public archive of approved templates. In addition, if the required description of the RRTYPE applied for is referenced by URL, a copy of the document so referenced should be included in the archive.

3.1.2 DNS RRTYPE Expert Guidelines

The Expert should normally reject any RRTYPE allocation request that meets one or more of the following criteria:

- Was documented in a manner that was not sufficiently clear or complete to evaluate or implement. (Additional documentation can be provided during the Expert review period.)
- 2. The proposed RRTYPE or RRTYPEs affect DNS processing and do not meet the criteria in point 2 of <u>Section 3.1.1</u> above.
- 3. Application use as documented makes incorrect assumptions about DNS protocol behavior, such as wild cards, CNAME, DNAME, etc.
- 4. An excessive number of RRTYPE values is being requested when the purpose could be met with a smaller number or with Private Use values.

3.1.3 Special Note on the OPT RR

The OPT (OPTion) RR (RRTYPE 41) and its IANA considerations are specified in [RFC2671bis]. Its primary purpose is to extend the effective field size of various DNS fields including RCODE, label type, OpCode, flag bits, and RDATA size. In particular, for resolvers and servers that recognize it, it extends the RCODE field from 4 to

D. Eastlake 3rd [Page 11]

3.1.4 The AFSDB RR Subtype Field

The AFSDB RR [RFC1183] is a CLASS-insensitive RR that has the same RDATA field structure as the MX RR [RFC1035], but the 16-bit unsigned integer field at the beginning of the RDATA is interpreted as a subtype as shown below. Use of the AFSDB RR to locate AFS cell database servers was deprecated by [RFC5864]. This subtype registry is hereby closed and allocation of new subtypes is no longer permitted.

Decimal Hexadecimal	Assignment Policy						
0 0×0000	Reserved, registry closed						
1 0×0001	AFS v3.0 Location Service [RFC1183]						
2 0×0002	DCE/NCA root cell directory node [RFC1183]						
3 - 65,279 0x0003 - 0xFEFF	Not allocated, registry closed						
65,280 - 65,534 0xFF00 - 0xFFFE	Private Use						
65,535 0xFFFF	Reserved, registry closed						

3.2 RR CLASS IANA Considerations

There are currently two subcategories of DNS CLASSes: normal, data-containing classes and QCLASSes that are only meaningful in queries or updates.

DNS CLASSes have been little used but constitute another dimension of the DNS distributed database. In particular, there is no necessary relationship between the name space or root servers for one data CLASS and those for another data CLASS. The same DNS NAME can have completely different meanings in different CLASSes. The label types are the same, and the null label is usable only as root in every CLASS. As global networking and DNS have evolved, the IN, or Internet, CLASS has dominated DNS use.

As yet, there has not been a requirement for "meta-CLASSes". That

D. Eastlake 3rd [Page 12]

particular DNS message, which might be usable in queries. However, it is possible that there might be a future requirement for one or more "meta-CLASSes".

Assigned CLASSes have mnemonics that must be completely disjoint from the mnemonics used for RRTYPEs and that must match the regular expression below. In addition, the generic CLASS and RRTYPE names specified in <u>Section 5 of [RFC3597]</u> cannot be assigned as new CLASS mnemonics.

[A-Z][A-Z0-9\-]*[A-Z0-9] but not (CLASS|RRTYPE)[0-9]*

The current CLASS assignments and considerations for future assignments are as follows:

Decimal Hexadecimal	Assignment / Policy, Reference
0 0×0000	Reserved; assignment requires a Standards Action
1 0x0001	Internet (IN) [RFC1035]
2 0x0002	Available for assignment by IETF Review as a data CLASS
3 0x0003	Chaos (CH) [Moon1981]
4 0×0004	Hesiod (HS) [<u>Dyer1987</u>]
5 - 127 0x0005 - 0x007F	Available for assignment by IETF Review for data CLASSes only
128 - 253 0x0080 - 0x00FD	Available for assignment by IETF Review for QCLASSes and meta-CLASSes only
254 0x00FE	QCLASS NONE [RFC2136]
255 0x00FF	QCLASS * (ANY) [<u>RFC1035</u>]

D. Eastlake 3rd [Page 13]

256	-	32,767			
0x0100	-	0x7FFF	Available for	assignment by IET	F Review
32,768	-	57,343			
0x8000	-	0xDFFF	Available for Specification	assignment to dat Required	a CLASSes only;
57,344	-	65,279			
0×E000	-	0xFEFF		assignment to QCL Specification Req	
65,280	_	65,534			
,		•	Private Use		
65,535					
0xFFFF			Reserved; can Action	only be assigned	by a Standards

3.3. Label Considerations

DNS NAMEs are sequences of labels [RFC1035].

3.3.1 Label Types

At the present time, there are two categories of label types: data labels and compression labels. Compression labels are pointers to data labels elsewhere within an RR or DNS message and are intended to shorten the wire encoding of NAMEs.

The two existing data label types are sometimes referred to as Text and Binary. Text labels can, in fact, include any octet value including zero-value octets, but many current uses involve only printing ASCII characters [US-ASCII]. For retrieval, Text labels are defined to treat ASCII upper and lower case letter codes as matching [RFC4343]. Binary labels are bit sequences [RFC2673]. The Binary label type is Historic [RFC2671bis].

3.3.2 Label Contents and Use

The last label in each NAME is "ROOT", which is the zero-length label. By definition, the null or ROOT label cannot be used for any other NAME purpose.

D. Eastlake 3rd [Page 14]

[Moon1981] CLASSes are for essentially local use. The IN, or Internet, CLASS is thus the only DNS CLASS in global use on the Internet at this time.

A somewhat out-of-date description of name allocation in the IN Class is given in [RFC1591]. Some information on reserved top-level domain names is in \underline{BCP} 32 [RFC2606].

D. Eastlake 3rd [Page 15]

4. Security Considerations

This document addresses IANA considerations in the allocation of general DNS parameters, not security. See [RFC4033], [RFC4034], and [RFC4035] for secure DNS considerations.

5. IANA Considerations

This document consists entirely of DNS IANA Considerations.

IANA has established a process for accepting <u>Appendix A</u> templates and selecting an Expert from those appointed to review such template form applications. IANA forwards the template to the Expert copying the applicant. IANA archives and makes available all approved RRTYPE allocation templates and referred documentation (unless it is readily available at a stable URI). It is the duty of the applicant to post the formal application template to the dns-rrtype-applications@ietf.org mailing list, which IANA will monitor. The dnsext@ietf.org mailing list is for community discussion and comment. See <u>Section 3.1</u> and <u>Appendix A</u> for more details.

D. Eastlake 3rd [Page 16]

Appendix A: RRTYPE Allocation Template

DNS RRTYPE PARAMETER ALLOCATION TEMPLATE

When ready for formal consideration, this template is to be submitted to IANA for processing by emailing the template to dns-rrtype-applications@ietf.org.

-				
Α.	Cubi	ทาเ	าดากา	Date:
м.	Subi	шта	этин	vale.

B.1	Submi	ssior	Тур	oe:	[]	New	RRT	YPE	[]	Modification	to	RRTYPE
B.2	Kind	of RF	2:	Г 1	Data	RR	Γ 1	Meta	a - F	R			

C. Contact Information for submitter (will be publicly posted):

Name:

Email Address:

International telephone number:

Other contact handles:

- D. Motivation for the new RRTYPE application.

 Please keep this part at a high level to inform the Expert and reviewers about uses of the RRTYPE. Most reviewers will be DNS experts that may have limited knowledge of your application space.
- E. Description of the proposed RR type.

 This description can be provided in-line in the template, as an attachment, or with a publicly available URL.
- F. What existing RRTYPE or RRTYPEs come closest to filling that need and why are they unsatisfactory?
- G. What mnemonic is requested for the new RRTYPE (optional)? Note: this can be left blank and the mnemonic decided after the template is accepted.
- H. Does the requested RRTYPE make use of any existing IANA registry or require the creation of a new IANA sub-registry in DNS Parameters? If so, please indicate which registry is to be used or created. If a new sub-registry is needed, specify the allocation policy for it and its initial contents. Also include what the modification procedures will be.
- I. Does the proposal require/expect any changes in DNS servers/resolvers that prevent the new type from being processed as an unknown RRTYPE (see [RFC3597])?
- J. Comments:

D. Eastlake 3rd [Page 17]

Appendix B: Changes From RFC 6195

Drop description of changes from $\underline{\mathsf{RFC}}\ 5395$ to $[\underline{\mathsf{RFC}}\ 6195]$ since those changes have already happened and we don't need to do them again. Add description of changes from $[\underline{\mathsf{RFC}}\ 6195]$ to this document.

Cut back RRTYPE Expert review period to two weeks and eliminate the mandatory dnsext@ietf.org comment period. Change workflow description for RRTYPE review and allocation to correspond more closely to actual practice.

Close the AFSDB sub-type registry and add an informative reference to $[{\tt RFC5864}]$ where the use of the AFSDB RR to locate AFS cell database servers is deprecated.

Clarify IANA archiving of referenced documentation as well as approved RRTYPE application template.

In the RRTYPE application template, change the label of question "B" to "B.1" and add "B.2" to ask about the kind of RR.

Addition of text and an exclusory regular expression to Sections 3.1 and 3.2 to prohibit the use of a slight generalization of the generic CLASS and RRTYPE names specified in [RFC3597] as the mnemonics for new CLASSes and RRTYPEes.

Parenthetically list "ANY" and well as "ALL" as a meaning for the "*" RRTYPE.

Clarify that there is one DNS error number space for headers, OPT extended headers, TSIG RRs, and TKEY RRs. Note that this can be considered to update [RFC2845] and [RFC2930]. Note the overloading of error number 9 as well as 16.

Update references for revised versions.

A number of editorial changes and typo fixes.

D. Eastlake 3rd [Page 18]

Normative References

- [RFC1034] Mockapetris, P., "Domain names concepts and facilities", STD 13, RFC 1034, November 1987.
- [RFC1035] Mockapetris, P., "Domain names implementation and specification", STD 13, RFC 1035, November 1987.
- [RFC1996] Vixie, P., "A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)", <u>RFC 1996</u>, August 1996.
- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997
- [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS Specification", <u>RFC 2181</u>, July 1997.
- [RFC2845] Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
 Wellington, "Secret Key Transaction Authentication for
 DNS (TSIG)", RFC 2845, May 2000.
- [RFC2930] Eastlake 3rd, D., "Secret Key Establishment for DNS (TKEY RR)", RFC 2930, September 2000.
- [RFC3425] Lawrence, D., "Obsoleting IQUERY", <u>RFC 3425</u>, November 2002.
- [RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record (RR) Types", RFC 3597, September 2003.
- [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements", RFC
 4033, March 2005.
- [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, March 2005.

D. Eastlake 3rd [Page 19]

- [RFCdnssecbisup] Weiler, A. and D. Blacka, "Clarifications and Implementation Notes for DNSSECbis", <u>draft-ietf-dnsext-dnssec-bis-updates</u>, work in progress.
- [US-ASCII] American National Standards Institute (formerly United States of America Standards Institute), "USA Code for Information Interchange", ANSI X3.4-1968, 1968. ANSI X3.4-1968 has been replaced by newer versions with slight modifications, but the 1968 version remains definitive for the Internet.

Informative References

- [Dyer1987] Dyer, S., and F. Hsu, "Hesiod", Project Athena Technical Plan Name Service, April 1987.
- [Moon1981] Moon, D., "Chaosnet", A.I. Memo 628, Massachusetts Institute of Technology Artificial Intelligence Laboratory, June 1981.
- [RFC1591] Postel, J., "Domain Name System Structure and Delegation", RFC 1591, March 1994.
- [RFC2606] Eastlake 3rd, D. and A. Panitz, "Reserved Top Level DNS Names", <u>BCP 32</u>, <u>RFC 2606</u>, June 1999.
- [RFC2673] Crawford, M., "Binary Labels in the Domain Name System", RFC 2673, August 1999.

D. Eastlake 3rd [Page 20]

- [RFC4343] Eastlake 3rd, D., "Domain Name System (DNS) Case Insensitivity Clarification", <u>RFC 4343</u>, January 2006.
- [RFC5864] Allbery, R., "DNS SRV Resource Records for AFS", RFC 5864, April 2010.
- [RFC6195] Eastlake 3rd, D., "Domain Name System (DNS) IANA Considerations", <u>RFC 6195</u>, March 2011.

D. Eastlake 3rd [Page 21]

Author's Address

Donald E. Eastlake 3rd Huawei R&D USA 155 Beaver Street Milford, MA 01757 USA

Telephone: +1-508-333-2270 email: d3e3e3@gmail.com

Copyright and IPR Provisions

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to $\underline{\mathsf{BCP}}$ 78 and the IETF Trust's Legal Provisions Relating to IETF Documents

(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

D. Eastlake 3rd [Page 22]