
 DNSIND Working Group Paul Vixie (Ed.) (ISC)
 INTERNET-DRAFT Susan Thomson (Bellcore)
 <draft-ietf-dnsind-dynDNS-10.txt> Yakov Rekhter (Cisco)
 Jim Bound (DEC)
 Amends: RFC 1035 November 1996

Dynamic Updates in the Domain Name System (DNS UPDATE)

 Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Abstract

 The Domain Name System was originally designed to support queries of
 a statically configured database. While the data was expected to
 change, the frequency of those changes was expected to be fairly low,
 and all updates were made as external edits to a zone's Master File.

 Using this specification of the UPDATE opcode, it is possible to add
 or delete RRs or RRsets from a specified zone. Prerequisites are
 specified separately from update operations, and can specify a
 dependency upon either the previous existence or nonexistence of an
 RRset, or the existence of a single RR.

 UPDATE is atomic, i.e., all prerequisites must be satisfied or else
 no update operations will take place. There are no data dependent
 error conditions defined after the prerequisites have been met.

Expires May 1997 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-dynDNS-10.txt
https://datatracker.ietf.org/doc/html/rfc1035

INTERNET-DRAFT DNS UPDATE November 1996

1 - Definitions

 This document intentionally gives more definition to the roles of
 ``Master,'' ``Slave,'' and ``Primary Master'' servers, and their
 enumeration in NS RRs, and the SOA MNAME field. In that sense, the
 following server type definitions can be considered an addendum to
 [RFC1035], and are intended to be consistent with [RFC1996]:

 Slave an authoritative server that uses AXFR or IXFR to
 retrieve the zone and is named in the zone's NS
 RRset.

 Master an authoritative server configured to be the source
 of AXFR or IXFR data for one or more slave servers.

 Primary Master master server at the root of the AXFR/IXFR dependency
 graph. The primary master is named in the zone's SOA
 MNAME field and optionally by an NS RR. There is by
 definition only one primary master server per zone.

 A domain name identifies a node within the domain name space tree
 structure. Each node has a set (possibly empty) of Resource Records
 (RRs). All RRs having the same NAME, CLASS and TYPE are called a
 Resource Record Set (RRset).

 The pseudocode used in this document is for example purposes only. If
 it is found to disagree with the text, the text shall be considered
 authoritative. If the text is found to be ambiguous, the pseudocode can
 be used to help resolve the ambiguity.

1.1 - Comparison Rules

1.1.1. Two RRs are considered equal if their NAME, CLASS, TYPE, RDLENGTH
 and RDATA fields are equal. Note that the time-to-live (TTL) field is
 explicitly excluded from the comparison.

1.1.2. The rules for comparison of character strings in names are
 specified in [RFC1035 2.3.3].

1.1.3. Wildcarding is disabled. That is, a wildcard (``*'') in an
 update only matches a wildcard (``*'') in the zone, and vice versa.

1.1.4. Aliasing is disabled: A CNAME in the zone matches a CNAME in the
 update, and will not otherwise be followed. All UPDATE operations are
 done on the basis of canonical names.

Expires May 1997 [Page 2]

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1996

INTERNET-DRAFT DNS UPDATE November 1996

1.1.5. The following RR types cannot be appended to an RRset. If the
 following comparison rules are met, then an attempt to add the new RR
 will result in the replacement of the previous RR:

 SOA compare only NAME, CLASS and TYPE -- it is not possible to
 have more than one SOA per zone, even if any of the data
 fields differ.

 WKS compare only NAME, CLASS, TYPE, ADDRESS, and PROTOCOL -- only
 one WKS RR is possible for this tuple, even if the services
 masks differ.

 CNAME compare only NAME, CLASS, and TYPE -- it is not possible to
 have more than one CNAME RR, even if their data fields differ.

1.2 - Glue RRs

 For the purpose of determining whether a domain name used in the UPDATE
 protocol is contained within a specified zone, a domain name is ``in'' a
 zone if it is owned by that zone's domain name. See section 7.18 for
 details.

1.3 - New Assigned Numbers

 CLASS = NONE (TBD: 254)
 RCODE = YXDOMAIN (TBD: 6)
 RCODE = YXRRSET (TBD: 7)
 RCODE = NXRRSET (TBD: 8)
 RCODE = NOTAUTH (TBD: 9)
 RCODE = NOTZONE (TBD: 10?)
 Opcode = UPDATE (5)

2 - Update Message Format

 The DNS Message Format is defined by [RFC1035 4.1]. Some extensions are
 necessary (for example, more error codes are possible under UPDATE than
 under QUERY) and some fields must be overloaded (see description of
 CLASS fields below).

 The overall format of an UPDATE message is, following [ibid]:

Expires May 1997 [Page 3]

INTERNET-DRAFT DNS UPDATE November 1996

 +---------------------+
 | Header |
 +---------------------+
 | Zone | specifies the zone to be updated
 +---------------------+
 | Prerequisite | RRs or RRsets which must (not) preexist
 +---------------------+
 | Update | RRs or RRsets to be added or deleted
 +---------------------+
 | Additional Data | additional data
 +---------------------+

 The Header Section specifies that this message is an UPDATE, and
 describes the size of the other sections. The Zone Section names the
 zone that is to be updated by this message. The Prerequisite Section
 specifies the starting invariants (in terms of zone content) required
 for this update. The Update Section contains the edits to be made, and
 the Additional Data Section contains data which may be necessary to
 complete, but is not part of, this update.

2.1 - Transport Issues

 An update transaction may be carried in a UDP datagram, if the request
 fits, or in a TCP connection (at the discretion of the requestor). When
 TCP is used, the message is in the format described in [RFC1035 4.2.2].

2.2 - Message Header

 The header of the DNS Message Format is defined by [RFC 1035 4.1]. Not
 all opcodes define the same set of flag bits, though as a practical
 matter most of the bits defined for QUERY (in [ibid]) are identically
 defined by the other opcodes. UPDATE uses only one flag bit (QR).

 The DNS Message Format specifies record counts for its four sections
 (Question, Answer, Authority, and Additional). UPDATE uses the same
 fields, and the same section formats, but the naming and use of these
 sections differs as shown in the following modified header, after
 [RFC1035 4.1.1]:

Expires May 1997 [Page 4]

INTERNET-DRAFT DNS UPDATE November 1996

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode | Z | RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ZOCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | PRCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | UPCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ADCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 These fields are used as follows:

 ID A 16-bit identifier assigned by the entity that generates any
 kind of request. This identifier is copied in the
 corresponding reply and can be used by the requestor to match
 replies to outstanding requests, or by the server to detect
 duplicated requests from some requestor.

 QR A one bit field that specifies whether this message is a
 request (0), or a response (1).

 Opcode A four bit field that specifies the kind of request in this
 message. This value is set by the originator of a request
 and copied into the response. The Opcode value that
 identifies an UPDATE message is five (5).

 Z Reserved for future use. Should be zero (0) in all requests
 and responses. A non-zero Z field should be ignored by
 implementations of this specification.

Expires May 1997 [Page 5]

INTERNET-DRAFT DNS UPDATE November 1996

 RCODE Response code - this four bit field is undefined in requests
 and set in responses. The values and meanings of this field
 within responses are as follows:

 Mneumonic Value Description
 --
 NOERROR 0 No error condition.
 FORMERR 1 The name server was unable to interpret
 the request due to a format error.
 SERVFAIL 2 The name server encountered an internal
 failure while processing this request,
 for example an operating system error
 or a forwarding timeout.
 NXDOMAIN 3 Some name that ought to exist,
 does not exist.
 NOTIMP 4 The name server does not support
 the specified Opcode.
 REFUSED 5 The name server refuses to perform the
 specified operation for policy or
 security reasons.
 YXDOMAIN 6? Some name that ought not to exist,
 does exist.
 YXRRSET 7? Some RRset that ought not to exist,
 does exist.
 NXRRSET 8? Some RRset that ought to exist,
 does not exist.
 NOTAUTH 9? The server is not authoritative for
 the zone named in the Zone Section.
 NOTZONE 10? A name used in the Prerequisite or
 Update Section is not within the
 zone denoted by the Zone Section.

 ZOCOUNT The number of RRs in the Zone Section.

 PRCOUNT The number of RRs in the Prerequisite Section.

 UPCOUNT The number of RRs in the Update Section.

 ADCOUNT The number of RRs in the Additional Data Section.

Expires May 1997 [Page 6]

INTERNET-DRAFT DNS UPDATE November 1996

2.3 - Zone Section

 The Zone Section has the same format as that specified in [RFC1035
 4.1.2], with the fields redefined as follows:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / ZNAME /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ZTYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ZCLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 UPDATE uses this section to denote the zone of the records being
 updated. All records to be updated must be in the same zone, and
 therefore the Zone Section is allowed to contain exactly one record.
 The ZNAME is the zone name, the ZTYPE must be SOA, and the ZCLASS is the
 zone's class.

2.4 - Prerequisite Section

 This section contains a set of RRset prerequisites which must be
 satisfied at the time the UPDATE packet is received by the primary
 master server. The format of this section is as specified by [RFC1035
 4.1.3]. There are five possible sets of semantics that can be expressed
 here, summarized as follows and then explained below.

 (1) RRset exists (value independent). At least one RR with a
 specified NAME and TYPE (in the zone and class specified by the
 Zone Section) must exist.

 (2) RRset exists (value dependent). A set of RRs with a specified
 NAME and TYPE exists and has the same members with the same
 RDATAs as the RRset specified here in this Section.

 (3) RRset does not exist. No RRs with a specified NAME and TYPE (in
 the zone and class denoted by the Zone Section) can exist.

Expires May 1997 [Page 7]

INTERNET-DRAFT DNS UPDATE November 1996

 (4) Name is in use. At least one RR with a specified NAME (in the
 zone and class specified by the Zone Section) must exist. Note
 that this prerequisite is NOT satisfied by empty nonterminals.

 (5) Name is not in use. No RR of any type is owned by a specified
 NAME. Note that this prerequisite IS satisfied by empty
 nonterminals.

 The syntax of these is as follows:

2.4.1 - RRset Exists (Value Independent)

 At least one RR with a specified NAME and TYPE (in the zone and class
 specified in the Zone Section) must exist.

 For this prerequisite, a requestor adds to the section a single RR whose
 NAME and TYPE are equal to that of the zone RRset whose existence is
 required. RDLENGTH is zero and RDATA is therefore empty. CLASS must be
 specified as ANY to differentiate this condition from that of an actual
 RR whose RDLENGTH is naturally zero (0) (e.g., NULL). TTL is specified
 as zero (0).

2.4.2 - RRset Exists (Value Dependent)

 A set of RRs with a specified NAME and TYPE exists and has the same
 members with the same RDATAs as the RRset specified here in this
 section. While RRset ordering is undefined and therefore not
 significant to this comparison, the sets be identical in their extent.

 For this prerequisite, a requestor adds to the section an entire RRset
 whose preexistence is required. NAME and TYPE are that of the RRset
 being denoted. CLASS is that of the zone. TTL must be specified as
 zero (0) and is ignored when comparing RRsets for identity.

2.4.3 - RRset Does Not Exist

 No RRs with a specified NAME and TYPE (in the zone and class denoted by
 the Zone Section) can exist.

 For this prerequisite, a requestor adds to the section a single RR whose
 NAME and TYPE are equal to that of the RRset whose nonexistence is
 required. The RDLENGTH of this record is zero (0), and RDATA field is
 therefore empty. CLASS must be specified as NONE in order to
 distinguish this condition from a valid RR whose RDLENGTH is naturally
 zero (0) (for example, the NULL RR). TTL must be specified as zero (0).

Expires May 1997 [Page 8]

INTERNET-DRAFT DNS UPDATE November 1996

2.4.4 - Name Is In Use

 Name is in use. At least one RR with a specified NAME (in the zone and
 class specified by the Zone Section) must exist. Note that this
 prerequisite is NOT satisfied by empty nonterminals.

 For this prerequisite, a requestor adds to the section a single RR whose
 NAME is equal to that of the name whose ownership of an RR is required.
 RDLENGTH is zero and RDATA is therefore empty. CLASS must be specified
 as ANY to differentiate this condition from that of an actual RR whose
 RDLENGTH is naturally zero (0) (e.g., NULL). TYPE must be specified as
 ANY to differentiate this case from that of an RRset existence test.
 TTL is specified as zero (0).

2.4.5 - Name Is Not In Use

 Name is not in use. No RR of any type is owned by a specified NAME.
 Note that this prerequisite IS satisfied by empty nonterminals.

 For this prerequisite, a requestor adds to the section a single RR whose
 NAME is equal to that of the name whose nonownership of any RRs is
 required. RDLENGTH is zero and RDATA is therefore empty. CLASS must be
 specified as NONE. TYPE must be specified as ANY. TTL must be
 specified as zero (0).

2.5 - Update Section

 This section contains RRs to be added to or deleted from the zone. The
 format of this section is as specified by [RFC1035 4.1.3]. There are
 four possible sets of semantics, summarized below and with details to
 follow.

 (1) Add RRs to an RRset.
 (2) Delete an RRset.
 (3) Delete all RRsets from a name.
 (4) Delete an RR from an RRset.

 The syntax of these is as follows:

2.5.1 - Add To An RRset

 RRs are added to the Update Section whose NAME, TYPE, TTL, RDLENGTH and
 RDATA are those being added, and CLASS is the same as the zone class.
 Any duplicate RRs will be silently ignored by the primary master.

Expires May 1997 [Page 9]

INTERNET-DRAFT DNS UPDATE November 1996

2.5.2 - Delete An RRset

 One RR is added to the Update Section whose NAME and TYPE are those of
 the RRset to be deleted. TTL must be specified as zero (0) and is
 otherwise not used by the primary master. CLASS must be specified as
 ANY. RDLENGTH must be zero (0) and RDATA must therefore be empty. If
 no such RRset exists, then this Update RR will be silently ignored by
 the primary master.

2.5.3 - Delete All RRsets From A Name

 One RR is added to the Update Section whose NAME is that of the name to
 be cleansed of RRsets. TYPE must be specified as ANY. TTL must be
 specified as zero (0) and is otherwise not used by the primary master.
 CLASS must be specified as ANY. RDLENGTH must be zero (0) and RDATA
 must therefore be empty. If no such RRsets exist, then this Update RR
 will be silently ignored by the primary master.

2.5.4 - Delete An RR From An RRset

 RRs to be deleted are added to the Update Section. The NAME, TYPE,
 RDLENGTH and RDATA must match the RR being deleted. TTL must be
 specified as zero (0) and will otherwise be ignored by the primary
 master. CLASS must be specified as NONE to distinguish this from an RR
 addition. If no such RRs exist, then this Update RR will be silently
 ignored by the primary master.

2.6 - Additional Data Section

 This section contains RRs which are related to the update itself, or to
 new RRs being added by the update. For example, out of zone glue (A RRs
 referred to by new NS RRs) should be presented here. The server can use
 or ignore out of zone glue, at the discretion of the server implementor.
 The format of this section is as specified by [RFC1035 4.1.3].

Expires May 1997 [Page 10]

INTERNET-DRAFT DNS UPDATE November 1996

3 - Server Behavior

 A server, upon receiving an UPDATE request, will signal NOTIMP to the
 requestor if the UPDATE opcode is not recognized or if it is recognized
 but has not been implemented. Otherwise, processing continues as
 follows.

3.1 - Process Zone Section

3.1.1. The Zone Section is checked to see that there is exactly one RR
 therein and that the RR's ZTYPE is SOA, else signal FORMERR to the
 requestor. Next, the ZNAME and ZCLASS are checked to see if the zone so
 named is one of this server's authority zones, else signal NOTAUTH to
 the requestor. If the server is a zone slave, the request will be
 forwarded toward the primary master.

3.1.2 - Pseudocode For Zone Section Processing

 if (zcount != 1 || ztype != SOA)
 return (FORMERR)
 if (zone_type(zname, zclass) == SLAVE)
 return forward()
 if (zone_type(zname, zclass) == MASTER)
 return update()
 return (NOTAUTH)

 Sections 3.2 through 3.8 describe the primary master's behaviour,
 whereas Section 6 describes a forwarder's behaviour.

3.2 - Process Prerequisite Section

 Next, the Prerequisite Section is checked to see that all prerequisites
 are satisfied by the current state of the zone. Using the definitions
 expressed in Section 1.2, if any RR's NAME is not within the zone
 specified in the Zone Section, signal NOTZONE to the requestor.

3.2.1. For RRs in this section whose CLASS is ANY, test to see that TTL
 and RDLENGTH are both zero (0), else signal FORMERR to the requestor.
 If TYPE is ANY, test to see that there is at least one RR in the zone
 whose NAME is the same as that of the Prerequisite RR, else signal
 NXDOMAIN to the requestor. If TYPE is not ANY, test to see that there
 is at least one RR in the zone whose NAME and TYPE are the same as that
 of the Prerequisite RR, else signal NXRRSET to the requestor.

Expires May 1997 [Page 11]

INTERNET-DRAFT DNS UPDATE November 1996

3.2.2. For RRs in this section whose CLASS is NONE, test to see that the
 TTL and RDLENGTH are both zero (0), else signal FORMERR to the
 requestor. If the TYPE is ANY, test to see that there are no RRs in the
 zone whose NAME is the same as that of the Prerequisite RR, else signal
 YXDOMAIN to the requestor. If the TYPE is not ANY, test to see that
 there are no RRs in the zone whose NAME and TYPE are the same as that of
 the Prerequisite RR, else signal YXRRSET to the requestor.

3.2.3. For RRs in this section whose CLASS is the same as the ZCLASS,
 test to see that the TTL is zero (0), else signal FORMERR to the
 requestor. Then, build an RRset for each unique <NAME,TYPE> and compare
 each resulting RRset for set equality (same members, no more, no less)
 with RRsets in the zone. If any Prerequisite RRset is not entirely and
 exactly matched by a zone RRset, signal NXRRSET to the requestor. If
 any RR in this section has a CLASS other than ZCLASS or NONE or ANY,
 signal FORMERR to the requestor.

3.2.4 - Table Of Metavalues Used In Prerequisite Section

 CLASS TYPE RDATA Meaning
 --
 ANY ANY empty Name is in use
 ANY rrset empty RRset exists (value independent)
 NONE ANY empty Name is not in use
 NONE rrset empty RRset does not exist
 zone rrset rr RRset exists (value dependent)

Expires May 1997 [Page 12]

INTERNET-DRAFT DNS UPDATE November 1996

3.2.5 - Pseudocode for Prerequisite Section Processing

 for rr in prerequisites
 if (rr.ttl != 0)
 return (FORMERR)
 if (zone_of(rr.name) != ZNAME)
 return (NOTZONE);
 if (rr.class == ANY)
 if (rr.rdlength != 0)
 return (FORMERR)
 if (rr.type == ANY)
 if (!zone_name<rr.name>)
 return (NXDOMAIN)
 else
 if (!zone_rrset<rr.name, rr.type>)
 return (NXRRSET)
 if (rr.class == NONE)
 if (rr.rdlength != 0)
 return (FORMERR)
 if (rr.type == ANY)
 if (zone_name<rr.name>)
 return (YXDOMAIN)
 else
 if (zone_rrset<rr.name, rr.type>)
 return (YXRRSET)
 if (rr.class == zclass)
 temp<rr.name, rr.type> += rr
 else
 return (FORMERR)

 for rrset in temp
 if (zone_rrset<rrset.name, rrset.type> != rrset)
 return (NXRRSET)

3.3 - Check Requestor's Permissions

3.3.1. Next, the requestor's permission to update the RRs named in the
 Update Section may be tested in an implementation dependent fashion or
 using mechanisms specified in a subsequent Secure DNS Update protocol.
 If the requestor does not have permission to perform these updates, the
 server may write a warning message in its operations log, and may either
 signal REFUSED to the requestor, or ignore the permission problem and
 proceed with the update.

Expires May 1997 [Page 13]

INTERNET-DRAFT DNS UPDATE November 1996

3.3.2. While the exact processing is implementation defined, if these
 verification activities are to be performed, this is the point in the
 server's processing where such performance should take place, since if a
 REFUSED condition is encountered after an update has been partially
 applied, it will be necessary to undo the partial update and restore the
 zone to its original state before answering the requestor.

3.3.3 - Pseudocode for Permission Checking

 if (security policy exists)
 if (this update is not permitted)
 if (local option)
 log a message about permission problem
 if (local option)
 return (REFUSED)

3.4 - Process Update Section

 Next, the Update Section is processed as follows.

3.4.1 - Prescan

 The Update Section is parsed into RRs and each RR's CLASS is checked to
 see if it is ANY, NONE, or the same as the Zone Class, else signal a
 FORMERR to the requestor. Using the definitions in Section 1.2, each
 RR's NAME must be in the zone specified by the Zone Section, else signal
 NOTZONE to the requestor.

3.4.1.2. For RRs whose CLASS is not ANY, check the TYPE and if it is
 ANY, AXFR, MAILA, MAILB, or any other QUERY metatype, or any
 unrecognized type, then signal FORMERR to the requestor. For RRs whose
 CLASS is ANY or NONE, check the TTL to see that it is zero (0), else
 signal a FORMERR to the requestor. For any RR whose CLASS is ANY, check
 the RDLENGTH to make sure that it is zero (0) (that is, the RDATA field
 is empty), and that the TYPE is not AXFR, MAILA, MAILB, or any other
 QUERY metatype besides ANY, or any unrecognized type, else signal
 FORMERR to the requestor.

Expires May 1997 [Page 14]

INTERNET-DRAFT DNS UPDATE November 1996

3.4.1.3 - Pseudocode For Update Section Prescan

 [rr] for rr in updates
 if (zone_of(rr.name) != ZNAME)
 return (NOTZONE);
 if (rr.class == zclass)
 if (rr.type & ANY|AXFR|MAILA|MAILB)
 return (FORMERR)
 elsif (rr.class == ANY)
 if (rr.ttl != 0 || rr.rdlength != 0
 || rr.type & AXFR|MAILA|MAILB)
 return (FORMERR)
 elsif (rr.class == NONE)
 if (rr.ttl != 0 || rr.type & ANY|AXFR|MAILA|MAILB)
 return (FORMERR)
 else
 return (FORMERR)

3.4.2 - Update

 The Update Section is parsed into RRs and these RRs are processed in
 order.

3.4.2.1. If any system failure (such as an out of memory condition, or a
 hardware error in persistent storage) occurs during the processing of
 this section, signal SERVFAIL to the requestor and undo all updates
 applied to the zone during this transaction.

3.4.2.2. Any Update RR whose CLASS is the same as ZCLASS is added to the
 zone. In case of duplicate RDATAs (which for SOA RRs is always the
 case, and for WKS RRs is the case if the ADDRESS and PROTOCOL fields
 both match), the Zone RR is replaced by Update RR. If the TYPE is SOA
 and there is no Zone SOA RR, or the new SOA.SERIAL is lower (according
 to [RFC1982]) than or equal to the current Zone SOA RR's SOA.SERIAL, the
 Update RR is ignored. In the case of a CNAME Update RR and a non-CNAME
 Zone RRset or vice versa, ignore the CNAME Update RR, otherwise replace
 the CNAME Zone RR with the CNAME Update RR.

Expires May 1997 [Page 15]

https://datatracker.ietf.org/doc/html/rfc1982

INTERNET-DRAFT DNS UPDATE November 1996

3.4.2.3. For any Update RR whose CLASS is ANY and whose TYPE is ANY, all
 Zone RRs with the same NAME are deleted, unless the NAME is the same as
 ZNAME in which case only those RRs whose TYPE is other than SOA or NS
 are deleted. For any Update RR whose CLASS is ANY and whose TYPE is not
 ANY all Zone RRs with the same NAME and TYPE are deleted, unless the
 NAME is the same as ZNAME in which case neither SOA or NS RRs will be
 deleted.

3.4.2.4. For any Update RR whose class is NONE, any Zone RR whose NAME,
 TYPE, RDATA and RDLENGTH are equal to the Update RR is deleted, unless
 the NAME is the same as ZNAME and either the TYPE is SOA or the TYPE is
 NS and the matching Zone RR is the only NS remaining in the RRset, in
 which case this Update RR is ignored.

3.4.2.5. Signal NOERROR to the requestor.

3.4.2.6 - Table Of Metavalues Used In Update Section

 CLASS TYPE RDATA Meaning

 ANY ANY empty Delete all RRsets from a name
 ANY rrset empty Delete an RRset
 NONE rrset rr Delete an RR from an RRset
 zone rrset rr Add to an RRset

Expires May 1997 [Page 16]

INTERNET-DRAFT DNS UPDATE November 1996

3.4.2.7 - Pseudocode For Update Section Processing

 [rr] for rr in updates
 if (rr.class == zclass)
 if (rr.type == CNAME)
 if (zone_rrset<rr.name, ~CNAME>)
 next [rr]
 elsif (zone_rrset<rr.name, CNAME>)
 next [rr]
 if (rr.type == SOA)
 if (!zone_rrset<rr.name, SOA> ||
 zone_rr<rr.name, SOA>.serial > rr.soa.serial)
 next [rr]
 for zrr in zone_rrset<rr.name, rr.type>
 if (rr.type == CNAME || rr.type == SOA ||
 (rr.type == WKS && rr.proto == zrr.proto &&
 rr.address == zrr.address) ||
 rr.rdata == zrr.rdata)
 zrr = rr
 next [rr]
 zone_rrset<rr.name, rr.type> += rr
 elsif (rr.class == ANY)
 if (rr.type == ANY)
 if (rr.name == zname)
 zone_rrset<rr.name, ~(SOA|NS)> = Nil
 else
 zone_rrset<rr.name, *> = Nil
 elsif (rr.name == zname &&
 (rr.type == SOA || rr.type == NS))
 next [rr]
 else
 zone_rrset<rr.name, rr.type> = Nil
 elsif (rr.class == NONE)
 if (rr.type == SOA)
 next [rr]
 if (rr.type == NS && zone_rrset<rr.name, NS> == rr)
 next [rr]
 zone_rr<rr.name, rr.type, rr.data> = Nil
 return (NOERROR)

Expires May 1997 [Page 17]

INTERNET-DRAFT DNS UPDATE November 1996

3.5 - Stability

 When a zone is modified by an UPDATE operation, the server must commit
 the change to nonvolatile storage before sending a response to the
 requestor or answering any queries or transfers for the modified zone.
 It is reasonable for a server to store only the update records as long
 as a system reboot or power failure will cause these update records to
 be incorporated into the zone the next time the server is started. It
 is also reasonable for the server to copy the entire modified zone to
 nonvolatile storage after each update operation, though this would have
 suboptimal performance for large zones.

3.6 - Zone Identity

 If the zone's SOA SERIAL is changed by an update operation, that change
 must be in a positive direction (using modulo 2**32 arithmetic as
 specified by [RFC1982]). Attempts to replace an SOA with one whose
 SERIAL is less than the current one will be silently ignored by the
 primary master server.

 If the zone's SOA's SERIAL is not changed as a result of an update
 operation, then the server shall increment it automatically before the
 SOA or any changed name or RR or RRset is included in any response or
 transfer. The primary master server's implementor might choose to
 autoincrement the SOA SERIAL if any of the following events occurs:

 (1) Each update operation.

 (2) A name, RR or RRset in the zone has changed and has subsequently
 been visible to a DNS client since the unincremented SOA was
 visible to a DNS client, and the SOA is about to become visible to
 a DNS client.

 (3) A configurable period of time has elapsed since the last update
 operation. This period shall be less than or equal to one third of
 the zone refresh time, and the default shall be the lesser of that
 maximum and 300 seconds.

 (4) A configurable number of updates has been applied since the last
 SOA change. The default value for this configuration parameter
 shall be one hundred (100).

 It is imperative that the zone's contents and the SOA's SERIAL be
 tightly synchronized. If the zone appears to change, the SOA must
 appear to change as well.

Expires May 1997 [Page 18]

https://datatracker.ietf.org/doc/html/rfc1982

INTERNET-DRAFT DNS UPDATE November 1996

3.7 - Atomicity

 During the processing of an UPDATE transaction, the server must ensure
 atomicity with respect to other (concurrent) UPDATE or QUERY
 transactions. No two transactions can be processed concurrently if
 either depends on the final results of the other; in particular, a QUERY
 should not be able to retrieve RRsets which have been partially modified
 by a concurrent UPDATE, and an UPDATE should not be able to start from
 prerequisites that might not still hold at the completion of some other
 concurrent UPDATE. Finally, if two UPDATE transactions would modify the
 same names, RRs or RRsets, then such UPDATE transactions must be
 serialized.

3.8 - Response

 At the end of UPDATE processing, a response code will be known. A
 response message is generated by copying the ID and Opcode fields from
 the request, and either copying the ZOCOUNT, PRCOUNT, UPCOUNT, and
 ADCOUNT fields and associated sections, or placing zeros (0) in the
 these ``count'' fields and not including any part of the original
 update. The QR bit is set to one (1), and the response is sent back to
 the requestor. If the requestor used UDP, then the response will be
 sent to the requestor's source UDP port. If the requestor used TCP,
 then the response will be sent back on the requestor's open TCP
 connection.

4 - Requestor Behaviour

4.1. From a requestor's point of view, any authoritative server for the
 zone can appear to be able to process update requests, even though only
 the primary master server is actually able to modify the zone's master
 file. Requestors are expected to know the name of the zone they intend
 to update and to know or be able to determine the name servers for that
 zone.

4.2. If update ordering is desired, the requestor will need to know the
 value of the existing SOA RR. Requestors who update the SOA RR must
 update the SOA SERIAL field in a positive direction (as defined by
 [RFC1982]) and also preserve the other SOA fields unless the requestor's
 explicit intent is to change them. The SOA SERIAL field must never be
 set to zero (0).

Expires May 1997 [Page 19]

https://datatracker.ietf.org/doc/html/rfc1982

INTERNET-DRAFT DNS UPDATE November 1996

4.3. If the requestor has reasonable cause to believe that all of a
 zone's servers will be equally reachable, then it should arrange to try
 the primary master server (as given by the SOA MNAME field if matched by
 some NS NSDNAME) first to avoid unnecessary forwarding inside the slave
 servers. (Note that the primary master will in some cases not be
 reachable by all requestors, due to firewalls or network partitioning.)

4.4. Once the zone's name servers been found and possibly sorted so that
 the ones more likely to be reachable and/or support the UPDATE opcode
 are listed first, the requestor composes an UPDATE message of the
 following form and sends it to the first name server on its list:

 ID: (new)
 Opcode: UPDATE
 Zone zcount: 1
 Zone zname: (zone name)
 Zone zclass: (zone class)
 Zone ztype: T_SOA
 Prerequisite Section: (see previous text)
 Update Section: (see previous text)
 Additional Data Section: (empty)

4.5. If the requestor receives a response, and the response has an RCODE
 other than SERVFAIL or NOTIMP, then the requestor returns an appropriate
 response to its caller.

4.6. If a response is received whose RCODE is SERVFAIL or NOTIMP, or if
 no response is received within an implementation dependent timeout
 period, or if an ICMP error is received indicating that the server's
 port is unreachable, then the requestor will delete the unusable server
 from its internal name server list and try the next one, repeating until
 the name server list is empty. If the requestor runs out of servers to
 try, an appropriate error will be returned to the requestor's caller.

5 - Duplicate Detection, Ordering and Mutual Exclusion

5.1. For correct operation, mechanisms may be needed to ensure
 idempotence, order UPDATE requests and provide mutual exclusion. An
 UPDATE message or response might be delivered zero times, one time, or
 multiple times. Datagram duplication is of particular interest since it
 covers the case of the so-called ``replay attack'' where a correct
 request is duplicated maliciously by an intruder.

Expires May 1997 [Page 20]

INTERNET-DRAFT DNS UPDATE November 1996

5.2. Multiple UPDATE requests or responses in transit might be delivered
 in any order, due to network topology changes or load balancing, or to
 multipath forwarding graphs wherein several slave servers all forward to
 the primary master. In some cases, it might be required that the
 earlier update not be applied after the later update, where ``earlier''
 and ``later'' are defined by an external time base visible to some set
 of requestors, rather than by the order of request receipt at the
 primary master.

5.3. A requestor can ensure transaction idempotence by explicitly
 deleting some ``marker RR'' (rather than deleting the RRset of which it
 is a part) and then adding a new ``marker RR'' with a different RDATA
 field. The Prerequisite Section should specify that the original
 ``marker RR'' must be present in order for this UPDATE message to be
 accepted by the server.

5.4. If the request is duplicated by a network error, all duplicate
 requests will fail since only the first will find the original ``marker
 RR'' present and having its known previous value. The decisions of
 whether to use such a ``marker RR'' and what RR to use are left up to
 the application programmer, though one obvious choice is the zone's SOA
 RR as described below.

5.5. Requestors can ensure update ordering by externally synchronizing
 their use of successive values of the ``marker RR.'' Mutual exclusion
 can be addressed as a degenerate case, in that a single succession of
 the ``marker RR'' is all that is needed.

5.6. A special case where update ordering and datagram duplication
 intersect is when an RR validly changes to some new value and then back
 to its previous value. Without a ``marker RR'' as described above, this
 sequence of updates can leave the zone in an undefined state if
 datagrams are duplicated.

5.7. To achieve an atomic multitransaction ``read-modify-write'' cycle,
 a requestor could first retrieve the SOA RR, and build an UPDATE message
 one of whose prerequisites was the old SOA RR. It would then specify
 updates that would delete this SOA RR and add a new one with an
 incremented SOA SERIAL, along with whatever actual prerequisites and
 updates were the object of the transaction. If the transaction
 succeeds, the requestor knows that the RRs being changed were not
 otherwise altered by any other requestor.

Expires May 1997 [Page 21]

INTERNET-DRAFT DNS UPDATE November 1996

6 - Forwarding

 When a zone slave forwards an UPDATE message upward toward the zone's
 primary master server, it must allocate a new ID and prepare to enter
 the role of ``forwarding server,'' which is a requestor with respect to
 the forward server.

6.1. The set of forward servers will be same as the set of servers this
 zone slave would use as the source of AXFR or IXFR data. So, while the
 original requestor might have used the zone's NS RRset to locate its
 update server, a forwarder always forwards toward its designated zone
 master servers.

6.2. If the original requestor used TCP, then the TCP connection from
 the requestor is still open and the forwarder must use TCP to forward
 the message. If the original requestor used UDP, the forwarder may use
 either UDP or TCP to forward the message, at the whim of the
 implementor.

6.3. It is reasonable for forward servers to be forwarders themselves,
 if the AXFR dependency graph being followed is a deep one involving
 firewalls and multiple connectivity realms. In most cases the AXFR
 dependency graph will be shallow and the forward server will be the
 primary master server.

6.4. The forwarder will not respond to its requestor until it receives a
 response from its forward server. UPDATE transactions involving
 forwarders are therefore time synchronized with respect to the original
 requestor and the primary master server.

6.5. When there are multiple possible sources of AXFR data and therefore
 multiple possible forward servers, a forwarder will use the same
 fallback strategy with respect to connectivity or timeout errors that it
 would use when performing an AXFR. This is implementation dependent.

6.6. When a forwarder receives a response from a forward server, it
 copies this response into a new response message, assigns its
 requestor's ID to that message, and sends the response back to the
 requestor.

Expires May 1997 [Page 22]

INTERNET-DRAFT DNS UPDATE November 1996

7 - Design, Implementation, Operation, and Protocol Notes

 Some of the principles which guided the design of this UPDATE
 specification are as follows. Note that these are not part of the
 formal specification and any disagreement between this section and any
 other section of this document should be resolved in favour of the other
 section.

7.1. Using metavalues for CLASS is possible only because all RRs in the
 packet are assumed to be in the same zone, and CLASS is an attribute of
 a zone rather than of an RRset. (It is for this reason that the Zone
 Section is not optional.)

7.2. Since there are no data-present or data-absent errors possible from
 processing the Update Section, any necessary data-present and data-
 absent dependencies should be specified in the Prerequisite Section.

7.3. The Additional Data Section can be used to supply a server with out
 of zone glue that will be needed in referrals. For example, if adding a
 new NS RR to HOME.VIX.COM specifying a nameserver called NS.AU.OZ, the A
 RR for NS.AU.OZ can be included in the Additional Data Section. Servers
 can use this information or ignore it, at the discretion of the
 implementor. We discourage caching this information for use in
 subsequent DNS responses.

7.4. The Additional Data Section might be used if some of the RRs later
 needed for Secure DNS Update are not actually zone updates, but rather
 ancillary keys or signatures not intended to be stored in the zone (as
 an update would be), yet necessary for validating the update operation.

7.5. It is expected that in the absence of Secure DNS Update, a server
 will only accept updates if they come from a source address that has
 been statically configured in the server's description of a primary
 master zone. DHCP servers would be likely candidates for inclusion in
 this statically configured list.

7.6. It is not possible to create a zone using this protocol, since
 there is no provision for a slave server to be told who its master
 servers are. It is expected that this protocol will be extended in the
 future to cover this case. Therefore, at this time, the addition of SOA
 RRs is unsupported. For similar reasons, deletion of SOA RRs is also
 unsupported.

Expires May 1997 [Page 23]

INTERNET-DRAFT DNS UPDATE November 1996

7.7. The prerequisite for specifying that a name own at least one RR
 differs semantically from QUERY, in that QUERY would return
 <NOERROR,ANCOUNT=0> rather than NXDOMAIN if queried for an RRset at this
 name, while UPDATE's prerequisite condition [Section 2.4.4] would NOT be
 satisfied.

7.8. It is possible for a UDP response to be lost in transit and for a
 request to be retried due to a timeout condition. In this case an
 UPDATE that was successful the first time it was received by the primary
 master might ultimately appear to have failed when the response to a
 duplicate request is finally received by the requestor. (This is
 because the original prerequisites may no longer be satisfied after the
 update has been applied.) For this reason, requestors who require an
 accurate response code must use TCP.

7.9. Because a requestor who requires an accurate response code will
 initiate their UPDATE transaction using TCP, a forwarder who receives a
 request via TCP must forward it using TCP.

7.10. Deferral of SOA SERIAL autoincrements is made possible so that
 serial numbers can be conserved and wraparound at 2**32 can be made an
 infrequent occurance. Visible (to DNS clients) SOA SERIALs need to
 differ if the zone differs. Note that the Authority Section SOA in a
 QUERY response is a form of visibility, for the purposes of this
 prerequisite.

7.11. A zone's SOA SERIAL should never be set to zero (0) due to
 interoperability problems with some older but widely installed
 implementations of DNS. When incrementing an SOA SERIAL, if the result
 of the increment is zero (0) (as will be true when wrapping around
 2**32), it is necessary to increment it again or set it to one (1). See
 [RFC1982] for more detail on this subject.

7.12. Due to the TTL minimalization necessary when caching an RRset, it
 is recommended that all TTLs in an RRset be set to the same value.
 While the DNS Message Format permits variant TTLs to exist in the same
 RRset, and this variance can exist inside a zone, such variance will
 have counterintuitive results and its use is discouraged.

Expires May 1997 [Page 24]

https://datatracker.ietf.org/doc/html/rfc1982

INTERNET-DRAFT DNS UPDATE November 1996

7.13. Zone cut management presents some obscure corner cases to the add
 and delete operations in the Update Section. It is possible to delete
 an NS RR as long as it is not the last NS RR at the root of a zone. If
 deleting all RRs from a name, SOA and NS RRs at the root of a zone are
 unaffected. If deleting RRsets, it is not possible to delete either SOA
 or NS RRsets at the top of a zone. An attempt to add an SOA will be
 treated as a replace operation.

7.14. No semantic checking is required in the primary master server when
 adding new RRs. Therefore a requestor can cause CNAME or NS or any
 other kind of RR to be added even if their target name does not exist or
 does not have the proper RRsets to make the original RR useful. Primary
 master servers that DO implement this kind of checking should take great
 care to avoid out-of-zone dependencies (whose veracity cannot be
 authoritatively checked) and should implement all such checking during
 the prescan phase.

7.15. Nonterminal or wildcard CNAMEs are not well specified by [RFC1035]
 and their use will probably lead to unpredictable results. Their use is
 discouraged.

7.16. Empty nonterminals (nodes with children but no RRs of their own)
 will cause <NOERROR,ANCOUNT=0> responses to be sent in response to a
 query of any type for that name. There is no provision for empty
 terminal nodes -- so if all RRs of a terminal node are deleted, the name
 is no longer in use, and queries of any type for that name will result
 in an NXDOMAIN response.

7.17. In a deep AXFR dependency graph, it has not historically been an
 error for slaves to depend mutually upon each other. This configuration
 has been used to enable a zone to flow from the primary master to all
 slaves even though not all slaves have continuous connectivity to the
 primary master. UPDATE's use of the AXFR dependency graph for
 forwarding prohibits this kind of dependency loop, since UPDATE
 forwarding has no loop detection analagous to the SOA SERIAL pretest
 used by AXFR.

7.18. For UPDATE's purposes, a zone is said to own all names at or below
 the zone's root. This allows an UPDATE message to add or delete names
 below a zone cut so as to create and maintain ``glue'' records needed
 for delegation when a name server is within the zone being delegated,
 even though a query for this data would result in a referral response.

7.19. Previously existing names which are occluded by a new zone cut are
 still considered part of the parent zone, for the purposes of zone

Expires May 1997 [Page 25]

https://datatracker.ietf.org/doc/html/rfc1035

INTERNET-DRAFT DNS UPDATE November 1996

 transfers, even though queries for such names will be referred to the
 new subzone's servers. If a zone cut is removed, all parent zone names
 that were occluded by it will again become visible to queries. (This is
 a clarification of [RFC1034].)

7.20. If a node contains any name server delegations (NS RRs), this node
 is said to be owned by the child zone, and the parent will answer only
 with a referral to the child zone's servers if queried for a name at or
 below the child zone's root, except in the case of a QTYPE=NS query at
 the zone cut itself, for which the parent zone's servers would answer
 authoritatively. (This is a clarification of [RFC1034].)

7.21. If a server is authoritative for both a zone and its child, then
 queries for names at the zone cut between them will be answered
 authoritatively using only data from the child zone. (This is a
 clarification of [RFC1034].)

7.22. Update ordering using the SOA RR is problematic since there is no
 way to know which of a zone's NS RRs represents the primary master, and
 the zone slaves can be out of date if their SOA.REFRESH timers have not
 elapsed since the last time the zone was changed on the primary master.
 We recommend that a zone needing ordered updates use only servers which
 implement NOTIFY (see [RFC1996]) and IXFR (see [RFC1995]), and that a
 client receiving a prerequisite error while attempting an ordered update
 simply retry after a random delay period to allow the zone to settle.

8 - Security Considerations 8.1. In the absence of [SECUPD] or
 equivilent technology, the protocol described by this document makes it
 possible for anyone who can reach an authoritative name server to alter
 the contents of any zones on that server. This is a serious increase in
 vulnerability from the current technology. Therefore it is very
 strongly recommended that the protocols described in this document not
 be used without [SECUPD] or other equivalently strong security measures,
 e.g. IPsec.

8.2. A denial of service attack can be launched by flooding an update
 forwarder with TCP sessions containing updates that the primary master
 server will ultimately refuse due to permission problems. This arises
 due to the requirement that an update forwarder receiving a request via
 TCP use a synchronous TCP session for its forwarding operation. The
 connection management mechanisms of [RFC1035 4.2.2] are sufficient to
 prevent large scale damage from such an attack, but not to prevent some
 queries from going unanswered during the attack.

Expires May 1997 [Page 26]

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1996
https://datatracker.ietf.org/doc/html/rfc1995

INTERNET-DRAFT DNS UPDATE November 1996

 Acknowledgements

 We would like to thank the IETF DNSIND working group for their input and
 assistance, in particular, Rob Austein, Randy Bush, Donald Eastlake,
 Masataka Ohta, Mark Andrews, and Robert Elz. Special thanks to Bill
 Simpson, Ken Wallich and Bob Halley for reviewing this document.

 References

 [RFC1035]
 P. Mockapetris, ``Domain Names - Implementation and Specification,''

RFC 1035, USC/Information Sciences Institute, November 1987.

 [RFC1982]
 R. Elz, ``Serial Number Arithmetic,'' RFC 1982, University of
 Melbourne, August 1996.

 [RFC1995]
 M. Ohta, ``Incremental Zone Transfer,'' RFC 1995, Tokyo Institute of
 Technology, August 1996.

 [RFC1996]
 P. Vixie, ``A Mechanism for Prompt Notification of Zone Changes,''

RFC 1996, Internet Software Consortium, August 1996.

 [DNSSEC]
 Donald E. Eastlake and Charles W. Kaufman, ``Domain Name System
 Protocol Security Extensions,'' Internet Draft, August 1996, <draft-

ietf-dnssec-secext-10.txt>.

 [SECUPD]
 Donald E. Eastlake, ``Secure Domain Name System Dynamic Update,''
 Internet Draft, March 1997, <draft-ietf-dnssec-update-02.txt>

Expires May 1997 [Page 27]

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1982
https://datatracker.ietf.org/doc/html/rfc1995
https://datatracker.ietf.org/doc/html/rfc1996
https://datatracker.ietf.org/doc/html/draft-ietf-dnssec-secext-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dnssec-secext-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dnssec-update-02.txt

INTERNET-DRAFT DNS UPDATE November 1996

 Authors' Addresses

 Yakov Rekhter Susan Thomson
 Cisco Systems Bellcore
 170 West Tasman Drive 445 South Street
 San Jose, CA 95134-1706 Morristown, NJ 07960
 +1 914 528 0090 +1 201 829 4514
 <yakov@cisco.com> <set@thumper.bellcore.com>

 Jim Bound Paul Vixie
 Digital Equipment Corp. Internet Software Consortium
 110 Spitbrook Rd ZK3-3/U14 Star Route Box 159A
 Nashua, NH 03062-2698 Woodside, CA 94062
 +1 603 881 0400 +1 415 747 0204
 <bound@zk3.dec.com> <paul@vix.com>

 Expires May 1997 [Page 28]

