
 INTERNET-DRAFT Mark Andrews (CSIRO)
 <draft-ietf-dnsind-ncache-06.txt> September 1997

 Updates: RFC 1034

 Negative Caching of DNS Queries (DNS NCACHE)

 Status of This Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other docu-
 ments at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 To learn the current status of any Internet-Draft, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net
 (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East
 Coast), or ftp.isi.edu (US West Coast).

 Abstract

 [RFC1034] provided a description of how to cache negative
 responses. It however had a fundamental flaw in that it did not
 allow a name server to hand out those cached responses to other
 resolvers, thereby greatly reducing the effect of the caching.
 This document addresses issues raise in the light of experience
 and replaces [RFC1034 Section 4.3.4].

 Negative caching was an optional part of the DNS specification
 and deals with the caching of the non-existence of an RRset
 [RFC2181] or domain name.

 Negative caching is useful as it reduces the response time for
 negative answers. It also reduces the number of messages that
 have to be sent between resolvers and name servers hence overall

Expires March 1998 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-ncache-06.txt
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2181

INTERNET-DRAFT DNS NCACHE July 1997

 network traffic. A large proportion of DNS traffic on the
 Internet could be eliminated if all resolvers implemented nega-
 tive caching. With this in mind negative caching should no
 longer be seen as an optional part of a DNS resolver.

1 - Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Negative caching is the storage of knowledge that something does not
 exist. For example we can store the knowledge that a record has a par-
 ticular value. We can also do the reverse, that is, to store the
 knowledge that a record does not exist. It is the storage of knowledge
 that something does not exist, cannot or does not give an answer that we
 call negative caching.

 "QNAME" refers to the name in the query section of an answer, or where
 this resolves to a CNAME, or CNAME chain, the data field of the last
 CNAME. The last CNAME in this sense is that which contains a value
 which does not resolve to another CNAME. Implementations should note
 that including CNAME records in responses in order, so that the first
 has the label from the query section, and then each in sequence has the
 label from the data section of the previous (where more than one CNAME
 is needed) allows the sequence to be processed in one pass, and consid-
 erably eases the task of the receiver. Other relevant records (such as
 SIG RRs) can be interspersed amongst the CNAMEs.

 "NXDOMAIN" is as alternate expression for the "Name Error" RCODE as
 described in [RFC1035 Section 4.1.1] and the two terms are used inter-
 changeably in this document.

 "NODATA" is a pseudo RCODE which indicates that the name is valid, for
 the given class, but are no records of the given type. A NODATA
 response has to be inferred from the answer.

 "FORWARDER" is a nameserver that is used by another nameserver to
 resolve queries that it cannot answer from its cache in preference to
 those that would be queried as the result of looking at the records in
 the DNS. FORWARDERS are often used to reduce the number of queries sent
 across wide area networks or to provide DNS services through firewalls.

 An understanding of [RFC1034], [RFC1035] and [RFC2065] is expected when
 reading this document.

Expires March 1998 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2065

INTERNET-DRAFT DNS NCACHE July 1997

2 - Negative Responses

 The most common negative responses indicate that a particular RRset does
 not exist in the DNS. The first sections of this document deal with
 these case. Other negative responses can indicate failures of a
 nameserver, those are dealt with in section 8 (Other Negative
 Responses).

 A negative response is indicated by one of the following conditions:

2.1 - Name Error

 Name errors (NXDOMAIN) are indicated by the presence of "Name Error" in
 the RCODE field. In this case the domain referred to by the QNAME does
 not exist. Note: the answer section may have SIG and CNAME RRs and
 authority section may have SOA, NXT and SIG RRsets.

 It is possible to distinguish between a referral and a NXDOMAIN response
 by the presense of NXDOMAIN in the RCODE regardless of the presence of
 NS or SOA records in the authority section.

 NXDOMAIN RESPONSE: TYPE 1.

 Header:
 RDCODE=NXDOMAIN
 Query:
 AN.EXAMPLE. A
 Answer:
 AN.EXAMPLE. CNAME TRIPPLE.XX.
 Authority:
 XX. SOA NS1.XX. HOSTMASTER.NS1.XX.
 XX. NS NS1.XX.
 XX. NS NS2.XX.
 Additional:
 NS1.XX. A 127.0.0.2
 NS2.XX. A 127.0.0.3

Expires March 1998 [Page 3]

INTERNET-DRAFT DNS NCACHE July 1997

 NXDOMAIN RESPONSE: TYPE 2.

 Header:
 RDCODE=NXDOMAIN
 Query:
 AN.EXAMPLE. A
 Answer:
 AN.EXAMPLE. CNAME TRIPPLE.XX.
 Authority:
 XX. SOA NS1.XX. HOSTMASTER.NS1.XX.
 Additional:
 <empty>

 NXDOMAIN RESPONSE: TYPE 3.

 Header:
 RDCODE=NXDOMAIN
 Query:
 AN.EXAMPLE. A
 Answer:
 AN.EXAMPLE. CNAME TRIPPLE.XX.
 Authority:
 <empty>
 Additional:
 <empty>

 REFERRAL RESPONSE.

 Header:
 RDCODE=NOERROR
 Query:
 AN.EXAMPLE. A
 Answer:
 AN.EXAMPLE. CNAME TRIPPLE.XX.
 Authority:
 XX. NS NS1.XX.
 XX. NS NS2.XX.
 Additional:
 NS1.XX. A 127.0.0.2
 NS2.XX. A 127.0.0.3

Expires March 1998 [Page 4]

INTERNET-DRAFT DNS NCACHE July 1997

 Note, in the three examples of NXDOMAIN responses, it is known that the
 name "AN.EXAMPLE." exists, and has as its value a CNAME record. The
 NXDOMAIN refers to "TRIPPLE.XX", which is then known not to exist. On
 the other hand, in the referral example, it is shown that "AN.EXAMPLE"
 exists, and has a CNAME RR as its value, but nothing is known one way or
 the other about the existence of "TRIPPLE.XX", other than that "NS1.XX"
 or "NS2.XX" can be consulted as the next step in obtaining information
 about it.

 Where no CNAME records appear, the NXDOMAIN response refers to the name
 in the label of the RR in the question section.

2.1.1 Special Handling of Name Error

 There are a large number of resolvers currently in existence that fail
 to correctly detect and process all forms of NXDOMAIN response. Some
 resolvers treat a TYPE 1 NXDOMAIN response as a referral. To alleviate
 this problem it is recommended that servers that are authoritative for
 the NXDOMAIN response only send TYPE 2 NXDOMAIN responses, that is the
 authority section contains a SOA record and no NS records. If a non-
 authoritative server sends a type 1 NXDOMAIN response to one of these
 old resolvers, the result will be an unnecessary query to an authorita-
 tive server. This is undesirable, but not fatal. If a server is listed
 as a FORWARDER for another resolver it may be necessary to disable send-
 ing TYPE 1 NXDOMAIN response for non-authoritative NXDOMAIN responses.

 Some resolvers incorrectly continue processing if the authoritative
 answer flag is not set. This is a problem when your nameserver is
 listed as a FORWARDER for these resolvers. It is sometimes necessary to
 force the authority flag on for NXDOMAIN responses when you have such a
 resolver.

2.2 - No Data

 NODATA responses have to be algorithmically determined from the
 response's contents as there is no RCODE value to indicate NODATA. In
 some cases to determine with certainty that NODATA is the correct
 response it can be necessary to send another query.

 NODATA is indicated by an answer with a RCODE of NOERROR and no relevant
 answers in the answer section and either an SOA record in the authority
 section or no NS records in the authority section. The authority sec-
 tion may contain NXT and SIG RRsets in addition to NS and SOA records.
 CNAMEs and SIG records may exist in the answer section.

Expires March 1998 [Page 5]

INTERNET-DRAFT DNS NCACHE July 1997

 It is possible to distinguish between a referral and a NODATA response
 by the presence of a SOA record in the authority section or the absence
 of NS records in the authority section.

 NODATA RESPONSE: TYPE 1.

 Header:
 RDCODE=NOERROR
 Query:
 ANOTHER.EXAMPLE. A
 Answer:
 <empty>
 Authority:
 EXAMPLE. SOA NS1.XX. HOSTMASTER.NS1.XX.
 EXAMPLE. NS NS1.XX.
 EXAMPLE. NS NS2.XX.
 Additional:
 NS1.XX. A 127.0.0.2
 NS2.XX. A 127.0.0.3

 NO DATA RESPONSE: TYPE 2.

 Header:
 RDCODE=NOERROR
 Query:
 ANOTHER.EXAMPLE. A
 Answer:
 <empty>
 Authority:
 EXAMPLE. SOA NS1.XX. HOSTMASTER.NS1.XX.
 Additional:
 <empty>

Expires March 1998 [Page 6]

INTERNET-DRAFT DNS NCACHE July 1997

 NO DATA RESPONSE: TYPE 3.

 Header:
 RDCODE=NOERROR
 Query:
 ANOTHER.EXAMPLE. A
 Answer:
 <empty>
 Authority:
 <empty>
 Additional:
 <empty>

 REFERRAL RESPONSE.

 Header:
 RDCODE=NOERROR
 Query:
 ANOTHER.EXAMPLE. A
 Answer:
 <empty>
 Authority:
 EXAMPLE. NS NS1.XX.
 EXAMPLE. NS NS2.XX.
 Additional:
 NS1.XX. A 127.0.0.2
 NS2.XX. A 127.0.0.3

 These examples, unlike the NXDOMAIN examples above, have no CNAME
 records, however they could, in just the same way that the NXDOMAIN
 examples did, in which case it would be the value of the last CNAME (the
 QNAME) for which NODATA would be concluded.

2.2.1 - Special Handling of No Data

 There are a large number of resolvers currently in existence that fail
 to correctly detect and process all forms of NODATA response. Some
 resolvers treat a TYPE 1 NODATA response as a referral. To alleviate
 this problem it is recommended that servers that are authoritative for
 the NODATA response only send TYPE 2 NODATA responses, that is the
 authority section contains a SOA record and no NS records. Sending a
 TYPE 1 NODATA response from a non-authoritative server to one of these

Expires March 1998 [Page 7]

INTERNET-DRAFT DNS NCACHE July 1997

 resolvers will only result in an unnecessary query. If a server is
 listed as a FORWARDER for another resolver it may also be necessary to
 disable the sending of TYPE 1 NODATA response for non-authoritative
 NODATA responses.

 Some name servers fail to set the RCODE to NXDOMAIN in the presence of
 CNAMEs in the answer section. If a definitive NXDOMAIN / NODATA answer
 is required the resolver must query again with QNAME.

3 - Negative Answers from Authoritative Servers

 Authoritative name servers MUST add the SOA record from the zone in
 which a name was not located, or in which the name was found but no data
 of the requested type, to the authority section of the answer containing
 a negative response soa that the response can be cached. The TTL of
 this record is set from the MINIMUM field of the SOA record, not the TTL
 of the SOA itself, and indicates how long a resolver may cache this
 negative answer.

 If the containing zone is signed [RFC2065] the SOA and appropriate NXT
 and SIG records MUST be added.

4 - SOA Minimum Field

 The SOA minimum field has been overloaded in the past to have three dif-
 ferent meanings, the minimum TTL value of all RRs in a zone, the default
 TTL of RRs which did not contain a TTL value and the TTL of negative
 responses.

 The first of these, the minimum TTL value of all RRs in a zone, has
 never in practice been used and should now be ignored.

 The second, the default TTL of RRs which did not contain a TTL value, is
 not preserved across zone transfers where each record has a TTL. In
 fact it is impossible to determine whether the TTL for a record was
 explicitly set or derived from the default after a zone transfer.
 Servers MUST provide a mechanism to set the default TTL independent of
 the MINIMUM field. How this is done in implementation dependent.

 The [RFC 1035 Section 5] "MASTER FILES" format format is extended to
 include the following directive which specifies the default TTL of RRs,
 which appear after the directive, in the zone file which do not have a
 TTL of their own.

 $TTL <TTL> [comment]

Expires March 1998 [Page 8]

https://datatracker.ietf.org/doc/html/rfc2065

INTERNET-DRAFT DNS NCACHE July 1997

 This only leaves the third case, TTL of negative responses, as the final
 and only use for the SOA minimum field.

5 - Caching Negative Answers

 Like normal answers negative answers have a time to live (TTL). As
 there is no record in the answer section to which this TTL can be
 applied, the TTL must be carried by another method. This is done by
 using the SOA record from the containing zone and putting it in the
 authority section with an initial TTL set from the SOA minimum field.
 This TTL decrements in a similar manner to a normal cached answer and
 upon reaching zero (0) indicates the negative answer MUST be discarded.

 Early advertisement of a service before all the secondaries have a copy
 of the relevant zone can lead to prolonged denials of service. With
 this in mind a resolver SHOULD set an upper bound on the TTL of the
 negative answer it is willing to cache. If it does this the TTL MUST be
 set to the minimum of the resolver upper bound and the received TTL. A
 resolver upper bound of one (1) hour is often appropriate.

 A negative answer that resulted from a name error (NXDOMAIN) should be
 cached such that it can be retrieved and returned in response to another
 query for the same <QNAME, QCLASS> that resulted in the cached negative
 response.

 A negative answer that resulted from a no data error (NODATA) should be
 cached such that it can be retrieved and returned in response to another
 query for the same <QNAME, QTYPE, QCLASS> that resulted in the cached
 negative response.

 The NXT record, if it exists in the authority section, MUST be stored
 such that it can be be located and returned with SOA record in the
 authority section as should any SIG records in the authority section.
 For NXDOMAIN answers there is no "necessary" obvious relationship
 between the NXT records and the QNAME. The NXT record MUST have the
 same owner name as the query name for NODATA responses.

 Negative responses without SOA records SHOULD NOT be cached as there is
 no way to prevent the negative responses looping forever between a pair
 of servers even with a short TTL.

6 - Negative answers from the cache

 When a server, in answering a query, encounters a cached negative
 response it MUST add the cached SOA record to the authority section of

Expires March 1998 [Page 9]

INTERNET-DRAFT DNS NCACHE July 1997

 the response with the TTL decremented by the amount of time it was
 stored in the cache. This allows the NXDOMAIN / NODATA response to time
 out correctly.

 If a NXT record was cached along with SOA record it MUST be added to the
 authority section. If a SIG record was cached along with a NXT record
 it SHOULD be added to the authority section.

7 - Changes from RFC 1034

 Negative caching in resolvers is no-longer optional, if a resolver
 caches anything it MUST also cache negative answers.

 Non-authoritative negative answers MAY be cached.

 The SOA record from the authority section MUST be cached. Name error
 indications MUST be cached against the tuple <query name, QCLASS>. No
 data indications MUST be cached against <query name, QTYPE, QCLASS>
 tuple.

 A cached SOA record MUST be added to the response. This was explicitly
 not allowed because previously the distinction between a normal cached
 SOA record, and the SOA cached as a result of a negative response was
 not made, and simply extracting a normal cached SOA and adding that to a
 cached negative response causes problems.

 Added $TTL directive to master file format.

8 - Other Negative Responses

 Caching of other negative responses is not covered by any existing RFC.
 There is no way to indicate a desired TTL in these responses. Care
 needs to be taken to ensure that there are not forwarding loops.

8.1 Server Failure (OPTIONAL)

 Server failures fall into two major classes. The first is where a
 server can determine that it has been misconfigured for a zone. This
 may be where it has been listed as a server, but not configured to be a
 server for the zone, or where it has been configured to be a server for
 the zone, but cannot obtain the zone data for some reason, either
 because the zone file does not exist or contains errors, or because
 another server from which the zone should have been available either did
 not respond or was unable or unwilling to supply the zone.

Expires March 1998 [Page 10]

https://datatracker.ietf.org/doc/html/rfc1034

INTERNET-DRAFT DNS NCACHE July 1997

 The second class is where the server needs to obtain an answer from
 elsewhere, but is unable to do so, due to network failures, other
 servers that don't reply, or return server failure errors, or similar.

 In either case a resolver MAY cache a server failure response. If it
 does so it MUST NOT cache it for longer that five (5) minutes, and it
 MUST be cached against the specific query tuple <query name, type,
 class, server IP address>.

8.2 Dead / Unreachable Server (OPTIONAL)

 Dead / Unreachable servers are servers that fail to respond in any way
 to a query or where the transport layer has provided an indication that
 the server does not exist or is unreachable. A server is deemed to be
 dead or unreachable if it has not responded to an outstanding query
 within 120 seconds.

 Examples of transport layer indications are:

 ICMP error messages indicating host, net or port unreachable.
 TCP resets
 IP stack error messages providing similar indications to those
above.

 A server MAY cache a dead server indication. If it does so it MUST NOT
 be deemed dead for longer than five (5) minutes. The indication MUST be
 stored against query tuple <query name, type, class, server IP address>
 unless there was a transport layer indication that the server does not
 exist, in which case it applies to all queries to that specific IP
 address.

9 History of Negative Caching

 The following is a potted history of negative caching in the DNS and
 forms no part of the technical specification of negative caching.

 It is interesting to note that the same concepts were re-invented in
 both the CHIVES and BIND servers.

 The history of the early CHIVES work (Section 8.1) was supplied by Rob
 Austein <sra@epilogue.com> and is essentially untouch from what he sent
 me [MPA].

Expires March 1998 [Page 11]

INTERNET-DRAFT DNS NCACHE July 1997

 Sometime around the spring of 1985, I mentioned to Paul Mockapetris that
 our experience with his JEEVES DNS resolver had pointed out the need for
 some kind of negative caching scheme. Paul suggested that we simply
 cache authoritative errors, using the SOA MINIMUM value for the zone
 that would have contained the target RRs. I'm pretty sure that this
 conversation took place before RFC-973 was written, but it was never
 clear to me whether this idea was something that Paul came up with on
 the spot in response to my question or something he'd already been plan-
 ning to put into the document that became RFC-973. In any case, neither
 of us was entirely sure that the SOA MINIMUM value was really the right
 metric to use, but it was available and was under the control of the
 administrator of the target zone, both of which seemed to us at the time
 to be important feature.

 Late in 1987, I released the initial beta-test version of CHIVES, the
 DNS resolver I'd written to replace Paul's JEEVES resolver. CHIVES
 included a search path mechanism that was used pretty heavily at several
 sites (including my own), so CHIVES also included a negative caching
 mechanism based on SOA MINIMUM values. The basic strategy was to cache
 authoritative error codes keyed by the exact query parameters (QNAME,
 QCLASS, and QTYPE), with a cache TTL equal to the SOA MINIMUM value.
 CHIVES did not attempt to track down SOA RRs if they weren't supplied in
 the authoritative response, so it never managed to completely eliminate
 the gratuitous DNS error message traffic, but it did help considerably.
 Keep in mind that this was happening at about the same time as the
 near-collapse of the ARPANET due to congestion caused by exponential
 growth and the the "old" (pre-VJ) TCP retransmission algorithm, so nega-
 tive caching resulted in drasticly better DNS response time for our
 users, mailer daemons, etcetera.

 As far as I know, CHIVES was the first resolver to implement negative
 caching. CHIVES was developed during the twilight years of TOPS-20, so
 it never ran on very many machines, but the few machines that it did run
 on were the ones that were too critical to shut down quickly no matter
 how much it cost to keep them running. So what few users we did have
 tended to drive CHIVES pretty hard. Several interesting bits of DNS
 technology resulted from that, but the one that's relevant here is the
 MAXTTL configuration parameter.

 Experience with JEEVES had already shown that RRs often showed up with
 ridiculously long TTLs (99999999 was particularly popular for many
 years, due to bugs in the code and documentation of several early ver-
 sions of BIND), and that robust software that blindly believed such TTLs
 could create so many strange failures that it was often necessary to
 reboot the resolver frequently just to clear this garbage out of the

https://datatracker.ietf.org/doc/html/rfc973
https://datatracker.ietf.org/doc/html/rfc973

Expires March 1998 [Page 12]

INTERNET-DRAFT DNS NCACHE July 1997

 cache. So CHIVES had a configuration parameter "MAXTTL", which speci-
 fied the maximum "reasonable" TTL in a received RR. RRs with TTLs
 greater than MAXTTL would either have their TTLs reduced to MAXTTL or
 would be discarded entirely, depending on the setting of another confi-
 guration parameter.

 When we started getting field experience with CHIVES's negative caching
 code, it became clear that the SOA MINIMUM value was often large enough
 to cause the same kinds of problems for negative caching as the huge
 TTLs in RRs had for normal caching (again, this was in part due to a bug
 in several early versions of BIND, where a secondary server would
 authoritatively deny all knowledge of its zones if it couldn't contact
 the primaries on reboot). So we started running the negative cache TTLs
 through the MAXTTL check too, and continued to experiment.

 The configuration that seemed to work best on WSMR-SIMTEL20.ARMY.MIL
 (last of the major Internet TOPS-20 machines to be shut down, thus the
 last major user of CHIVES, thus the place where we had the longest
 experimental baseline) was to set MAXTTL to about three days. Most of
 the traffic initiated by SIMTEL20 in its last years was mail-related,
 and the mail queue timeout was set to one week, so this gave a "stuck"
 message several tries at complete DNS resolution, without bogging down
 the system with a lot of useless queries. Since (for reasons that now
 escape me) we only had the single MAXTTL parameter rather than separate
 ones for positive and negative caching, it's not clear how much effect
 this setting of MAXTTL had on the negative caching code.

 CHIVES also included a second, somewhat controversial mechanism which
 took the place of negative caching in some cases. The CHIVES resolver
 daemon could be configured to load DNS master files, giving it the abil-
 ity to act as what today would be called a "stealth secondary". That
 is, when configured in this way, the resolver had direct access to
 authoritative information for heavily-used zones. The search path
 mechanisms in CHIVES reflected this: there were actually two separate
 search paths, one of which only searched local authoritative zone data,
 and one which could generate normal iterative queries. This cut down on
 the need for negative caching in cases where usage was predictably heavy
 (e.g., the resolver on XX.LCS.MIT.EDU always loaded the zone files for
 both LCS.MIT.EDU and AI.MIT.EDU and put both of these suffixes into the
 "local" search path, since between them the hosts in these two zones
 accounted for the bulk of the DNS traffic). Not all sites running
 CHIVES chose to use this feature; C.CS.CMU.EDU, for example, chose to
 use the "remote" search path for everything because there were too many
 different sub-zones at CMU for zone shadowing to be practical for them,
 so they relied pretty heavily on negative caching even for local

Expires March 1998 [Page 13]

INTERNET-DRAFT DNS NCACHE July 1997

 traffic.

 Overall, I still think the basic design we used for negative caching was
 pretty reasonable: the zone administrator specified how long to cache
 negative answers, and the resolver configuration chose the actual cache
 time from the range between zero and the period specified by the zone
 administrator. There are a lot of details I'd do differently now (like
 using a new SOA field instead of overloading the MINIMUM field), but
 after more than a decade, I'd be more worried if we couldn't think of at
 least a few improvements.

9.2 BIND

 While not the first attempt to get negative caching into BIND, in July
 1993, BIND 4.9.2 ALPHA, Anant Kumar of ISI supplied code that imple-
 mented, validation and negative caching (NCACHE). This code had a 10
 minute TTL for negative caching and only cached the indication that
 there was a negative response, NXDOMAIN or NOERROR_NODATA. This is the
 origin of the NODATA pseudo response code mentioned below.

 NCACHE made default XXXX. xxxx 199?.

 Mark Andrews of CSIRO added code (RETURNSOA) that stored the SOA record
 such that it could be retrieved by a similar query. UUnet complained
 that they were getting old answers after loading a new zone, and the
 option was turned off, BIND 4.9.3-alpha5, XXXX 199?. In reality this
 indicated that the named needed to purge the space the zone would
 occupy. Functionality to do this was added in BIND 4.9.3 BETA11 patch2,
 XXXX 199?.

 RETURNSOA was re-enabled by default, BIND 4.9.5-T1A, XXXX 199?.

10 Security Considerations

 We believed that this document does not introduce any significant addi-
 tional security threats.

 With negative caching it might be possible to propagate a denial of ser-
 vice attack by spreading a NXDOMAIN message with a very high TTL.
 Without negative caching that would be much harder. A similar effect
 could be achieved previously by spreading a bad A record, so that the
 server could not be reached - which is almost the same but not quite.
 It has the same effect as far as what the end user is able to do, but
 with a different psychological effect. With the bad A, I feel "damn the
 network is broken again" and try again tomorrow. With the "NXDOMAIN" I

Expires March 1998 [Page 14]

INTERNET-DRAFT DNS NCACHE July 1997

 feel "Oh, they've turned off the server and it doesn't exist any more"
 and probably never bother trying this server again.

 For such an attack to be successful you would need to get the NXDOMAIN
 indiction injected into a parent server (or a busy caching resolver).
 This can only be done by the use of a CNAME which results in the parent
 server querying an attackers server.
 Resolvers that are wish to prevent such attacks can query again the
 final QNAME ignoring any NS data in the query responses it has received
 for this query.

 Implementing TTL sanity checking will reduce the effectiveness of such
 an attack, because a successful attack would require re-injection of the
 bogus data at more frequent intervals.

 DNS Security [RFC2065] provides a mechanism to verify whether a negative
 response is valid or not, through the use of NXT and SIG records. This
 document supports the use of that mechanism by promoting the transmis-
 sion of the relevant security records even in a non security aware
 server.

 References

 [RFC1034]
 P. Mockapetris, "DOMAIN NAMES - CONCEPTS AND FACILITIES," STD
 13, RFC 1034, November 1987.

 [RFC1035]P. Mockapetris, "DOMAIN NAMES - IMPLEMENTATION AND SPECIFICA-
 TION," STD 13, RFC 1035, November 1987.

 [RCF2065]
 D. Eastlake, 3rd, C. Kaufman, "Domain Name System Security
 Extensions," RFC 2065, January 1997

 [RFC2119]
 S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels," RFC 2119, March 1997

 [RFC2181]
 R. Elz, R. Bush, "Clarifications to the DNS Specification," RFC

2181, July 1997.

Expires March 1998 [Page 15]

https://datatracker.ietf.org/doc/html/rfc2065
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2065
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2181

INTERNET-DRAFT DNS NCACHE July 1997

 Author's Address

 Mark Andrews
 CSIRO - Mathematical and Information Sciences
 Locked Bag 17
 North Ryde NSW 2113
 AUSTRALIA
 +61 2 9325 3148
 <Mark.Andrews@cmis.csiro.au>

 Expires March 1998 [Page 16]

