
INTERNET-DRAFT Donald Eastlake
Intended Status: Proposed Standard Huawei
 Mark Andrews
 ISC
Expires: April 18, 2016 October 19, 2015

Domain Name System (DNS) Cookies
<draft-ietf-dnsop-cookies-06.txt>

Abstract

 DNS cookies are a lightweight DNS transaction security mechanism that
 provides limited protection to DNS servers and clients against a
 variety of increasingly common denial-of-service and amplification /
 forgery or cache poisoning attacks by off-path attackers. DNS Cookies
 are tolerant of NAT, NAT-PT, and anycast and can be incrementally
 deployed.

Status of This Document

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Distribution of this document is unlimited. Comments should be sent
 to the author or the DNSEXT mailing list <dnsext@ietf.org>.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html. The list of Internet-Draft

 Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-cookies-06.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Donald Eastlake & Mark Andrews [Page 1]

INTERNET-DRAFT DNS Cookies

Table of Contents

1. Introduction..4
1.1 Contents of This Document..............................4
1.2 Definitions..5

2. Threats Considered......................................6
2.1 Denial-of-Service Attacks..............................6
2.1.1 DNS Amplification Attacks............................6
2.1.2 DNS Server Denial-of-Service.........................7
2.2 Cache Poisoning and Answer Forgery Attacks.............7

3. Comments on Existing DNS Security.......................8
3.1 Existing DNS Data Security.............................8
3.2 DNS Message/Transaction Security.......................8
3.3 Conclusions on Existing DNS Security...................8

4. DNS Cookie Option......................................10
4.1 Client Cookie...11
4.2 Server Cookie...11

5. DNS Cookies Protocol Specification.....................12
5.1 Originating Requests..................................12
5.2 Responding to Request.................................12
5.2.1 No Opt RR or No COOKIE OPT option...................13
5.2.2 Malformed COOKIE OPT option.........................13
5.2.3 Only a Client Cookie................................13
5.2.4 A Client Cookie and an Invalid Server Cookie........14
5.2.5 A Client Cookie and a Valid Server Cookie...........14
5.3 Processing Responses..................................14
5.4 QUERYing for a Server Cookie..........................15
5.5 Client and Server Secret Rollover.....................16

6. NAT Considerations and AnyCast Server Considerations...17
7. Deployment...19
8. IANA Considerations....................................20

9. Security Considerations................................21
9.1 Cookie Algorithm Considerations.......................21

10. Implementation Considerations.........................23

 Normative References......................................24
 Informative References....................................24

 Acknowledgements..26

Appendix A: Example Client Cookie Algorithms..............27
A.1 A Simple Algorithm....................................27

A.2 A More Complex Algorithm..............................27

Donald Eastlake & Mark Andrews [Page 2]

INTERNET-DRAFT DNS Cookies

Table of Contents (continued)

Appendix B: Example Server Cookie Algorithms..............28
B.1 A Simple Algorithm....................................28
B.2 A More Complex Algorithm..............................28

 Author's Address..30

Donald Eastlake & Mark Andrews [Page 3]

INTERNET-DRAFT DNS Cookies

1. Introduction

 As with many core Internet protocols, the Domain Name System (DNS)
 was originally designed at a time when the Internet had only a small
 pool of trusted users. As the Internet has grown exponentially to a
 global information utility, the DNS has increasingly been subject to
 abuse.

 This document describes DNS cookies, a lightweight DNS transaction
 security mechanism specified as an OPT [RFC6891] option. The DNS
 cookies mechanism provides limited protection to DNS servers and
 clients against a variety of increasingly common abuses by off-path
 attackers. It is compatible with and can be used in conjunction with
 other DNS transaction forgery resistance measures such as those in
 [RFC5452].

 The protection provided by DNS cookies is similar to that provided by
 using TCP for DNS transactions. To bypass the weak protection
 provided by using TCP requires, among other things, that an off-path
 attacker guessing the 32-bit TCP sequence number in use. To bypass
 the weak protection provided by DNS Cookies requires such an attacker
 to guess a 64-bit pseudo-random "cookie" quantity. Where DNS Cookies
 are not available but TCP is, falling back to using TCP is
 reasonable.

 If only one party to a DNS transaction supports DNS cookies, the
 mechanism does not provide a benefit or significantly interfere; but,
 if both support it, the additional security provided is automatically
 available.

 The DNS cookies mechanism is designed to work in the presence of NAT
 and NAT-PT boxes and guidance is provided herein on supporting the
 DNS cookies mechanism in anycast servers.

1.1 Contents of This Document

 In Section 2, we discuss the threats against which the DNS cookie
 mechanism provides some protection.

Section 3 describes existing DNS security mechanisms and why they are
 not adequate substitutes for DNS cookies.

Section 4 describes the COOKIE OPT option.

Section 5 provides a protocol description.

Section 6 discusses some NAT and anycast related DNS Cookies design

https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc5452

 considerations.

Donald Eastlake & Mark Andrews [Page 4]

INTERNET-DRAFT DNS Cookies

Section 7 discusses incremental deployment considerations.

 Sections 8 and 9 describe IANA and Security Considerations.

1.2 Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 "Off-path attacker", for a particular DNS client and server, is
 defined as an attacker who cannot observe the DNS request and
 response messages between that client and server.

 "Soft state" indicates information learned or derived by a host which
 may be discarded when indicated by the policies of that host
 but can be later re-instantiated if needed. For example, it
 could be discarded after a period of time or when storage for
 caching such data becomes full. If operations requiring that
 soft state continue after it has been discarded, it will be
 automatically re-generated, albeit at some cost.

 "Silently discarded" indicates that there are no DNS protocol message
 consequences; however, it is RECOMMENDED that appropriate
 network management facilities be included in implementations,
 such as a counter of the occurrences of each such event type.

 "IP address" is used herein as a length independent term and includes
 both IPv4 and IPv6 addresses.

https://datatracker.ietf.org/doc/html/rfc2119

Donald Eastlake & Mark Andrews [Page 5]

INTERNET-DRAFT DNS Cookies

2. Threats Considered

 DNS cookies are intended to provide significant but limited
 protection against certain attacks by off-path attackers as described
 below. These attacks include denial-of-service, cache poisoning, and
 answer forgery.

2.1 Denial-of-Service Attacks

 The typical form of the denial-of-service attacks considered herein
 is to send DNS requests with forged source IP addresses to a server.
 The intent can be to attack that server or some other selected host
 as described below.

 There are also on-path denial of service attacks that attempt to
 saturate a server with DNS requests having correct souce addresses.
 Cookies do not protect against such attacks but successful cookie
 validation improves the probablity that the correct source IP address
 for the requests is known. This facilitates contacting the managers
 of or taking other actions for the networks from which the requests
 originate.

2.1.1 DNS Amplification Attacks

 A request with a forged IP source address generally causes a response
 to be sent to that forged IP address. Thus the forging of many such
 requests with a particular source IP address can result in enough
 traffic being sent to the forged IP address to interfere with service
 to the host at the IP address. Furthermore, it is generally easy in
 the DNS to create short requests that produce much longer responses,
 thus amplifying the attack.

 The DNS Cookies mechanism can severely limit the traffic
 amplification obtained by attacker requests that are off the path
 between the server and the request's source address. Enforced DNS
 cookies would make it hard for an off path attacker to cause any more
 than rate-limited short error responses to be sent to a forged IP
 address so the attack would be attenuated rather than amplified. DNS
 cookies make it more effective to implement a rate limiting scheme
 for error responses from the server. Such a scheme would further
 restrict selected host denial-of-service traffic from that server.

Donald Eastlake & Mark Andrews [Page 6]

INTERNET-DRAFT DNS Cookies

2.1.2 DNS Server Denial-of-Service

 DNS requests that are accepted cause work on the part of DNS servers.
 This is particularly true for recursive servers that may issue one or
 more requests and process the responses thereto, in order to
 determine their response to the initial request. And the situation
 can be even worse for recursive servers implementing DNSSEC
 ([RFC4033] [RFC4034] [RFC4035]) because they may be induced to
 perform burdensome cryptographic computations in attempts to verify
 the authenticity of data they retrieve in trying to answer the
 request.

 The computational or communications burden caused by such requests
 may not depend on a forged IP source address, but the use of such
 addresses makes
 + the source of the requests causing the denial-of-service attack
 harder to find and
 + restriction of the IP addresses from which such requests should
 be honored hard or impossible to specify or verify.

 Use of DNS cookies should enable a server to reject forged requests
 from an off path attacker with relative ease and before any recursive
 queries or public key cryptographic operations are performed.

2.2 Cache Poisoning and Answer Forgery Attacks

 The form of the cache poisoning attacks considered is to send forged
 replies to a resolver. Modern network speeds for well-connected hosts
 are such that, by forging replies from the IP addresses of a DNS
 server to a resolver for names that resolver has been induced to
 resolve or for common names whose resource records have short time-
 to-live values, there can be an unacceptably high probability of
 randomly coming up with a reply that will be accepted and cause false
 DNS information to be cached by that resolver (the Dan Kaminsky
 attack [Kaminsky]). This can be used to facilitate phishing attacks
 and other diversion of legitimate traffic to a compromised or
 malicious host such as a web server.

 With the use of DNS cookies, a resolver can generally reject such
 forged replies.

https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035

Donald Eastlake & Mark Andrews [Page 7]

INTERNET-DRAFT DNS Cookies

3. Comments on Existing DNS Security

 Two forms of security have been added to DNS, data security and
 message/transaction security.

3.1 Existing DNS Data Security

 DNS data security is one part of DNSSEC and is described in
 [RFC4033], [RFC4034], [RFC4035], and updates thereto. It provides
 data origin authentication and authenticated denial of existence.
 DNSSEC is being deployed and can provide strong protection against
 forged data and cache poisoning; however, it has the unintended
 effect of making some denial-of-service attacks worse because of the
 cryptographic computational load it can require and the increased
 size in DNS response packets that it tends to produce.

3.2 DNS Message/Transaction Security

 The second form of security that has been added to DNS provides
 "transaction" security through TSIG [RFC2845] or SIG(0) [RFC2931].
 TSIG could provide strong protection against the attacks for which
 the DNS Cookies mechanism provides weak protection; however, TSIG is
 non-trivial to deploy in the general Internet because of the burdens
 it imposes. Among these burdens are pre-agreement and key
 distribution between client and server, keeping track of server side
 key state, and required time synchronization between client and
 server.

 TKEY [RFC2930] can solve the problem of key distribution for TSIG but
 some modes of TKEY impose a substantial cryptographic computation
 load and can be dependent on the deployment of DNS data security (see

Section 3.1).

 SIG(0) [RFC2931] provides less denial of service protection than TSIG
 or, in one way, even DNS cookies, because it does not authenticate
 requests, only complete transactions. In any case, it also depends
 on the deployment of DNS data security and requires computationally
 burdensome public key cryptographic operations.

3.3 Conclusions on Existing DNS Security

 The existing DNS security mechanisms do not provide the services
 provided by the DNS Cookies mechanism: lightweight message

https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2931
https://datatracker.ietf.org/doc/html/rfc2930
https://datatracker.ietf.org/doc/html/rfc2931

 authentication of DNS requests and responses with no requirement for

Donald Eastlake & Mark Andrews [Page 8]

INTERNET-DRAFT DNS Cookies

 pre-configuration or per client server side state.

Donald Eastlake & Mark Andrews [Page 9]

INTERNET-DRAFT DNS Cookies

4. DNS Cookie Option

 The DNS Cookie Option is an OPT RR [RFC6891] option that can be
 included in the RDATA portion of an OPT RR in DNS requests and
 responses. The option length varies depending on the circumstances
 in which it is being used. There are two cases as described below.
 Both use the same OPTION-CODE; they are distinguished by their
 length.

 In a request sent by a client to a server when the client does not
 know the server's cookie, its length is 8, consisting of an 8 byte
 Client Cookie as shown in Figure 1.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION-CODE = 10 | OPTION-LENGTH = 8 |
 +-+
 | |
 +-+- Client Cookie (fixed size, 8 bytes) -+-+-+-+
 | |
 +-+

 Figure 1. COOKIE Option, Unknown Server Cookie

 In a request sent by a client when a server cookie is known and in
 all responses, the length is variable from 16 to 40 bytes, consisting
 of an 8 bytes Client Cookie followed by the variable 8 to 32 bytes
 Server Cookie as shown in Figure 2. The variability of the option
 length stems from the variable length Server Cookie. The Server
 Cookie is an integer number of bytes with a minimum size of 8 bytes
 for security and a maximum size of 32 bytes for implementation
 convenience.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION-CODE = 10 | OPTION-LENGTH >= 16, <= 40 |
 +-+
 | |
 +-+- Client Cookie (fixed size, 8 bytes) -+-+-+-+
 | |
 +-+
 | |
 / Server Cookie (variable size, 8 to 32 bytes) /
 / /
 +-+-+-+-...

https://datatracker.ietf.org/doc/html/rfc6891

 Figure 2. COOKIE Option, Known Server Cookie

Donald Eastlake & Mark Andrews [Page 10]

INTERNET-DRAFT DNS Cookies

4.1 Client Cookie

 The Client Cookie SHOULD be a pseudo-random function of the server IP
 address and a secret quantity known only to the client. This client
 secret SHOULD have at least 64 bits of entropy [RFC4086] and be
 changed periodically (see Section 5.5). The selection of the pseudo-
 random function is a matter private to the client as only the client
 needs to recognize its own DNS cookies.

 For further discussion of the Client Cookie field, see Section 5.1.
 For example methods of determining a Client Cookie, see Appendix A.

 In order to provide minimal authentication, a client MUST send client
 COOKIEs that will usually be different for any two servers at
 different IP addresses.

4.2 Server Cookie

 The Server Cookie SHOULD consist of or include a 64-bit or larger
 pseudo-random function of the request source IP address, the request
 Client Cookie, and a secret quantity known only to the server. (See

Section 6 for a discussion of why the Client Cookie is used as input
 to the Server Cookie but the Server Cookie is not used as an input to
 the Client Cookie.) This server secret SHOULD have at least 64 bits
 of entropy [RFC4086] and be changed periodically (see Section 5.5).
 The selection of the pseudo-random function is a matter private to
 the server as only the server needs to recognize its own DNS cookies.

 For further discussion of the Server Cookie field see Section 5.2.
 For example methods of determining a Server Cookie, see Appendix B.

 In order to provide minimal authentication, a server MUST send server
 COOKIEs that will usually be different for clients at any two
 different IP addresses or with different client COOKIEs.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Donald Eastlake & Mark Andrews [Page 11]

INTERNET-DRAFT DNS Cookies

5. DNS Cookies Protocol Specification

 This section discusses using DNS Cookies in the DNS Protocol. The
 cycle of originating a request, responding to that request, and
 processing the response are covered in Sections 5.1, 5.2, and 5.3. A
 de facto extension to QUERY to allow pre-fetching a Server Cookie is
 specified in Section 5.4. Rollover of the client and server secrets
 and transient retention of the old cookie or secret is covered in

Section 5.5.

 DNS clients and servers SHOULD implement DNS cookies to decrease
 their vulnerability to the threats discussed in Section 2.

5.1 Originating Requests

 A DNS client that implements DNS Cookies includes one DNS COOKIE OPT
 option containing a Client Cookie in every DNS request it sends
 unless DNS cookies are disabled.

 If the client has a cached Server Cookie for the server against its
 IP address it uses the longer cookie form and includes that Server
 Cookie in the option along with the Client Cookie (Figure 2).
 Otherwise it just sends the shorter form option with a Client Cookie
 (Figure 1).

5.2 Responding to Request

 The Server Cookie, when it occurs in a COOKIE OPT option in a
 request, is intended to weakly assure the server that the request
 came from a client that is both at the source IP address of the
 request and using the Client Cookie included in the option. This weak
 assurance is provided by the Server Cookie that server sent to that
 client in an earlier response appearing as the Server Cookie field in
 the request.

 At a server where DNS Cookies are not implemented and enabled,
 presence of a COOKIE OPT option is ignored and the server responds as
 if no COOKIE OPT option had been included in the request.

 When DNS Cookies are implemented and enabled, there are five
 possibilities: (1) there is no OPT RR at all in the request or there
 is a OPT RR but the the COOKIE OPT option is absent from the OPT RR;
 (2) a COOKIE OPT is present but is not a legal length or otherwise
 malformed; (3) there is a valid length cookie option in the request
 with no Server Cookie; (4) there is a valid length COOKIE OPT in the

 request with a Server Cookie but that Server Cookie is invalid; or

Donald Eastlake & Mark Andrews [Page 12]

INTERNET-DRAFT DNS Cookies

 (5) there is a valid length COOKIE OPT in the request with a correct
 Server Cookie.

 The five possibilities are discussed in the subsections below.

 In all cases of multiple COOKIE OPT options in a request, only the
 first (the one closest to the DNS header) is considered. All others
 are ignored.

5.2.1 No Opt RR or No COOKIE OPT option

 If there is no OPT record or no COOKIE OPT option present in the
 request then the server responds to the request as if the server
 doesn't implement the COOKIE OPT.

5.2.2 Malformed COOKIE OPT option

 If the COOKIE OPT is too short to contain a Client Cookie then
 FORMERR is generated. If the COOKIE OPT is longer than that required
 to hold a COOKIE OPT with just a Client Cookie (8) but is shorter
 that the minimum COOKIE OPT with both a Client and Server Cookie (16)
 then FORMERR is generated. If the COOKIE OPT is longer than the
 maximum valid COOKIE OPT (40) then a FORMERR is generated.

 In summary, valid cookie lengths are 8 and 16 to 40 inclusive.

5.2.3 Only a Client Cookie

 Based on server policy, including rate limiting, the server chooses
 one of the following:

 (1) Silently discard the request.

 (2) Send a BADCOOKIE error response.

 (3) Process the request and provide a normal response. The RCODE is
 NOERROR unless some non-cookie error occurs in processing the
 request.

 If the server responds, choosing 2 or 3 above, it SHALL generate its
 own COOKIE OPT containing both the Client Cookie copied from the
 request and a Server Cookie it has generated and adds this COOKIE OPT
 to the response's OPT record. Servers MUST, at least occasionally,
 respond to such requests to inform the client of the correct Server

Donald Eastlake & Mark Andrews [Page 13]

INTERNET-DRAFT DNS Cookies

 Cookie. This is necessary so that such a client can bootstrap to the
 weakly secure state where requests and responses have recognized
 Server Cookies and Client Cookies. A server is not expected to
 maintain per client state to achieve this. For example, it could
 respond to every Nth request across all clients.

 If the request was received over TCP, the server SHOULD take the weak
 authentication provided by the use of TCP into account and SHOULD
 choose 3. In this case, if the server is not willing to accept the
 weak security provided by TCP as a substitute for the weak security
 provided by DNS Cookies but instead chooses 2, there is some danger
 of an indefinite loop of retries (see Section 5.3).

5.2.4 A Client Cookie and an Invalid Server Cookie

 The server examines the Server Cookie to determine if it is a valid
 Server Cookie it has generated. This examination will result in a
 determination of whether the Server Cookie is valid or not. If the
 cookie is invalid, it can be because of a stale Server Cookie, or a
 client's IP address or Client Cookie changing without the DNS server
 being aware, or an anycast server cluster that is not consistently
 configured, or an attempt to spoof the client.

 The server SHALL process the request as if the invalid Server Cookie
 was not present as described in Section 5.2.3.

5.2.5 A Client Cookie and a Valid Server Cookie

 When a valid Server Cookie is present in the request the server can
 assume that the request is from a client that it has talked to before
 and defensive measures for spoofed UDP requests, if any, are no
 longer required.

 The server SHALL process the request and include a COOKIE OPT in the
 response by (a) copying the complete COOKIE OPT from the request or
 (b) generating a new COOKIE OPT containing both the Client Cookie
 copied from the request and a valid Server Cookie it has generated.

5.3 Processing Responses

 The Client Cookie, when it occurs in a COOKIE OPT option in a DNS
 reply, is intended to weakly assure the client that the reply came
 from a server at the source IP address used in the response packet

 because the Client Cookie value is the value that client would send

Donald Eastlake & Mark Andrews [Page 14]

INTERNET-DRAFT DNS Cookies

 to that server in a request. In a DNS reply with multiple COOKIE OPT
 options, all but the first (the one closest to the DNS Header) are
 ignored.

 A DNS client where DNS cookies are implemented and enabled examines
 the response for DNS cookies and MUST discard the response if it
 contains an illegal COOKIE OPT option length or an incorrect Client
 Cookie value. If the COOKIE OPT option Client Cookie is correct, the
 client caches the Server Cookie provided even if the response is an
 error response (RCODE non-zero).

 If the reply extended RCODE is BADCOOKIE and the Client Cookie
 matches what was sent, it means that the server was unwilling to
 process the request because it did not have the correct Server Cookie
 in it. The client SHOULD retry the request using the new Server
 Cookie from the response. Repeated BADCOOKIE responses to requests
 that use the Server Cookie provided in the previous response may be
 an indication that the shared secrets / secret generation method in
 an anycast cluster of servers are inconsistent. If the reply to a
 retried request with a fresh Server Cookie is BADCOOKIE, the client
 SHOULD retry using TCP as the transport since the server will likely
 process the request normally based on the weak security provided by
 TCP (see Section 5.2.3).

 If the RCODE is some value other than BADCOOKIE, including zero, the
 further processing of the response proceeds normally.

5.4 QUERYing for a Server Cookie

 In many cases a client will learn the Server Cookie for a server as
 the side effect of another transaction; however, there may be times
 when this is not desirable. Therefore a means is provided for
 obtaining a Server Cookie through an extension to the QUERY opcode
 for which opcode most existing implementations require that QDCOUNT
 be one (see Section 4.1.2 of [RFC1035]).

 For servers with DNS Cookies enabled, the QUERY opcode behavior is
 extended to support queries with a empty question section (QDCOUNT
 zero) provided that an OPT record is present with a COOKIE option.
 Such servers will reply with an empty answer section and a COOKIE
 option giving the Client Cookie provided in the query and a valid
 Server Cookie.

 If such a query provided just a Client Cookie and no Server Cookie,
 the response SHALL have the RCODE NOERROR.

 This mechanism can also be used to confirm/re-establish a existing

https://datatracker.ietf.org/doc/html/rfc1035#section-4.1.2

 Server Cookie by sending a cached Server Cookie with the Client

Donald Eastlake & Mark Andrews [Page 15]

INTERNET-DRAFT DNS Cookies

 Cookie. In this case the response SHALL have the RCODE BADCOOKIE if
 the Server Cookie sent with the query was invalid and the RCODE
 NOERROR if it was valid.

 Servers which don't support the COOKIE option will normally send
 FORMERR in response to such a query, though REFUSED, NOTIMP, and
 NOERROR without a COOKIE option are also possible in such responses.

5.5 Client and Server Secret Rollover

 The longer a secret is used, the higher the probability it has been
 compromised. Thus clients and servers MUST NOT continue to use the
 same secret in new requests and responses for more than 36 days and
 SHOULD NOT continue to do so for more than 26 hours. These values are
 chosen to assure that a secret will not be used for longer than about
 a month and normally no longer than one day. The odd values are to
 allow for long holiday weekends and daylight savings time shifts and
 the like while still staying within the limits.

 Many clients rolling over their secret at the same time could briefly
 increase server traffic and exactly predictable rollover times for
 clients or servers might facilitate guessing attacks. For example, an
 attacker might increase the priority of attacking secrets they
 believe will be in effect for an extended period of time. To avoid
 rollover synchronization and predictability, it is RECOMMENDED that
 pseudorandom jitter in the range of plus zero to minus at least 40%
 be applied to the time until a scheduled rollover of a DNS cookie
 secret.

 It is RECOMMENDED that a client keep the Client Cookie it is
 expecting in a reply associated with the outstanding request to avoid
 rejection of replies due to a bad Client Cookie right after a change
 in the client secret. It is RECOMMENDED that a server retain its
 previous secret for a period of time not less than 1 second or more
 than 5 minutes, after a change in its secret, and consider requests
 with Server Cookies based on its previous secret to have a correct
 Server Cookie during that time.

 When a server or client starts receiving an increased level of
 requests with bad server cookies or replies with bad client cookies,
 it would be reasonable for it to believe it is likely under attack
 and it should consider a more frequent rollover of its secret. More
 rapid rollover decreases the benefit to a cookie guessing attacker if
 they succeed in guessing a cookie.

Donald Eastlake & Mark Andrews [Page 16]

INTERNET-DRAFT DNS Cookies

6. NAT Considerations and AnyCast Server Considerations

 In the Classic Internet, DNS Cookies could simply be a pseudo-random
 function of the client IP address and a server secret or the server
 IP address and a client secret. You would want to compute the Server
 Cookie that way, so a client could cache its Server Cookie for a
 particular server for an indefinitely amount of time and the server
 could easily regenerate and check it. You could consider the Client
 Cookie to be a weak client signature over the server IP address that
 the client checks in replies and you could extend this weak signature
 to cover the request ID, for example, or any other information that
 is returned unchanged in the reply.

 But we have this reality called NAT [RFC3022], Network Address
 Translation (including, for the purposes of this document, NAT-PT,
 Network Address and Protocol Translation, which has been declared
 Historic [RFC4966]). There is no problem with DNS transactions
 between clients and servers behind a NAT box using local IP
 addresses. Nor is there a problem with NAT translation of internal
 addresses to external addresses or translations between IPv4 and IPv6
 addresses, as long as the address mapping is relatively stable.
 Should the external IP address an internal client is being mapped to
 change occasionally, the disruption is little more than when a client
 rolls-over its DNS COOKIE secret. And normally external access to a
 DNS server behind a NAT box is handled by a fixed mapping which
 forwards externally received DNS requests to a specific host.

 However, NAT devices sometimes also map ports. This can cause
 multiple DNS requests and responses from multiple internal hosts to
 be mapped to a smaller number of external IP addresses, such as one
 address. Thus there could be many clients behind a NAT box that
 appear to come from the same source IP address to a server outside
 that NAT box. If one of these were an attacker (think Zombie or
 Botnet), that behind-NAT attacker could get the Server Cookie for
 some server for the outgoing IP address by just making some random
 request to that server. It could then include that Server Cookie in
 the COOKIE OPT of requests to the server with the forged local IP
 address of some other host and/or client behind the NAT box.
 (Attacker possession of this Server Cookie will not help in forging
 responses to cause cache poisoning as such responses are protected by
 the required Client Cookie.)

 To fix this potential defect, it is necessary to distinguish
 different clients behind a NAT box from the point of view of the
 server. It is for this reason that the Server Cookie is specified as
 a pseudo-random function of both the request source IP address and
 the Client Cookie. From this inclusion of the Client Cookie in the
 calculation of the Server Cookie, it follows that a stable Client

https://datatracker.ietf.org/doc/html/rfc3022
https://datatracker.ietf.org/doc/html/rfc4966

 Cookie, for any particular server, is needed. If, for example, the
 request ID was included in the calculation of the Client Cookie, it

Donald Eastlake & Mark Andrews [Page 17]

INTERNET-DRAFT DNS Cookies

 would normally change with each request to a particular server. This
 would mean that each request would have to be sent twice: first to
 learn the new Server Cookie based on this new Client Cookie based on
 the new ID and then again using this new Client Cookie to actually
 get an answer. Thus the input to the Client Cookie computation must
 be limited to the server IP address and one or more things that
 change slowly such as the client secret.

 In principle, there could be a similar problem for servers, not due
 to NAT but due to mechanisms like anycast which may cause requests to
 a DNS server at an IP address to be delivered to any one of several
 machines. (External requests to a DNS server behind a NAT box usually
 occur via port forwarding such that all such requests go to one
 host.) However, it is impossible to solve this the way the similar
 problem was solved for NATed clients; if the Server Cookie was
 included in the calculation of the Client Cookie the same way the
 Client Cookie is included in the Server Cookie, you would just get an
 almost infinite series of errors as a request was repeatedly retried.

 For servers accessed via anycast to successfully support DNS COOKIES,
 the server clones must either all use the same server secret or the
 mechanism that distributes requests to them must cause the requests
 from a particular client to go to a particular server for a
 sufficiently long period of time that extra requests due to changes
 in Server Cookie resulting from accessing different server machines
 are not unduly burdensome. (When such anycast-accessed servers act
 as recursive servers or otherwise act as clients they normally use a
 different unique address to source their requests to avoid confusion
 in the delivery of responses.)

 For simplicity, it is RECOMMENDED that the same server secret be used
 by each DNS server in a set of anycast servers. If there is limited
 time skew in updating this secret in different anycast servers, this
 can be handled by a server accepting requests containing a Server
 Cookie based on either its old or new secret for the maximum likely
 time period of such time skew (see also Section 5.5).

Donald Eastlake & Mark Andrews [Page 18]

INTERNET-DRAFT DNS Cookies

7. Deployment

 The DNS cookies mechanism is designed for incremental deployment and
 to complement the orthogonal techniques in [RFC5452]. Either or both
 techniques can be deployed independently at each DNS server and
 client.

 In particular, a DNS server or client that implements the DNS COOKIE
 mechanism can interoperate successfully with a DNS client or server
 that does not implement this mechanism although, of course, in this
 case it will not get the benefit of the mechanism and the server
 involved might choose to severely rate limit responses. When such a
 server or client interoperates with a client or server which also
 implements the DNS cookies mechanism, they get the weak security
 benefits of the DNS Cookies mechanism.

https://datatracker.ietf.org/doc/html/rfc5452

Donald Eastlake & Mark Andrews [Page 19]

INTERNET-DRAFT DNS Cookies

8. IANA Considerations

 IANA has assigned the following OPT option value:

 Value Name Status Reference
 -------- ------ -------- ---------------
 10 COOKIE Standard [this document]

 IANA has assigned the following DNS error code as an early
 allocation:

 RCODE Name Description Reference
 -------- --------- ------------------------- ---------------
 23 BADCOOKIE Bad/missing server cookie [this document]

Donald Eastlake & Mark Andrews [Page 20]

INTERNET-DRAFT DNS Cookies

9. Security Considerations

 DNS Cookies provide a weak form of authentication of DNS requests and
 responses. In particular, they provide no protection against "on-
 path" adversaries; that is, they provide no protection against any
 adversary that can observe the plain text DNS traffic, such as an on-
 path router, bridge, or any device on an on-path shared link (unless
 the DNS traffic in question on that path is encrypted).

 For example, if a host is connected via an unsecured IEEE Std 802.11
 link (Wi-Fi), any device in the vicinity that could receive and
 decode the 802.11 transmissions must be considered "on-path". On the
 other hand, in a similar situation but one where 802.11 Robust
 Security (WPAv2) is appropriately deployed on the Wi-Fi network
 nodes, only the Access Point via which the host is connecting is "on-
 path" as far as the 802.11 link is concerned.

 Despite these limitations, deployment of DNS Cookies on the global
 Internet is expected to provide a significant reduction in the
 available launch points for the traffic amplification and denial of
 service forgery attacks described in Section 2 above.

 Should stronger message/transaction security be desired, it is
 suggested that TSIG or SIG(0) security be used (see Section 3.2);
 however, it may be useful to use DNS Cookies in conjunction with
 these features. In particular, DNS Cookies could screen out many DNS
 messages before the cryptographic computations of TSIG or SIG(0) are
 required and, if SIG(0) is in use, DNS Cookies could usefully screen
 out many requests given that SIG(0) does not screen requests but only
 authenticates the response of complete transactions.

9.1 Cookie Algorithm Considerations

 The cookie computation algorithm for use in DNS Cookies SHOULD be
 based on a pseudo-random function at least as strong as 64-bit FNV
 (Fowler-Noll-Vo [FNV]) because an excessively weak or trivial
 algorithm could enable adversaries to guess cookies. However, in
 light of the weak plain-text token security provided by DNS Cookies,
 a strong cryptography hash algorithm may not be warranted in many
 cases, and would cause an increased computational burden.
 Nevertheless there is nothing wrong with using something stronger,
 for example, HMAC-SHA256-64 [RFC6234], assuming a DNS processor has
 adequate computational resources available. DNS processors that feel
 the need for somewhat stronger security without a significant
 increase in computational load should consider more frequent changes
 in their client and/or server secret; however, this does require more
 frequent generation of a cryptographically strong random number

https://datatracker.ietf.org/doc/html/rfc6234

 [RFC4086]. See Appendices A and B for specific examples of cookie

Donald Eastlake & Mark Andrews [Page 21]

https://datatracker.ietf.org/doc/html/rfc4086

INTERNET-DRAFT DNS Cookies

 computation algorithms.

Donald Eastlake & Mark Andrews [Page 22]

INTERNET-DRAFT DNS Cookies

10. Implementation Considerations

 The DNS Cookie Option specified herein is implemented in BIND 9.10
 using a experimental option code.

Donald Eastlake & Mark Andrews [Page 23]

INTERNET-DRAFT DNS Cookies

Normative References

 [RFC1035] - Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] - Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119,
 March 1997, <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] - Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086, DOI
 10.17487/RFC4086, June 2005, <http://www.rfc-

editor.org/info/rfc4086>.

 [RFC6891] - Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891, DOI 10.17487/RFC6891,
 April 2013, <http://www.rfc-editor.org/info/rfc6891>.

Informative References

 [FNV] - G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, "The FNV Non-
 Cryptographic Hash Algorithm", draft-eastlake-fnv, work in
 progress.

 [Kaminsky] - Olney, M., P. Mullen, K. Miklavicic, "Dan Kaminsky's
 2008 DNS Vulnerability", 25 July 2008,
 <https://www.ietf.org/mail-

archive/web/dnsop/current/pdf2jgx6rzxN4.pdf>.

 [RFC2845] - Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, DOI 10.17487/RFC2845, May 2000,
 <http://www.rfc-editor.org/info/rfc2845>.

 [RFC2930] - Eastlake 3rd, D., "Secret Key Establishment for DNS (TKEY
 RR)", RFC 2930, DOI 10.17487/RFC2930, September 2000,
 <http://www.rfc-editor.org/info/rfc2930>.

 [RFC2931] - Eastlake 3rd, D., "DNS Request and Transaction Signatures
 (SIG(0)s)", RFC 2931, DOI 10.17487/RFC2931, September 2000,
 <http://www.rfc-editor.org/info/rfc2931>.

 [RFC3022] - Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022, DOI
 10.17487/RFC3022, January 2001, <http://www.rfc-

editor.org/info/rfc3022>.

https://datatracker.ietf.org/doc/html/rfc1035
http://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc6891
http://www.rfc-editor.org/info/rfc6891
https://datatracker.ietf.org/doc/html/draft-eastlake-fnv
https://www.ietf.org/mail-archive/web/dnsop/current/pdf2jgx6rzxN4.pdf
https://www.ietf.org/mail-archive/web/dnsop/current/pdf2jgx6rzxN4.pdf
https://datatracker.ietf.org/doc/html/rfc2845
http://www.rfc-editor.org/info/rfc2845
https://datatracker.ietf.org/doc/html/rfc2930
http://www.rfc-editor.org/info/rfc2930
https://datatracker.ietf.org/doc/html/rfc2931
http://www.rfc-editor.org/info/rfc2931
https://datatracker.ietf.org/doc/html/rfc3022
http://www.rfc-editor.org/info/rfc3022
http://www.rfc-editor.org/info/rfc3022

Donald Eastlake & Mark Andrews [Page 24]

INTERNET-DRAFT DNS Cookies

 [RFC4033] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements", RFC 4033,
 DOI 10.17487/RFC4033, March 2005, <http://www.rfc-

editor.org/info/rfc4033>.

 [RFC4034] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions", RFC

4034, DOI 10.17487/RFC4034, March 2005, <http://www.rfc-
editor.org/info/rfc4034>.

 [RFC4035] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security Extensions",

RFC 4035, DOI 10.17487/RFC4035, March 2005, <http://www.rfc-
editor.org/info/rfc4035>.

 [RFC4966] - Aoun, C. and E. Davies, "Reasons to Move the Network
 Address Translator - Protocol Translator (NAT-PT) to Historic
 Status", RFC 4966, DOI 10.17487/RFC4966, July 2007,
 <http://www.rfc-editor.org/info/rfc4966>.

 [RFC5452] - Hubert, A. and R. van Mook, "Measures for Making DNS More
 Resilient against Forged Answers", RFC 5452, DOI
 10.17487/RFC5452, January 2009, <http://www.rfc-

editor.org/info/rfc5452>.

 [RFC6234] - Eastlake 3rd, D. and T. Hansen, "US Secure Hash
 Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI
 10.17487/RFC6234, May 2011, <http://www.rfc-

editor.org/info/rfc6234>.

https://datatracker.ietf.org/doc/html/rfc4033
http://www.rfc-editor.org/info/rfc4033
http://www.rfc-editor.org/info/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4034
http://www.rfc-editor.org/info/rfc4034
http://www.rfc-editor.org/info/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
http://www.rfc-editor.org/info/rfc4035
http://www.rfc-editor.org/info/rfc4035
https://datatracker.ietf.org/doc/html/rfc4966
http://www.rfc-editor.org/info/rfc4966
https://datatracker.ietf.org/doc/html/rfc5452
http://www.rfc-editor.org/info/rfc5452
http://www.rfc-editor.org/info/rfc5452
https://datatracker.ietf.org/doc/html/rfc6234
http://www.rfc-editor.org/info/rfc6234
http://www.rfc-editor.org/info/rfc6234

Donald Eastlake & Mark Andrews [Page 25]

INTERNET-DRAFT DNS Cookies

Acknowledgements

 The suggestions and contributions of the following are gratefully
 acknowledged:

 Bob Harold, Paul Hoffman, Gayle Noble, Tim Wicinski

 The document was prepared in raw nroff. All macros used were defined
 within the source file.

Donald Eastlake & Mark Andrews [Page 26]

INTERNET-DRAFT DNS Cookies

Appendix A: Example Client Cookie Algorithms

A.1 A Simple Algorithm

 An simple example method to compute Client Cookies is the FNV-64
 [FNV] of the server IP address and the client secret. That is

 Client Cookie = FNV-64 (Client Secret | Server IP Address)

 where "|" indicates concatenation.

A.2 A More Complex Algorithm

 A more complex algorithm to calculate Client Cookies is given below.
 It uses more computational resources than the simpler algorithm shown
 in A.1.

 Client Cookie = HMAC-SHA256-64 (Client Secret,
 Server IP Address)

Donald Eastlake & Mark Andrews [Page 27]

INTERNET-DRAFT DNS Cookies

Appendix B: Example Server Cookie Algorithms

B.1 A Simple Algorithm

 An example of a simple method producing a 64-bit Server Cookie is the
 FNV-64 [FNV] of the request IP address, the Client Cookie, and the
 server secret. That is

 Server Cookie =
 FNV-64 (Server Secret | Request IP Address | Client Cookie)

 where "|" represents concatenation.

B.2 A More Complex Algorithm

 Since the Server Cookie has a variable size, the server can store
 various information in that field as long as it is hard for an
 adversary to guess the entire quantity used for weak authentication.
 There should be 64 bits of entropy in the Server Cookie; for example
 it could have a sub-field of 64-bits computed pseudo-randomly with
 the server secret as one of the inputs to the pseudo-random function.
 Types of additional information that could be stored include a time
 stamp and/or a nonce.

 The example below is one variation for the Server Cookie that has
 been implemented in a beta release of BIND where the Server Cookie is
 128 bits composed as follows:

 Sub-field Size
 --------- ---------
 Nonce 32 bits
 Time 32 bits
 Hash 64 bits

 With this algorithm, the server sends a new 128-bit cookie back with
 every request. The Nonce field assures a low probability that there
 would be a duplicate.

 The Time field gives the server time and makes it easy to reject old
 cookies.

 The Hash part of the Server Cookie is the hard-to-guess part. In the
 beta release of BIND, its computation can be configured to use AES,
 HMAC-SHA1, or, as shown below, HMAC-SHA256:

Donald Eastlake & Mark Andrews [Page 28]

INTERNET-DRAFT DNS Cookies

 hash =
 HMAC-SHA256-64 (Server Secret,
 (Client Cookie | nonce | time | client IP Address))

 where "|" represents concatenation.

Donald Eastlake & Mark Andrews [Page 29]

INTERNET-DRAFT DNS Cookies

Author's Address

 Donald E. Eastlake 3rd
 Huawei Technologies
 155 Beaver Street
 Milford, MA 01757 USA

 Telephone: +1-508-333-2270
 EMail: d3e3e3@gmail.com

 Mark Andrews
 Internet Systems Consortium
 950 Charter Street
 Redwood City, CA 94063 USA

 Email: marka@isc.org

Copyright, Disclaimer, and Additional IPR Provisions

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Donald Eastlake & Mark Andrews [Page 30]

