
dnsop J. Dickinson
Internet-Draft J. Hague
Intended status: Standards Track S. Dickinson
Expires: January 4, 2018 Sinodun IT
 T. Manderson
 J. Bond
 ICANN
 July 3, 2017

C-DNS: A DNS Packet Capture Format
draft-ietf-dnsop-dns-capture-format-03

Abstract

 This document describes a data representation for collections of DNS
 messages. The format is designed for efficient storage and
 transmission of large packet captures of DNS traffic; it attempts to
 minimize the size of such packet capture files but retain the full
 DNS message contents along with the most useful transport metadata.
 It is intended to assist with the development of DNS traffic
 monitoring applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Dickinson, et al. Expires January 4, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Data Collection Use Cases 5
4. Design Considerations . 7
5. Conceptual Overview . 8
6. Choice of CBOR . 8
7. The C-DNS format . 9
7.1. CDDL definition . 9
7.2. Format overview . 9
7.3. File header contents 10
7.4. File preamble contents 10
7.5. Configuration contents 11
7.6. Block contents . 13
7.7. Block preamble map 13
7.8. Block statistics . 14
7.9. Block table map . 14
7.10. IP address table . 15
7.11. Class/Type table . 15
7.12. Name/RDATA table . 16
7.13. Query Signature table 16
7.14. Question table . 19
7.15. Resource Record (RR) table 19
7.16. Question list table 19
7.17. Resource Record list table 20
7.18. Query/Response data 20
7.19. Address Event counts 23
7.20. Malformed packet records 23

8. Malformed Packets . 24
9. C-DNS to PCAP . 25
9.1. Name Compression . 26

10. Data Collection . 26
10.1. Matching algorithm 27
10.2. Message identifiers 27
10.2.1. Primary ID (required) 27
10.2.2. Secondary ID (optional) 28

10.3. Algorithm Parameters 28
10.4. Algorithm Requirements 28
10.5. Algorithm Limitations 28
10.6. Workspace . 28

Dickinson, et al. Expires January 4, 2018 [Page 2]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

10.7. Output . 29
10.8. Post Processing . 29

11. Implementation Status . 29
11.1. DNS-STATS Compactor 30

12. IANA Considerations . 30
13. Security Considerations 30
14. Acknowledgements . 30
15. Changelog . 31
16. References . 32
16.1. Normative References 32
16.2. Informative References 32
16.3. URIs . 33

Appendix A. CDDL . 34
Appendix B. DNS Name compression example 41
B.1. NSD compression algorithm 42
B.2. Knot Authoritative compression algorithm 42
B.3. Observed differences 43

Appendix C. Comparison of Binary Formats 43
C.1. Comparison with full PCAP files 46
C.2. Simple versus block coding 46
C.3. Binary versus text formats 47
C.4. Performance . 47
C.5. Conclusions . 47
C.6. Block size choice . 48

 Authors' Addresses . 49

1. Introduction

 There has long been a need to collect DNS queries and responses on
 authoritative and recursive name servers for monitoring and analysis.
 This data is used in a number of ways including traffic monitoring,
 analyzing network attacks and "day in the life" (DITL) [ditl]
 analysis.

 A wide variety of tools already exist that facilitate the collection
 of DNS traffic data, such as DSC [dsc], packetq [packetq], dnscap
 [dnscap] and dnstap [dnstap]. However, there is no standard exchange
 format for large DNS packet captures. The PCAP [pcap] or PCAP-NG
 [pcapng] formats are typically used in practice for packet captures,
 but these file formats can contain a great deal of additional
 information that is not directly pertinent to DNS traffic analysis
 and thus unnecessarily increases the capture file size.

 There has also been work on using text based formats to describe DNS
 packets such as [I-D.daley-dnsxml], [I-D.hoffman-dns-in-json], but
 these are largely aimed at producing convenient representations of
 single messages.

Dickinson, et al. Expires January 4, 2018 [Page 3]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 Many DNS operators may receive hundreds of thousands of queries per
 second on a single name server instance so a mechanism to minimize
 the storage size (and therefore upload overhead) of the data
 collected is highly desirable.

 The format described in this document, C-DNS (Compacted-DNS),
 focusses on the problem of capturing and storing large packet capture
 files of DNS traffic. with the following goals in mind:

 o Minimize the file size for storage and transmission

 o Minimizing the overhead of producing the packet capture file and
 the cost of any further (general purpose) compression of the file

 This document contains:

 o A discussion of the some common use cases in which such DNS data
 is collected Section 3

 o A discussion of the major design considerations in developing an
 efficient data representation for collections of DNS messages

Section 4

 o A conceptual overview of the C-DNS format Section 5

 o A description of why CBOR [RFC7049] was chosen for this format
Section 6

 o The definition of the C-DNS format for the collection of DNS
 messages Section 7.

 o Notes on converting C-DNS data to PCAP format Section 9

 o Some high level implementation considerations for applications
 designed to produce C-DNS Section 10

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 "Packet" refers to individual IPv4 or IPv6 packets. Typically these
 are UDP, but may be constructed from a TCP packet. "Message", unless
 otherwise qualified, refers to a DNS payload extracted from a UDP or
 TCP data stream.

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc2119

Dickinson, et al. Expires January 4, 2018 [Page 4]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 The parts of DNS messages are named as they are in [RFC1035]. In
 specific, the DNS message has five sections: Header, Question,
 Answer, Authority, and Additional.

 Pairs of DNS messages are called a Query and a Response.

3. Data Collection Use Cases

 In an ideal world, it would be optimal to collect full packet
 captures of all packets going in or out of a name server. However,
 there are several design choices or other limitations that are common
 to many DNS installations and operators.

 o DNS servers are hosted in a variety of situations

 * Self-hosted servers

 * Third party hosting (including multiple third parties)

 * Third party hardware (including multiple third parties)

 o Data is collected under different conditions

 * On well-provisioned servers running in a steady state

 * On heavily loaded servers

 * On virtualized servers

 * On servers that are under DoS attack

 * On servers that are unwitting intermediaries in DoS attacks

 o Traffic can be collected via a variety of mechanisms

 * On the same hardware as the name server itself

 * Using a network tap on an adjacent host to listen to DNS
 traffic

 * Using port mirroring to listen from another host

 o The capabilities of data collection (and upload) networks vary

 * Out-of-band networks with the same capacity as the in-band
 network

https://datatracker.ietf.org/doc/html/rfc1035

Dickinson, et al. Expires January 4, 2018 [Page 5]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 * Out-of-band networks with less capacity than the in-band
 network

 * Everything being on the in-band network

 Thus, there is a wide range of use cases from very limited data
 collection environments (third party hardware, servers that are under
 attack, packet capture on the name server itself and no out-of-band
 network) to "limitless" environments (self hosted, well provisioned
 servers, using a network tap or port mirroring with an out-of-band
 networks with the same capacity as the in-band network). In the
 former, it is infeasible to reliably collect full packet captures,
 especially if the server is under attack. In the latter case,
 collection of full packet captures may be reasonable.

 As a result of these restrictions, the C-DNS data format was designed
 with the most limited use case in mind such that:

 o data collection will occur on the same hardware as the name server
 itself

 o collected data will be stored on the same hardware as the name
 server itself, at least temporarily

 o collected data being returned to some central analysis system will
 use the same network interface as the DNS queries and responses

 o there can be multiple third party servers involved

 Because of these considerations, a major factor in the design of the
 format is minimal storage size of the capture files.

 Another significant consideration for any application that records
 DNS traffic is that the running of the name server software and the
 transmission of DNS queries and responses are the most important jobs
 of a name server; capturing data is not. Any data collection system
 co-located with the name server needs to be intelligent enough to
 carefully manage its CPU, disk, memory and network utilization. This
 leads to designing a format that requires a relatively low overhead
 to produce and minimizes the requirement for further potentially
 costly compression.

 However, it was also essential that interoperability with less
 restricted infrastructure was maintained. In particular, it is
 highly desirable that the collection format should facilitate the re-
 creation of common formats (such as PCAP) that are as close to the
 original as is realistic given the restrictions above.

Dickinson, et al. Expires January 4, 2018 [Page 6]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

4. Design Considerations

 This section presents some of the major design considerations used in
 the development of the C-DNS format.

 1. The basic unit of data is a combined DNS Query and the associated
 Response (a "Q/R data item"). The same structure will be used
 for unmatched Queries and Responses. Queries without Responses
 will be captured omitting the response data. Responses without
 queries will be captured omitting the Query data (but using the
 Question section from the response, if present, as an identifying
 QNAME).

 * Rationale: A Query and Response represents the basic level of
 a clients interaction with the server. Also, combining the
 Query and Response into one item often reduces storage
 requirements due to commonality in the data of the two
 messages.

 2. Each Q/R data item will comprise a default Q/R data description
 and a set of optional sections. Inclusion of optional sections
 shall be configurable.

 * Rationale: Different users will have different requirements
 for data to be available for analysis. Users with minimal
 requirements should not have to pay the cost of recording full
 data, however this will limit the ability to reconstruct
 packet captures. For example, omitting the resource records
 from a Response will reduce the files size, and in principle
 responses can be synthesized if there is enough context.

 3. Multiple Q/R data items will be collected into blocks in the
 format. Common data in a block will be abstracted and referenced
 from individual Q/R data items by indexing. The maximum number
 of Q/R data items in a block will be configurable.

 * Rationale: This blocking and indexing provides a significant
 reduction in the volume of file data generated. Although this
 introduces complexity, it provides compression of the data
 that makes use of knowledge of the DNS message structure.

 * It is anticipated that the files produced can be subject to
 further compression using general purpose compression tools.
 Measurements show that blocking significantly reduces the CPU
 required to perform such strong compression. See

Appendix C.2.

Dickinson, et al. Expires January 4, 2018 [Page 7]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 * [TODO: Further discussion of commonality between DNS messages
 e.g. common query signatures, a finite set of valid responses
 from authoritatives]

 4. Metadata about other packets received can optionally be included
 in each block. For example, counts of malformed DNS packets and
 non-DNS packets (e.g. ICMP, TCP resets) sent to the server may
 be of interest.

 5. The wire format content of malformed DNS packets can optionally
 be recorded.

 * Rationale: Any structured capture format that does not capture
 the DNS payload byte for byte will be limited to some extent
 in that it cannot represent "malformed" DNS packets (see

Section 8). Only those packets that can be transformed
 reasonably into the structured format can be represented by
 the format. However this can result in rather misleading
 statistics. For example, a malformed query which cannot be
 represented in the C-DNS format will lead to the (well formed)
 DNS responses with error code FORMERR appearing as
 'unmatched'. Therefore it can greatly aid downstream analysis
 to have the wire format of the malformed DNS packets available
 directly in the C-DNS file.

5. Conceptual Overview

 The following figures show purely schematic representations of the
 C-DNS format to convey the high-level structure of the C-DNS format.

Section 7 provides a detailed discussion of the CBOR representation
 and individual elements.

 Figure showing the C-DNS format (PNG) [1]

 Figure showing the C-DNS format (SVG) [2]

 Figure showing the Q/R data item and Block tables format (PNG) [3]

 Figure showing the Q/R data item and Block tables format (SVG) [4]

6. Choice of CBOR

 This document presents a detailed format description using CBOR, the
 Concise Binary Object Representation defined in [RFC7049].

 The choice of CBOR was made taking a number of factors into account.

https://datatracker.ietf.org/doc/html/rfc7049

Dickinson, et al. Expires January 4, 2018 [Page 8]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 o CBOR is a binary representation, and thus is economical in storage
 space.

 o Other binary representations were investigated, and whilst all had
 attractive features, none had a significant advantage over CBOR.
 See Appendix C for some discussion of this.

 o CBOR is an IETF standard and familiar to IETF participants. It is
 based on the now-common ideas of lists and objects, and thus
 requires very little familiarization for those in the wider
 industry.

 o CBOR is a simple format, and can easily be implemented from
 scratch if necessary. More complex formats require library
 support which may present problems on unusual platforms.

 o CBOR can also be easily converted to text formats such as JSON
 ([RFC7159]) for debugging and other human inspection requirements.

 o CBOR data schemas can be described using CDDL
 [I-D.greevenbosch-appsawg-cbor-cddl].

7. The C-DNS format

7.1. CDDL definition

 The CDDL definition for the C-DNS format is given in Appendix A.

7.2. Format overview

 A C-DNS file begins with a file header containing a file type
 identifier and a preamble. The preamble contains information on the
 collection settings.

 The file header is followed by a series of data blocks.

 A block consists of a block header, containing various tables of
 common data, and some statistics for the traffic received over the
 block. The block header is then followed by a list of the Q/R data
 items detailing the queries and responses received during processing
 of the block input. The list of Q/R data items is in turn followed
 by a list of per-client counts of particular IP events that occurred
 during collection of the block data.

 The exact nature of the DNS data will affect what block size is the
 best fit, however sample data for a root server indicated that block
 sizes up to 10,000 Q/R data items give good results. See

Appendix C.6 for more details.

https://datatracker.ietf.org/doc/html/rfc7159

Dickinson, et al. Expires January 4, 2018 [Page 9]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 If no field type is specified, then the field is unsigned.

 In all quantities that contain bit flags, bit 0 indicates the least
 significant bit. An item described as an index is the index of the
 Q/R data item in the referenced table. Indexes are 1-based. An
 index value of 0 is reserved to mean "not present".

7.3. File header contents

 The file header contains the following:

 +---------------+---------------+-----------------------------------+
 | Field | Type | Description |
 +---------------+---------------+-----------------------------------+
file-type-id	Text string	String "C-DNS" identifying the
		file type.
file-preamble	Map of items	Collection information for the
		whole file.
file-blocks	Array of	The data blocks.
	Blocks	
 +---------------+---------------+-----------------------------------+

7.4. File preamble contents

 The file preamble contains the following:

Dickinson, et al. Expires January 4, 2018 [Page 10]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 +----------------------+----------+---------------------------------+
 | Field | Type | Description |
 +----------------------+----------+---------------------------------+
major-format-version	Unsigned	Unsigned integer '1'. The major
		version of format used in file.
minor-format-version	Unsigned	Unsigned integer '0'. The minor
		version of format used in file.
private-version	Unsigned	Version indicator available for
		private use by applications.
		Optional.
configuration	Map of	The collection configuration.
	items	Optional.
generator-id	Text	String identifying the
	string	collection program. Optional.
host-id	Text	String identifying the
	string	collecting host. Empty if
		converting an existing packet
		capture file. Optional.
 +----------------------+----------+---------------------------------+

7.5. Configuration contents

 The collection configuration contains the following items. All are
 optional.

 +--------------------+----------+-----------------------------------+
 | Field | Type | Description |
 +--------------------+----------+-----------------------------------+
query-timeout	Unsigned	To be matched with a query, a
		response must arrive within this
		number of seconds.
skew-timeout	Unsigned	The network stack may report a
		response before the corresponding
		query. A response is not
		considered to be missing a query
		until after this many micro-
		seconds.
snaplen	Unsigned	Collect up to this many bytes per
		packet.
promisc	Unsigned	1 if promiscuous mode was enabled

Dickinson, et al. Expires January 4, 2018 [Page 11]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

		on the interface, 0 otherwise.
interfaces	Array of	Identifiers of the interfaces
	text	used for collection.
	strings	
server-addresses	Array of	Server collection IP addresses.
	byte	Hint for downstream analysers;
	strings	does not affect collection.
vlan-ids	Array of	Identifiers of VLANs selected for
	unsigned	collection.
filter	Text	'tcpdump' [pcap] style filter for
	string	input.
query-options	Unsigned	Bit flags indicating sections in
		Query messages to be collected.
		Bit 0. Collect second and
		subsequent Questions in the
		Question section.
		Bit 1. Collect Answer sections.
		Bit 2. Collect Authority
		sections.
		Bit 3. Collection Additional
		sections.
response-options	Unsigned	Bit flags indicating sections in
		Response messages to be
		collected.
		Bit 0. Collect second and
		subsequent Questions in the
		Question section.
		Bit 1. Collect Answer sections.
		Bit 2. Collect Authority
		sections.
		Bit 3. Collection Additional
		sections.
accept-rr-types	Array of	A set of RR type names [rrtypes].
	text	If not empty, only the nominated
	strings	RR types are collected.
ignore-rr-types	Array of	A set of RR type names [rrtypes].
	text	If not empty, all RR types are
	strings	collected except those listed. If
		present, this item must be empty
		if a non-empty list of Accept RR

Dickinson, et al. Expires January 4, 2018 [Page 12]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

		types is present.
max-block-qr-items	Unsigned	Maximum number of Q/R data items
		in a block.
collect-malformed	Unsigned	1 if malformed packet contents
		are collected, 0 otherwise.
 +--------------------+----------+-----------------------------------+

7.6. Block contents

 Each block contains the following:

 +-----------------------+--------------+----------------------------+
 | Field | Type | Description |
 +-----------------------+--------------+----------------------------+
preamble	Map of items	Overall information for
		the block.
statistics	Map of	Statistics about the
	statistics	block. Optional.
tables	Map of	The tables containing data
	tables	referenced by individual
		Q/R data items.
queries	Array of Q/R	Details of individual Q/R
	data items	data items.
address-event-counts	Array of	Per client counts of ICMP
	Address	messages and TCP resets.
	Event counts	Optional.
malformed-packet-data	Array of	Wire contents of malformed
	malformed	packets. Optional.
	packets	
 +-----------------------+--------------+----------------------------+

7.7. Block preamble map

 The block preamble map contains overall information for the block.

Dickinson, et al. Expires January 4, 2018 [Page 13]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 +---------------+----------+--+
 | Field | Type | Description |
 +---------------+----------+--+
earliest-time	Array of	A timestamp for the earliest record in
	unsigned	the block. The timestamp is specified
		as a CBOR array with two or three
		elements. The first two elements are
		as in Posix struct timeval. The first
		element is an unsigned integer time_t
		and the second is an unsigned integer
		number of microseconds. The third, if
		present, is an unsigned integer number
		of picoseconds. The microsecond and
		picosecond items always have a value
		between 0 and 999,999.
 +---------------+----------+--+

7.8. Block statistics

 The block statistics section contains some basic statistical
 information about the block. All are optional.

 +---------------------+----------+----------------------------------+
 | Field | Type | Description |
 +---------------------+----------+----------------------------------+
total-packets	Unsigned	Total number of packets
		processed from the input traffic
		stream during collection of the
		block data.
total-pairs	Unsigned	Total number of Q/R data items
		in the block.
unmatched-queries	Unsigned	Number of unmatched queries in
		the block.
unmatched-responses	Unsigned	Number of unmatched responses in
		the block.
malformed-packets	Unsigned	Number of malformed packets
		found in input for the block.
 +---------------------+----------+----------------------------------+

 Implementations may choose to add additional implementation-specific
 fields to the statistics.

7.9. Block table map

 The block table map contains the block tables. Each element, or
 table, is an array. The following tables detail the contents of each
 block table.

Dickinson, et al. Expires January 4, 2018 [Page 14]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 The Present column in the following tables indicates the
 circumstances when an optional field will be present. A Q/R data
 item may be:

 o A Query plus a Response.

 o A Query without a Response.

 o A Response without a Query.

 Also:

 o A Query and/or a Response may contain an OPT section.

 o A Question may or may not be present. If the Query is available,
 the Question section of the Query is used. If no Query is
 available, the Question section of the Response is used. Unless
 otherwise noted, a Question refers to the first Question in the
 Question section.

 So, for example, a field listed with a Present value of QUERY is
 present whenever the Q/R data item contains a Query. If the pair
 contains a Response only, the field will not be present.

7.10. IP address table

 The table "ip-address" holds all client and server IP addresses in
 the block. Each item in the table is a single IP address.

 +------------+--------+---+
 | Field | Type | Description |
 +------------+--------+---+
ip-address	Byte	The IP address, in network byte order. The
	string	string is 4 bytes long for an IPv4 address,
		16 bytes long for an IPv6 address.
 +------------+--------+---+

7.11. Class/Type table

 The table "classtype" holds pairs of RR CLASS and TYPE values. Each
 item in the table is a CBOR map.

Dickinson, et al. Expires January 4, 2018 [Page 15]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 +-------+--------------+
 | Field | Description |
 +-------+--------------+
 | type | TYPE value. |
 | | |
 | class | CLASS value. |
 +-------+--------------+

7.12. Name/RDATA table

 The table "name-rdata" holds the contents of all NAME or RDATA items
 in the block. Each item in the table is the content of a single NAME
 or RDATA.

 +------------+--------+---+
 | Field | Type | Description |
 +------------+--------+---+
name-rdata	Byte	The NAME or RDATA contents. NAMEs, and
	string	labels within RDATA contents, are in
		uncompressed label format.
 +------------+--------+---+

7.13. Query Signature table

 The table "query-sig" holds elements of the Q/R data item that are
 often common between multiple individual Q/R data items. Each item
 in the table is a CBOR map. Each item in the map has an unsigned
 value and an unsigned key.

 The following abbreviations are used in the Present (P) column

 o Q = QUERY

 o A = Always

 o QT = QUESTION

 o QO = QUERY, OPT

 o QR = QUERY & RESPONSE

 o R = RESPONSE

 +-----------------------+----+--------------------------------------+
 | Field | P | Description |
 +-----------------------+----+--------------------------------------+
 | server-address-index | A | The index in the IP address table of |
 | | | the server IP address. |

Dickinson, et al. Expires January 4, 2018 [Page 16]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

server-port	A	The server port.
transport-flags	A	Bit flags describing the transport
		used to service the query. Bit 0 is
		the least significant bit.
		Bit 0. Transport type. 0 = UDP, 1 =
		TCP.
		Bit 1. IP type. 0 = IPv4, 1 = IPv6.
		Bit 2. Trailing bytes in query
		payload. The DNS query message in
		the UDP payload was followed by some
		additional bytes, which were
		discarded.
qr-sig-flags	A	Bit flags indicating information
		present in this Q/R data item. Bit 0
		is the least significant bit.
		Bit 0. 1 if a Query is present.
		Bit 1. 1 if a Response is present.
		Bit 2. 1 if one or more Question is
		present.
		Bit 3. 1 if a Query is present and
		it has an OPT Resource Record.
		Bit 4. 1 if a Response is present
		and it has an OPT Resource Record.
		Bit 5. 1 if a Response is present
		but has no Question.
query-opcode	Q	Query OPCODE. Optional.
qr-dns-flags	A	Bit flags with values from the Query
		and Response DNS flags. Bit 0 is the
		least significant bit. Flag values
		are 0 if the Query or Response is
		not present.
		Bit 0. Query Checking Disabled (CD).
		Bit 1. Query Authenticated Data
		(AD).
		Bit 2. Query reserved (Z).
		Bit 3. Query Recursion Available
		(RA).
		Bit 4. Query Recursion Desired (RD).
		Bit 5. Query TrunCation (TC).
		Bit 6. Query Authoritative Answer
		(AA).
		Bit 7. Query DNSSEC answer OK (DO).
		Bit 8. Response Checking Disabled

Dickinson, et al. Expires January 4, 2018 [Page 17]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

		(CD).
		Bit 9. Response Authenticated Data
		(AD).
		Bit 10. Response reserved (Z).
		Bit 11. Response Recursion Available
		(RA).
		Bit 12. Response Recursion Desired
		(RD).
		Bit 13. Response TrunCation (TC).
		Bit 14. Response Authoritative
		Answer (AA).
query-rcode	Q	Query RCODE. If the Query contains
		OPT, this value incorporates any
		EXTENDED_RCODE_VALUE. Optional.
query-classtype-index	QT	The index in the Class/Type table of
		the CLASS and TYPE of the first
		Question. Optional.
query-qd-count	QT	The QDCOUNT in the Query, or
		Response if no Query present.
		Optional.
query-an-count	Q	Query ANCOUNT. Optional.
query-ar-count	Q	Query ARCOUNT. Optional.
query-ns-count	Q	Query NSCOUNT. Optional.
edns-version	QO	The Query EDNS version. Optional.
udp-buf-size	QO	The Query EDNS sender's UDP payload
		size. Optional.
opt-rdata-index	QO	The index in the NAME/RDATA table of
		the OPT RDATA. Optional.
response-rcode	R	Response RCODE. If the Response
		contains OPT, this value
		incorporates any
		EXTENDED_RCODE_VALUE. Optional.
 +-----------------------+----+--------------------------------------+

Dickinson, et al. Expires January 4, 2018 [Page 18]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

7.14. Question table

 The table "qrr" holds details on individual Questions in a Question
 section. Each item in the table is a CBOR map containing a single
 Question. Each item in the map has an unsigned value and an unsigned
 key. This data is optionally collected.

 +-----------------+---+
 | Field | Description |
 +-----------------+---+
name-index	The index in the NAME/RDATA table of the QNAME.
classtype-index	The index in the Class/Type table of the CLASS
	and TYPE of the Question.
 +-----------------+---+

7.15. Resource Record (RR) table

 The table "rr" holds details on individual Resource Records in RR
 sections. Each item in the table is a CBOR map containing a single
 Resource Record. This data is optionally collected.

 +-----------------+---+
 | Field | Description |
 +-----------------+---+
name-index	The index in the NAME/RDATA table of the NAME.
classtype-index	The index in the Class/Type table of the CLASS
	and TYPE of the RR.
ttl	The RR Time to Live.
rdata-index	The index in the NAME/RDATA table of the RR
	RDATA.
 +-----------------+---+

7.16. Question list table

 The table "qlist" holds a list of second and subsequent individual
 Questions in a Question section. Each item in the table is a CBOR
 unsigned integer. This data is optionally collected.

 +----------+--+
 | Field | Description |
 +----------+--+
 | question | The index in the Question table of the individual |
 | | Question. |
 +----------+--+

Dickinson, et al. Expires January 4, 2018 [Page 19]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

7.17. Resource Record list table

 The table "rrlist" holds a list of individual Resource Records in a
 Answer, Authority or Additional section. Each item in the table is a
 CBOR unsigned integer. This data is optionally collected.

 +-------+---+
 | Field | Description |
 +-------+---+
 | rr | The index in the Resource Record table of the individual |
 | | Resource Record. |
 +-------+---+

7.18. Query/Response data

 The block Q/R data is a CBOR array of individual Q/R data items.
 Each item in the array is a CBOR map containing details on the
 individual Q/R data item.

 Note that there is no requirement that the elements of the Q/R array
 are presented in strict chronological order.

 The following abbreviations are used in the Present (P) column

 o Q = QUERY

 o A = Always

 o QT = QUESTION

 o QO = QUERY, OPT

 o QR = QUERY & RESPONSE

 o R = RESPONSE

 Each item in the map has an unsigned value (with the exception of
 those listed below) and an unsigned key.

 o query-extended and response-extended which are of type Extended
 Information.

 o delay-useconds and delay-pseconds which are integers (The delay
 can be negative if the network stack/capture library returns them
 out of order.)

 +-----------------------+----+--------------------------------------+
 | Field | P | Description |

Dickinson, et al. Expires January 4, 2018 [Page 20]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 +-----------------------+----+--------------------------------------+
time-useconds	A	Q/R timestamp as an offset in
		microseconds from the Block preamble
		Timestamp. The timestamp is the
		timestamp of the Query, or the
		Response if there is no Query.
time-pseconds	A	Picosecond component of the
		timestamp. Optional.
client-address-index	A	The index in the IP address table of
		the client IP address.
client-port	A	The client port.
transaction-id	A	DNS transaction identifier.
query-signature-index	A	The index of the Query Signature
		table record for this data item.
client-hoplimit	Q	The IPv4 TTL or IPv6 Hoplimit from
		the Query packet. Optional.
delay-useconds	QR	The time difference between Query
		and Response, in microseconds. Only
		present if there is a query and a
		response.
delay-pseconds	QR	Picosecond component of the time
		different between Query and
		Response. If delay-useconds is non-
		zero then delay-pseconds (if
		present) MUST be of the same sign as
		delay-useconds, or be 0. Optional.
query-name-index	QT	The index in the NAME/RDATA table of
		the QNAME for the first Question.
		Optional.
query-size	R	DNS query message size (see below).
		Optional.
response-size	R	DNS query message size (see below).
		Optional.
query-extended	Q	Extended Query information. This
		item is only present if collection
		of extra Query information is

Dickinson, et al. Expires January 4, 2018 [Page 21]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

		configured. Optional.
response-extended	R	Extended Response information. This
		item is only present if collection
		of extra Response information is
		configured. Optional.
 +-----------------------+----+--------------------------------------+

 An implementation must always collect basic Q/R information. It may
 be configured to collect details on Question, Answer, Authority and
 Additional sections of the Query, the Response or both. Note that
 only the second and subsequent Questions of any Question section are
 collected (the details of the first are in the basic information),
 and that OPT Records are not collected in the Additional section.

 The query-size and response-size fields hold the DNS message size.
 For UDP this is the size of the UDP payload that contained the DNS
 message and will therefore include any trailing bytes if present.
 Trailing bytes with queries are routinely observed in traffic to
 authoritative servers and this value allows a calculation of how many
 trailing bytes were present. For TCP it is the size of the DNS
 message as specified in the two-byte message length header.

 The Extended information is a CBOR map as follows. Each item in the
 map is present only if collection of the relevant details is
 configured. Each item in the map has an unsigned value and an
 unsigned key.

 +------------------+--+
 | Field | Description |
 +------------------+--+
question-index	The index in the Questions list table of the
	entry listing any second and subsequent
	Questions in the Question section for the
	Query or Response.
answer-index	The index in the RR list table of the entry
	listing the Answer Resource Record sections
	for the Query or Response.
authority-index	The index in the RR list table of the entry
	listing the Authority Resource Record sections
	for the Query or Response.
additional-index	The index in the RR list table of the entry
	listing the Additional Resource Record
	sections for the Query or Response.
 +------------------+--+

Dickinson, et al. Expires January 4, 2018 [Page 22]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

7.19. Address Event counts

 This table holds counts of various IP related events relating to
 traffic with individual client addresses.

 +------------------+----------+-------------------------------------+
 | Field | Type | Description |
 +------------------+----------+-------------------------------------+
ae-type	Unsigned	The type of event. The following
		events types are currently defined:
		0. TCP reset.
		1. ICMP time exceeded.
		2. ICMP destination unreachable.
		3. ICMPv6 time exceeded.
		4. ICMPv6 destination unreachable.
		5. ICMPv6 packet too big.
ae-code	Unsigned	A code relating to the event.
		Optional.
ae-address-index	Unsigned	The index in the IP address table
		of the client address.
ae-count	Unsigned	The number of occurrences of this
		event during the block collection
		period.
 +------------------+----------+-------------------------------------+

7.20. Malformed packet records

 This optional table records the original wire format content of
 malformed packets (see Section 8).

 +----------------+--------+---+
 | Field | Type | Description |
 +----------------+--------+---+
time-useconds	A	Packet timestamp as an offset in
		microseconds from the Block preamble
		Timestamp.
time-pseconds	A	Picosecond component of the timestamp.
		Optional.
packet-content	Byte	The packet content in wire format.
	string	
 +----------------+--------+---+

Dickinson, et al. Expires January 4, 2018 [Page 23]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

8. Malformed Packets

 In the context of generating a C-DNS file it is assumed that only
 those packets which can be parsed to produce a well-formed DNS
 message are stored in the C-DNS format. This means as a minimum:

 o The packet has a well-formed 12 bytes DNS Header

 o The section counts are consistent with the section contents

 o All of the resource records can be parsed

 In principle, packets that do not meet these criteria could be
 classified into two categories:

 o Partially malformed: those packets which can be decoded
 sufficiently to extract

 * a DNS header (and therefore a DNS transaction ID)

 * a QDCOUNT

 * the first Question in the Question section if QDCOUNT is
 greater than 0

 but suffer other issues while parsing. This is the minimum
 information required to attempt Query/Response matching as
 described in Section 10.1

 o Completely malformed: those packets that cannot be decoded to this
 extent.

 An open question is whether there is value in attempting to process
 partially malformed packets in an analogous manner to well formed
 packets in terms of attempting to match them with the corresponding
 query or response. This could be done by creating 'placeholder'
 records during Query/Response matching with just the information
 extracted as above. If the packet were then matched the resulting
 C-DNS Q/R data item would include a flag to indicate a malformed
 record (in addition to capturing the wire format of the packet).

 An advantage of this would be that it would result in more meaningful
 statistics about matched packets because, for example, some partially
 malformed queries could be matched to responses. However it would
 only apply to those queries where the first Question is well formed.
 It could also simplify the downstream analysis of C-DNS files and the
 reconstruction of packet streams from C-DNS.

Dickinson, et al. Expires January 4, 2018 [Page 24]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 A disadvantage is that this adds complexity to the Query/Response
 matching and data representation, could potentially lead to false
 matches and some additional statistics would be required (e.g. counts
 for matched-partially-malformed, unmatched-partially-malformed,
 completely-malformed).

9. C-DNS to PCAP

 It is possible to re-construct PCAP files from the C-DNS format in a
 lossy fashion. Some of the issues with reconstructing both the DNS
 payload and the full packet stream are outlined here.

 The reconstruction depends on whether or not all the optional
 sections of both the query and response were captured in the C-DNS
 file. Clearly, if they were not all captured, the reconstruction
 will be imperfect.

 Even if all sections of the response were captured, one cannot
 reconstruct the DNS response payload exactly due to the fact that
 some DNS names in the message on the wire may have been compressed.

Section 9.1 discusses this is more detail.

 Some transport information is not captured in the C-DNS format. For
 example, the following aspects of the original packet stream cannot
 be re-constructed from the C-DNS format:

 o IP fragmentation

 o TCP stream information:

 * Multiple DNS messages may have been sent in a single TCP
 segment

 * A DNS payload may have be split across multiple TCP segments

 * Multiple DNS messages may have be sent on a single TCP session

 o Malformed DNS messages if the wire format is not recorded

 o Any Non-DNS messages that were in the original packet stream e.g.
 ICMP

 Simple assumptions can be made on the reconstruction: fragmented and
 DNS-over-TCP messages can be reconstructed into single packets and a
 single TCP session can be constructed for each TCP packet.

Dickinson, et al. Expires January 4, 2018 [Page 25]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 Additionally, if malformed packets and Non-DNS packets are captured
 separately, they can be merged with packet captures reconstructed
 from C-DNS to produce a more complete packet stream.

9.1. Name Compression

 All the names stored in the C-DNS format are full domain names; no
 DNS style name compression is used on the individual names within the
 format. Therefore when reconstructing a packet, name compression
 must be used in order to reproduce the on the wire representation of
 the packet.

 [RFC1035] name compression works by substituting trailing sections of
 a name with a reference back to the occurrence of those sections
 earlier in the message. Not all name server software uses the same
 algorithm when compressing domain names within the responses. Some
 attempt maximum recompression at the expense of runtime resources,
 others use heuristics to balance compression and speed and others use
 different rules for what is a valid compression target.

 This means that responses to the same question from different name
 server software which match in terms of DNS payload content (header,
 counts, RRs with name compression removed) do not necessarily match
 byte-for-byte on the wire.

 Therefore, it is not possible to ensure that the DNS response payload
 is reconstructed byte-for-byte from C-DNS data. However, it can at
 least, in principle, be reconstructed to have the correct payload
 length (since the original response length is captured) if there is
 enough knowledge of the commonly implemented name compression
 algorithms. For example, a simplistic approach would be to try each
 algorithm in turn to see if it reproduces the original length,
 stopping at the first match. This would not guarantee the correct
 algorithm has been used as it is possible to match the length whilst
 still not matching the on the wire bytes but, without further
 information added to the C-DNS data, this is the best that can be
 achieved.

Appendix B presents an example of two different compression
 algorithms used by well-known name server software.

10. Data Collection

 This section describes a non-normative proposed algorithm for the
 processing of a captured stream of DNS queries and responses and
 matching queries/responses where possible.

Dickinson, et al. Expires January 4, 2018 [Page 26]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 For the purposes of this discussion, it is assumed that the input has
 been pre-processed such that:

 1. All IP fragmentation reassembly, TCP stream reassembly, and so
 on, has already been performed

 2. Each message is associated with transport metadata required to
 generate the Primary ID (see Section 10.2.1)

 3. Each message has a well-formed DNS header of 12 bytes and (if
 present) the first Question in the Question section can be parsed
 to generate the Secondary ID (see below). As noted earlier, this
 requirement can result in a malformed query being removed in the
 pre-processing stage, but the correctly formed response with
 RCODE of FORMERR being present.

 DNS messages are processed in the order they are delivered to the
 application. It should be noted that packet capture libraries do not
 necessary provide packets in strict chronological order.

 TODO: Discuss the corner cases resulting from this in more detail.

10.1. Matching algorithm

 A schematic representation of the algorithm for matching Q/R data
 items is shown in the following diagram:

 Figure showing the Query/Response matching algorithm format (PNG) [5]

 Figure showing the Query/Response matching algorithm format (SVG) [6]

 Further details of the algorithm are given in the following sections.

10.2. Message identifiers

10.2.1. Primary ID (required)

 A Primary ID is constructed for each message. It is composed of the
 following data:

 1. Source IP Address

 2. Destination IP Address

 3. Source Port

 4. Destination Port

Dickinson, et al. Expires January 4, 2018 [Page 27]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 5. Transport

 6. DNS Message ID

10.2.2. Secondary ID (optional)

 If present, the first Question in the Question section is used as a
 secondary ID for each message. Note that there may be well formed
 DNS queries that have a QDCOUNT of 0, and some responses may have a
 QDCOUNT of 0 (for example, responses with RCODE=FORMERR or NOTIMP).
 In this case the secondary ID is not used in matching.

10.3. Algorithm Parameters

 1. Query timeout

 2. Skew timeout

10.4. Algorithm Requirements

 The algorithm is designed to handle the following input data:

 1. Multiple queries with the same Primary ID (but different
 Secondary ID) arriving before any responses for these queries are
 seen.

 2. Multiple queries with the same Primary and Secondary ID arriving
 before any responses for these queries are seen.

 3. Queries for which no later response can be found within the
 specified timeout.

 4. Responses for which no previous query can be found within the
 specified timeout.

10.5. Algorithm Limitations

 For cases 1 and 2 listed in the above requirements, it is not
 possible to unambiguously match queries with responses. This
 algorithm chooses to match to the earliest query with the correct
 Primary and Secondary ID.

10.6. Workspace

 A FIFO structure is used to hold the Q/R data items during
 processing.

Dickinson, et al. Expires January 4, 2018 [Page 28]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

10.7. Output

 The output is a list of Q/R data items. Both the Query and Response
 elements are optional in these items, therefore Q/R data items have
 one of three types of content:

 1. A matched pair of query and response messages

 2. A query message with no response

 3. A response message with no query

 The timestamp of a list item is that of the query for cases 1 and 2
 and that of the response for case 3.

10.8. Post Processing

 When ending capture, all remaining entries in the Q/R data item FIFO
 should be treated as timed out queries.

11. Implementation Status

 [Note to RFC Editor: please remove this section and reference to
 [RFC7942] prior to publication.]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942

Dickinson, et al. Expires January 4, 2018 [Page 29]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

11.1. DNS-STATS Compactor

 ICANN/Sinodun IT have developed an open source implementation called
 DNS-STATS Compactor. The Compactor is a suite of tools which can
 capture DNS traffic (from either a network interface or a PCAP file)
 and store it in the Compacted-DNS (C-DNS) file format. PCAP files
 for the captured traffic can also be reconstructed. See Compactor
 [7].

 This implementation:

 o is mature but has only been deployed for testing in a single
 environment so is not yet classified as production ready.

 o covers the whole of the specification described in the -03 draft
 with the exception of support for malformed packets (Section 8)
 and pico second time resolution. (Note: this implementation does
 allow malformed packets to be dumped to a PCAP file).

 o is released under the Mozilla Public License Version 2.0.

 o has a users mailing list available, see dns-stats-users [8].

 There is also some discussion of issues encountered during
 development available at Compressing Pcap Files [9] and Packet
 Capture [10].

 This information was last updated on 29th of June 2017.

12. IANA Considerations

 None

13. Security Considerations

 Any control interface MUST perform authentication and encryption.

 Any data upload MUST be authenticated and encrypted.

14. Acknowledgements

 The authors wish to thank CZ.NIC, in particular Tomas Gavenciak, for
 many useful discussions on binary formats, compression and packet
 matching. Also Jan Vcelak and Wouter Wijngaards for discussions on
 name compression and Paul Hoffman for a detailed review of the
 document and the C-DNS CDDL.

 Thanks also to Robert Edmonds and Jerry Lundstroem for review.

Dickinson, et al. Expires January 4, 2018 [Page 30]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 Also, Miek Gieben for mmark [11]

15. Changelog

draft-ietf-dnsop-dns-capture-format-03

 o Added an Implementation Status section

draft-ietf-dnsop-dns-capture-format-02

 o Update qr_data_format.png to match CDDL

 o Editorial clarifications and improvements

draft-ietf-dnsop-dns-capture-format-01

 o Many editorial improvements by Paul Hoffman

 o Included discussion of malformed packet handling

 o Improved Appendix C on Comparison of Binary Formats

 o Now using C-DNS field names in the tables in section 8

 o A handful of new fields included (CDDL updated)

 o Timestamps now include optional picoseconds

 o Added details of block statistics

draft-ietf-dnsop-dns-capture-format-00

 o Changed dnstap.io to dnstap.info

 o qr_data_format.png was cut off at the bottom

 o Update authors address

 o Improve wording in Abstract

 o Changed DNS-STAT to C-DNS in CDDL

 o Set the format version in the CDDL

 o Added a TODO: Add block statistics

 o Added a TODO: Add extend to support pico/nano. Also do this for
 Time offset and Response delay

https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-03
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-02
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-01
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-00

Dickinson, et al. Expires January 4, 2018 [Page 31]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 o Added a TODO: Need to develop optional representation of malformed
 packets within C-DNS and what this means for packet matching.
 This may influence which fields are optional in the rest of the
 representation.

 o Added section on design goals to Introduction

 o Added a TODO: Can Class be optimised? Should a class of IN be
 inferred if not present?

draft-dickinson-dnsop-dns-capture-format-00

 o Initial commit

16. References

16.1. Normative References

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

16.2. Informative References

 [ditl] DNS-OARC, "DITL", 2016, <https://www.dns-
oarc.net/oarc/data/ditl>.

 [dnscap] DNS-OARC, "DNSCAP", 2016, <https://www.dns-oarc.net/tools/
dnscap>.

 [dnstap] dnstap.info, "dnstap", 2016, <http://dnstap.info/>.

 [dsc] Wessels, D. and J. Lundstrom, "DSC", 2016,
 <https://www.dns-oarc.net/tools/dsc>.

 [I-D.daley-dnsxml]
 Daley, J., Morris, S., and J. Dickinson, "dnsxml - A
 standard XML representation of DNS data", draft-daley-

dnsxml-00 (work in progress), July 2013.

https://datatracker.ietf.org/doc/html/draft-dickinson-dnsop-dns-capture-format-00
https://datatracker.ietf.org/doc/html/rfc1035
http://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://www.dns-oarc.net/oarc/data/ditl
https://www.dns-oarc.net/oarc/data/ditl
https://www.dns-oarc.net/tools/dnscap
https://www.dns-oarc.net/tools/dnscap
http://dnstap.info/
https://www.dns-oarc.net/tools/dsc
https://datatracker.ietf.org/doc/html/draft-daley-dnsxml-00
https://datatracker.ietf.org/doc/html/draft-daley-dnsxml-00

Dickinson, et al. Expires January 4, 2018 [Page 32]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "CBOR data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-greevenbosch-appsawg-

cbor-cddl-10 (work in progress), March 2017.

 [I-D.hoffman-dns-in-json]
 Hoffman, P., "Representing DNS Messages in JSON", draft-

hoffman-dns-in-json-12 (work in progress), May 2017.

 [packetq] .SE - The Internet Infrastructure Foundation, "PacketQ",
 2014, <https://github.com/dotse/PacketQ>.

 [pcap] tcpdump.org, "PCAP", 2016, <http://www.tcpdump.org/>.

 [pcapng] Tuexen, M., Risso, F., Bongertz, J., Combs, G., and G.
 Harris, "pcap-ng", 2016, <https://github.com/pcapng/

pcapng>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <http://www.rfc-editor.org/info/rfc7942>.

 [rrtypes] IANA, "RR types", 2016, <http://www.iana.org/assignments/
dns-parameters/dns-parameters.xhtml#dns-parameters-4>.

16.3. URIs

 [1] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-03/cdns_format.png

 [2] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-03/cdns_format.svg

 [3] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-03/qr_data_format.png

 [4] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-03/qr_data_format.svg

 [5] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-03/packet_matching.png

https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-json-12
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-json-12
https://github.com/dotse/PacketQ
http://www.tcpdump.org/
https://github.com/pcapng/pcapng
https://github.com/pcapng/pcapng
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
http://www.rfc-editor.org/info/rfc7942
http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4
http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/cdns_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/cdns_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/cdns_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/cdns_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/qr_data_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/qr_data_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/qr_data_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/qr_data_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/packet_matching.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/packet_matching.png

Dickinson, et al. Expires January 4, 2018 [Page 33]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 [6] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-03/packet_matching.svg

 [7] https://github.com/dns-stats/compactor/wiki

 [8] https://mm.dns-stats.org/mailman/listinfo/dns-stats-users

 [9] https://www.sinodun.com/2017/06/compressing-pcap-files/

 [10] https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-
trusty-packet-capture-woes/

 [11] https://github.com/miekg/mmark

 [12] https://www.nlnetlabs.nl/projects/nsd/

 [13] https://www.knot-dns.cz/

 [14] https://avro.apache.org/

 [15] https://developers.google.com/protocol-buffers/

 [16] http://cbor.io

 [17] https://github.com/kubo/snzip

 [18] http://google.github.io/snappy/

 [19] http://lz4.github.io/lz4/

 [20] http://www.gzip.org/

 [21] http://facebook.github.io/zstd/

 [22] http://tukaani.org/xz/

 [23] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/file-size-versus-block-size.png

 [24] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/file-size-versus-block-size.svg

Appendix A. CDDL

 ; CDDL specification of the file format for C-DNS,
 ; which describes a collection of DNS messages and
 ; traffic meta-data.

https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/packet_matching.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-03/packet_matching.svg
https://github.com/dns-stats/compactor/wiki
https://mm.dns-stats.org/mailman/listinfo/dns-stats-users
https://www.sinodun.com/2017/06/compressing-pcap-files/
https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-trusty-packet-capture-woes/
https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-trusty-packet-capture-woes/
https://github.com/miekg/mmark
https://www.nlnetlabs.nl/projects/nsd/
https://www.knot-dns.cz/
https://avro.apache.org/
https://developers.google.com/protocol-buffers/
http://cbor.io
https://github.com/kubo/snzip
http://google.github.io/snappy/
http://lz4.github.io/lz4/
http://www.gzip.org/
http://facebook.github.io/zstd/
http://tukaani.org/xz/
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.svg

Dickinson, et al. Expires January 4, 2018 [Page 34]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 File = [
 file-type-id : tstr, ; = "C-DNS"
 file-preamble : FilePreamble,
 file-blocks : [* Block],
]

 FilePreamble = {
 major-format-version => uint, ; = 1
 minor-format-version => uint, ; = 0
 ? private-version => uint,
 ? configuration => Configuration,
 ? generator-id => tstr,
 ? host-id => tstr,
 }

 major-format-version = 0
 minor-format-version = 1
 private-version = 2
 configuration = 3
 generator-id = 4
 host-id = 5

 Configuration = {
 ? query-timeout => uint,
 ? skew-timeout => uint,
 ? snaplen => uint,
 ? promisc => uint,
 ? interfaces => [* tstr],
 ? server-addresses => [* IPAddress], ; Hint for later analysis
 ? vlan-ids => [* uint],
 ? filter => tstr,
 ? query-options => QRCollectionSections,
 ? response-options => QRCollectionSections,
 ? accept-rr-types => [* uint],
 ? ignore-rr-types => [* uint],
 ? max-block-qr-items => uint,
 ? collect-malformed => uint,
 }

 QRCollectionSectionValues = &(
 question : 0, ; Second & subsequent questions
 answer : 1,
 authority : 2,
 additional: 3,
)
 QRCollectionSections = uint .bits QRCollectionSectionValues

 query-timeout = 0

Dickinson, et al. Expires January 4, 2018 [Page 35]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 skew-timeout = 1
 snaplen = 2
 promisc = 3
 interfaces = 4
 vlan-ids = 5
 filter = 6
 query-options = 7
 response-options = 8
 accept-rr-types = 9
 ignore-rr-types = 10
 server-addresses = 11
 max-block-qr-items = 12
 collect-malformed = 13

 Block = {
 preamble => BlockPreamble,
 ? statistics => BlockStatistics,
 tables => BlockTables,
 queries => [* QueryResponse],
 ? address-event-counts => [* AddressEventCount],
 ? malformed-packet-data => [* MalformedPacket],
 }

 preamble = 0
 statistics = 1
 tables = 2
 queries = 3
 address-event-counts = 4
 malformed-packet-data = 5

 BlockPreamble = {
 earliest-time => Timeval
 }

 earliest-time = 1

 Timeval = [
 seconds : uint,
 microseconds : uint,
 ? picoseconds : uint,
]

 BlockStatistics = {
 ? total-packets => uint,
 ? total-pairs => uint,
 ? unmatched-queries => uint,
 ? unmatched-responses => uint,
 ? malformed-packets => uint,

Dickinson, et al. Expires January 4, 2018 [Page 36]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 }

 total-packets = 0
 total-pairs = 1
 unmatched-queries = 2
 unmatched-responses = 3
 malformed-packets = 4

 BlockTables = {
 ip-address => [* IPAddress],
 classtype => [* ClassType],
 name-rdata => [* bstr], ; Holds both Name RDATA and RDATA
 query-sig => [* QuerySignature]
 ? qlist => [* QuestionList],
 ? qrr => [* Question],
 ? rrlist => [* RRList],
 ? rr => [* RR],
 }

 ip-address = 0
 classtype = 1
 name-rdata = 2
 query-sig = 3
 qlist = 4
 qrr = 5
 rrlist = 6
 rr = 7

 QueryResponse = {
 time-useconds => uint, ; Time offset from start of block
 ? time-pseconds => uint, ; in microseconds and picoseconds
 client-address-index => uint,
 client-port => uint,
 transaction-id => uint,
 query-signature-index => uint,
 ? client-hoplimit => uint,
 ? delay-useconds => int,
 ? delay-pseconds => int, ; Has same sign as delay-useconds
 ? query-name-index => uint,
 ? query-size => uint, ; DNS size of query
 ? response-size => uint, ; DNS size of response
 ? query-extended => QueryResponseExtended,
 ? response-extended => QueryResponseExtended,
 }

 time-useconds = 0
 time-pseconds = 1
 client-address-index = 2

Dickinson, et al. Expires January 4, 2018 [Page 37]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 client-port = 3
 transaction-id = 4
 query-signature-index = 5
 client-hoplimit = 6
 delay-useconds = 7
 delay-pseconds = 8
 query-name-index = 9
 query-size = 10
 response-size = 11
 query-extended = 12
 response-extended = 13

 ClassType = {
 type => uint,
 class => uint,
 }

 type = 0
 class = 1

 DNSFlagValues = &(
 query-cd : 0,
 query-ad : 1,
 query-z : 2,
 query-ra : 3,
 query-rd : 4,
 query-tc : 5,
 query-aa : 6,
 query-d0 : 7,
 response-cd: 8,
 response-ad: 9,
 response-z : 10,
 response-ra: 11,
 response-rd: 12,
 response-tc: 13,
 response-aa: 14,
)
 DNSFlags = uint .bits DNSFlagValues

 QueryResponseFlagValues = &(
 has-query : 0,
 has-reponse : 1,
 query-has-question : 2,
 query-has-opt : 3,
 response-has-opt : 4,
 response-has-no-question: 5,
)
 QueryResponseFlags = uint .bits QueryResponseFlagValues

Dickinson, et al. Expires January 4, 2018 [Page 38]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 TransportFlagValues = &(
 tcp : 0,
 ipv6 : 1,
 query-trailingdata: 2,
)
 TransportFlags = uint .bits TransportFlagValues

 QuerySignature = {
 server-address-index => uint,
 server-port => uint,
 transport-flags => TransportFlags,
 qr-sig-flags => QueryResponseFlags,
 ? query-opcode => uint,
 qr-dns-flags => DNSFlags,
 ? query-rcode => uint,
 ? query-classtype-index => uint,
 ? query-qd-count => uint,
 ? query-an-count => uint,
 ? query-ar-count => uint,
 ? query-ns-count => uint,
 ? edns-version => uint,
 ? udp-buf-size => uint,
 ? opt-rdata-index => uint,
 ? response-rcode => uint,
 }

 server-address-index = 0
 server-port = 1
 transport-flags = 2
 qr-sig-flags = 3
 query-opcode = 4
 qr-dns-flags = 5
 query-rcode = 6
 query-classtype-index = 7
 query-qd-count = 8
 query-an-count = 9
 query-ar-count = 10
 query-ns-count = 11
 edns-version = 12
 udp-buf-size = 13
 opt-rdata-index = 14
 response-rcode = 15

 QuestionList = [
 * uint, ; Index of Question
]

 Question = { ; Second and subsequent questions

Dickinson, et al. Expires January 4, 2018 [Page 39]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 name-index => uint, ; Index to a name in the name-rdata table
 classtype-index => uint,
 }

 name-index = 0
 classtype-index = 1

 RRList = [
 * uint, ; Index of RR
]

 RR = {
 name-index => uint, ; Index to a name in the name-rdata table
 classtype-index => uint,
 ttl => uint,
 rdata-index => uint, ; Index to RDATA in the name-rdata table
 }

 ttl = 2
 rdata-index = 3

 QueryResponseExtended = {
 ? question-index => uint, ; Index of QuestionList
 ? answer-index => uint, ; Index of RRList
 ? authority-index => uint,
 ? additional-index => uint,
 }

 question-index = 0
 answer-index = 1
 authority-index = 2
 additional-index = 3

 AddressEventCount = {
 ae-type => &AddressEventType,
 ? ae-code => uint,
 ae-address-index => uint,
 ae-count => uint,
 }

 ae-type = 0
 ae-code = 1
 ae-address-index = 2
 ae-count = 3

 AddressEventType = (
 tcp-reset : 0,
 icmp-time-exceeded : 1,

Dickinson, et al. Expires January 4, 2018 [Page 40]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 icmp-dest-unreachable : 2,
 icmpv6-time-exceeded : 3,
 icmpv6-dest-unreachable: 4,
 icmpv6-packet-too-big : 5,
)

 MalformedPacket = {
 time-useconds => uint, ; Time offset from start of block
 ? time-pseconds => uint, ; in microseconds and picoseconds
 packet-content => bstr, ; Raw packet contents
 }

 time-useconds = 0
 time-pseconds = 1
 packet-content = 2

 IPv4Address = bstr .size 4
 IPv6Address = bstr .size 16
 IPAddress = IPv4Address / IPv6Address

Appendix B. DNS Name compression example

 The basic algorithm, which follows the guidance in [RFC1035], is
 simply to collect each name, and the offset in the packet at which it
 starts, during packet construction. As each name is added, it is
 offered to each of the collected names in order of collection,
 starting from the first name. If labels at the end of the name can
 be replaced with a reference back to part (or all) of the earlier
 name, and if the uncompressed part of the name is shorter than any
 compression already found, the earlier name is noted as the
 compression target for the name.

 The following tables illustrate the process. In an example packet,
 the first name is example.com.

 +---+-------------+--------------+--------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+--------------------+
 | 1 | example.com | | |
 +---+-------------+--------------+--------------------+

 The next name added is bar.com. This is matched against example.com.
 The com part of this can be used as a compression target, with the
 remaining uncompressed part of the name being bar.

https://datatracker.ietf.org/doc/html/rfc1035

Dickinson, et al. Expires January 4, 2018 [Page 41]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 +---+-------------+--------------+--------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+--------------------+
 | 1 | example.com | | |
 | 2 | bar.com | bar | 1 + offset to com |
 +---+-------------+--------------+--------------------+

 The third name added is www.bar.com. This is first matched against
 example.com, and as before this is recorded as a compression target,
 with the remaining uncompressed part of the name being www.bar. It
 is then matched against the second name, which again can be a
 compression target. Because the remaining uncompressed part of the
 name is www, this is an improved compression, and so it is adopted.

 +---+-------------+--------------+--------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+--------------------+
 | 1 | example.com | | |
 | 2 | bar.com | bar | 1 + offset to com |
 | 3 | www.bar.com | www | 2 |
 +---+-------------+--------------+--------------------+

 As an optimization, if a name is already perfectly compressed (in
 other words, the uncompressed part of the name is empty), then no
 further names will be considered for compression.

B.1. NSD compression algorithm

 Using the above basic algorithm the packet lengths of responses
 generated by NSD [12] can be matched almost exactly. At the time of
 writing, a tiny number (<.01%) of the reconstructed packets had
 incorrect lengths.

B.2. Knot Authoritative compression algorithm

 The Knot Authoritative [13] name server uses different compression
 behavior, which is the result of internal optimization designed to
 balance runtime speed with compression size gains. In brief, and
 omitting complications, Knot Authoritative will only consider the
 QNAME and names in the immediately preceding RR section in an RRSET
 as compression targets.

 A set of smart heuristics as described below can be implemented to
 mimic this and while not perfect it produces output nearly, but not
 quite, as good a match as with NSD. The heuristics are:

Dickinson, et al. Expires January 4, 2018 [Page 42]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 1. A match is only perfect if the name is completely compressed AND
 the TYPE of the section in which the name occurs matches the TYPE
 of the name used as the compression target.

 2. If the name occurs in RDATA:

 * If the compression target name is in a query, then only the
 first RR in an RRSET can use that name as a compression
 target.

 * The compression target name MUST be in RDATA.

 * The name section TYPE must match the compression target name
 section TYPE.

 * The compression target name MUST be in the immediately
 preceding RR in the RRSET.

 Using this algorithm less than 0.1% of the reconstructed packets had
 incorrect lengths.

B.3. Observed differences

 In sample traffic collected on a root name server around 2-4% of
 responses generated by Knot had different packet lengths to those
 produced by NSD.

Appendix C. Comparison of Binary Formats

 Several binary serialisation formats were considered, and for
 completeness were also compared to JSON.

 o Apache Avro [14]. Data is stored according to a pre-defined
 schema. The schema itself is always included in the data file.
 Data can therefore be stored untagged, for a smaller serialisation
 size, and be written and read by an Avro library.

 * At the time of writing, Avro libraries are available for C,
 C++, C#, Java, Python, Ruby and PHP. Optionally tools are
 available for C++, Java and C# to generate code for encoding
 and decoding.

 o Google Protocol Buffers [15]. Data is stored according to a pre-
 defined schema. The schema is used by a generator to generate
 code for encoding and decoding the data. Data can therefore be
 stored untagged, for a smaller serialisation size. The schema is
 not stored with the data, so unlike Avro cannot be read with a
 generic library.

Dickinson, et al. Expires January 4, 2018 [Page 43]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 * Code must be generated for a particular data schema to to read
 and write data using that schema. At the time of writing, the
 Google code generator can currently generate code for encoding
 and decoding a schema for C++, Go, Java, Python, Ruby, C#,
 Objective-C, Javascript and PHP.

 o CBOR [16]. Defined in [RFC7049], this serialisation format is
 comparable to JSON but with a binary representation. It does not
 use a pre-defined schema, so data is always stored tagged.
 However, CBOR data schemas can be described using CDDL
 [I-D.greevenbosch-appsawg-cbor-cddl] and tools exist to verify
 data files conform to the schema.

 * CBOR is a simple format, and simple to implement. At the time
 of writing, the CBOR website lists implementations for 16
 languages.

 Avro and Protocol Buffers both allow storage of untagged data, but
 because they rely on the data schema for this, their implementation
 is considerably more complex than CBOR. Using Avro or Protocol
 Buffers in an unsupported environment would require notably greater
 development effort compared to CBOR.

 A test program was written which reads input from a PCAP file and
 writes output using one of two basic structures; either a simple
 structure, where each query/response pair is represented in a single
 record entry, or the C-DNS block structure.

 The resulting output files were then compressed using a variety of
 common general-purpose lossless compression tools to explore the
 compressibility of the formats. The compression tools employed were:

 o snzip [17]. A command line compression tool based on the Google
 Snappy [18] library.

 o lz4 [19]. The command line compression tool from the reference C
 LZ4 implementation.

 o gzip [20]. The ubiquitous GNU zip tool.

 o zstd [21]. Compression using the Zstandard algorithm.

 o xz [22]. A popular compression tool noted for high compression.

 In all cases the compression tools were run using their default
 settings.

https://datatracker.ietf.org/doc/html/rfc7049

Dickinson, et al. Expires January 4, 2018 [Page 44]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 Note that this draft does not mandate the use of compression, nor any
 particular compression scheme, but it anticipates that in practice
 output data will be subject to general-purpose compression, and so
 this should be taken into consideration.

 "test.pcap", a 662Mb capture of sample data from a root instance was
 used for the comparison. The following table shows the formatted
 size and size after compression (abbreviated to Comp. in the table
 headers), together with the task resident set size (RSS) and the user
 time taken by the compression. File sizes are in Mb, RSS in kb and
 user time in seconds.

 +-------------+-----------+-------+------------+-------+-----------+
 | Format | File size | Comp. | Comp. size | RSS | User time |
 +-------------+-----------+-------+------------+-------+-----------+
PCAP	661.87	snzip	212.48	2696	1.26
		lz4	181.58	6336	1.35
		gzip	153.46	1428	18.20
		zstd	87.07	3544	4.27
		xz	49.09	97416	160.79
JSON simple	4113.92	snzip	603.78	2656	5.72
		lz4	386.42	5636	5.25
		gzip	271.11	1492	73.00
		zstd	133.43	3284	8.68
		xz	51.98	97412	600.74
Avro simple	640.45	snzip	148.98	2656	0.90
		lz4	111.92	5828	0.99
		gzip	103.07	1540	11.52
		zstd	49.08	3524	2.50
		xz	22.87	97308	90.34
CBOR simple	764.82	snzip	164.57	2664	1.11
		lz4	120.98	5892	1.13
		gzip	110.61	1428	12.88
		zstd	54.14	3224	2.77
		xz	23.43	97276	111.48
PBuf simple	749.51	snzip	167.16	2660	1.08
		lz4	123.09	5824	1.14
		gzip	112.05	1424	12.75
		zstd	53.39	3388	2.76
		xz	23.99	97348	106.47
JSON block	519.77	snzip	106.12	2812	0.93
		lz4	104.34	6080	0.97
		gzip	57.97	1604	12.70

Dickinson, et al. Expires January 4, 2018 [Page 45]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

		zstd	61.51	3396	3.45
		xz	27.67	97524	169.10
Avro block	60.45	snzip	48.38	2688	0.20
		lz4	48.78	8540	0.22
		gzip	39.62	1576	2.92
		zstd	29.63	3612	1.25
		xz	18.28	97564	25.81
CBOR block	75.25	snzip	53.27	2684	0.24
		lz4	51.88	8008	0.28
		gzip	41.17	1548	4.36
		zstd	30.61	3476	1.48
		xz	18.15	97556	38.78
PBuf block	67.98	snzip	51.10	2636	0.24
		lz4	52.39	8304	0.24
		gzip	40.19	1520	3.63
		zstd	31.61	3576	1.40
		xz	17.94	97440	33.99
 +-------------+-----------+-------+------------+-------+-----------+

 The above results are discussed in the following sections.

C.1. Comparison with full PCAP files

 An important first consideration is whether moving away from PCAP
 offers significant benefits.

 The simple binary formats are typically larger than PCAP, even though
 they omit some information such as Ethernet MAC addresses. But not
 only do they require less CPU to compress than PCAP, the resulting
 compressed files are smaller than compressed PCAP.

C.2. Simple versus block coding

 The intention of the block coding is to perform data de-duplication
 on query/response records within the block. The simple and block
 formats above store exactly the same information for each query/
 response record. This information is parsed from the DNS traffic in
 the input PCAP file, and in all cases each field has an identifier
 and the field data is typed.

 The data de-duplication on the block formats show an order of
 magnitude reduction in the size of the format file size against the
 simple formats. As would be expected, the compression tools are able
 to find and exploit a lot of this duplication, but as the de-
 duplication process uses knowledge of DNS traffic, it is able to

Dickinson, et al. Expires January 4, 2018 [Page 46]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 retain a size advantage. This advantage reduces as stronger
 compression is applied, as again would be expected, but even with the
 strongest compression applied the block formatted data remains around
 75% of the size of the simple format and its compression requires
 roughly a third of the CPU time.

C.3. Binary versus text formats

 Text data formats offer many advantages over binary formats,
 particularly in the areas of ad-hoc data inspection and extraction.
 It was therefore felt worthwhile to carry out a direct comparison,
 implementing JSON versions of the simple and block formats.

 Concentrating on JSON block format, the format files produced are a
 significant fraction of an order of magnitude larger than binary
 formats. The impact on file size after compression is as might be
 expected from that starting point; the stronger compression produces
 files that are 150% of the size of similarly compressed binary
 format, and require over 4x more CPU to compress.

C.4. Performance

 Concentrating again on the block formats, all three produce format
 files that are close to an order of magnitude smaller that the
 original "test.pcap" file. CBOR produces the largest files and Avro
 the smallest, 20% smaller than CBOR.

 However, once compression is taken into account, the size difference
 narrows. At medium compression (with gzip), the size difference is
 4%. Using strong compression (with xz) the difference reduces to 2%,
 with Avro the largest and Protocol Buffers the smallest, although
 CBOR and Protocol Buffers require slightly more compression CPU.

 The measurements presented above do not include data on the CPU
 required to generate the format files. Measurements indicate that
 writing Avro requires 10% more CPU than CBOR or Protocol Buffers. It
 appears, therefore, that Avro's advantage in compression CPU usage is
 probably offset by a larger CPU requirement in writing Avro.

C.5. Conclusions

 The above assessments lead us to the choice of a binary format file
 using blocking.

 As noted previously, this draft anticipates that output data will be
 subject to compression. There is no compelling case for one
 particular binary serialisation format in terms of either final file
 size or machine resources consumed, so the choice must be largely

Dickinson, et al. Expires January 4, 2018 [Page 47]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

 based on other factors. CBOR was therefore chosen as the binary
 serialisation format for the reasons listed in Section 6.

C.6. Block size choice

 Given the choice of a CBOR format using blocking, the question arises
 of what an appropriate default value for the maximum number of query/
 response pairs in a block should be. This has two components; what
 is the impact on performance of using different block sizes in the
 format file, and what is the impact on the size of the format file
 before and after compression.

 The following table addresses the performance question, showing the
 impact on the performance of a C++ program converting "test.pcap" to
 C-DNS. File size is in Mb, resident set size (RSS) in kb.

 +------------+-----------+--------+-----------+
 | Block size | File size | RSS | User time |
 +------------+-----------+--------+-----------+
 | 1000 | 133.46 | 612.27 | 15.25 |
 | 5000 | 89.85 | 676.82 | 14.99 |
 | 10000 | 76.87 | 752.40 | 14.53 |
 | 20000 | 67.86 | 750.75 | 14.49 |
 | 40000 | 61.88 | 736.30 | 14.29 |
 | 80000 | 58.08 | 694.16 | 14.28 |
 | 160000 | 55.94 | 733.84 | 14.44 |
 | 320000 | 54.41 | 799.20 | 13.97 |
 +------------+-----------+--------+-----------+

 Increasing block size, therefore, tends to increase maximum RSS a
 little, with no significant effect (if anything a small reduction) on
 CPU consumption.

 The following figure plots the effect of increasing block size on
 output file size for different compressions.

 Figure showing effect of block size on file size (PNG) [23]

 Figure showing effect of block size on file size (SVG) [24]

 From the above, there is obviously scope for tuning the default block
 size to the compression being employed, traffic characteristics,
 frequency of output file rollover etc. Using a strong compression,
 block sizes over 10,000 query/response pairs would seem to offer
 limited improvements.

Dickinson, et al. Expires January 4, 2018 [Page 48]

Internet-Draft C-DNS: A DNS Packet Capture Format July 2017

Authors' Addresses

 John Dickinson
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA

 Email: jad@sinodun.com

 Jim Hague
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA

 Email: jim@sinodun.com

 Sara Dickinson
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA

 Email: sara@sinodun.com

 Terry Manderson
 ICANN
 12025 Waterfront Drive
 Suite 300
 Los Angeles CA 90094-2536

 Email: terry.manderson@icann.org

 John Bond
 ICANN
 12025 Waterfront Drive
 Suite 300
 Los Angeles CA 90094-2536

 Email: john.bond@icann.org

Dickinson, et al. Expires January 4, 2018 [Page 49]

