
dnsop J. Dickinson
Internet-Draft J. Hague
Intended status: Standards Track S. Dickinson
Expires: November 9, 2018 Sinodun IT
 T. Manderson
 J. Bond
 ICANN
 May 8, 2018

C-DNS: A DNS Packet Capture Format
draft-ietf-dnsop-dns-capture-format-07

Abstract

 This document describes a data representation for collections of DNS
 messages. The format is designed for efficient storage and
 transmission of large packet captures of DNS traffic; it attempts to
 minimize the size of such packet capture files but retain the full
 DNS message contents along with the most useful transport metadata.
 It is intended to assist with the development of DNS traffic
 monitoring applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 9, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Dickinson, et al. Expires November 9, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Data collection use cases 5
4. Design considerations . 7
5. Choice of CBOR . 8
6. C-DNS format conceptual overview 9
6.1. Block Parameters . 10
6.2. Storage Parameters 10
6.2.1. Optional data items 11
6.2.2. Optional RRs and OPCODEs 12
6.2.3. Storage flags . 12
6.2.4. IP Address storage 12

7. C-DNS format detailed description 13
7.1. Map quantities and indexes 13
7.2. Tabular representation 13
7.3. "File" . 14
7.4. "FilePreamble" . 14
7.4.1. "BlockParameters" 15
7.4.2. "CollectionParameters" 18

7.5. "Block" . 19
7.5.1. "BlockPreamble" 20
7.5.2. "BlockStatistics" 21
7.5.3. "BlockTables" . 22

7.6. "QueryResponse" . 28
7.6.1. "ResponseProcessingData" 30
7.6.2. "QueryResponseExtended" 30

7.7. "AddressEventCount" 31
7.8. "MalformedMessage" 32

8. C-DNS to PCAP . 33
8.1. Name compression . 34

9. Data collection . 34
9.1. Matching algorithm 35
9.2. Message identifiers 36
9.2.1. Primary ID (required) 36
9.2.2. Secondary ID (optional) 36

9.3. Algorithm parameters 36
9.4. Algorithm requirements 36
9.5. Algorithm limitations 37
9.6. Workspace . 37

Dickinson, et al. Expires November 9, 2018 [Page 2]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

9.7. Output . 37
9.8. Post processing . 37

10. Implementation guidance 38
10.1. Optional data . 38
10.2. Trailing bytes . 38
10.3. Limiting collection of RDATA 39

11. Implementation status . 39
11.1. DNS-STATS Compactor 39

12. IANA considerations . 40
13. Security considerations 40
14. Acknowledgements . 40
15. Changelog . 40
16. References . 43
16.1. Normative References 43
16.2. Informative References 43
16.3. URIs . 44

Appendix A. CDDL . 45
Appendix B. DNS Name compression example 55
B.1. NSD compression algorithm 56
B.2. Knot Authoritative compression algorithm 56
B.3. Observed differences 57

Appendix C. Comparison of Binary Formats 57
C.1. Comparison with full PCAP files 60
C.2. Simple versus block coding 60
C.3. Binary versus text formats 61
C.4. Performance . 61
C.5. Conclusions . 61
C.6. Block size choice . 62

 Authors' Addresses . 63

1. Introduction

 There has long been a need to collect DNS queries and responses on
 authoritative and recursive name servers for monitoring and analysis.
 This data is used in a number of ways including traffic monitoring,
 analyzing network attacks and "day in the life" (DITL) [ditl]
 analysis.

 A wide variety of tools already exist that facilitate the collection
 of DNS traffic data, such as DSC [dsc], packetq [packetq], dnscap
 [dnscap] and dnstap [dnstap]. However, there is no standard exchange
 format for large DNS packet captures. The PCAP [pcap] or PCAP-NG
 [pcapng] formats are typically used in practice for packet captures,
 but these file formats can contain a great deal of additional
 information that is not directly pertinent to DNS traffic analysis
 and thus unnecessarily increases the capture file size.

Dickinson, et al. Expires November 9, 2018 [Page 3]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 There has also been work on using text based formats to describe DNS
 packets such as [I-D.daley-dnsxml], [I-D.hoffman-dns-in-json], but
 these are largely aimed at producing convenient representations of
 single messages.

 Many DNS operators may receive hundreds of thousands of queries per
 second on a single name server instance so a mechanism to minimize
 the storage size (and therefore upload overhead) of the data
 collected is highly desirable.

 The format described in this document, C-DNS (Compacted-DNS),
 focusses on the problem of capturing and storing large packet capture
 files of DNS traffic with the following goals in mind:

 o Minimize the file size for storage and transmission.

 o Minimize the overhead of producing the packet capture file and the
 cost of any further (general purpose) compression of the file.

 This document contains:

 o A discussion of some common use cases in which DNS data is
 collected, see Section 3.

 o A discussion of the major design considerations in developing an
 efficient data representation for collections of DNS messages, see

Section 4.

 o A description of why CBOR [RFC7049] was chosen for this format,
 see Section 5.

 o A conceptual overview of the C-DNS format, see Section 6.

 o The definition of the C-DNS format for the collection of DNS
 messages, see Section 7.

 o Notes on converting C-DNS data to PCAP format, see Section 8.

 o Some high level implementation considerations for applications
 designed to produce C-DNS, see Section 9.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc2119

Dickinson, et al. Expires November 9, 2018 [Page 4]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 "Packet" refers to an individual IPv4 or IPv6 packet. Typically
 packets are UDP datagrams, but may also be part of a TCP data stream.
 "Message", unless otherwise qualified, refers to a DNS payload
 extracted from a UDP datagram or a TCP data stream.

 The parts of DNS messages are named as they are in [RFC1035].
 Specifically, the DNS message has five sections: Header, Question,
 Answer, Authority, and Additional.

 Pairs of DNS messages are called a Query and a Response.

3. Data collection use cases

 In an ideal world, it would be optimal to collect full packet
 captures of all packets going in or out of a name server. However,
 there are several design choices or other limitations that are common
 to many DNS installations and operators.

 o DNS servers are hosted in a variety of situations:

 * Self-hosted servers

 * Third party hosting (including multiple third parties)

 * Third party hardware (including multiple third parties)

 o Data is collected under different conditions:

 * On well-provisioned servers running in a steady state

 * On heavily loaded servers

 * On virtualized servers

 * On servers that are under DoS attack

 * On servers that are unwitting intermediaries in DoS attacks

 o Traffic can be collected via a variety of mechanisms:

 * Within the name server implementation itself

 * On the same hardware as the name server itself

 * Using a network tap on an adjacent host to listen to DNS
 traffic

 * Using port mirroring to listen from another host

https://datatracker.ietf.org/doc/html/rfc1035

Dickinson, et al. Expires November 9, 2018 [Page 5]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 o The capabilities of data collection (and upload) networks vary:

 * Out-of-band networks with the same capacity as the in-band
 network

 * Out-of-band networks with less capacity than the in-band
 network

 * Everything being on the in-band network

 Thus, there is a wide range of use cases from very limited data
 collection environments (third party hardware, servers that are under
 attack, packet capture on the name server itself and no out-of-band
 network) to "limitless" environments (self hosted, well provisioned
 servers, using a network tap or port mirroring with an out-of-band
 networks with the same capacity as the in-band network). In the
 former, it is infeasible to reliably collect full packet captures,
 especially if the server is under attack. In the latter case,
 collection of full packet captures may be reasonable.

 As a result of these restrictions, the C-DNS data format is designed
 with the most limited use case in mind such that:

 o data collection will occur on the same hardware as the name server
 itself

 o collected data will be stored on the same hardware as the name
 server itself, at least temporarily

 o collected data being returned to some central analysis system will
 use the same network interface as the DNS queries and responses

 o there can be multiple third party servers involved

 Because of these considerations, a major factor in the design of the
 format is minimal storage size of the capture files.

 Another significant consideration for any application that records
 DNS traffic is that the running of the name server software and the
 transmission of DNS queries and responses are the most important jobs
 of a name server; capturing data is not. Any data collection system
 co-located with the name server needs to be intelligent enough to
 carefully manage its CPU, disk, memory and network utilization. This
 leads to designing a format that requires a relatively low overhead
 to produce and minimizes the requirement for further potentially
 costly compression.

Dickinson, et al. Expires November 9, 2018 [Page 6]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 However, it is also essential that interoperability with less
 restricted infrastructure is maintained. In particular, it is highly
 desirable that the collection format should facilitate the re-
 creation of common formats (such as PCAP) that are as close to the
 original as is realistic given the restrictions above.

4. Design considerations

 This section presents some of the major design considerations used in
 the development of the C-DNS format.

 1. The basic unit of data is a combined DNS Query and the associated
 Response (a "Q/R data item"). The same structure will be used
 for unmatched Queries and Responses. Queries without Responses
 will be captured omitting the response data. Responses without
 queries will be captured omitting the Query data (but using the
 Question section from the response, if present, as an identifying
 QNAME).

 * Rationale: A Query and Response represents the basic level of
 a client's interaction with the server. Also, combining the
 Query and Response into one item often reduces storage
 requirements due to commonality in the data of the two
 messages.

 In the context of generating a C-DNS file it is assumed that only
 those DNS payloads which can be parsed to produce a well-formed
 DNS message are stored in the C-DNS format and that all other
 messages will be (optionally) recorded as malformed messages.
 Parsing a well-formed message means as a minimum:

 * The packet has a well-formed 12 byte DNS Header with a
 recognised OPCODE.

 * The section counts are consistent with the section contents.

 * All of the resource records can be fully parsed.

 2. All top level fields in each Q/R data item will be optional.

 * Rationale: Different users will have different requirements
 for data to be available for analysis. Users with minimal
 requirements should not have to pay the cost of recording full
 data, though this will limit the ability to perform certain
 kinds of data analysis and also to reconstruct packet
 captures. For example, omitting the resource records from a
 Response will reduce the C-DNS file size; in principle
 responses can be synthesized if there is enough context.

Dickinson, et al. Expires November 9, 2018 [Page 7]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 3. Multiple Q/R data items will be collected into blocks in the
 format. Common data in a block will be abstracted and referenced
 from individual Q/R data items by indexing. The maximum number
 of Q/R data items in a block will be configurable.

 * Rationale: This blocking and indexing provides a significant
 reduction in the volume of file data generated. Although this
 introduces complexity, it provides compression of the data
 that makes use of knowledge of the DNS message structure.

 * It is anticipated that the files produced can be subject to
 further compression using general purpose compression tools.
 Measurements show that blocking significantly reduces the CPU
 required to perform such strong compression. See

Appendix C.2.

 * Examples of commonality between DNS messages are that in most
 cases the QUESTION RR is the same in the query and response,
 and that there is a finite set of query signatures (based on a
 subset of attributes). For many authoritative servers there
 is very likely to be a finite set of responses that are
 generated, of which a large number are NXDOMAIN.

 4. Traffic metadata can optionally be included in each block.
 Specifically, counts of some types of non-DNS packets (e.g.
 ICMP, TCP resets) sent to the server may be of interest.

 5. The wire format content of malformed DNS messages may optionally
 be recorded.

 * Rationale: Any structured capture format that does not capture
 the DNS payload byte for byte will be limited to some extent
 in that it cannot represent malformed DNS messages. Only
 those messages that can be fully parsed and transformed into
 the structured format can be fully represented. Note,
 however, this can result in rather misleading statistics. For
 example, a malformed query which cannot be represented in the
 C-DNS format will lead to the (well formed) DNS responses with
 error code FORMERR appearing as 'unmatched'. Therefore it can
 greatly aid downstream analysis to have the wire format of the
 malformed DNS messages available directly in the C-DNS file.

5. Choice of CBOR

 This document presents a detailed format description using CBOR, the
 Concise Binary Object Representation defined in [RFC7049].

 The choice of CBOR was made taking a number of factors into account.

https://datatracker.ietf.org/doc/html/rfc7049

Dickinson, et al. Expires November 9, 2018 [Page 8]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 o CBOR is a binary representation, and thus is economical in storage
 space.

 o Other binary representations were investigated, and whilst all had
 attractive features, none had a significant advantage over CBOR.
 See Appendix C for some discussion of this.

 o CBOR is an IETF standard and familiar to IETF participants. It is
 based on the now-common ideas of lists and objects, and thus
 requires very little familiarization for those in the wider
 industry.

 o CBOR is a simple format, and can easily be implemented from
 scratch if necessary. More complex formats require library
 support which may present problems on unusual platforms.

 o CBOR can also be easily converted to text formats such as JSON
 ([RFC8259]) for debugging and other human inspection requirements.

 o CBOR data schemas can be described using CDDL
 [I-D.ietf-cbor-cddl].

6. C-DNS format conceptual overview

 The following figures show purely schematic representations of the
 C-DNS format to convey the high-level structure of the C-DNS format.

Section 7 provides a detailed discussion of the CBOR representation
 and individual elements.

 Figure showing the C-DNS format (PNG) [1]

 Figure showing the C-DNS format (SVG) [2]

 Figure showing the Query/Response data item and Block Tables format
 (PNG) [3]

 Figure showing the Query/Response item and Block Tables format (SVG)
 [4]

 A C-DNS file begins with a file header containing a File Type
 Identifier and a File Preamble. The File Preamble contains
 information on the file Format Version and an array of Block
 Parameters items (the contents of which include Collection and
 Storage Parameters used for one or more blocks).

 The file header is followed by a series of data Blocks.

https://datatracker.ietf.org/doc/html/rfc8259

Dickinson, et al. Expires November 9, 2018 [Page 9]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 A Block consists of a Block Preamble item, some Block Statistics for
 the traffic stored within the Block and then various arrays of common
 data collectively called the Block Tables. This is then followed by
 an array of the Query/Response data items detailing the queries and
 responses stored within the Block. The array of Query/Response data
 items is in turn followed by the Address/Event Counts data items (an
 array of per-client counts of particular IP events) and then
 Malformed Message data items (an array of malformed messages that
 stored in the Block).

 The exact nature of the DNS data will affect what block size is the
 best fit, however sample data for a root server indicated that block
 sizes up to 10,000 Q/R data items give good results. See

Appendix C.6 for more details.

6.1. Block Parameters

 The details of the Block Parameters items are not shown in the
 diagrams but are discussed here for context.

 An array of Block Parameters items is stored in the File Preamble
 (with a minimum of one item at index 0); a Block Parameters item
 consists of a collection of Storage and Collection Parameters that
 applies to any given Block. An array is used in order to support use
 cases such as wanting to merge C-DNS files from different sources.
 The Block Preamble item then contains an optional index for the Block
 Parameters item that applies for that Block; if not present the index
 defaults to 0. Hence, in effect, a global Block Parameters item is
 defined which can then be overridden per Block.

6.2. Storage Parameters

 The Block Parameters item includes a Storage Parameters item - this
 contains information about the specific data fields stored in the
 C-DNS file.

 These parameters include:

 o The sub-second timing resolution used by the data.

 o Information (hints) on which optional data are omitted. See
Section 6.2.1.

 o Recorded OPCODES and RR types. See Section 6.2.2.

 o Flags indicating, for example, whether the data is sampled or
 anonymised. See Section 6.2.3.

Dickinson, et al. Expires November 9, 2018 [Page 10]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 o Client and server IPv4 and IPv6 address prefixes. See
Section 6.2.4

6.2.1. Optional data items

 To enable implementations to store data to their precise requirements
 in as space-efficient manner as possible, all fields in the following
 arrays are optional:

 o Query/Response

 o Query Signature

 o Malformed messages

 In other words, an implementation can choose to omit any data item
 that is not required for its use case. In addition, implementations
 may be configured to not record all RRs, or only record messages with
 certain OPCODES.

 This does, however, mean that a consumer of a C-DNS file faces two
 problems:

 1. How can it quickly determine if a file definitely does not
 contain the data items it requires to complete a particular task
 (e.g. reconstructing query traffic or performing a specific piece
 of data analysis)?

 2. How can it determine if a data item is not present because it
 was:

 * explicitly not recorded or

 * the data item was not available/present.

 For example, capturing C-DNS data from within a nameserver
 implementation makes it unlikely that the Client Hoplimit can be
 recorded. Or, if there is no query ARCount recorded and no query OPT
 RDATA recorded, is that because no query contained an OPT RR, or
 because that data was not stored?

 The Storage Parameters therefore also contains a Storage Hints item
 which specifies which items the encoder of the file omits from the
 stored data. An implementation decoding that file can then use these
 to quickly determine whether the input data is rich enough for its
 needs.

Dickinson, et al. Expires November 9, 2018 [Page 11]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

6.2.2. Optional RRs and OPCODEs

 Also included in the Storage Parameters are explicit arrays listing
 the RR types and the OPCODEs to be recorded. These remove any
 ambiguity over whether messages containing particular OPCODEs or RR
 types are not present because they did not occur, or because the
 implementation is not configured to record them.

 In the case of OPCODEs, for a message to be fully parsable, the
 OPCODE must be known to the collecting implementation. Any message
 with an OPCODE unknown to the collecting implementation cannot be
 validated as correctly formed, and so must be treated as malformed.
 Messages with OPCODES known to the recording application but not
 listed in the Storage Parameters are discarded (regardless of whether
 they are malformed or not).

 In the case of RR records, each record in a message must be fully
 parsable, including parsing the record RDATA, as otherwise the
 message cannot be validated as correctly formed. Any RR record with
 an RR type not known to the collecting implementation cannot be
 validated as correctly formed, and so must be treated as malformed.

 Once a message is correctly parsed, an implementation is free to
 record only a subset of the RR records present.

6.2.3. Storage flags

 The Storage Parameters contains flags that can be used to indicate
 if:

 o the data is anonymised,

 o the data is produced from sample data, or

 o names in the data have been normalised (converted to uniform
 case).

 The Storage Parameters also contains optional fields holding details
 of the sampling method used and the anonymisation method used. It is
 RECOMMENDED these fields contain URIs pointing to resources
 describing the methods used.

6.2.4. IP Address storage

 The format contains fields to indicate if only IP prefixes were
 stored. If IP address prefixes are given, only the prefix bits of
 addresses are stored. For example, if a client IPv4 prefix of 16 is

Dickinson, et al. Expires November 9, 2018 [Page 12]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 specified, a client address of 192.0.2.1 will be stored as 0xc000
 (192.0), reducing address storage space requirements.

7. C-DNS format detailed description

 The CDDL definition for the C-DNS format is given in Appendix A.

7.1. Map quantities and indexes

 All map keys are integers with values specified in the CDDL. String
 keys would significantly bloat the file size.

 All key values specified are positive integers under 24, so their
 CBOR representation is a single byte. Positive integer values not
 currently used as keys in a map are reserved for use in future
 standard extensions.

 Implementations may choose to add additional implementation-specific
 entries to any map. Negative integer map keys are reserved for these
 values. Key values from -1 to -24 also have a single byte CBOR
 representation, so such implementation-specific extensions are not at
 any space efficiency disadvantage.

 An item described as an index is the index of the data item in the
 referenced array. Indexes are 0-based.

7.2. Tabular representation

 The following sections present the C-DNS specification in tabular
 format with a detailed description of each item.

 In all quantities that contain bit flags, bit 0 indicates the least
 significant bit, i.e. flag "n" in quantity "q" is on if "(q & (1 <<
 n)) != 0".

 For the sake of readability, all type and field names defined in the
 CDDL definition are shown in double quotes. Type names are by
 convention camel case (e.g. "BlockTable"), field names are lower-
 case with hyphens (e.g. "block-tables").

 For the sake of brevity, the following conventions are used in the
 tables:

 o The column O marks whether items in a map are optional.

 * O - Optional. The item may be omitted.

 * M - Mandatory. The item must be present.

Dickinson, et al. Expires November 9, 2018 [Page 13]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 o The column T gives the CBOR data type of the item.

 * U - Unsigned integer

 * I - Signed integer

 * B - Byte string

 * T - Text string

 * M - Map

 * A - Array

 In the case of maps and arrays, more information on the type of each
 value, include the CDDL definition name if applicable, is given in
 the description.

7.3. "File"

 A C-DNS file has an outer structure "File", a map that contains the
 following:

 +---------------+---+---+---+
 | Field | O | T | Description |
 +---------------+---+---+---+
file-type-id	M	T	String "C-DNS" identifying the file type.
file-preamble	M	M	Version and parameter information for the
			whole file. Map of type "FilePreamble",
			see Section 7.4.
file-blocks	M	A	Array of items of type "Block", see
			Section 7.5. The array may be empty if
			the file contains no data.
 +---------------+---+---+---+

7.4. "FilePreamble"

 Information about data in the file. A map containing the following:

Dickinson, et al. Expires November 9, 2018 [Page 14]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +----------------------+---+---+------------------------------------+
 | Field | O | T | Description |
 +----------------------+---+---+------------------------------------+
major-format-version	M	U	Unsigned integer '1'. The major
			version of format used in file.
minor-format-version	M	U	Unsigned integer '0'. The minor
			version of format used in file.
private-version	O	U	Version indicator available for
			private use by implementations.
block-parameters	M	A	Array of items of type
			"BlockParameters", see Section
			7.4.1. The array must contain at
			least one entry. (The "block-
			parameters-index" item in each
			"BlockPreamble" indicates which
			array entry applies to that
			"Block".)
 +----------------------+---+---+------------------------------------+

7.4.1. "BlockParameters"

 Parameters relating to data storage and collection which apply to one
 or more items of type "Block". A map containing the following:

 +-----------------------+---+---+-----------------------------------+
 | Field | O | T | Description |
 +-----------------------+---+---+-----------------------------------+
storage-parameters	M	M	Parameters relating to data
			storage in a "Block" item. Map
			of type "StorageParameters", see
			Section 7.4.1.1.
collection-parameters	O	M	Parameters relating to collection
			of the data in a "Block" item.
			Map of type
			"CollectionParameters", see
			Section 7.4.2.
 +-----------------------+---+---+-----------------------------------+

7.4.1.1. "StorageParameters"

 Parameters relating to how data is stored in the items of type
 "Block". A map containing the following:

 +------------------+---+---+--+

Dickinson, et al. Expires November 9, 2018 [Page 15]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 | Field | O | T | Description |
 +------------------+---+---+--+
ticks-per-second	M	U	Sub-second timing is recorded in
			ticks. This specifies the number of
			ticks in a second.
max-block-items	M	U	The maximum number of items stored in
			any of the arrays in a "Block" item
			(Q/R items, address event counts or
			malformed messages). An indication to
			a decoder of the resources needed to
			process the file.
storage-hints	M	M	Collection of hints as to which fields
			are omitted in the arrays that have
			optional fields. Map of type
			"StorageHints", see Section 7.4.1.1.1.
opcodes	M	A	Array of OPCODES (unsigned integers)
			recorded by the collection
			implementation. See Section 6.2.2.
rr-types	M	A	Array of RR types (unsigned integers)
			recorded by the collection
			implementation. See Section 6.2.2.
storage-flags	O	U	Bit flags indicating attributes of
			stored data.
			Bit 0. 1 if the data has been
			anonymised.
			Bit 1. 1 if the data is sampled data.
			Bit 2. 1 if the names have been
			normalised (converted to uniform
			case).
client-address	O	U	IPv4 client address prefix length. If
-prefix-ipv4			specified, only the address prefix
			bits are stored.
client-address	O	U	IPv6 client address prefix length. If
-prefix-ipv6			specified, only the address prefix
			bits are stored.
server-address	O	U	IPv4 server address prefix length. If
-prefix-ipv4			specified, only the address prefix
			bits are stored.
server-address	O	U	IPv6 server address prefix length. If

Dickinson, et al. Expires November 9, 2018 [Page 16]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

-prefix-ipv6			specified, only the address prefix
			bits are stored.
sampling-method	O	T	Information on the sampling method
			used. See Section 6.2.3.
anonymisation	O	T	Information on the anonymisation
-method			method used. See Section 6.2.3.
 +------------------+---+---+--+

7.4.1.1.1. "StorageHints"

 An indicator of which fields the collecting implementation omits in
 the arrays with optional fields. A map containing the following:

 +------------------+---+---+--+
 | Field | O | T | Description |
 +------------------+---+---+--+
query-response	M	U	Hints indicating which "QueryResponse"
-hints			fields are omitted, see section
			Section 7.6. If the field is omitted
			the bit is unset.
			Bit 0. time-offset
			Bit 1. client-address-index
			Bit 2. client-port
			Bit 3. transaction-id
			Bit 4. qr-signature-index
			Bit 5. client-hoplimit
			Bit 6. response-delay
			Bit 7. query-name-index
			Bit 8. query-size
			Bit 9. response-size
			Bit 10. response-processing-data
			Bit 11. query-question-sections
			Bit 12. query-answer-sections
			Bit 13. query-authority-sections
			Bit 14. query-additional-sections
			Bit 15. response-answer-sections
			Bit 16. response-authority-sections
			Bit 17. response-additional-sections
query-response	M	U	Hints indicating which
-signature-hints			"QueryResponseSignature" fields are
			omitted, see section Section 7.5.3.2.
			If the field is omitted the bit is
			unset.
			Bit 0. server-address
			Bit 1. server-port

Dickinson, et al. Expires November 9, 2018 [Page 17]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

			Bit 2. qr-transport-flags
			Bit 3. qr-type
			Bit 4. qr-sig-flags
			Bit 5. query-opcode
			Bit 6. dns-flags
			Bit 7. query-rcode
			Bit 8. query-class-type
			Bit 9. query-qdcount
			Bit 10. query-ancount
			Bit 11. query-nscount
			Bit 12. query-arcount
			Bit 13. query-edns-version
			Bit 14. query-udp-size
			Bit 15. query-opt-rdata
			Bit 16. response-rcode
rr-hints	M	U	Hints indicating which optional "RR"
			fields are omitted, see Section
			7.5.3.4. If the field is omitted the
			bit is unset.
			Bit 0. ttl
			Bit 1. rdata-index
other-data-hints	M	U	Hints indicating which other data
			types are are omitted. If the data
			type is are omitted the bit is unset.
			Bit 0. malformed-messages
			Bit 1. address-event-counts
 +------------------+---+---+--+

7.4.2. "CollectionParameters"

 Parameters relating to how data in the file was collected.

 These parameters have no default. If they do not appear, nothing can
 be inferred about their value.

 A map containing the following items:

Dickinson, et al. Expires November 9, 2018 [Page 18]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +------------------+---+---+--+
 | Field | O | T | Description |
 +------------------+---+---+--+
query-timeout	O	U	To be matched with a query, a response
			must arrive within this number of
			seconds.
skew-timeout	O	U	The network stack may report a
			response before the corresponding
			query. A response is not considered to
			be missing a query until after this
			many micro-seconds.
snaplen	O	U	Collect up to this many bytes per
			packet.
promisc	O	U	1 if promiscuous mode was enabled on
			the interface, 0 otherwise.
interfaces	O	A	Array of identifiers (of type text
			string) of the interfaces used for
			collection.
server-addresses	O	A	Array of server collection IP
			addresses (of type byte string). Hint
			for downstream analysers; does not
			affect collection.
vlan-ids	O	A	Array of identifiers (of type unsigned
			integer) of VLANs selected for
			collection.
filter	O	T	"tcpdump" [pcap] style filter for
			input.
generator-id	O	T	String identifying the collection
			method.
host-id	O	T	String identifying the collecting
			host. Empty if converting an existing
			packet capture file.
 +------------------+---+---+--+

7.5. "Block"

 Container for data with common collection and and storage parameters.
 A map containing the following:

Dickinson, et al. Expires November 9, 2018 [Page 19]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +--------------------+---+---+--------------------------------------+
 | Field | O | T | Description |
 +--------------------+---+---+--------------------------------------+
block-preamble	M	M	Overall information for the "Block"
			item. Map of type "BlockPreamble",
			see Section 7.5.1.
block-statistics	O	M	Statistics about the "Block" item.
			Map of type "BlockStatistics", see
			Section 7.5.2.
block-tables	O	M	The arrays containing data
			referenced by individual
			"QueryResponse" or
			"MalformedMessage" items. Map of
			type "BlockTables", see Section
			7.5.3.
query-responses	O	A	Details of individual DNS Q/R data
			items. Array of items of type
			"QueryResponse", see Section 7.6. If
			present, the array must not be
			empty.
address-event	O	A	Per client counts of ICMP messages
-counts			and TCP resets. Array of items of
			type "AddressEventCount", see
			Section 7.7. If present, the array
			must not be empty.
malformed-messages	O	A	Details of malformed DNS messages.
			Array of items of type
			"MalformedMessage", see Section 7.8.
			If present, the array must not be
			empty.
 +--------------------+---+---+--------------------------------------+

7.5.1. "BlockPreamble"

 Overall information for a "Block" item. A map containing the
 following:

Dickinson, et al. Expires November 9, 2018 [Page 20]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +------------------+---+---+--+
 | Field | O | T | Description |
 +------------------+---+---+--+
earliest-time	O	A	A timestamp (2 unsigned integers,
			"Timestamp") for the earliest record
			in the "Block" item. The first integer
			is the number of seconds since the
			Posix epoch ("time_t"). The second
			integer is the number of ticks since
			the start of the second. This
			timestamp can only be omitted if all
			block items containing a time offset
			from the start of the block also omit
			that time offset.
block-parameters	O	U	The index of the item in the "block-
-index			parameters" array (in the "file-
			premable" item) applicable to this
			block. If not present, index 0 is
			used. See Section 7.4.1.
 +------------------+---+---+--+

7.5.2. "BlockStatistics"

 Basic statistical information about a "Block" item. A map containing
 the following:

Dickinson, et al. Expires November 9, 2018 [Page 21]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +---------------------+---+---+-------------------------------------+
 | Field | O | T | Description |
 +---------------------+---+---+-------------------------------------+
processed-messages	O	U	Total number of DNS messages
			processed from the input traffic
			stream during collection of data in
			this "Block" item.
qr-data-items	O	U	Total number of Q/R data items in
			this "Block" item.
unmatched-queries	O	U	Number of unmatched queries in this
			"Block" item.
unmatched-responses	O	U	Number of unmatched responses in
			this "Block" item.
discarded-opcode	O	U	Number of DNS messages processed
			from the input traffic stream
			during collection of data in this
			"Block" item but not recorded
			because their OPCODE is not in the
			list to be collected.
malformed-items	O	U	Number of malformed messages found
			in input for this "Block" item.
 +---------------------+---+---+-------------------------------------+

7.5.3. "BlockTables"

 Arrays containing data referenced by individual "QueryResponse" or
 "MalformedMessage" items in this "Block". Each element is an array
 which, if present, must not be empty.

 An item in the "qlist" array contains indexes to values in the "qrr"
 array. Therefore, if "qlist" is present, "qrr" must also be present.
 Similarly, if "rrlist" is present, "rr" must also be present.

 The map contains the following items:

 +-------------------+---+---+---------------------------------------+
 | Field | O | T | Description |
 +-------------------+---+---+---------------------------------------+
ip-address	O	A	Array of IP addresses, in network
			byte order (of type byte string). If
			client or server address prefixes are
			set, only the address prefix bits are
			stored. Each string is therefore up

Dickinson, et al. Expires November 9, 2018 [Page 22]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

			to 4 bytes long for an IPv4 address,
			or up to 16 bytes long for an IPv6
			address. See Section 7.4.1.1.
classtype	O	A	Array of RR class and type
			information. Type is "ClassType", see
			Section 7.5.3.1.
name-rdata	O	A	Array where each entry is the
			contents of a single NAME or RDATA
			(of type byte string). Note that
			NAMEs, and labels within RDATA
			contents, are full domain names or
			labels; no DNS style name compression
			is used on the individual
			names/labels within the format.
qr-sig	O	A	Array Q/R data item signatures. Type
			is "QueryResponseSignature", see
			Section 7.5.3.2.
qlist	O	A	Array of type "QuestionList". A
			"QuestionList" is an array of
			unsigned integers, indexes to
			"Question" items in the "qrr" array.
qrr	O	A	Array of type "Question". Each entry
			is the contents of a single question,
			where a question is the second or
			subsequent question in a query. See
			Section 7.5.3.3.
rrlist	O	A	Array of type "RRList". An "RRList"
			is an array of unsigned integers,
			indexes to "RR" items in the "rr"
			array.
rr	O	A	Array of type "RR". Each entry is the
			contents of a single RR. See Section
			7.5.3.4.
malformed-message	O	A	Array of the contents of malformed
-data			messages. Array of type
			"MalformedMessageData", see Section
			7.5.3.5.
 +-------------------+---+---+---------------------------------------+

Dickinson, et al. Expires November 9, 2018 [Page 23]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

7.5.3.1. "ClassType"

 RR class and type information. A map containing the following:

 +-------+---+---+--------------+
 | Field | O | T | Description |
 +-------+---+---+--------------+
 | type | M | U | TYPE value. |
 | | | | |
 | class | M | U | CLASS value. |
 +-------+---+---+--------------+

7.5.3.2. "QueryResponseSignature"

 Elements of a Q/R data item that are often common between multiple
 individual Q/R data items. A map containing the following:

 +--------------------+---+---+--------------------------------------+
 | Field | O | T | Description |
 +--------------------+---+---+--------------------------------------+
server-address	O	U	The index in the item in the "ip-
-index			address" array of the server IP
			address. See Section 7.5.3.
server-port	O	U	The server port.
qr-transport-flags	O	U	Bit flags describing the transport
			used to service the query.
			Bit 0. IP version. 0 if IPv4, 1 if
			IPv6
			Bit 1-4. Transport. 4 bit unsigned
			value where 0 = UDP, 1 = TCP, 2 =
			TLS, 3 = DTLS. Values 4-15 are
			reserved for future use.
			Bit 5. 1 if trailing bytes in query
			packet. See Section 10.2.
qr-type	O	U	Type of Query/Response transaction.
			0 = Stub. A query from a stub
			resolver.
			1 = Client. An incoming query to a
			recursive resolver.
			2 = Resolver. A query sent from a
			recursive resolver to an authorative
			resolver.
			3 = Authorative. A query to an
			authorative resolver.
			4 = Forwarder. A query sent from a

Dickinson, et al. Expires November 9, 2018 [Page 24]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

			recursive resolver to an upstream
			recursive resolver.
			5 = Tool. A query sent to a server
			by a server tool.
qr-sig-flags	O	U	Bit flags explicitly indicating
			attributes of the message pair
			represented by this Q/R data item
			(not all attributes may be recorded
			or deducible).
			Bit 0. 1 if a Query was present.
			Bit 1. 1 if a Response was present.
			Bit 2. 1 if a Query was present and
			it had an OPT Resource Record.
			Bit 3. 1 if a Response was present
			and it had an OPT Resource Record.
			Bit 4. 1 if a Query was present but
			had no Question.
			Bit 5. 1 if a Response was present
			but had no Question (only one query-
			name-index is stored per Q/R item).
query-opcode	O	U	Query OPCODE.
qr-dns-flags	O	U	Bit flags with values from the Query
			and Response DNS flags. Flag values
			are 0 if the Query or Response is
			not present.
			Bit 0. Query Checking Disabled (CD).
			Bit 1. Query Authenticated Data
			(AD).
			Bit 2. Query reserved (Z).
			Bit 3. Query Recursion Available
			(RA).
			Bit 4. Query Recursion Desired (RD).
			Bit 5. Query TrunCation (TC).
			Bit 6. Query Authoritative Answer
			(AA).
			Bit 7. Query DNSSEC answer OK (DO).
			Bit 8. Response Checking Disabled
			(CD).
			Bit 9. Response Authenticated Data
			(AD).
			Bit 10. Response reserved (Z).
			Bit 11. Response Recursion Available
			(RA).
			Bit 12. Response Recursion Desired
			(RD).

Dickinson, et al. Expires November 9, 2018 [Page 25]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

			Bit 13. Response TrunCation (TC).
			Bit 14. Response Authoritative
			Answer (AA).
query-rcode	O	U	Query RCODE. If the Query contains
			OPT, this value incorporates any
			EXTENDED_RCODE_VALUE.
query-classtype	O	U	The index to the item in the the
-index			"classtype" array of the CLASS and
			TYPE of the first Question. See
			Section 7.5.3.
query-qd-count	O	U	The QDCOUNT in the Query, or
			Response if no Query present.
query-an-count	O	U	Query ANCOUNT.
query-ns-count	O	U	Query NSCOUNT.
query-ar-count	O	U	Query ARCOUNT.
edns-version	O	U	The Query EDNS version.
udp-buf-size	O	U	The Query EDNS sender's UDP payload
			size.
opt-rdata-index	O	U	The index in the "name-rdata" array
			of the OPT RDATA. See Section 7.5.3.
response-rcode	O	U	Response RCODE. If the Response
			contains OPT, this value
			incorporates any
			EXTENDED_RCODE_VALUE.
 +--------------------+---+---+--------------------------------------+

7.5.3.3. "Question"

 Details on individual Questions in a Question section. A map
 containing the following:

Dickinson, et al. Expires November 9, 2018 [Page 26]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +-----------------+---+---+---+
 | Field | O | T | Description |
 +-----------------+---+---+---+
name-index	M	U	The index in the "name-rdata" array of
			the QNAME. See Section 7.5.3.
classtype-index	M	U	The index in the "classtype" array of
			the CLASS and TYPE of the Question. See
			Section 7.5.3.
 +-----------------+---+---+---+

7.5.3.4. "RR"

 Details on individual Resource Records in RR sections. A map
 containing the following:

 +-----------------+---+---+---+
 | Field | O | T | Description |
 +-----------------+---+---+---+
name-index	M	U	The index in the "name-rdata" array of
			the NAME. See Section 7.5.3.
classtype-index	M	U	The index in the "classtype" array of
			the CLASS and TYPE of the RR. See
			Section 7.5.3.
ttl	O	U	The RR Time to Live.
rdata-index	O	U	The index in the "name-rdata" array of
			the RR RDATA. See Section 7.5.3.
 +-----------------+---+---+---+

7.5.3.5. "MalformedMessageData"

 Details on malformed message items in this "Block" item. A map
 containing the following:

Dickinson, et al. Expires November 9, 2018 [Page 27]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +--------------------+---+---+--------------------------------------+
 | Field | O | T | Description |
 +--------------------+---+---+--------------------------------------+
server-address	O	U	The index in the "ip-address" array
-index			of the server IP address. See
			Section 7.5.3.
server-port	O	U	The server port.
mm-transport-flags	O	U	Bit flags describing the transport
			used to service the query. Bit 0 is
			the least significant bit.
			Bit 0. IP version. 0 if IPv4, 1 if
			IPv6
			Bit 1-4. Transport. 4 bit unsigned
			value where 0 = UDP, 1 = TCP, 2 =
			TLS, 3 = DTLS. Values 4-15 are
			reserved for future use.
mm-payload	O	B	The payload (raw bytes) of the DNS
			message.
 +--------------------+---+---+--------------------------------------+

7.6. "QueryResponse"

 Details on individual Q/R data items.

 Note that there is no requirement that the elements of the "query-
 responses" array are presented in strict chronological order.

 A map containing the following items:

 +----------------------+---+---+------------------------------------+
 | Field | O | T | Description |
 +----------------------+---+---+------------------------------------+
time-offset	O	U	Q/R timestamp as an offset in
			ticks from "earliest-time". The
			timestamp is the timestamp of the
			Query, or the Response if there is
			no Query.
client-address-index	O	U	The index in the "ip-address"
			array of the client IP address.
			See Section 7.5.3.
client-port	O	U	The client port.
transaction-id	O	U	DNS transaction identifier.

Dickinson, et al. Expires November 9, 2018 [Page 28]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

qr-signature-index	O	U	The index in the "qr-sig" array of
			the "QueryResponseSignature" item.
			See Section 7.5.3.
client-hoplimit	O	U	The IPv4 TTL or IPv6 Hoplimit from
			the Query packet.
response-delay	O	I	The time difference between Query
			and Response, in ticks. Only
			present if there is a query and a
			response. The delay can be
			negative if the network
			stack/capture library returns
			packets out of order.
query-name-index	O	U	The index in the "name-rdata"
			array of the item containing the
			QNAME for the first Question. See
			Section 7.5.3.
query-size	O	U	DNS query message size (see
			below).
response-size	O	U	DNS query message size (see
			below).
response-processing	O	M	Data on response processing. Map
-data			of type "ResponseProcessingData",
			see Section 7.6.1.
query-extended	O	M	Extended Query data. Map of type
			"QueryResponseExtended", see
			Section 7.6.2.
response-extended	O	M	Extended Response data. Map of
			type "QueryResponseExtended", see
			Section 7.6.2.
 +----------------------+---+---+------------------------------------+

 The "query-size" and "response-size" fields hold the DNS message
 size. For UDP this is the size of the UDP payload that contained the
 DNS message. For TCP it is the size of the DNS message as specified
 in the two-byte message length header. Trailing bytes in UDP queries
 are routinely observed in traffic to authoritative servers and this
 value allows a calculation of how many trailing bytes were present.

Dickinson, et al. Expires November 9, 2018 [Page 29]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

7.6.1. "ResponseProcessingData"

 Information on the server processing that produced the response. A
 map containing the following:

 +------------------+---+---+--+
 | Field | O | T | Description |
 +------------------+---+---+--+
bailiwick-index	O	U	The index in the "name-rdata" array of
			the owner name for the response
			bailiwick. See Section 7.5.3.
processing-flags	O	U	Flags relating to response processing.
			Bit 0. 1 if the response came from
			cache.
 +------------------+---+---+--+

7.6.2. "QueryResponseExtended"

 Extended data on the Q/R data item.

 Each item in the map is present only if collection of the relevant
 details is configured.

 A map containing the following items:

Dickinson, et al. Expires November 9, 2018 [Page 30]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +------------------+---+---+--+
 | Field | O | T | Description |
 +------------------+---+---+--+
question-index	O	U	The index in the "qlist" array of the
			entry listing any second and
			subsequent Questions in the Question
			section for the Query or Response. See
			Section 7.5.3.
answer-index	O	U	The index in the "rrlist" array of the
			entry listing the Answer Resource
			Record sections for the Query or
			Response. See Section 7.5.3.
authority-index	O	U	The index in the "rrlist" array of the
			entry listing the Authority Resource
			Record sections for the Query or
			Response. See Section 7.5.3.
additional-index	O	U	The index in the "rrlist" array of the
			entry listing the Additional Resource
			Record sections for the Query or
			Response. See Section 7.5.3. Note that
			Query OPT RR data can be optionally
			stored in the QuerySignature.
 +------------------+---+---+--+

7.7. "AddressEventCount"

 Counts of various IP related events relating to traffic with
 individual client addresses. A map containing the following:

Dickinson, et al. Expires November 9, 2018 [Page 31]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 +------------------+---+---+--+
 | Field | O | T | Description |
 +------------------+---+---+--+
ae-type	M	U	The type of event. The following
			events types are currently defined:
			0. TCP reset.
			1. ICMP time exceeded.
			2. ICMP destination unreachable.
			3. ICMPv6 time exceeded.
			4. ICMPv6 destination unreachable.
			5. ICMPv6 packet too big.
ae-code	O	U	A code relating to the event.
ae-address-index	M	U	The index in the "ip-address" array of
			the client address. See Section 7.5.3.
ae-count	M	U	The number of occurrences of this
			event during the block collection
			period.
 +------------------+---+---+--+

7.8. "MalformedMessage"

 Details of malformed messages. A map containing the following:

 +----------------------+---+---+------------------------------------+
 | Field | O | T | Description |
 +----------------------+---+---+------------------------------------+
time-offset	O	U	Message timestamp as an offset in
			ticks from "earliest-time".
client-address-index	O	U	The index in the "ip-address"
			array of the client IP address.
			See Section 7.5.3.
client-port	O	U	The client port.
message-data-index	O	U	The index in the "malformed-
			message-data" array of the message
			data for this message. See Section
			7.5.3.
 +----------------------+---+---+------------------------------------+

Dickinson, et al. Expires November 9, 2018 [Page 32]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

8. C-DNS to PCAP

 It is possible to re-construct PCAP files from the C-DNS format in a
 lossy fashion. Some of the issues with reconstructing both the DNS
 payload and the full packet stream are outlined here.

 The reconstruction depends on whether or not all the optional
 sections of both the query and response were captured in the C-DNS
 file. Clearly, if they were not all captured, the reconstruction
 will be imperfect.

 Even if all sections of the response were captured, one cannot
 reconstruct the DNS response payload exactly due to the fact that
 some DNS names in the message on the wire may have been compressed.

Section 8.1 discusses this is more detail.

 Some transport information is not captured in the C-DNS format. For
 example, the following aspects of the original packet stream cannot
 be re-constructed from the C-DNS format:

 o IP fragmentation

 o TCP stream information:

 * Multiple DNS messages may have been sent in a single TCP
 segment

 * A DNS payload may have be split across multiple TCP segments

 * Multiple DNS messages may have be sent on a single TCP session

 o Malformed DNS messages if the wire format is not recorded

 o Any Non-DNS messages that were in the original packet stream e.g.
 ICMP

 Simple assumptions can be made on the reconstruction: fragmented and
 DNS-over-TCP messages can be reconstructed into single packets and a
 single TCP session can be constructed for each TCP packet.

 Additionally, if malformed messages and Non-DNS packets are captured
 separately, they can be merged with packet captures reconstructed
 from C-DNS to produce a more complete packet stream.

Dickinson, et al. Expires November 9, 2018 [Page 33]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

8.1. Name compression

 All the names stored in the C-DNS format are full domain names; no
 DNS style name compression is used on the individual names within the
 format. Therefore when reconstructing a packet, name compression
 must be used in order to reproduce the on the wire representation of
 the packet.

 [RFC1035] name compression works by substituting trailing sections of
 a name with a reference back to the occurrence of those sections
 earlier in the message. Not all name server software uses the same
 algorithm when compressing domain names within the responses. Some
 attempt maximum recompression at the expense of runtime resources,
 others use heuristics to balance compression and speed and others use
 different rules for what is a valid compression target.

 This means that responses to the same question from different name
 server software which match in terms of DNS payload content (header,
 counts, RRs with name compression removed) do not necessarily match
 byte-for-byte on the wire.

 Therefore, it is not possible to ensure that the DNS response payload
 is reconstructed byte-for-byte from C-DNS data. However, it can at
 least, in principle, be reconstructed to have the correct payload
 length (since the original response length is captured) if there is
 enough knowledge of the commonly implemented name compression
 algorithms. For example, a simplistic approach would be to try each
 algorithm in turn to see if it reproduces the original length,
 stopping at the first match. This would not guarantee the correct
 algorithm has been used as it is possible to match the length whilst
 still not matching the on the wire bytes but, without further
 information added to the C-DNS data, this is the best that can be
 achieved.

Appendix B presents an example of two different compression
 algorithms used by well-known name server software.

9. Data collection

 This section describes a non-normative proposed algorithm for the
 processing of a captured stream of DNS queries and responses and
 production of a stream of query/response items, matching queries/
 responses where possible.

 For the purposes of this discussion, it is assumed that the input has
 been pre-processed such that:

Dickinson, et al. Expires November 9, 2018 [Page 34]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 1. All IP fragmentation reassembly, TCP stream reassembly, and so
 on, has already been performed.

 2. Each message is associated with transport metadata required to
 generate the Primary ID (see Section 9.2.1).

 3. Each message has a well-formed DNS header of 12 bytes and (if
 present) the first Question in the Question section can be parsed
 to generate the Secondary ID (see below). As noted earlier, this
 requirement can result in a malformed query being removed in the
 pre-processing stage, but the correctly formed response with
 RCODE of FORMERR being present.

 DNS messages are processed in the order they are delivered to the
 implementation.

 It should be noted that packet capture libraries do not necessarily
 provide packets in strict chronological order. This can, for
 example, arise on multi-core platforms where packets arriving at a
 network device are processed by different cores. On systems where
 this behaviour has been observed, the timestamps associated with each
 packet are consistent; queries always have a timestamp prior to the
 response timestamp. However, the order in which these packets appear
 in the packet capture stream is not necessarily strictly
 choronological; a response can appear in the capture stream before
 the query that provoked the response. For this discussion, this non-
 chronological delivery is termed "skew".

 In the presence of skew, a response packets can arrive for matching
 before the corresponding query. To avoid generating false instances
 of responses without a matching query, and queries without a matching
 response, the matching algorithm must take account of the possibility
 of skew.

9.1. Matching algorithm

 A schematic representation of the algorithm for matching Q/R data
 items is shown in the following diagram:

 Figure showing the Query/Response matching algorithm format (PNG) [5]

 Figure showing the Query/Response matching algorithm format (SVG) [6]

 Further details of the algorithm are given in the following sections.

Dickinson, et al. Expires November 9, 2018 [Page 35]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

9.2. Message identifiers

9.2.1. Primary ID (required)

 A Primary ID is constructed for each message. It is composed of the
 following data:

 1. Source IP Address

 2. Destination IP Address

 3. Source Port

 4. Destination Port

 5. Transport

 6. DNS Message ID

9.2.2. Secondary ID (optional)

 If present, the first Question in the Question section is used as a
 secondary ID for each message. Note that there may be well formed
 DNS queries that have a QDCOUNT of 0, and some responses may have a
 QDCOUNT of 0 (for example, responses with RCODE=FORMERR or NOTIMP).
 In this case the secondary ID is not used in matching.

9.3. Algorithm parameters

 1. Query timeout, QT. A query arrives with timestamp t1. If no
 response matching that query has arrived before other input
 arrives timestamped later than (t1 + QT), a query/response item
 containing only a query item is recorded. The query timeout
 value is typically of the order of 5 seconds.

 2. Skew timeout, ST. A response arrives with timestamp t2. If a
 response has not been matched by a query before input arrives
 timestamped later than (t2 + ST), a query/response item
 containing only a response is recorded. The skew timeout value
 is typically a few microseconds.

9.4. Algorithm requirements

 The algorithm is designed to handle the following input data:

 1. Multiple queries with the same Primary ID (but different
 Secondary ID) arriving before any responses for these queries are
 seen.

Dickinson, et al. Expires November 9, 2018 [Page 36]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 2. Multiple queries with the same Primary and Secondary ID arriving
 before any responses for these queries are seen.

 3. Queries for which no later response can be found within the
 specified timeout.

 4. Responses for which no previous query can be found within the
 specified timeout.

9.5. Algorithm limitations

 For cases 1 and 2 listed in the above requirements, it is not
 possible to unambiguously match queries with responses. This
 algorithm chooses to match to the earliest query with the correct
 Primary and Secondary ID.

9.6. Workspace

 A FIFO structure is used to hold the Q/R data items during
 processing. A secondary responses FIFO holds responses awaiting
 matching queries.

9.7. Output

 The output is a list of Q/R data items. Both the Query and Response
 elements are optional in these items, therefore Q/R data items have
 one of three types of content:

 1. A matched pair of query and response messages

 2. A query message with no response

 3. A response message with no query

 The timestamp of a list item is that of the query for cases 1 and 2
 and that of the response for case 3.

9.8. Post processing

 When ending capture, all items in the responses FIFO are timed out
 immediately, generating response-only entries to the Q/R data item
 FIFO. These and all other remaining entries in the Q/R data item
 FIFO should be treated as timed out queries.

Dickinson, et al. Expires November 9, 2018 [Page 37]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

10. Implementation guidance

 Whilst this document makes no specific recommendations with respect
 to Canonical CBOR (see Section 3.9 of [RFC7049]) the following
 guidance may be of use to implementors.

 Adherence to the first two rules given in Section 3.9 of [RFC7049]
 will minimise file sizes.

 Adherence to the last two rules given in Section 3.9 of [RFC7049] for
 all maps and arrays would unacceptably constrain implementations, for
 example, in the use case of real-time data collection in constrained
 environments.

10.1. Optional data

 When decoding C-DNS data some of the items required for a particular
 function that the consumer wishes to perform may be missing.
 Consumers should consider providing configurable default values to be
 used in place of the missing values in their output.

10.2. Trailing bytes

 A DNS query message in a UDP or TCP payload can be followed by some
 additional (spurious) bytes, which are not stored in C-DNS.

 When DNS traffic is sent over TCP, each message is prefixed with a
 two byte length field which gives the message length, excluding the
 two byte length field. In this context, trailing bytes can occur in
 two circumstances with different results:

 1. The number of bytes consumed by fully parsing the message is less
 than the number of bytes given in the length field (i.e. the
 length field is incorrect and too large). In this case, the
 surplus bytes are considered trailing bytes in an analogous
 manner to UDP and recorded as such. If only this case occurs it
 is possible to process a packet containing multiple DNS messages
 where one or more has trailing bytes.

 2. There are surplus bytes between the end of a well-formed message
 and the start of the length field for the next message. In this
 case the first of the surplus bytes will be processed as the
 first byte of the next length field, and parsing will proceed
 from there, almost certainly leading to the next and any
 subsequent messages in the packet being considered malformed.
 This will not generate a trailing bytes record for the processed
 well-formed message.

https://datatracker.ietf.org/doc/html/rfc7049#section-3.9
https://datatracker.ietf.org/doc/html/rfc7049#section-3.9
https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Dickinson, et al. Expires November 9, 2018 [Page 38]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

10.3. Limiting collection of RDATA

 Implementations should consider providing a configurable maximum
 RDATA size for capture, for example, to avoid memory issues when
 confronted with large XFR records.

11. Implementation status

 [Note to RFC Editor: please remove this section and reference to
 [RFC7942] prior to publication.]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

11.1. DNS-STATS Compactor

 ICANN/Sinodun IT have developed an open source implementation called
 DNS-STATS Compactor. The Compactor is a suite of tools which can
 capture DNS traffic (from either a network interface or a PCAP file)
 and store it in the Compacted-DNS (C-DNS) file format. PCAP files
 for the captured traffic can also be reconstructed. See Compactor
 [7].

 This implementation:

 o covers the whole of the specification described in the -03 draft
 with the exception of support for malformed messages and pico
 second time resolution. (Note: this implementation does allow
 malformed messages to be recorded separately in a PCAP file).

 o is released under the Mozilla Public License Version 2.0.

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942

Dickinson, et al. Expires November 9, 2018 [Page 39]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 o has a users mailing list available, see dns-stats-users [8].

 There is also some discussion of issues encountered during
 development available at Compressing Pcap Files [9] and Packet
 Capture [10].

 This information was last updated on 3rd of May 2018.

12. IANA considerations

 None

13. Security considerations

 Any control interface MUST perform authentication and encryption.

 Any data upload MUST be authenticated and encrypted.

14. Acknowledgements

 The authors wish to thank CZ.NIC, in particular Tomas Gavenciak, for
 many useful discussions on binary formats, compression and packet
 matching. Also Jan Vcelak and Wouter Wijngaards for discussions on
 name compression and Paul Hoffman for a detailed review of the
 document and the C-DNS CDDL.

 Thanks also to Robert Edmonds, Jerry Lundstroem, Richard Gibson,
 Stephane Bortzmeyer and many other members of DNSOP for review.

 Also, Miek Gieben for mmark [11]

15. Changelog

draft-ietf-dnsop-dns-capture-format-07

 o Resolve outstanding questions and TODOs

 o Make RR RDATA optional

 o Update matching diagram and explain skew

 o Add count of discarded messages to block statistics

 o Editorial clarifications and improvements

draft-ietf-dnsop-dns-capture-format-06

 o Correct BlockParameters type to map

https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-07
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-06

Dickinson, et al. Expires November 9, 2018 [Page 40]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 o Make RR ttl optional

 o Add storage flag indicating name normalisation

 o Add storage parameter fields for sampling and anonymisation
 methods

 o Editorial clarifications and improvements

draft-ietf-dnsop-dns-capture-format-05

 o Make all data items in Q/R, QuerySignature and Malformed Message
 arrays optional

 o Re-structure the FilePreamble and ConfigurationParameters into
 BlockParameters

 o BlockParameters has separate Storage and Collection Parameters

 o Storage Parameters includes information on what optional fields
 are present, and flags specifying anonymisation or sampling

 o Addresses can now be stored as prefixes.

 o Switch to using a variable sub-second timing granularity

 o Add response bailiwick and query response type

 o Add specifics of how to record malformed messages

 o Add implementation guidance

 o Improve terminology and naming consistency

draft-ietf-dnsop-dns-capture-format-04

 o Correct query-d0 to query-do in CDDL

 o Clarify that map keys are unsigned integers

 o Add Type to Class/Type table

 o Clarify storage format in section 7.12

draft-ietf-dnsop-dns-capture-format-03

 o Added an Implementation Status section

https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-05
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-04
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-03

Dickinson, et al. Expires November 9, 2018 [Page 41]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

draft-ietf-dnsop-dns-capture-format-02

 o Update qr_data_format.png to match CDDL

 o Editorial clarifications and improvements

draft-ietf-dnsop-dns-capture-format-01

 o Many editorial improvements by Paul Hoffman

 o Included discussion of malformed message handling

 o Improved Appendix C on Comparison of Binary Formats

 o Now using C-DNS field names in the tables in section 8

 o A handful of new fields included (CDDL updated)

 o Timestamps now include optional picoseconds

 o Added details of block statistics

draft-ietf-dnsop-dns-capture-format-00

 o Changed dnstap.io to dnstap.info

 o qr_data_format.png was cut off at the bottom

 o Update authors address

 o Improve wording in Abstract

 o Changed DNS-STAT to C-DNS in CDDL

 o Set the format version in the CDDL

 o Added a TODO: Add block statistics

 o Added a TODO: Add extend to support pico/nano. Also do this for
 Time offset and Response delay

 o Added a TODO: Need to develop optional representation of malformed
 messages within C-DNS and what this means for packet matching.
 This may influence which fields are optional in the rest of the
 representation.

 o Added section on design goals to Introduction

https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-02
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-01
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-capture-format-00

Dickinson, et al. Expires November 9, 2018 [Page 42]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 o Added a TODO: Can Class be optimised? Should a class of IN be
 inferred if not present?

draft-dickinson-dnsop-dns-capture-format-00

 o Initial commit

16. References

16.1. Normative References

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

16.2. Informative References

 [ditl] DNS-OARC, "DITL", 2016, <https://www.dns-
oarc.net/oarc/data/ditl>.

 [dnscap] DNS-OARC, "DNSCAP", 2016, <https://www.dns-oarc.net/tools/
dnscap>.

 [dnstap] dnstap.info, "dnstap", 2016, <http://dnstap.info/>.

 [dsc] Wessels, D. and J. Lundstrom, "DSC", 2016,
 <https://www.dns-oarc.net/tools/dsc>.

 [I-D.daley-dnsxml]
 Daley, J., Morris, S., and J. Dickinson, "dnsxml - A
 standard XML representation of DNS data", draft-daley-

dnsxml-00 (work in progress), July 2013.

 [I-D.hoffman-dns-in-json]
 Hoffman, P., "Representing DNS Messages in JSON", draft-

hoffman-dns-in-json-14 (work in progress), April 2018.

https://datatracker.ietf.org/doc/html/draft-dickinson-dnsop-dns-capture-format-00
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://www.dns-oarc.net/oarc/data/ditl
https://www.dns-oarc.net/oarc/data/ditl
https://www.dns-oarc.net/tools/dnscap
https://www.dns-oarc.net/tools/dnscap
http://dnstap.info/
https://www.dns-oarc.net/tools/dsc
https://datatracker.ietf.org/doc/html/draft-daley-dnsxml-00
https://datatracker.ietf.org/doc/html/draft-daley-dnsxml-00
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-json-14
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-json-14

Dickinson, et al. Expires November 9, 2018 [Page 43]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-ietf-cbor-cddl-02
 (work in progress), February 2018.

 [packetq] .SE - The Internet Infrastructure Foundation, "PacketQ",
 2014, <https://github.com/dotse/PacketQ>.

 [pcap] tcpdump.org, "PCAP", 2016, <http://www.tcpdump.org/>.

 [pcapng] Tuexen, M., Risso, F., Bongertz, J., Combs, G., and G.
 Harris, "pcap-ng", 2016, <https://github.com/pcapng/

pcapng>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017, <https://www.rfc-

editor.org/info/rfc8259>.

16.3. URIs

 [1] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-07/cdns_format.png

 [2] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-07/cdns_format.svg

 [3] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-07/qr_data_format.png

 [4] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-07/qr_data_format.svg

 [5] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-07/packet_matching.png

 [6] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/draft-07/packet_matching.svg

 [7] https://github.com/dns-stats/compactor/wiki

 [8] https://mm.dns-stats.org/mailman/listinfo/dns-stats-users

https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-02
https://github.com/dotse/PacketQ
http://www.tcpdump.org/
https://github.com/pcapng/pcapng
https://github.com/pcapng/pcapng
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/cdns_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/cdns_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/cdns_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/cdns_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/qr_data_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/qr_data_format.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/qr_data_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/qr_data_format.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/packet_matching.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/packet_matching.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/packet_matching.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/draft-07/packet_matching.svg
https://github.com/dns-stats/compactor/wiki
https://mm.dns-stats.org/mailman/listinfo/dns-stats-users

Dickinson, et al. Expires November 9, 2018 [Page 44]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 [9] https://www.sinodun.com/2017/06/compressing-pcap-files/

 [10] https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-
trusty-packet-capture-woes/

 [11] https://github.com/miekg/mmark

 [12] https://www.nlnetlabs.nl/projects/nsd/

 [13] https://www.knot-dns.cz/

 [14] https://avro.apache.org/

 [15] https://developers.google.com/protocol-buffers/

 [16] http://cbor.io

 [17] https://github.com/kubo/snzip

 [18] http://google.github.io/snappy/

 [19] http://lz4.github.io/lz4/

 [20] http://www.gzip.org/

 [21] http://facebook.github.io/zstd/

 [22] http://tukaani.org/xz/

 [23] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/file-size-versus-block-size.png

 [24] https://github.com/dns-stats/draft-dns-capture-
format/blob/master/file-size-versus-block-size.svg

Appendix A. CDDL

; CDDL specification of the file format for C-DNS,
; which describes a collection of DNS messages and
; traffic meta-data.

;
; The overall structure of a file.
;
File = [
 file-type-id : tstr .regexp "C-DNS",
 file-preamble : FilePreamble,
 file-blocks : [* Block],

https://www.sinodun.com/2017/06/compressing-pcap-files/
https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-trusty-packet-capture-woes/
https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-trusty-packet-capture-woes/
https://github.com/miekg/mmark
https://www.nlnetlabs.nl/projects/nsd/
https://www.knot-dns.cz/
https://avro.apache.org/
https://developers.google.com/protocol-buffers/
http://cbor.io
https://github.com/kubo/snzip
http://google.github.io/snappy/
http://lz4.github.io/lz4/
http://www.gzip.org/
http://facebook.github.io/zstd/
http://tukaani.org/xz/
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.png
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.svg
https://github.com/dns-stats/draft-dns-capture-format/blob/master/file-size-versus-block-size.svg

Dickinson, et al. Expires November 9, 2018 [Page 45]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

]

;
; The file preamble.
;
FilePreamble = {
 major-format-version => uint .eq 1,
 minor-format-version => uint .eq 0,
 ? private-version => uint,
 block-parameters => [+ BlockParameters],
}
major-format-version = 0
minor-format-version = 1
private-version = 2
block-parameters = 3

BlockParameters = {
 storage-parameters => StorageParameters,
 ? collection-parameters => CollectionParameters,
}
storage-parameters = 0
collection-parameters = 1

 StorageParameters = {
 ticks-per-second => uint,
 max-block-items => uint,
 storage-hints => StorageHints,
 opcodes => [+ uint],
 rr-types => [+ uint],
 ? storage-flags => StorageFlags,
 ? client-address-prefix-ipv4 => uint,
 ? client-address-prefix-ipv6 => uint,
 ? server-address-prefix-ipv4 => uint,
 ? server-address-prefix-ipv6 => uint,
 ? sampling-method => tstr,
 ? anonymisation-method => tstr,
 }
 ticks-per-second = 0
 max-block-items = 1
 storage-hints = 2
 opcodes = 3
 rr-types = 4
 storage-flags = 5
 client-address-prefix-ipv4 = 6
 client-address-prefix-ipv6 = 7
 server-address-prefix-ipv4 = 8
 server-address-prefix-ipv6 = 9
 sampling-method = 10

Dickinson, et al. Expires November 9, 2018 [Page 46]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 anonymisation-method = 11

 ; A hint indicates if the collection method will output the
 ; item or will ignore the item if present.
 StorageHints = {
 query-response-hints => QueryResponseHints,
 query-response-signature-hints => QueryResponseSignatureHints,
 rr-hints => RRHints,
 other-data-hints => OtherDataHints,
 }
 query-response-hints = 0
 query-response-signature-hints = 1
 rr-hints = 2
 other-data-hints = 3

 QueryResponseHintValues = &(
 time-offset : 0,
 client-address-index : 1,
 client-port : 2,
 transaction-id : 3,
 qr-signature-index : 4,
 client-hoplimit : 5,
 response-delay : 6,
 query-name-index : 7,
 query-size : 8,
 response-size : 9,
 response-processing-data : 10,
 query-question-sections : 11, ; Second & subsequent questions
 query-answer-sections : 12,
 query-authority-sections : 13,
 query-additional-sections : 14,
 response-answer-sections : 15,
 response-authority-sections : 16,
 response-additional-sections : 17,
)
 QueryResponseHints = uint .bits QueryResponseHintValues

 QueryResponseSignatureHintValues = &(
 server-address : 0,
 server-port : 1,
 qr-transport-flags : 2,
 qr-type : 3,
 qr-sig-flags : 4,
 query-opcode : 5,
 dns-flags : 6,
 query-rcode : 7,
 query-class-type : 8,
 query-qdcount : 9,

Dickinson, et al. Expires November 9, 2018 [Page 47]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 query-ancount : 10,
 query-arcount : 11,
 query-nscount : 12,
 query-edns-version : 13,
 query-udp-size : 14,
 query-opt-rdata : 15,
 response-rcode : 16,
)
 QueryResponseSignatureHints = uint .bits QueryResponseSignatureHintValues

 RRHintValues = &(
 ttl : 0,
 rdata-index : 1,
)
 RRHints = uint .bits RRHintValues

 OtherDataHintValues = &(
 malformed-messages : 0,
 address-event-counts : 1,
)
 OtherDataHints = uint .bits OtherDataHintValues

 StorageFlagValues = &(
 anonymised-data : 0,
 sampled-data : 1,
 normalised-names : 2,
)
 StorageFlags = uint .bits StorageFlagValues

 CollectionParameters = {
 ? query-timeout => uint,
 ? skew-timeout => uint,
 ? snaplen => uint,
 ? promisc => uint,
 ? interfaces => [+ tstr],
 ? server-addresses => [+ IPAddress], ; Hint for later analysis
 ? vlan-ids => [+ uint],
 ? filter => tstr,
 ? generator-id => tstr,
 ? host-id => tstr,
 }
 query-timeout = 0
 skew-timeout = 1
 snaplen = 2
 promisc = 3
 interfaces = 4
 server-addresses = 5
 vlan-ids = 6

Dickinson, et al. Expires November 9, 2018 [Page 48]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 filter = 7
 generator-id = 8
 host-id = 9

;
; Data in the file is stored in Blocks.
;
Block = {
 block-preamble => BlockPreamble,
 ? block-statistics => BlockStatistics, ; Much of this could be derived
 ? block-tables => BlockTables,
 ? query-responses => [+ QueryResponse],
 ? address-event-counts => [+ AddressEventCount],
 ? malformed-messages => [+ MalformedMessage],
}
block-preamble = 0
block-statistics = 1
block-tables = 2
query-responses = 3
address-event-counts = 4
malformed-messages = 5

;
; The (mandatory) preamble to a block.
;
BlockPreamble = {
 ? earliest-time => Timestamp,
 ? block-parameters-index => uint .default 0,
}
earliest-time = 0
block-parameters-index = 1

; Ticks are subsecond intervals. The number of ticks in a second is file/block
; metadata. Signed and unsigned tick types are defined.
ticks = int
uticks = uint

Timestamp = [
 timestamp-secs : uint,
 timestamp-uticks : uticks,
]

;
; Statistics about the block contents.
;
BlockStatistics = {
 ? processed-messages => uint,
 ? qr-data-items => uint,

Dickinson, et al. Expires November 9, 2018 [Page 49]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 ? unmatched-queries => uint,
 ? unmatched-responses => uint,
 ? discarded-opcode => uint,
 ? malformed-items => uint,
}
processed-messages = 0
qr-data-items = 1
unmatched-queries = 2
unmatched-responses = 3
discarded-opcode = 4
malformed-items = 5

;
; Tables of common data referenced from records in a block.
;
BlockTables = {
 ? ip-address => [+ IPAddress],
 ? classtype => [+ ClassType],
 ? name-rdata => [+ bstr], ; Holds both Name RDATA and RDATA
 ? qr-sig => [+ QueryResponseSignature],
 ? QuestionTables,
 ? RRTables,
 ? malformed-message-data => [+ MalformedMessageData],
}
ip-address = 0
classtype = 1
name-rdata = 2
qr-sig = 3
qlist = 4
qrr = 5
rrlist = 6
rr = 7
malformed-message-data = 8

IPv4Address = bstr .size 4
IPv6Address = bstr .size 16
IPAddress = IPv4Address / IPv6Address

ClassType = {
 type => uint,
 class => uint,
}
type = 0
class = 1

QueryResponseSignature = {
 ? server-address-index => uint,
 ? server-port => uint,

Dickinson, et al. Expires November 9, 2018 [Page 50]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 ? qr-transport-flags => QueryResponseTransportFlags,
 ? qr-type => QueryResponseType,
 ? qr-sig-flags => QueryResponseFlags,
 ? query-opcode => uint,
 ? qr-dns-flags => DNSFlags,
 ? query-rcode => uint,
 ? query-classtype-index => uint,
 ? query-qd-count => uint,
 ? query-an-count => uint,
 ? query-ns-count => uint,
 ? query-ar-count => uint,
 ? edns-version => uint,
 ? udp-buf-size => uint,
 ? opt-rdata-index => uint,
 ? response-rcode => uint,
}
server-address-index = 0
server-port = 1
qr-transport-flags = 2
qr-type = 3
qr-sig-flags = 4
query-opcode = 5
qr-dns-flags = 6
query-rcode = 7
query-classtype-index = 8
query-qd-count = 9
query-an-count = 10
query-ns-count = 12
query-ar-count = 12
edns-version = 13
udp-buf-size = 14
opt-rdata-index = 15
response-rcode = 16

 Transport = &(
 udp : 0,
 tcp : 1,
 tls : 2,
 dtls : 3,
)

 TransportFlagValues = &(
 ip-version : 0, ; 0=IPv4, 1=IPv6
 ; Transport value bits 1-4
) / (1..4)
 TransportFlags = uint .bits TransportFlagValues

 QueryResponseTransportFlagValues = &(

Dickinson, et al. Expires November 9, 2018 [Page 51]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 query-trailingdata : 5,
) / TransportFlagValues
 QueryResponseTransportFlags = uint .bits QueryResponseTransportFlagValues

 QueryResponseType = &(
 stub : 0,
 client : 1,
 resolver : 2,
 auth : 3,
 forwarder : 4,
 tool : 5,
)

 QueryResponseFlagValues = &(
 has-query : 0,
 has-reponse : 1,
 query-has-opt : 2,
 response-has-opt : 3,
 query-has-no-question : 4,
 response-has-no-question: 5,
)
 QueryResponseFlags = uint .bits QueryResponseFlagValues

 DNSFlagValues = &(
 query-cd : 0,
 query-ad : 1,
 query-z : 2,
 query-ra : 3,
 query-rd : 4,
 query-tc : 5,
 query-aa : 6,
 query-do : 7,
 response-cd: 8,
 response-ad: 9,
 response-z : 10,
 response-ra: 11,
 response-rd: 12,
 response-tc: 13,
 response-aa: 14,
)
 DNSFlags = uint .bits DNSFlagValues

QuestionTables = (
 qlist => [+ QuestionList],
 qrr => [+ Question]
)

 QuestionList = [+ uint] ; Index of Question

Dickinson, et al. Expires November 9, 2018 [Page 52]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 Question = { ; Second and subsequent questions
 name-index => uint, ; Index to a name in the name-rdata table
 classtype-index => uint,
 }
 name-index = 0
 classtype-index = 1

RRTables = (
 rrlist => [+ RRList],
 rr => [+ RR]
)

 RRList = [+ uint] ; Index of RR

 RR = {
 name-index => uint, ; Index to a name in the name-rdata
table
 classtype-index => uint,
 ? ttl => uint,
 ? rdata-index => uint, ; Index to RDATA in the name-rdata
table
 }
 ; Other map key values already defined above.
 ttl = 2
 rdata-index = 3

MalformedMessageData = {
 ? server-address-index => uint,
 ? server-port => uint,
 ? mm-transport-flags => TransportFlags,
 ? mm-payload => bstr,
}
; Other map key values already defined above.
mm-transport-flags = 2
mm-payload = 3

;
; A single query/response pair.
;
QueryResponse = {
 ? time-offset => uticks, ; Time offset from start of block
 ? client-address-index => uint,
 ? client-port => uint,
 ? transaction-id => uint,
 ? qr-signature-index => uint,
 ? client-hoplimit => uint,
 ? response-delay => ticks,
 ? query-name-index => uint,

 ? query-size => uint, ; DNS size of query
 ? response-size => uint, ; DNS size of response

Dickinson, et al. Expires November 9, 2018 [Page 53]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 ? response-processing-data => ResponseProcessingData,
 ? query-extended => QueryResponseExtended,
 ? response-extended => QueryResponseExtended,
}
time-offset = 0
client-address-index = 1
client-port = 2
transaction-id = 3
qr-signature-index = 4
client-hoplimit = 5
response-delay = 6
query-name-index = 7
query-size = 8
response-size = 9
response-processing-data = 10
query-extended = 11
response-extended = 12

ResponseProcessingData = {
 ? bailiwick-index => uint,
 ? processing-flags => ResponseProcessingFlags,
}
bailiwick-index = 0
processing-flags = 1

 ResponseProcessingFlagValues = &(
 from-cache : 0,
)
 ResponseProcessingFlags = uint .bits ResponseProcessingFlagValues

QueryResponseExtended = {
 ? question-index => uint, ; Index of QuestionList
 ? answer-index => uint, ; Index of RRList
 ? authority-index => uint,
 ? additional-index => uint,
}
question-index = 0
answer-index = 1
authority-index = 2
additional-index = 3

;
; Address event data.
;
AddressEventCount = {
 ae-type => &AddressEventType,
 ? ae-code => uint,
 ae-address-index => uint,

Dickinson, et al. Expires November 9, 2018 [Page 54]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 ae-count => uint,
}
ae-type = 0
ae-code = 1
ae-address-index = 2
ae-count = 3

AddressEventType = (
 tcp-reset : 0,
 icmp-time-exceeded : 1,
 icmp-dest-unreachable : 2,
 icmpv6-time-exceeded : 3,
 icmpv6-dest-unreachable: 4,
 icmpv6-packet-too-big : 5,
)

;
; Malformed messages.
;
MalformedMessage = {
 ? time-offset => uticks, ; Time offset from start of block
 ? client-address-index => uint,
 ? client-port => uint,
 ? message-data-index => uint,
}
; Other map key values already defined above.
message-data-index = 3

Appendix B. DNS Name compression example

 The basic algorithm, which follows the guidance in [RFC1035], is
 simply to collect each name, and the offset in the packet at which it
 starts, during packet construction. As each name is added, it is
 offered to each of the collected names in order of collection,
 starting from the first name. If labels at the end of the name can
 be replaced with a reference back to part (or all) of the earlier
 name, and if the uncompressed part of the name is shorter than any
 compression already found, the earlier name is noted as the
 compression target for the name.

 The following tables illustrate the process. In an example packet,
 the first name is example.com.

 +---+-------------+--------------+--------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+--------------------+
 | 1 | example.com | | |
 +---+-------------+--------------+--------------------+

https://datatracker.ietf.org/doc/html/rfc1035

Dickinson, et al. Expires November 9, 2018 [Page 55]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 The next name added is bar.com. This is matched against example.com.
 The com part of this can be used as a compression target, with the
 remaining uncompressed part of the name being bar.

 +---+-------------+--------------+--------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+--------------------+
 | 1 | example.com | | |
 | 2 | bar.com | bar | 1 + offset to com |
 +---+-------------+--------------+--------------------+

 The third name added is www.bar.com. This is first matched against
 example.com, and as before this is recorded as a compression target,
 with the remaining uncompressed part of the name being www.bar. It
 is then matched against the second name, which again can be a
 compression target. Because the remaining uncompressed part of the
 name is www, this is an improved compression, and so it is adopted.

 +---+-------------+--------------+--------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+--------------------+
 | 1 | example.com | | |
 | 2 | bar.com | bar | 1 + offset to com |
 | 3 | www.bar.com | www | 2 |
 +---+-------------+--------------+--------------------+

 As an optimization, if a name is already perfectly compressed (in
 other words, the uncompressed part of the name is empty), then no
 further names will be considered for compression.

B.1. NSD compression algorithm

 Using the above basic algorithm the packet lengths of responses
 generated by NSD [12] can be matched almost exactly. At the time of
 writing, a tiny number (<.01%) of the reconstructed packets had
 incorrect lengths.

B.2. Knot Authoritative compression algorithm

 The Knot Authoritative [13] name server uses different compression
 behavior, which is the result of internal optimization designed to
 balance runtime speed with compression size gains. In brief, and
 omitting complications, Knot Authoritative will only consider the
 QNAME and names in the immediately preceding RR section in an RRSET
 as compression targets.

Dickinson, et al. Expires November 9, 2018 [Page 56]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 A set of smart heuristics as described below can be implemented to
 mimic this and while not perfect it produces output nearly, but not
 quite, as good a match as with NSD. The heuristics are:

 1. A match is only perfect if the name is completely compressed AND
 the TYPE of the section in which the name occurs matches the TYPE
 of the name used as the compression target.

 2. If the name occurs in RDATA:

 * If the compression target name is in a query, then only the
 first RR in an RRSET can use that name as a compression
 target.

 * The compression target name MUST be in RDATA.

 * The name section TYPE must match the compression target name
 section TYPE.

 * The compression target name MUST be in the immediately
 preceding RR in the RRSET.

 Using this algorithm less than 0.1% of the reconstructed packets had
 incorrect lengths.

B.3. Observed differences

 In sample traffic collected on a root name server around 2-4% of
 responses generated by Knot had different packet lengths to those
 produced by NSD.

Appendix C. Comparison of Binary Formats

 Several binary serialisation formats were considered, and for
 completeness were also compared to JSON.

 o Apache Avro [14]. Data is stored according to a pre-defined
 schema. The schema itself is always included in the data file.
 Data can therefore be stored untagged, for a smaller serialisation
 size, and be written and read by an Avro library.

 * At the time of writing, Avro libraries are available for C,
 C++, C#, Java, Python, Ruby and PHP. Optionally tools are
 available for C++, Java and C# to generate code for encoding
 and decoding.

 o Google Protocol Buffers [15]. Data is stored according to a pre-
 defined schema. The schema is used by a generator to generate

Dickinson, et al. Expires November 9, 2018 [Page 57]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 code for encoding and decoding the data. Data can therefore be
 stored untagged, for a smaller serialisation size. The schema is
 not stored with the data, so unlike Avro cannot be read with a
 generic library.

 * Code must be generated for a particular data schema to to read
 and write data using that schema. At the time of writing, the
 Google code generator can currently generate code for encoding
 and decoding a schema for C++, Go, Java, Python, Ruby, C#,
 Objective-C, Javascript and PHP.

 o CBOR [16]. Defined in [RFC7049], this serialisation format is
 comparable to JSON but with a binary representation. It does not
 use a pre-defined schema, so data is always stored tagged.
 However, CBOR data schemas can be described using CDDL
 [I-D.ietf-cbor-cddl] and tools exist to verify data files conform
 to the schema.

 * CBOR is a simple format, and simple to implement. At the time
 of writing, the CBOR website lists implementations for 16
 languages.

 Avro and Protocol Buffers both allow storage of untagged data, but
 because they rely on the data schema for this, their implementation
 is considerably more complex than CBOR. Using Avro or Protocol
 Buffers in an unsupported environment would require notably greater
 development effort compared to CBOR.

 A test program was written which reads input from a PCAP file and
 writes output using one of two basic structures; either a simple
 structure, where each query/response pair is represented in a single
 record entry, or the C-DNS block structure.

 The resulting output files were then compressed using a variety of
 common general-purpose lossless compression tools to explore the
 compressibility of the formats. The compression tools employed were:

 o snzip [17]. A command line compression tool based on the Google
 Snappy [18] library.

 o lz4 [19]. The command line compression tool from the reference C
 LZ4 implementation.

 o gzip [20]. The ubiquitous GNU zip tool.

 o zstd [21]. Compression using the Zstandard algorithm.

 o xz [22]. A popular compression tool noted for high compression.

https://datatracker.ietf.org/doc/html/rfc7049

Dickinson, et al. Expires November 9, 2018 [Page 58]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 In all cases the compression tools were run using their default
 settings.

 Note that this draft does not mandate the use of compression, nor any
 particular compression scheme, but it anticipates that in practice
 output data will be subject to general-purpose compression, and so
 this should be taken into consideration.

 "test.pcap", a 662Mb capture of sample data from a root instance was
 used for the comparison. The following table shows the formatted
 size and size after compression (abbreviated to Comp. in the table
 headers), together with the task resident set size (RSS) and the user
 time taken by the compression. File sizes are in Mb, RSS in kb and
 user time in seconds.

 +-------------+-----------+-------+------------+-------+-----------+
 | Format | File size | Comp. | Comp. size | RSS | User time |
 +-------------+-----------+-------+------------+-------+-----------+
PCAP	661.87	snzip	212.48	2696	1.26
		lz4	181.58	6336	1.35
		gzip	153.46	1428	18.20
		zstd	87.07	3544	4.27
		xz	49.09	97416	160.79
JSON simple	4113.92	snzip	603.78	2656	5.72
		lz4	386.42	5636	5.25
		gzip	271.11	1492	73.00
		zstd	133.43	3284	8.68
		xz	51.98	97412	600.74
Avro simple	640.45	snzip	148.98	2656	0.90
		lz4	111.92	5828	0.99
		gzip	103.07	1540	11.52
		zstd	49.08	3524	2.50
		xz	22.87	97308	90.34
CBOR simple	764.82	snzip	164.57	2664	1.11
		lz4	120.98	5892	1.13
		gzip	110.61	1428	12.88
		zstd	54.14	3224	2.77
		xz	23.43	97276	111.48
PBuf simple	749.51	snzip	167.16	2660	1.08
		lz4	123.09	5824	1.14
		gzip	112.05	1424	12.75
		zstd	53.39	3388	2.76
		xz	23.99	97348	106.47

Dickinson, et al. Expires November 9, 2018 [Page 59]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

JSON block	519.77	snzip	106.12	2812	0.93
		lz4	104.34	6080	0.97
		gzip	57.97	1604	12.70
		zstd	61.51	3396	3.45
		xz	27.67	97524	169.10
Avro block	60.45	snzip	48.38	2688	0.20
		lz4	48.78	8540	0.22
		gzip	39.62	1576	2.92
		zstd	29.63	3612	1.25
		xz	18.28	97564	25.81
CBOR block	75.25	snzip	53.27	2684	0.24
		lz4	51.88	8008	0.28
		gzip	41.17	1548	4.36
		zstd	30.61	3476	1.48
		xz	18.15	97556	38.78
PBuf block	67.98	snzip	51.10	2636	0.24
		lz4	52.39	8304	0.24
		gzip	40.19	1520	3.63
		zstd	31.61	3576	1.40
		xz	17.94	97440	33.99
 +-------------+-----------+-------+------------+-------+-----------+

 The above results are discussed in the following sections.

C.1. Comparison with full PCAP files

 An important first consideration is whether moving away from PCAP
 offers significant benefits.

 The simple binary formats are typically larger than PCAP, even though
 they omit some information such as Ethernet MAC addresses. But not
 only do they require less CPU to compress than PCAP, the resulting
 compressed files are smaller than compressed PCAP.

C.2. Simple versus block coding

 The intention of the block coding is to perform data de-duplication
 on query/response records within the block. The simple and block
 formats above store exactly the same information for each query/
 response record. This information is parsed from the DNS traffic in
 the input PCAP file, and in all cases each field has an identifier
 and the field data is typed.

 The data de-duplication on the block formats show an order of
 magnitude reduction in the size of the format file size against the

Dickinson, et al. Expires November 9, 2018 [Page 60]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 simple formats. As would be expected, the compression tools are able
 to find and exploit a lot of this duplication, but as the de-
 duplication process uses knowledge of DNS traffic, it is able to
 retain a size advantage. This advantage reduces as stronger
 compression is applied, as again would be expected, but even with the
 strongest compression applied the block formatted data remains around
 75% of the size of the simple format and its compression requires
 roughly a third of the CPU time.

C.3. Binary versus text formats

 Text data formats offer many advantages over binary formats,
 particularly in the areas of ad-hoc data inspection and extraction.
 It was therefore felt worthwhile to carry out a direct comparison,
 implementing JSON versions of the simple and block formats.

 Concentrating on JSON block format, the format files produced are a
 significant fraction of an order of magnitude larger than binary
 formats. The impact on file size after compression is as might be
 expected from that starting point; the stronger compression produces
 files that are 150% of the size of similarly compressed binary
 format, and require over 4x more CPU to compress.

C.4. Performance

 Concentrating again on the block formats, all three produce format
 files that are close to an order of magnitude smaller that the
 original "test.pcap" file. CBOR produces the largest files and Avro
 the smallest, 20% smaller than CBOR.

 However, once compression is taken into account, the size difference
 narrows. At medium compression (with gzip), the size difference is
 4%. Using strong compression (with xz) the difference reduces to 2%,
 with Avro the largest and Protocol Buffers the smallest, although
 CBOR and Protocol Buffers require slightly more compression CPU.

 The measurements presented above do not include data on the CPU
 required to generate the format files. Measurements indicate that
 writing Avro requires 10% more CPU than CBOR or Protocol Buffers. It
 appears, therefore, that Avro's advantage in compression CPU usage is
 probably offset by a larger CPU requirement in writing Avro.

C.5. Conclusions

 The above assessments lead us to the choice of a binary format file
 using blocking.

Dickinson, et al. Expires November 9, 2018 [Page 61]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 As noted previously, this draft anticipates that output data will be
 subject to compression. There is no compelling case for one
 particular binary serialisation format in terms of either final file
 size or machine resources consumed, so the choice must be largely
 based on other factors. CBOR was therefore chosen as the binary
 serialisation format for the reasons listed in Section 5.

C.6. Block size choice

 Given the choice of a CBOR format using blocking, the question arises
 of what an appropriate default value for the maximum number of query/
 response pairs in a block should be. This has two components; what
 is the impact on performance of using different block sizes in the
 format file, and what is the impact on the size of the format file
 before and after compression.

 The following table addresses the performance question, showing the
 impact on the performance of a C++ program converting "test.pcap" to
 C-DNS. File size is in Mb, resident set size (RSS) in kb.

 +------------+-----------+--------+-----------+
 | Block size | File size | RSS | User time |
 +------------+-----------+--------+-----------+
 | 1000 | 133.46 | 612.27 | 15.25 |
 | 5000 | 89.85 | 676.82 | 14.99 |
 | 10000 | 76.87 | 752.40 | 14.53 |
 | 20000 | 67.86 | 750.75 | 14.49 |
 | 40000 | 61.88 | 736.30 | 14.29 |
 | 80000 | 58.08 | 694.16 | 14.28 |
 | 160000 | 55.94 | 733.84 | 14.44 |
 | 320000 | 54.41 | 799.20 | 13.97 |
 +------------+-----------+--------+-----------+

 Increasing block size, therefore, tends to increase maximum RSS a
 little, with no significant effect (if anything a small reduction) on
 CPU consumption.

 The following figure plots the effect of increasing block size on
 output file size for different compressions.

 Figure showing effect of block size on file size (PNG) [23]

 Figure showing effect of block size on file size (SVG) [24]

 From the above, there is obviously scope for tuning the default block
 size to the compression being employed, traffic characteristics,
 frequency of output file rollover etc. Using a strong compression,

Dickinson, et al. Expires November 9, 2018 [Page 62]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 block sizes over 10,000 query/response pairs would seem to offer
 limited improvements.

Authors' Addresses

 John Dickinson
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: jad@sinodun.com

 Jim Hague
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: jim@sinodun.com

 Sara Dickinson
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: sara@sinodun.com

 Terry Manderson
 ICANN
 12025 Waterfront Drive
 Suite 300
 Los Angeles CA 90094-2536

 Email: terry.manderson@icann.org

Dickinson, et al. Expires November 9, 2018 [Page 63]

Internet-Draft C-DNS: A DNS Packet Capture Format May 2018

 John Bond
 ICANN
 12025 Waterfront Drive
 Suite 300
 Los Angeles CA 90094-2536

 Email: john.bond@icann.org

Dickinson, et al. Expires November 9, 2018 [Page 64]

