
Workgroup: DNSOP Working Group

Internet-Draft:

draft-ietf-dnsop-dns-catalog-zones-03

Published: 25 August 2021

Intended Status: Standards Track

Expires: 26 February 2022

Authors: P. van Dijk

PowerDNS

L. Peltan

CZ.NIC

O. Sury

Internet Systems Consortium

W. Toorop

NLnet Labs

L. Vandewoestijne

DNS Catalog Zones

Abstract

This document describes a method for automatic DNS zone provisioning

among DNS primary and secondary nameservers by storing and

transferring the catalog of zones to be provisioned as one or more

regular DNS zones.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Description

4. Catalog Zone Structure

4.1. SOA and NS Records

4.2. Catalog Zone Schema Version

4.3. List of Member Zones

5. Properties

5.1. The Change of ownership (Coo) Property

5.2. The Group Property

5.2.1. Group Property Example

5.3. The Epoch Property

5.3.1. The TIMESTAMP Resource Record

5.4. The Serial Property

5.4.1. The SERIAL Resource Record

5.4.2. SERIAL RDATA Wire Format

5.4.3. SERIAL Presentation Format

5.4.4. SERIAL RR Usage

5.5. Custom properties

6. Nameserver Behavior

6.1. General Requirements

6.2. Member zone removal

6.3. Member zone name clash

6.4. Migrating member zones between catalogs

6.5. Zone associated state reset

7. Implementation Notes

8. Implementation Status

9. Security Considerations

10. IANA Considerations

10.1. TIMESTAMP RR type

10.2. SERIAL RR type

11. Acknowledgements

12. Normative References

13. Informative References

Appendix A. Change History (to be removed before final publication)

Authors' Addresses

1. Introduction

The content of a DNS zone is synchronized amongst its primary and

secondary nameservers using AXFR and IXFR. However, the list of

zones served by the primary (called a catalog in [RFC1035]) is not

automatically synchronized with the secondaries. To add or remove a

zone, the administrator of a DNS nameserver farm not only has to add

¶

Catalog zone

Member zone

$CATZ

Catalog producer

Catalog consumer

Member node

or remove the zone from the primary, they must also add/remove the

zone from all secondaries, either manually or via an external

application. This can be both inconvenient and error-prone; it is

also dependent on the nameserver implementation.

This document describes a method in which the catalog is represented

as a regular DNS zone (called a "catalog zone" here), and

transferred using DNS zone transfers. As zones are added to or

removed from the catalog zone, these changes are distributed to the

secondary nameservers in the normal way. The secondary nameservers

then add/remove/modify the zones they serve in accordance with the

changes to the catalog zone.

The contents and representation of catalog zones are described in

Section 3. Nameserver behavior is described in Section 6.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

A DNS zone containing a DNS catalog, that is, a list

of DNS zones and associated properties.

A DNS zone whose configuration is published inside a

catalog zone.

Used in examples as a placeholder to represent the domain

name of the catalog zone itself (c.f. $ORIGIN).

An entity that generates and is responsible for

the contents of the catalog zone.

An entity that extracts information from the

catalog zone (such as a DNS server that configures itself

according to the catalog zone's contents).

The DNS name of the DNS subtree representing a given

member zone (two levels below $CATZ).

3. Description

A catalog zone is a specially crafted DNS zone that contains, as DNS

zone content:

A list of DNS zones (called "member zones"), plus properties

associated with those zones.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

Implementations of catalog zones SHOULD ignore any RR in the catalog

zone which is meaningless or useless to the implementation.

Authoritative servers may be preconfigured with multiple catalog

zones, each associated with a different set of configurations. A

member zone can as such be reconfigured with a different set of

preconfigured settings by removing it as a member of one catalog

zone and making it a member of another.

Although the contents of a catalog zone are interpreted and acted

upon by nameservers, a catalog zone is a regular DNS zone and so

must adhere to the standards for such zones.

A catalog zone is primarily intended for the management of a farm of

authoritative nameservers. It is not expected that the content of

catalog zones will be accessible from any recursive nameserver.

4. Catalog Zone Structure

4.1. SOA and NS Records

As with any other DNS zone, a catalog zone MUST have a syntactically

correct SOA record and at least one NS record at its apex.

The SOA record's SERIAL, REFRESH, RETRY and EXPIRE fields [RFC1035]

are used during zone transfer. A catalog zone's SOA SERIAL field

MUST increase when an update is made to the catalog zone's contents

as per serial number arithmetic defined in [RFC1982]. Otherwise,

secondary nameservers might not notice updates to the catalog zone's

contents.

There is no requirement to be able to query the catalog zone via

recursive nameservers. Implementations of catalog zones MUST ignore

and MUST NOT assume or require NS records at the apex. However, at

least one is still required so that catalog zones are syntactically

correct DNS zones. A single NS RR with a NSDNAME field containing

the absolute name "invalid." is RECOMMENDED [RFC2606].

4.2. Catalog Zone Schema Version

The catalog zone schema version is specified by an integer value

embedded in a TXT RR named version.$CATZ. All catalog zones MUST

have a TXT RRset named version.$CATZ with at least one RR. Primary

and secondary nameservers MUST NOT apply catalog zone processing to

zones without the expected value in one of the RRs in the version.

$CATZ TXT RRset, but they may be transferred as ordinary zones. For

this memo, the value of one of the RRs in the version.CATZ TXT RRset

MUST be set to "2", i.e.

version.$CATZ 0 IN TXT "2"

¶

¶

¶

¶

¶

¶

¶

¶

NB: Version 1 was used in a draft version of this memo and reflected

the implementation first found in BIND 9.11.

4.3. List of Member Zones

The list of member zones is specified as a collection of member

nodes, represented by domain names under the owner name "zones"

where "zones" is a direct child domain of the catalog zone.

The names of member zones are represented on the RDATA side (instead

of as a part of owner names) of a PTR record, so that all valid

domain names may be represented regardless of their length

[RFC1035]. This PTR record MUST be the only record in the PTR RRset

with the same name.

For example, if a catalog zone lists three zones "example.com.",

"example.net." and "example.org.", the member node RRs would appear

as follows:

where <unique-N> is a label that tags each record in the collection.

<unique-N> has an unique value in the collection.

Member node labels carry no informational meaning beyond labeling

member zones. A changed label may indicate that the state for a zone

needs to be reset (see Section 6.5).

Having the zones uniquely tagged with the <unique-N> label ensures

that additional RRs can be added below the member node (see Section

5). Further, if member zones do not share a PTR RRset, the list of

member zones can be split over multiple DNS messages in a zone

transfer.

A catalog zone consumer MUST ignore PTR RRsets with more than a

single record.

The CLASS field of every RR in a catalog zone MUST be IN (1).

The TTL field's value is not defined by this memo. Catalog zones are

for authoritative nameserver management only and are not intended

for general querying via recursive resolvers.

¶

¶

¶

¶

¶

<unique-1>.zones.$CATZ 0 IN PTR example.com.

<unique-2>.zones.$CATZ 0 IN PTR example.net.

<unique-3>.zones.$CATZ 0 IN PTR example.org.

¶

¶

¶

¶

¶

¶

¶

5. Properties

Each member zone MAY have one or more additional properties,

described in this chapter. These properties are completely optional

and the catalog zone consumer SHOULD ignore those it does not

understand. Properties are represented by RRsets below the

corresponding member node.

5.1. The Change of ownership (Coo) Property

The 'coo' property facilitates controlled migration of a member zone

from one catalog to another.

A Change Of Ownership is signaled by the 'coo' property in the

catalog zone currently `owning'' the zone. The name of the new

catalog is in the value of a PTR record in the old catalog. For

example if member "example.com." will migrate from catalog

zoneOLDCATZ` to catalog zone `NEWCATZ, this appears in the$OLDCATZ`

catalog zone as follows:

The PTR RRset MUST consist of a single PTR record. A catalog zone

consumer MUST ignore PTR RRsets with more than a single record.

When a catalog zone consumer of catalog zone $OLDCATZ receives an

update which adds or changes a coo property for a member zone in

$OLDCATZ signalling a new owner $NEWCATZ, it does not migrate the

member zone immediately.

This is because the catalog zone consumer may not have the <unique-

N> identifier associated with the member zone in $NEWCATZ and

because name servers do not index Resource Records by RDATA, it may

not know wether or not the member zone is configured in $NEWCATZ at

all. It may have to wait for an update of $NEWCATZ adding or

changing that member zone.

When a catalog zone consumer of catalog zone $NEWCATZ receives an

update of $NEWCATZ which adds or changes a member zone, and that

consumer had the member zone associated with $OLDCATZ, and there is

a coo property of the member zone in $OLDCATZ pointing to $NEWCATS,

only then it will reconfigure the member zone with the for $NEWCATZ

preconfigured settings.

All associated state for the zone (such as the zone data, or DNSSEC

keys) is in such case reset, unless the epoch property (see Section

5.3) is supported by the catalog zone consumer and the member zone

in both $OLDCATZ and $NEWCATZ have an epoch property with the same

value.

¶

¶

¶

<unique-N>.zones.$OLDCATZ 0 IN PTR example.com.

coo.<unique-N>.zones.$OLDCATZ 0 IN PTR zones.$NEWCATZ

¶

¶

¶

¶

¶

¶

The new owner is advised to increase the serial of the member zone

after the ownership change, so that the old owner can detect that

the transition is done. The old owner then removes the member zone

from old.catalog.

5.2. The Group Property

With a group property, consumer(s) can be signalled to treat some

member zones within the catalog zone differently.

The consumer MAY apply different configuration options when

processing member zones, based on the value of the group property.

The exact handling of configuration referred to by the group

property value is left to the consumer's implementation and

configuration. The property is defined by a TXT record in the sub-

node labelled group.

The producer MAY assign a group property to all, some, or none of

the member zones within a catalog zone. The producer MUST NOT assign

more than one group property to one member zone.

The consumer MUST ignore either all or none of the group properties

in a catalog zone.

The value of the TXT record MUST be at most 255 octets long and MUST

NOT contain whitespace characters. The consumer MUST interpret the

value case-sensitively.

5.2.1. Group Property Example

In this case, the consumer might be implemented and configured in

the way that the member zones with "nodnssec" group assigned will

not be signed with DNSSEC, and the zones with "sign-with-nsec3"

group assigned will be signed with DNSSEC with NSEC3 chain.

By generating the catalog zone (snippet) above, the producer signals

how the consumer shall treat DNSSEC for the zones example.net. and

example.com., respectively.

5.3. The Epoch Property

A epoch property allows a producer to trigger, on the consumer, a

reset of all state associated with a zone.

¶

¶

¶

¶

¶

¶

<unique-1>.zones.$CATZ 0 IN PTR example.com.

group.<unique-1>.zones.$CATZ 0 IN TXT sign-with-nsec3

<unique-2>.zones.$CATZ 0 IN PTR example.net.

group.<unique-2>.zones.$CATZ 0 IN TXT nodnssec

¶

¶

¶

¶

The epoch property is represented by a the TIMESTAMP Resource Record

(see Section 5.3.1).

epoch.<unique-N>.zones.$CATZ 0 IN TIMESTAMP ...

When a member zone's epoch changes, the secondary server resets the

member zone's state. The secondary can detect a member zone epoch

change as follows:

When the epoch changes, the primary will set the TIMESTAMP RR of

the member zone's epoch property to the current time.

When the secondary processes a member node with an epoch property

that is larger than the point in time when the member zone itself

was last retrieved, then a new epoch has begun.

The steps entailed in the process of resetting the zone state depend

on the operational context of the secondary (e.g. regenerate DNSSEC

keys).

5.3.1. The TIMESTAMP Resource Record

Epoch values (both for the catalog zone and for member zones) are

provided with a TIMESTAMP Resource Record. The Type value for the

TIMESTAMP RR is TBD. The TIMESTAMP RR is class independent. The

RDATA of the resource record consists of a single field: Timestamp.

5.3.1.1. TIMESTAMP RDATA Wire Format

The TIMESTAMP RDATA wire format is encoded as follows:

The wire format is identical to the wire format of the Signature

Expiration and Inception Fields of the RRSIG RR ([RFC4034] section

3.1.5) and follows the same rules with respect to wrapping.

5.3.1.2. TIMESTAMP RDATA Presentation Format

The presentation format is identical to that of the Signature

Expiration and Inception Fields of the RRSIG RR ([RFC4034] section

3.2). Example:

¶

* ¶

¶

*

¶

*

¶

¶

¶

¶

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Timestamp |

+-+

¶

¶

¶

epoch.$CATZ 0 IN TIMESTAMP 20210304124652

epoch.<unique-1>.zones.$CATZ 0 IN TIMESTAMP 20201231235959

¶

5.4. The Serial Property

The serial property helps in increasing reliability of zone update

signaling and may help in reducing NOTIFY and SOA query traffic.

The current default mechanism for prompting notifications of zone

changes from a primary nameserver to the secondaries via DNS NOTIFY

[RFC1996], can be unreliable due to packet loss, or secondary

nameservers temporarily not being reachable. In such cases the

secondary might pick up the change only after the refresh timer runs

out, which might take long time and be out of the control of the

primary nameserver operator. Low refresh values in the zones being

served can alleviate update delays, but burden both the primary and

secondary nameservers with more refresh queries, especially with

larger numbers of secondary nameservers serving large numbers of

zones. To mitigate this, updates of zones MAY be signalled via

catalog zones with the help of a serial property.

The serial number in the SOA record of the most recent version of a

member zone MAY be provided by a serial property. When a serial

property is present for a member zone, implementations of catalog

zones MAY assume this number to be the current serial number in the

SOA record of the most recent version of the member zone.

Nameservers that are secondary for that member zone, MAY compare the

serial property with the SOA serial since the last time the zone was

fetched. When the serial property is larger, the secondary MAY

initiate a zone transfer immediately without doing a SOA query

first. The SOA query may be omitted, because the SOA serial has been

obtained reliably via the catalog zone already.

When a serial property is present for a member zone and it matches

the SOA serial of that member zone, implementations of catalog zones

which are secondary for that member zone MAY ignore the refresh time

in the SOA record of the member zone and rely on updates via the

serial property of the member zone. A refresh timer of a catalog

zone MUST not be ignored.

Primary nameservers MAY be configured to omit sending DNS NOTIFY

messages to secondary nameservers which are known to process the

serial property of the member zones in that catalog. However they

MAY also combine signalling of zone changes with the serial property

of a member zone, as well as sending DNS NOTIFY messages, to

anticipate slow updates of the catalog zone (due to packet loss or

other reasons) and to cater for secondaries that do not process the

serial property.

All comparisons of serial numbers MUST use "Serial number

arithmetic", as defined in [RFC1982]

¶

¶

¶

¶

¶

¶

¶

5.4.1. The SERIAL Resource Record

The serial property value is provided with a SERIAL Resource Record.

The Type value for the SERIAL RR is TBD. The SERIAL RR is class

independent. The RDATA of the resource record consist of a single

field: Serial.

5.4.2. SERIAL RDATA Wire Format

The SERIAL RDATA wire format is encoded as follows:

5.4.2.1. The Serial Field

The Serial field is a 32-bit unsigned integer in network byte order.

It is the serial number of the member zone's SOA record ([RFC1035]

section 3.3.13).

5.4.3. SERIAL Presentation Format

The presentation format of the RDATA portion is as follows:

The Serial fields is represented as an unsigned decimal integer.

5.4.4. SERIAL RR Usage

The serial property of a member zone is provided by a SERIAL RRset

with a single SERIAL RR named serial.<unique-N>.zones.$CATZ.

For example, if a catalog zone lists three zones "example.com.",

"example.net." and "example.org.", and a serial property is provided

for each of them, the RRs would appear as follows:

5.5. Custom properties

Implementations and operators of catalog zones may choose to provide

their own properties below the label private-extension.<unique-

N>.zones.$CATZ. private-extension is not a placeholder, so a custom

¶

¶

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Serial |

+-+

¶

¶

¶

¶

¶

¶

<unique-1>.zones.$CATZ 0 IN PTR example.com.

serial.<unique-1>.zones.$CATZ 0 IN SERIAL 2020111712

<unique-2>.zones.$CATZ 0 IN PTR example.net.

serial.<unique-2>.zones.$CATZ 0 IN SERIAL 2020111709

<unique-3>.zones.$CATZ 0 IN PTR example.org.

serial.<unique-3>.zones.$CATZ 0 IN SERIAL 2020112405

¶

property would have the domain name <your-label>.private-

extension.<unique-N>.zones.$CATZ

6. Nameserver Behavior

6.1. General Requirements

As it is a regular DNS zone, a catalog zone can be transferred using

DNS zone transfers among nameservers.

Although they are regular DNS zones, catalog zones contain only

information for the management of a set of authoritative

nameservers. For this reason, operators may want to limit the

systems able to query these zones. It may be inconvenient to serve

some contents of catalog zones via DNS queries anyway due to the

nature of their representation. A separate method of querying

entries inside the catalog zone may be made available by nameserver

implementations (see Section 7).

Catalog updates should be automatic, i.e., when a nameserver that

supports catalog zones completes a zone transfer for a catalog zone,

it SHOULD apply changes to the catalog within the running nameserver

automatically without any manual intervention.

As with regular zones, primary and secondary nameservers for a

catalog zone may be operated by different administrators. The

secondary nameservers may be configured to synchronize catalog zones

from the primary, but the primary's administrators may not have any

administrative access to the secondaries.

A catalog zone can be updated via DNS UPDATE on a reference primary

nameserver, or via zone transfers. Nameservers MAY allow loading and

transfer of broken zones with incorrect catalog zone syntax (as they

are treated as regular zones), but nameservers MUST NOT process such

broken zones as catalog zones. For the purpose of catalog

processing, the broken catalogs MUST be ignored.

6.2. Member zone removal

When a member zone is removed from a specific catalog zone, an

authoritative server MUST NOT remove the zone and associated state

data if the zone was not configured from that specific catalog zone.

Only when the zone was configured from a specific catalog zone, and

the zone is removed as a member from that specific catalog zone, the

zone and associated state (such as zone data and DNSSEC keys) MAY be

removed.

¶

¶

¶

¶

¶

¶

¶

6.3. Member zone name clash

If there is a clash between an existing zone's name (either from an

existing member zone or otherwise configured zone) and an incoming

member zone's name (via transfer or update), the new instance of the

zone MUST be ignored and an error SHOULD be logged.

A clash between an existing member zone's name and an incoming

member zone's name (via transfer or update), may be an attempt to

migrate a zone to a different catalog.

6.4. Migrating member zones between catalogs

If all consumers of the catalog zones involved support the coo

property, it is RECOMMENDED to perform migration of a member zone by

following the procedure described in Section 5.1. Otherwise a

migration of member zone from a catalog zone $OLDCATZ to a catalog

zone $NEWCATZ has to be done by: first removing the member zone from

$OLDCATZ; second adding the member zone to $NEWCATZ.

If in the process of a migration some consumers of the involved

catalog zones did not catch the removal of the member zone from

$OLDCATZ yet (because of a lost packet or down time or otherwise),

but did already see the update of $NEWCATZ, they may consider the

update adding the member zone in $NEWCATZ to be a name clash (see

#nameclash) and as a consequence the member is not migrated to

$NEWCATZ. This possibility needs to be anticipated with a member

zone migration. Recovery from such a situation is out of the scope

of this document. It may for example entail a manually forced

retransfer of $NEWCATZ to consumers after they have been detected to

have received and processed the removal of the member zone from

$OLDCATZ.

6.5. Zone associated state reset

It may be desirable to reset state (such as zone data and DNSSEC

keys) associated with a member zone. If all consumers of the catalog

zone support the epoch property, it is RECOMMENDED to perform a zone

state reset following the procedure described in Section 5.3.

Otherwise a zone state reset has to be done by: first removing the

member zone from the catalog; add the member zone to the catalog

again after having made sure all catalog zone consumers did process

the member zone removal.

If in the process of a zone state reset some consumers of the

involved catalog zone did not catch the removal (because of a lost

packet or down time or otherwise) they will not have the zone

associated state reset. This possibility needs to be anticipated.

Recovery from it is out of the scope of this document. It may for

example entail manual removal of the zone associated state from the

¶

¶

¶

¶

¶

catalog zone consumers that did not catch the removal and re-

addition of the member.

7. Implementation Notes

Catalog zones on secondary nameservers would have to be setup

manually, perhaps as static configuration, similar to how ordinary

DNS zones are configured. Members of such catalog zones will be

automatically synchronized by the secondary after the catalog zone

is configured.

An administrator may want to look at data inside a catalog zone.

Typical queries might include dumping the list of member zones,

dumping a member zone's effective configuration, querying a specific

property value of a member zone, etc. Because of the structure of

catalog zones, it may not be possible to perform these queries

intuitively, or in some cases, at all, using DNS QUERY. For example,

it is not possible to enumerate the contents of a multi-valued

property (such as the list of member zones) with a single QUERY.

Implementations are therefore advised to provide a tool that uses

either the output of AXFR or an out-of-band method to perform

queries on catalog zones.

8. Implementation Status

Note to the RFC Editor: please remove this entire section before

publication.

In the following implementation status descriptions, "DNS Catalog

Zones" refers to DNS Catalog Zones as described in this document.

Knot DNS has processing of DNS Catalog Zones since Knot DNS

Version 3.0.0, which was released on September 9, 2020.

Knot DNS has generation of DNS Catalog Zones on a development

branch.

PowerDNS has a proof of concept external program called

PowerCATZ, that can process DNS Catalog Zones.

Proof of concept python scripts that can be used for both

generating and consuming DNS Catalog Zones with NSD have been

developed during the hackathon at the IETF-109.

Interoperability between the above implementations has been tested

during the hackathon at the IETF-109.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

https://gitlab.nic.cz/knot/knot-dns/-/tree/catalog_generate
https://gitlab.nic.cz/knot/knot-dns/-/tree/catalog_generate
https://github.com/PowerDNS/powercatz/
https://github.com/IETF-Hackathon/NSDCatZ

9. Security Considerations

As catalog zones are transmitted using DNS zone transfers, it is key

for these transfers to be protected from unexpected modifications on

the route. So, catalog zone transfers SHOULD be authenticated using

TSIG [RFC8945]. A primary nameserver SHOULD NOT serve a catalog zone

for transfer without using TSIG and a secondary nameserver SHOULD

abandon an update to a catalog zone that was received without using

TSIG.

Use of DNS UPDATE [RFC2136] to modify the content of catalog zones

SHOULD similarly be authenticated using TSIG.

Zone transfers of member zones SHOULD similarly be authenticated

using TSIG [RFC8945]. The TSIG shared secrets used for member zones

MUST NOT be mentioned anywhere in the catalog zone data. However,

key identifiers may be shared within catalog zones.

Catalog zones reveal the zones served by the consumers of the

catalog zone. It is RECOMMENDED to limit the systems able to query

these zones. It is RECOMMENDED to transfer catalog zones

confidentially [RFC9103].

Administrative control over what zones are served from the

configured name servers shifts completely from the server operator

(consumer) to the "owner" (producer) of the catalog zone content.

10. IANA Considerations

10.1. TIMESTAMP RR type

This document defines a new DNS RR type, TIMESTAMP, in the "Resource

Record (RR) TYPEs" subregistry of the "Domain Name System (DNS)

Parameters" registry:

TYPE Value Meaning Reference

TIMESTAMP TBD Timestamp [this document]

Table 1

10.2. SERIAL RR type

This document defines a new DNS RR type, SERIAL, in the "Resource

Record (RR) TYPEs" subregistry of the "Domain Name System (DNS)

Parameters" registry:

TYPE Value Meaning Reference

SERIAL TBD
Version number of the original copy of

the zone

[this

document]

Table 2

¶

¶

¶

¶

¶

¶

¶

[RFC1035]

[RFC1982]

[RFC1996]

[RFC2119]

[RFC2136]

11. Acknowledgements

Our deepest thanks and appreciation go to Stephen Morris, Ray Bellis

and Witold Krecicki who initiated this draft and did the bulk of the

work.

Catalog zones originated as the chosen method among various

proposals that were evaluated at ISC for easy zone management. The

chosen method of storing the catalog as a regular DNS zone was

proposed by Stephen Morris.

The initial authors discovered that Paul Vixie's earlier [Metazones]

proposal implemented a similar approach and reviewed it. Catalog

zones borrows some syntax ideas from Metazones, as both share this

scheme of representing the catalog as a regular DNS zone.

Thanks to Brian Conry, Tony Finch, Evan Hunt, Patrik Lundin,

Victoria Risk, Carsten Strotmann, Peter Thomassen and Kees

Monshouwer for reviewing draft proposals and offering comments and

suggestions.

Thanks to Klaus Darilion who came up with the idea for the serial

property during the hackathon at the IETF-109. Thanks also to Shane

Kerr, Petr Spacek, Brian Dickson for further brainstorming and

discussing the serial property and how it would work best with

catalog zones.

12. Normative References

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Elz, R. and R. Bush, "Serial Number Arithmetic", RFC

1982, DOI 10.17487/RFC1982, August 1996, <https://

www.rfc-editor.org/info/rfc1982>.

Vixie, P., "A Mechanism for Prompt Notification of Zone

Changes (DNS NOTIFY)", RFC 1996, DOI 10.17487/RFC1996,

August 1996, <https://www.rfc-editor.org/info/rfc1996>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,

"Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, DOI 10.17487/RFC2136, April 1997, <https://

www.rfc-editor.org/info/rfc2136>.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1982
https://www.rfc-editor.org/info/rfc1982
https://www.rfc-editor.org/info/rfc1996
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2136
https://www.rfc-editor.org/info/rfc2136

[RFC2606]

[RFC4034]

[RFC8174]

[RFC8945]

[RFC9103]

[Metazones]

Eastlake 3rd, D. and A. Panitz, "Reserved Top Level DNS

Names", BCP 32, RFC 2606, DOI 10.17487/RFC2606, June

1999, <https://www.rfc-editor.org/info/rfc2606>.

Arends, R., Austein, R., Larson, M., Massey, D., and S.

Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, DOI 10.17487/RFC4034, March 2005, <https://

www.rfc-editor.org/info/rfc4034>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Dupont, F., Morris, S., Vixie, P., Eastlake 3rd, D.,

Gudmundsson, O., and B. Wellington, "Secret Key

Transaction Authentication for DNS (TSIG)", STD 93, RFC

8945, DOI 10.17487/RFC8945, November 2020, <https://

www.rfc-editor.org/info/rfc8945>.

Toorop, W., Dickinson, S., Sahib, S., Aras, P., and A.

Mankin, "DNS Zone Transfer over TLS", RFC 9103, DOI

10.17487/RFC9103, August 2021, <https://www.rfc-

editor.org/info/rfc9103>.

13. Informative References

Vixie, P., "Federated Domain Name Service Using DNS

Metazones", 2005, <http://ss.vix.su/~vixie/mz.pdf>.

Appendix A. Change History (to be removed before final publication)

draft-muks-dnsop-dns-catalog-zones-00

Initial public draft.

draft-muks-dnsop-dns-catalog-zones-01

Added Witold, Ray as authors. Fixed typos, consistency issues. Fixed

references. Updated Area. Removed newly introduced custom RR TYPEs.

Changed schema version to 1. Changed TSIG requirement from MUST to

SHOULD. Removed restrictive language about use of DNS QUERY. When

zones are introduced into a catalog zone, a primary SHOULD first

make the new zones available for transfers first (instead of MUST).

Updated examples, esp. use IPv6 in examples per Fred Baker. Add

catalog zone example.

draft-muks-dnsop-dns-catalog-zones-02

* ¶

¶

* ¶

¶

* ¶

https://www.rfc-editor.org/info/rfc2606
https://www.rfc-editor.org/info/rfc4034
https://www.rfc-editor.org/info/rfc4034
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8945
https://www.rfc-editor.org/info/rfc8945
https://www.rfc-editor.org/info/rfc9103
https://www.rfc-editor.org/info/rfc9103
http://ss.vix.su/~vixie/mz.pdf

Addressed some review comments by Patrik Lundin.

draft-muks-dnsop-dns-catalog-zones-03

Revision bump.

draft-muks-dnsop-dns-catalog-zones-04

Reordering of sections into more logical order. Separation of multi-

valued properties into their own category.

draft-toorop-dnsop-dns-catalog-zones-00

New authors to pickup the editor pen on this draft

Remove data type definitions for zone properties Removing

configuration of member zones through zone properties altogether

Remove Open issues and discussion Appendix, which was about zone

options (including primary/secondary relationships) only.

draft-toorop-dnsop-dns-catalog-zones-01

Added a new section "The Serial Property", introducing a new

mechanism which can help with disseminating zones from the primary

to the secondary nameservers in a timely fashion more reliably.

Three different ways to provide a "serial" property with a member

zone are offered to or the workgroup for discussion.

Added a new section "Implementation Status", listing production

ready, upcoming and Proof of Concept implementations, and reporting

on interoperability of the different implementations.

draft-toorop-dnsop-dns-catalog-zones-02

Adding the coo property for zone migration in a controlled fashion

Adding the group property for reconfigure settings of member zones

in an atomic update

Adding the epoch property to reset zone associated state in a

controlled fashion

draft-toorop-dnsop-dns-catalog-zones-03

Big cleanup!

Introducing the terms catalog zone consumer and catalog zone

producer

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

¶

¶

¶

* ¶

¶

¶

¶

* ¶

¶

¶

Reorganized topics to create a more coherent whole

Properties all have consistent format now

Try to assume the least possible from implementations w.r.t.:

1) Predictability of the <unique-N> IDs of member zones

2) Whether or not fallback catalog zones can be found for a member

3) Whether or not a catalog zone consumer can maintain state

Authors' Addresses

Peter van Dijk

PowerDNS

Den Haag

Netherlands

Email: peter.van.dijk@powerdns.com

Libor Peltan

CZ.NIC

Czechia

Email: libor.peltan@nic.cz

Ondrej Sury

Internet Systems Consortium

Czechia

Email: ondrej@isc.org

Willem Toorop

NLnet Labs

Science Park 400

1098 XH Amsterdam

Netherlands

Email: willem@nlnetlabs.nl

Leo Vandewoestijne

Netherlands

Email: leo@dns.company

¶

¶

¶

¶

¶

¶

mailto:peter.van.dijk@powerdns.com
mailto:libor.peltan@nic.cz
mailto:ondrej@isc.org
mailto:willem@nlnetlabs.nl
mailto:leo@dns.company

	DNS Catalog Zones
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Description
	4. Catalog Zone Structure
	4.1. SOA and NS Records
	4.2. Catalog Zone Schema Version
	4.3. List of Member Zones

	5. Properties
	5.1. The Change of ownership (Coo) Property
	5.2. The Group Property
	5.2.1. Group Property Example

	5.3. The Epoch Property
	5.3.1. The TIMESTAMP Resource Record
	5.3.1.1. TIMESTAMP RDATA Wire Format
	5.3.1.2. TIMESTAMP RDATA Presentation Format

	5.4. The Serial Property
	5.4.1. The SERIAL Resource Record
	5.4.2. SERIAL RDATA Wire Format
	5.4.2.1. The Serial Field

	5.4.3. SERIAL Presentation Format
	5.4.4. SERIAL RR Usage

	5.5. Custom properties

	6. Nameserver Behavior
	6.1. General Requirements
	6.2. Member zone removal
	6.3. Member zone name clash
	6.4. Migrating member zones between catalogs
	6.5. Zone associated state reset

	7. Implementation Notes
	8. Implementation Status
	9. Security Considerations
	10. IANA Considerations
	10.1. TIMESTAMP RR type
	10.2. SERIAL RR type

	11. Acknowledgements
	12. Normative References
	13. Informative References
	Appendix A. Change History (to be removed before final publication)
	Authors' Addresses

