
Workgroup: Internet Engineering Task Force

Internet-Draft:

draft-ietf-dnsop-ns-revalidation-00

Published: September 7, 2020

Intended Status: Standards Track

Expires: March 11, 2021

Authors: S. Huque

Salesforce

P. Vixie

Farsight Security

R. Dolmans

NLnet Labs

Delegation Revalidation by DNS Resolvers

Abstract

This document recommends improved DNS [RFC1034] [RFC1035] resolver

behavior with respect to the processing of Name Server (NS) resource

record sets (RRset) during iterative resolution. When following a

referral response from an authoritative server to a child zone, DNS

resolvers should explicitly query the authoritative NS RRset at the

apex of the child zone and cache this in preference to the NS RRset

on the parent side of the zone cut. Resolvers should also

periodically revalidate the child delegation by re-quering the

parent zone at the expiration of the TTL of the parent side NS

RRset.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 11, 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Motivation

3. Upgrading NS RRset Credibility

4. Delegation Revalidation

4.1. Using the DS Record TTL

5. Optimizations

6. Re-delegations and Delegation Removals

7. IANA Considerations

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

RFC EDITOR: PLEASE REMOVE THIS PARAGRAPH BEFORE PUBLISHING: The

source for this draft is maintained in GitHub at: https://

github.com/shuque/ns-revalidation

This document recommends improved DNS resolver behavior with respect

to the processing of NS record sets during iterative resolution. The

first recommendation is that resolvers, when following a referral

response from an authoritative server to a child zone, should

explicitly query the authoritative NS RRset at the apex of the child

zone and cache this in preference to the NS RRset on the parent side

of the zone cut. The second recommendation is to revalidate the

delegation by re-quering the parent zone at the expiration of the

TTL of the parent side NS RRset.

2. Motivation

There is wide variability in the behavior of deployed DNS resolvers

today with respect to how they process delegation records. Some of

them prefer the parent NS set, some prefer the child, and for

others, what they preferentially cache depends on the dynamic state

of queries and responses they have processed. This document aims to

bring more commonality and predictability by standardizing the

behavior in a way that comports with the DNS protocol.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The delegation NS RRset at the bottom of the parent zone and the

apex NS RRset in the child zone are unsynchronized in the DNS

protocol. [RFC1034] Section 4.2.2 says "The administrators of both

zones should insure that the NS and glue RRs which mark both sides

of the cut are consistent and remain so.". But for a variety of

reasons they could not be. Officially, a child zone's apex NS RRset

is authoritative and thus has a higher cache credibility than the

parent's delegation NS RRset, which is non-authoritative glue

([RFC2181], Section 5.4.1. "Ranking data", and Section 6.1. "Zone

authority"). Hence the NS RRset "below the zone cut" should

immediately replace the parent's delegating NS RRset in cache when

an iterative caching DNS resolver crosses a zone boundary. However,

this can only happen if (1) the resolver receives the authoritative

NS RRset in the Authority section of a response from the child zone,

which is not mandatory, or (2) if the resolver explicitly issues an

NS RRset query to the child zone as part of its iterative resolution

algorithm. In the absence of this, it is possible for an iterative

caching resolver to never learn the authoritative NS RRset for a

zone, unless a downstream client of the resolver explicitly issues

such an NS query, which is not something that normal enduser

applications do, and thus cannot be relied upon to occur with any

regularity.

Increasingly, there is a trend towards minimizing unnecessary data

in DNS responses. Several popular DNS implementations default to

such a configuration (see "minimal-responses" in BIND and Unbound).

So, they may never include the authoritative NS RRset in the

Authority section of their responses.

A common reason that zone owners want to ensure that resolvers place

the authoritative NS RRset preferentially in their cache is that the

TTLs may differ between the parent and child side of the zone cut.

Some DNS Top Level Domains (TLDs) only support long fixed TTLs in

their delegation NS sets. In fact, the Extensible Provisioning

Protocol (EPP) [RFC5731], that is often used by TLDs to configure

delegation parameters has no provision to set the TTL. This inhibits

a child zone owner's ability to make more rapid changes to their

nameserver configuration using a shorter TTL, if resolvers have no

systematic mechanism to observe and cache the child NS RRset.

A child zone's delegation still needs to be periodically revalidated

at the parent to make sure that the parent zone has not legitimately

re-delegated the zone to a different set of nameservers, or even

removed the delegation. Otherwise, resolvers that refresh the TTL of

a child NS RRset on subsequent queries or due to pre-fetching, may

cling to those nameservers long after they have been re-delegated

elsewhere. This leads to the second recommendation in this document,

"Delegation Revalidation" - Resolvers should record the TTL of the

¶

¶

¶

parent's delegating NS RRset, and use it to trigger a revalidation

action.

3. Upgrading NS RRset Credibility

When a delegation response is received during iteration, a

validation query should be sent in parallel with the resolution

of the triggering query, to the delegated nameservers for the

newly discovered zone cut. Note that validating resolvers today,

when following a secure referral, already need to dispatch a

query to the delegated nameservers for the DNSKEY RRset, so this

validation query could be sent in parallel with that DNSKEY

query.

A validation query consists of a query for the child's apex NS

RRset, sent to the newly discovered delegation's nameservers.

Normal iterative logic applies to the processing of responses to

validation queries, including storing the results in cache,

trying the next server on SERVFAIL or timeout, and so on.

Positive answers to this validation query will be cached with an

authoritative data ranking. Successive queries directed to the

same zone will be directed to the nameservers listed in the

child's apex, due to the ranking of this answer. If the

validation query fails, the parent NS RRset will remain the one

with the highest ranking and will be used for successive queries.

Some resolvers may choose to delay the response to the triggering

query until both the triggering query and the validation query

have been answered. In practice, we expect many implementations

may answer the triggering query in advance of the validation

query for performance reasons. An additional reason is that there

are number of nameservers in the field that (incorrectly) fail to

answer explicit queries for NS records, and thus the revalidation

logic may need to be applied lazily and opportunistically to deal

with them.

If the resolver chooses to delay the response, and there are no

nameserver names in common between the child's apex NS RRset and

the parent's delegation NS RRset, then the responses received

from forwarding the triggering query to the parent's delegated

nameservers should be discarded after validation, and this query

should be forwarded again to the child's apex nameservers.

4. Delegation Revalidation

This documents proposes two mechanisms to perform delegation

revalidation: an extensive and a simple mechanism. [TODO: should we

keep just the simple mechanism?]

¶

*

¶

*

¶

*

¶

*

¶

¶

The extensive mechanism:

The lowest TTL found in a parent zone's delegating NS RRset

should be stored in the cache and used to trigger delegation

revalidation as follows: Whenever a cached RRset is being

considered for use in a response, the cache should be walked

upward toward the root, looking for expired delegations. At the

first expired delegation encountered while walking upward toward

the root, revalidation should be triggered, putting the

processing of dependent queries on hold until validation is

complete.

To revalidate a delegation, the iterative caching DNS resolver

will redo resolution of the triggering query at the closest

enclosing zone cut above the revalidation point. If Query-name

Minimization [RFC7816] is being employed, this may not be the

full name of the triggering query, but the query name with some

number of left most labels excised as dictated by the qname

minimization algorithm. While searching for these nameservers,

additional revalidations may occur, perhaps placing a chain of

dependent queries on hold, unwinding in downward order as

revalidations closer to the root must be complete before

revalidations further from the root can begin.

If a delegation can be revalidated at the same node, then the old

apex NS RRset should be deleted from cache and then the new

delegating NS RRset should be stored in cache. The minimum TTL

from the new delegating NS RRset should also be stored in cache

to facilitate future revalidations. This order of operations

ensures that the RRset credibility rules do not prevent the new

delegating NS RRset from entering the cache. It is expected that

the child's apex NS RRset will rapidly replace the parent's

delegating NS RRset as soon as iteration restarts after the

revalidation event.

If the new delegating NS RRset cannot be found (RCODE=NXDOMAIN)

or if there is a new zone cut at some different level of the

hierarchy (insertion or deletion of a delegation point above the

revalidation point) or if the new RRset shares no nameserver

names in common with the old one (indicating some kind of

redelegation, which is rare) then the cache should be purged of

all names and RRsets at or below the revalidation point. This

facilitates redelegation or revocation of a zone by a parent zone

administrator, and also conserves cache storage by deleting

unreachable data.

¶

*

¶

*

¶

*

¶

*

¶

The simple mechanism:

Cap the time to cache the child NS RRset to the lower of child

and parent NS RRset TTL. The normal iterative resolution

algorithm will then cause delegation revalidation to naturally

occur at the expiration of the capped child NS TTL, along with

dispatching of the validation query to upgrade NS RRset

credibility.

4.1. Using the DS Record TTL

If both parent and child zone are DNSSEC [RFC4033] [RFC4034]

[RFC4035] signed with a corresponding secure delegation between

them, then expiration of the Delegation Signer (DS) record set will

cause revalidation of the current child zone's DNSKEY set. According

to RFC 4035, Section 2.4, "The TTL of a DS RRSet SHOULD match the

TTL of the delegating NS RRset", so this revalidation should be

triggered on the same time scale, and thus responses from the stale

child nameservers would no longer be trusted. However, delegation

revalidation is still necessary to locate the current nameserver

addresses to which subsequent DNS queries should be directed.

In practice, the DS TTL often differs from the delegating NS TTL.

For example, currently the root zone and the COM and NET TLDs all

set an NS RRset TTL of 2 days, while the DS RRset TTL is just 1 day.

RSSAC-003 [rssac-003] makes the following observation: "In the root

zone, delegating NS records have a 2 day TTL. However, the DS

records have a 1 day TTL, against the advice of RFC 4035. This is

not particularly surprising since a mistake with a DS record can

deny resolution for all names under a TLD. Given the way that DS

records are currently used in the root zone (e.g., usually matching

just one TLD KSK) it is better for them to have a lower TTL in the

event of an emergency change."

If a secure delegation is present, resolvers may use the DS RRset's

TTL as the revalidation interval in preference to to the delegating

NS RRSet TTL. (Question: should this be the recommendation instead?;

after all the DS is signed so its TTL cannot be spoofed.?)

5. Optimizations

TODO: mention possible optimizations: record whether certain

nameservers return the child NS set in their authoritative section

responses and subsequently forego the extra child NS query for a

period of time. Suggest that authoritative servers that do minimal

responses return their NS sets in response to DNSKEY queries, and

resolvers that see such behavior may also subsequently forego the

extra child NS query (from Olafur G.).

¶

*

¶

¶

¶

¶

¶

6. Re-delegations and Delegation Removals

TODO: mention in more detail what to do when resolvers observe

redelegations or removal of delegations at the parent. A quick

initial summary follows.

If a delegation is removed (i.e. the parent returns NXDOMAIN), then

cache contents should be treated as described in [RFC8020] --

ideally the resolver's cache should be entirely pruned at the

delegation point, or the cached contents below the delegation may be

allowed to be used until they expire. Similar treatment of the cache

should be followed if the child zone has been entirely re-delegated

to a new set of nameservers. If only a subset of nameservers have

been re-delegated, then no new cache cleanup action is needed.

7. IANA Considerations

This document includes no request to IANA.

8. Security Considerations

Upgrading NS RRset Credibility (Section 3) allows resolvers to cache

and utilize the authoritative child apex NS RRset in preference to

the non-authoriative parent NS RRset. However, it is important to

implement the steps described in Delegation Revalidation (Section 4)

at the expiration of the parent's delegating TTL. Otherwise, the

operator of a malicious child zone, originally delegated to, but

subsequently delegated away from, can cause resolvers that refresh

TTLs on subsequent NS set queries, or that pre-fetch NS queries, to

never learn of the redelegated zone. This problem has been seen in

the wild [include reference to Ghost Domains paper here].

¶

¶

¶

¶

[RFC1034]

[RFC1035]

[RFC2181]

[RFC7816]

[RFC8020]

[I-D.vixie-dnsext-resimprove]

[I-D.wijngaards-dnsext-resolver-side-mitigation]

[RFC4033]

[RFC4034]

9. References

9.1. Normative References

Mockapetris, P., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034,

November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Elz, R. and R. Bush, "Clarifications to the DNS

Specification", RFC 2181, DOI 10.17487/RFC2181, July

1997, <https://www.rfc-editor.org/info/rfc2181>.

Bortzmeyer, S., "DNS Query Name Minimisation to Improve

Privacy", RFC 7816, DOI 10.17487/RFC7816, March 2016,

<https://www.rfc-editor.org/info/rfc7816>.

Bortzmeyer, S. and S. Huque, "NXDOMAIN: There Really Is

Nothing Underneath", RFC 8020, DOI 10.17487/RFC8020,

November 2016, <https://www.rfc-editor.org/info/rfc8020>.

9.2. Informative References

Vixie, P., Joffe, R., and F. Neves, "Improvements to DNS

Resolvers for Resiliency, Robustness, and

Responsiveness", Work in Progress, Internet-Draft, draft-

vixie-dnsext-resimprove-00, June 23, 2010, <https://

tools.ietf.org/html/draft-vixie-dnsext-resimprove-00>.

Wijngaards, W., "Resolver side mitigations", Work in

Progress, Internet-Draft, draft-wijngaards-dnsext-

resolver-side-mitigation-01, February 24, 2009, <https://

tools.ietf.org/html/draft-wijngaards-dnsext-resolver-

side-mitigation-01>.

Arends, R., Austein, R., Larson, M., Massey, D., and S.

Rose, "DNS Security Introduction and Requirements", RFC

4033, DOI 10.17487/RFC4033, March 2005, <https://www.rfc-

editor.org/info/rfc4033>.

Arends, R., Austein, R., Larson, M., Massey, D., and S.

Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, DOI 10.17487/RFC4034, March 2005, <https://

www.rfc-editor.org/info/rfc4034>.

https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc2181
https://www.rfc-editor.org/info/rfc7816
https://www.rfc-editor.org/info/rfc8020
https://tools.ietf.org/html/draft-vixie-dnsext-resimprove-00
https://tools.ietf.org/html/draft-vixie-dnsext-resimprove-00
https://tools.ietf.org/html/draft-wijngaards-dnsext-resolver-side-mitigation-01
https://tools.ietf.org/html/draft-wijngaards-dnsext-resolver-side-mitigation-01
https://tools.ietf.org/html/draft-wijngaards-dnsext-resolver-side-mitigation-01
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc4034
https://www.rfc-editor.org/info/rfc4034

[RFC4035]

[RFC5731]

[rssac-003]

Arends, R., Austein, R., Larson, M., Massey, D., and S.

Rose, "Protocol Modifications for the DNS Security

Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,

<https://www.rfc-editor.org/info/rfc4035>.

Hollenbeck, S., "Extensible Provisioning Protocol (EPP)

Domain Name Mapping", STD 69, RFC 5731, DOI 10.17487/

RFC5731, August 2009, <https://www.rfc-editor.org/info/

rfc5731>.

RSSAC_Caucus, "RSSAC003 Report on Root Zone TTLs",

August 2015, <https://www.icann.org/en/system/files/

files/rssac-003-root-zone-ttls-21aug15-en.pdf>.

Acknowledgements

Wouter Wijngaards proposed explicitly obtaining authoritative child

NS data in [I-D.wijngaards-dnsext-resolver-side-mitigation]. This

behavior has been implemented in the Unbound DNS resolver via the

"harden-referral-path" option. The combination of child NS fetch and

revalidating the child delegation was originally proposed in [I-

D.vixie-dnsext-resimprove], by Vixie, Joffe, and Neves.

Authors' Addresses

Shumon Huque

Salesforce

Email: shuque@gmail.com

Paul Vixie

Farsight Security

Email: paul@redbarn.org

Ralph Dolmans

NLnet Labs

Email: ralph@nlnetlabs.nl

¶

https://www.rfc-editor.org/info/rfc4035
https://www.rfc-editor.org/info/rfc5731
https://www.rfc-editor.org/info/rfc5731
https://www.icann.org/en/system/files/files/rssac-003-root-zone-ttls-21aug15-en.pdf
https://www.icann.org/en/system/files/files/rssac-003-root-zone-ttls-21aug15-en.pdf
mailto:shuque@gmail.com
mailto:paul@redbarn.org
mailto:ralph@nlnetlabs.nl

	Delegation Revalidation by DNS Resolvers
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Motivation
	3. Upgrading NS RRset Credibility
	4. Delegation Revalidation
	4.1. Using the DS Record TTL

	5. Optimizations
	6. Re-delegations and Delegation Removals
	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

