
DNSOP Working Group D. Lawrence
Internet-Draft Oracle
Updates: 1034, 1035, 2181 (if approved) W. Kumari
Intended status: Standards Track P. Sood
Expires: March 2, 2020 Google
 August 30, 2019

Serving Stale Data to Improve DNS Resiliency
draft-ietf-dnsop-serve-stale-07

Abstract

 This draft defines a method (serve-stale) for recursive resolvers to
 use stale DNS data to avoid outages when authoritative nameservers
 cannot be reached to refresh expired data. One of the motivations
 for serve-stale is to make the DNS more resilient to DoS attacks, and
 thereby make them less attractive as an attack vector. This document
 updates the definitions of TTL from RFC 1034 and RFC 1035 so that
 data can be kept in the cache beyond the TTL expiry, and also updates

RFC 2181 by interpreting values with the high order bit set as being
 positive, rather than 0, and also suggests a cap of 7 days.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 2, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Lawrence, et al. Expires March 2, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft DNS Serve Stale August 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Background . 3
4. Standards Action . 4
5. Example Method . 4
6. Implementation Considerations 6
7. Implementation Caveats 8
8. Implementation Status . 9
9. EDNS Option . 9
10. Security Considerations 10
11. Privacy Considerations 10
12. NAT Considerations . 10
13. IANA Considerations . 10
14. Acknowledgements . 10
15. References . 11
15.1. Normative References 11
15.2. Informative References 11

 Authors' Addresses . 12

1. Introduction

 Traditionally the Time To Live (TTL) of a DNS resource record has
 been understood to represent the maximum number of seconds that a
 record can be used before it must be discarded, based on its
 description and usage in [RFC1035] and clarifications in [RFC2181].

 This document proposes that the definition of the TTL be explicitly
 expanded to allow for expired data to be used in the exceptional
 circumstance that a recursive resolver is unable to refresh the
 information. It is predicated on the observation that authoritative
 answer unavailability can cause outages even when the underlying data
 those servers would return is typically unchanged.

 We describe a method below for this use of stale data, balancing the
 competing needs of resiliency and freshness.

 This document updates the definitions of TTL from [RFC1034] and
 [RFC1035] so that data can be kept in the cache beyond the TTL
 expiry, and also updates [RFC2181] by interpreting values with the

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2181

Lawrence, et al. Expires March 2, 2020 [Page 2]

Internet-Draft DNS Serve Stale August 2019

 high order bit set as being positive, rather than 0, and also
 suggests a cap of 7 days.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 For a comprehensive treatment of DNS terms, please see [RFC8499].

3. Background

 There are a number of reasons why an authoritative server may become
 unreachable, including Denial of Service (DoS) attacks, network
 issues, and so on. If a recursive server is unable to contact the
 authoritative servers for a query but still has relevant data that
 has aged past its TTL, that information can still be useful for
 generating an answer under the metaphorical assumption that "stale
 bread is better than no bread."

 [RFC1035] Section 3.2.1 says that the TTL "specifies the time
 interval that the resource record may be cached before the source of
 the information should again be consulted", and Section 4.1.3 further
 says the TTL, "specifies the time interval (in seconds) that the
 resource record may be cached before it should be discarded."

 A natural English interpretation of these remarks would seem to be
 clear enough that records past their TTL expiration must not be used.
 However, [RFC1035] predates the more rigorous terminology of
 [RFC2119] which softened the interpretation of "may" and "should".

 [RFC2181] aimed to provide "the precise definition of the Time to
 Live", but in Section 8 was mostly concerned with the numeric range
 of values and the possibility that very large values should be
 capped. (It also has the curious suggestion that a value in the
 range 2147483648 to 4294967295 should be treated as zero.) It closes
 that section by noting, "The TTL specifies a maximum time to live,
 not a mandatory time to live." This is again not [RFC2119]-normative
 language, but does convey the natural language connotation that data
 becomes unusable past TTL expiry.

 Several recursive resolver operators currently use stale data for
 answers in some way, including Akamai. A number of recursive
 resolver packages (including BIND, Know, OpenDNS, Unbound) provide
 options to use stale data. Apple MacOS can also use stale data as

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8499
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Lawrence, et al. Expires March 2, 2020 [Page 3]

Internet-Draft DNS Serve Stale August 2019

 part of the Happy Eyeballs algorithms in mDNSResponder. The
 collective operational experience is that it provides significant
 benefit with minimal downside.

4. Standards Action

 The definition of TTL in [RFC1035] Sections 3.2.1 and 4.1.3 is
 amended to read:

 TTL a 32-bit unsigned integer number of seconds that specifies the
 duration that the resource record MAY be cached before the source
 of the information MUST again be consulted. Zero values are
 interpreted to mean that the RR can only be used for the
 transaction in progress, and should not be cached. Values SHOULD
 be capped on the orders of days to weeks, with a recommended cap
 of 604,800 seconds (seven days). If the data is unable to be
 authoritatively refreshed when the TTL expires, the record MAY be
 used as though it is unexpired.

 Interpreting values which have the high order bit set as being
 positive, rather than 0, is a change from [RFC2181]. Suggesting a
 cap of seven days, rather than the 68 years allowed by [RFC2181],
 reflects the current practice of major modern DNS resolvers.

 When returning a response containing stale records, a recursive
 resolver MUST set the TTL of each expired record in the message to a
 value greater than 0, with 30 seconds RECOMMENDED.

 Answers from authoritative servers that have a DNS Response Code of
 either 0 (NoError) or 3 (NXDomain) and the Authoritative Answers (AA)
 bit set MUST be considered to have refreshed the data at the
 resolver. Answers from authoritative servers that have any other
 response code SHOULD be considered a failure to refresh the data and
 therefor leave any previous state intact.

5. Example Method

 There is more than one way a recursive resolver could responsibly
 implement this resiliency feature while still respecting the intent
 of the TTL as a signal for when data is to be refreshed.

 In this example method four notable timers drive considerations for
 the use of stale data:

 o A client response timer, which is the maximum amount of time a
 recursive resolver should allow between the receipt of a
 resolution request and sending its response.

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2181

Lawrence, et al. Expires March 2, 2020 [Page 4]

Internet-Draft DNS Serve Stale August 2019

 o A query resolution timer, which caps the total amount of time a
 recursive resolver spends processing the query.

 o A failure recheck timer, which limits the frequency at which a
 failed lookup will be attempted again.

 o A maximum stale timer, which caps the amount of time that records
 will be kept past their expiration.

 Most recursive resolvers already have the query resolution timer, and
 effectively some kind of failure recheck timer. The client response
 timer and maximum stale timer are new concepts for this mechanism.

 When a request is received by a recursive resolver, it should start
 the client response timer. This timer is used to avoid client
 timeouts. It should be configurable, with a recommended value of 1.8
 seconds as being just under a common timeout value of 2 seconds while
 still giving the resolver a fair shot at resolving the name.

 The resolver then checks its cache for any unexpired records that
 satisfy the request and returns them if available. If it finds no
 relevant unexpired data and the Recursion Desired flag is not set in
 the request, it should immediately return the response without
 consulting the cache for expired records. Typically this response
 would be a referral to authoritative nameservers covering the zone,
 but the specifics are implementation dependent.

 If iterative lookups will be done, then the failure recheck timer is
 consulted. Attempts to refresh from non-responsive or otherwise
 failing authoritative nameservers are recommended to be done no more
 frequently than every 30 seconds. If this request was received
 within this period, the cache may be immediately consulted for stale
 data to satisfy the request.

 Outside the period of the failure recheck timer, the resolver should
 start the query resolution timer and begin the iterative resolution
 process. This timer bounds the work done by the resolver when
 contacting external authorities, and is commonly around 10 to 30
 seconds. If this timer expires on an attempted lookup that is still
 being processed, the resolution effort is abandoned.

 If the answer has not been completely determined by the time the
 client response timer has elapsed, the resolver should then check its
 cache to see whether there is expired data that would satisfy the
 request. If so, it adds that data to the response message with a TTL
 greater than 0 (as specified in Section 4). The response is then
 sent to the client while the resolver continues its attempt to
 refresh the data.

Lawrence, et al. Expires March 2, 2020 [Page 5]

Internet-Draft DNS Serve Stale August 2019

 When no authorities are able to be reached during a resolution
 attempt, the resolver should attempt to refresh the delegation and
 restart the iterative lookup process with the remaining time on the
 query resolution timer. This resumption should be done only once
 during one resolution effort.

 Outside the resolution process, the maximum stale timer is used for
 cache management and is independent of the query resolution process.
 This timer is conceptually different from the maximum cache TTL that
 exists in many resolvers, the latter being a clamp on the value of
 TTLs as received from authoritative servers and recommended to be
 seven days in the TTL definition in Section 4. The maximum stale
 timer should be configurable, and defines the length of time after a
 record expires that it should be retained in the cache. The
 suggested value is between 1 and 3 days.

6. Implementation Considerations

 This document mainly describes the issues behind serving stale data
 and intentionally does not provide a formal algorithm. The concept
 is not overly complex, and the details are best left to resolver
 authors to implement in their codebases. The processing of serve-
 stale is a local operation, and consistent variables between
 deployments are not needed for interoperability. However, we would
 like to highlight the impact of various implementation choices,
 starting with the timers involved.

 The most obvious of these is the maximum stale timer. If this
 variable is too large it could cause excessive cache memory usage,
 but if it is too small, the serve-stale technique becomes less
 effective, as the record may not be in the cache to be used if
 needed. Shorter values, even less than a day, can effectively handle
 the vast majority of outages. Longer values, as much as a week, give
 time for monitoring systems to notice a resolution problem and for
 human intervention to fix it; operational experience has been that
 sometimes the right people can be hard to track down and
 unfortunately slow to remedy the situation.

 Increased memory consumption could be mitigated by prioritizing
 removal of stale records over non-expired records during cache
 exhaustion. Implementations may also wish to consider whether to
 track the names in requests for their last time of use or their
 popularity, using that as an additional factor when considering cache
 eviction. A feature to manually flush only stale records could also
 be useful.

 The client response timer is another variable which deserves
 consideration. If this value is too short, there exists the risk

Lawrence, et al. Expires March 2, 2020 [Page 6]

Internet-Draft DNS Serve Stale August 2019

 that stale answers may be used even when the authoritative server is
 actually reachable but slow; this may result in sub-optimal answers
 being returned. Conversely, waiting too long will negatively impact
 user experience.

 The balance for the failure recheck timer is responsiveness in
 detecting the renewed availability of authorities versus the extra
 resource use for resolution. If this variable is set too large,
 stale answers may continue to be returned even after the
 authoritative server is reachable; per [RFC2308], Section 7, this
 should be no more than five minutes. If this variable is too small,
 authoritative servers may be rapidly hit with a significant amount of
 traffic when they become reachable again.

 Regarding the TTL to set on stale records in the response,
 historically TTLs of zero seconds have been problematic for some
 implementations, and negative values can't effectively be
 communicated to existing software. Other very short TTLs could lead
 to congestive collapse as TTL-respecting clients rapidly try to
 refresh. The recommended value of 30 seconds not only sidesteps
 those potential problems with no practical negative consequences, it
 also rate limits further queries from any client that honors the TTL,
 such as a forwarding resolver.

 Another implementation consideration is the use of stale nameserver
 addresses for lookups. This is mentioned explicitly because, in some
 resolvers, getting the addresses for nameservers is a separate path
 from a normal cache lookup. If authoritative server addresses are
 not able to be refreshed, resolution can possibly still be successful
 if the authoritative servers themselves are up. For instance,
 consider an attack on a top-level domain that takes its nameservers
 offline; serve-stale resolvers that had expired glue addresses for
 subdomains within that TLD would still be able to resolve names
 within those subdomains, even those it had not previously looked up.

 The directive in Section 4 that only NoError and NXDomain responses
 should invalidate any previously associated answer stems from the
 fact that no other RCODEs which a resolver normally encounters makes
 any assertions regarding the name in the question or any data
 associated with it. This comports with existing resolver behavior
 where a failed lookup (say, during pre-fetching) doesn't impact the
 existing cache state. Some authoritative servers operators have said
 that they would prefer stale answers to be used in the event that
 their servers are responding with errors like ServFail instead of
 giving true authoritative answers. Implementers MAY decide to return
 stale answers in this situation.

https://datatracker.ietf.org/doc/html/rfc2308#section-7

Lawrence, et al. Expires March 2, 2020 [Page 7]

Internet-Draft DNS Serve Stale August 2019

 Since the goal of serve-stale is to provide resiliency for all
 obvious errors to refresh data, these other RCODEs are treated as
 though they are equivalent to not getting an authoritative response.
 Although NXDomain for a previously existing name might well be an
 error, it is not handled that way because there is no effective way
 to distinguish operator intent for legitimate cases versus error
 cases.

 During discussion in the IETF, it was suggested that, if all
 authorities return responses with RCODE of Refused, it may be an
 explicit signal to take down the zone from servers that still have
 the zone's delegation pointed to them. Refused, however, is also
 overloaded to mean multiple possible failures which could represent
 transient configuration failures. Operational experience has shown
 that purposely returning Refused is a poor way to achieve an explicit
 takedown of a zone compared to either updating the delegation or
 returning NXDomain with a suitable SOA for extended negative caching.
 Implementers MAY nonetheless consider whether to treat all
 authorities returning Refused as preempting the use of stale data.

7. Implementation Caveats

 Stale data is used only when refreshing has failed in order to adhere
 to the original intent of the design of the DNS and the behaviour
 expected by operators. If stale data were to always be used
 immediately and then a cache refresh attempted after the client
 response has been sent, the resolver would frequently be sending data
 that it would have had no trouble refreshing. Because modern
 resolvers use techniques like pre-fetching and request coalescing for
 efficiency, it is not necessary that every client request needs to
 trigger a new lookup flow in the presence of stale data, but rather
 that a good-faith effort has been recently made to refresh the stale
 data before it is delivered to any client.

 It is important to continue the resolution attempt after the stale
 response has been sent, until the query resolution timeout, because
 some pathological resolutions can take many seconds to succeed as
 they cope with unavailable servers, bad networks, and other problems.
 Stopping the resolution attempt when the response with expired data
 has been sent would mean that answers in these pathological cases
 would never be refreshed.

 The continuing prohibition against using data with a 0 second TTL
 beyond the current transaction explicitly extends to it being
 unusable even for stale fallback, as it is not to be cached at all.

 Be aware that Canonical Name (CNAME) and DNAME [RFC6672] records
 mingled in the expired cache with other records at the same owner

https://datatracker.ietf.org/doc/html/rfc6672

Lawrence, et al. Expires March 2, 2020 [Page 8]

Internet-Draft DNS Serve Stale August 2019

 name can cause surprising results. This was observed with an initial
 implementation in BIND when a hostname changed from having an IPv4
 Address (A) record to a CNAME. The version of BIND being used did
 not evict other types in the cache when a CNAME was received, which
 in normal operations is not a significant issue. However, after both
 records expired and the authorities became unavailable, the fallback
 to stale answers returned the older A instead of the newer CNAME.

8. Implementation Status

 [RFC Editor: per RFC 6982 this section should be removed prior to
 publication.]

 The algorithm described in Section 5 was originally implemented as a
 patch to BIND 9.7.0. It has been in production on Akamai's
 production network since 2011, and effectively smoothed over
 transient failures and longer outages that would have resulted in
 major incidents. The patch was contributed to Internet Systems
 Consortium and the functionality is now available in BIND 9.12 via
 the options stale-answer-enable, stale-answer-ttl, and max-stale-ttl.

 Unbound has a similar feature for serving stale answers, but will
 respond with stale data immediately if it has recently tried and
 failed to refresh the answer by pre-fetching.

 Knot Resolver has a demo module here: https://knot-
resolver.readthedocs.io/en/stable/modules.html#serve-stale

 Details of Apple's implementation are not currently known.

 In the research paper "When the Dike Breaks: Dissecting DNS Defenses
 During DDoS" [DikeBreaks], the authors detected some use of stale
 answers by resolvers when authorities came under attack. Their
 research results suggest that more widespread adoption of the
 technique would significantly improve resiliency for the large number
 of requests that fail or experience abnormally long resolution times
 during an attack.

9. EDNS Option

 During the discussion of serve-stale in the IETF, it was suggested
 that an EDNS option should be available to either explicitly opt-in
 to getting data that is possibly stale, or at least as a debugging
 tool to indicate when stale data has been used for a response.

 The opt-in use case was rejected as the technique was meant to be
 immediately useful in improving DNS resiliency for all clients.

https://datatracker.ietf.org/doc/html/rfc6982
https://knot-resolver.readthedocs.io/en/stable/modules.html#serve-stale
https://knot-resolver.readthedocs.io/en/stable/modules.html#serve-stale

Lawrence, et al. Expires March 2, 2020 [Page 9]

Internet-Draft DNS Serve Stale August 2019

 The reporting case was ultimately also rejected because even the
 simpler version of a proposed option was still too much bother to
 implement for too little perceived value.

10. Security Considerations

 The most obvious security issue is the increased likelihood of DNSSEC
 validation failures when using stale data because signatures could be
 returned outside their validity period. This would only be an issue
 if the authoritative servers are unreachable, the only time the
 techniques in this document are used, and thus does not introduce a
 new failure in place of what would have otherwise been success.

 Additionally, bad actors have been known to use DNS caches to keep
 records alive even after their authorities have gone away. This
 potentially makes that easier, although without introducing a new
 risk.

 In [CloudStrife], it was demonstrated how stale DNS data, namely
 hostnames pointing to addresses that are no longer in use by the
 owner of the name, can be used to co-opt security such as to get
 domain-validated certificates fraudulently issued to an attacker.
 While this document does not create a new vulnerability in this area,
 it does potentially enlarge the window in which such an attack could
 be made. A proposed mitigation is that certificate authorities
 should fully look up each name starting at the DNS root for every
 name lookup. Alternatively, CAs should use a resolver that is not
 serving stale data.

11. Privacy Considerations

 This document does not add any practical new privacy issues.

12. NAT Considerations

 The method described here is not affected by the use of NAT devices.

13. IANA Considerations

 There are no IANA considerations.

14. Acknowledgements

 The authors wish to thank Robert Edmonds, Tony Finch, Bob Harold,
 Tatuya Jinmei, Matti Klock, Jason Moreau, Giovane Moura, Jean Roy,
 Mukund Sivaraman, Davey Song, Paul Vixie, Ralf Weber and Paul Wouters
 for their review and feedback.

Lawrence, et al. Expires March 2, 2020 [Page 10]

Internet-Draft DNS Serve Stale August 2019

 Paul Hoffman deserves special thanks for submitting a number of Pull
 Requests.

15. References

15.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

15.2. Informative References

 [CloudStrife]
 Borgolte, K., Fiebig, T., Hao, S., Kruegel, C., and G.
 Vigna, "Cloud Strife: Mitigating the Security Risks of
 Domain-Validated Certificates", ACM 2018 Applied
 Networking Research Workshop, DOI 10.1145/3232755.3232859,
 July 2018, <https://www.ndss-symposium.org/wp-

content/uploads/2018/02/
ndss2018_06A-4_Borgolte_paper.pdf>.

https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2181
https://www.rfc-editor.org/info/rfc2181
https://datatracker.ietf.org/doc/html/rfc2308
https://www.rfc-editor.org/info/rfc2308
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_06A-4_Borgolte_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_06A-4_Borgolte_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_06A-4_Borgolte_paper.pdf

Lawrence, et al. Expires March 2, 2020 [Page 11]

Internet-Draft DNS Serve Stale August 2019

 [DikeBreaks]
 Moura, G., Heidemann, J., Mueller, M., Schmidt, R., and M.
 Davids, "When the Dike Breaks: Dissecting DNS Defenses
 During DDos", ACM 2018 Internet Measurement Conference,
 DOI 10.1145/3278532.3278534, October 2018,
 <https://www.isi.edu/~johnh/PAPERS/Moura18b.pdf>.

 [RFC6672] Rose, S. and W. Wijngaards, "DNAME Redirection in the
 DNS", RFC 6672, DOI 10.17487/RFC6672, June 2012,
 <https://www.rfc-editor.org/info/rfc6672>.

 [RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Authors' Addresses

 David C Lawrence
 Oracle

 Email: tale@dd.org

 Warren "Ace" Kumari
 Google
 1600 Amphitheatre Parkway
 Mountain View CA 94043
 USA

 Email: warren@kumari.net

 Puneet Sood
 Google

 Email: puneets@google.com

https://www.isi.edu/~johnh/PAPERS/Moura18b.pdf
https://datatracker.ietf.org/doc/html/rfc6672
https://www.rfc-editor.org/info/rfc6672
https://datatracker.ietf.org/doc/html/bcp219
https://datatracker.ietf.org/doc/html/rfc8499
https://www.rfc-editor.org/info/rfc8499

Lawrence, et al. Expires March 2, 2020 [Page 12]

